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VIBRATIONS OF AVIATION EBHGINES.*

By

C. Martinot Lagarde.

1. Simple system of a mass and a spring. -~ If we consider

a sinple system, consisting of a mass M resting on gsprings

(Td g Gé), and 1f & force F acts on the system, 1t moves a cer-
tailn digstance Q% If the force ceases suddenly, the systen re-
sunes its position of equilibrium by & series of oscillations on
either side of this position. The period of these oscillations
is the particular period belouging to the system. TLet us assune
that the rccoil force of the spring is proportional to its dis-
tortion and that the resisting force of friction, which danps

the oscillations, is proportional to their velocity. If =z is
the valuc of the ordinate of the center of gravity of the mass

M=£ (P, woight in kg.} &£, acceleration due to gravity) at a

fa
&
given instant, its velocity is %%, its acceleration is Q—%
dt
2
and the corresponding force of inertia is - £ %T%' fhis foroes

accordins to the classic theorcns of nechanics, ‘is ecqual to the
sun of the inpressed forces, nanoly, the recoil force cz and
dz

the friction 2D E; (in neglecting the weight). The gencral cqua=-

tlon of the motlon is accordingly

(1) M dzg + 2b 42 4 6z = 0
. dt dt
which is oftoen put, in order to simplify the calculations, in the

following forn

n

*Fron "Los Nouveaux Moteurs d'Avietion," (published by Berger=-
Levrault, Paris), Chap. V, pp. 277=-293. 1921.




(2) fohed 1 dz = -
152 + 2h it + k2 z = 0,

by making

st

o
H
(0]

The general solution of this equation takes the form 2

s being the root of the equation of the second degree:

82 4+ 2hs + k® = O

whence:
s = h T dh* er®
i~ B # /1:3 - k®)4 (- = #/1n? = k2)t

If h® = k% > 0, z keops on decreasing. If h® « k2 < 0,2

is a sinusoidal function

%y = FPa L ¥ (J/ (k2 - h3®)t +0),

which comes from

2 = 4,6™2% (Dy sin®; & + Dy cos Py b).

~ht
In the second case, the exponcential tern in e likewise

decreases. The anplitude of the oscillations thus decreases rap-
idly with t and the principal period of these damped oscilla-

tions (Fig. 63) is equal to




e 2 i
The coefficients h and k charactcrize the susponsion

and can be detormined experimentally, which makes it possible %0
find the period of this sinple systen.

2. BEngine placed on an elastic support. - In reality, in tI

case of an airplane; the nass M is replaced by an engine in op~
eration and the spring is replaced by a frame and a fuselage
more or less clastic. The nmomentary force considered above is
replaced by periodic inpulses transnitted by the engine and due
to variations in the engine couple and to the forces of inertia
proportional to the square of the angular velocity. These im-
pulses may be represented by the expression
Ay w?R sin (Wt + ay) + Ag sin (wt + ag)

by neglecting the terms of the succeeding orders in 2wt, etc.
These periodic impulses give place to what are called sustained
vibrations (Fig. 63). If we assume W to be constant and adopt
a suitable origin for the arcs, this expression nay be put under
the general fornm Fw?® sin wt.

By likening the engine frame to a single spring and assuning
W to be constant, the general equation for the notion of the en-

gine in the vertical plane becones:

“ -
d‘ 2 d.Z U\f‘ﬂ
(3) dta + Zhg.; -+ kgz = B sin wt, in which T ’.ﬁ

In order to have the resultant motion, we nmust consider the

motions along the other two axes of the coordinates, the lateral




and longitudinal axes of the engine, which yield analogous equa-
tions.

The gencral solution of the preceding equation is the sun
of an integral of the equation, without the second nember, and a
particular solution of the complete equation. Since the inte-
gral of the equation, without the second menber, tends rapidly
toward O when t increases, as we have already scen, we will
consider only the particular solution of the complete equation,
This solution is a periodic function of the form
% = B gin wt + C cos wt, the coefficients B and C Dbeing de-
ternined by substituting this value for 2z in equation 3, and
by treating as identical the coefficient of each term in both

menbers. We thus find that 2z may be put under the forn

z = % gin (WE = a),

in which
B il . ae dI" e 1?8 @ wh
cos o sin o
. 2h w E{k2 - w=2)
ang o = =
k? - w?e (k® ~ wR)? + 4h® w?
% 2h W B

(k® =« w?)? + 4hRwW®

When h is negligible, the denominator of A ©becomes O

2 2 : s . .
and when w = k , the anplitude of the vidbrations tends to in~

crease indefinitely, giving us a synchronism. In practice, the




friction is appreciable and the amplitude remains finite. Never-

theless, since h 1is small, the anplitude is perceptible, when

I
2
9

2

W~ = k¥, which renders tang o 4infinite, o ==, For this crit-

ical welocity, the maximun of =z is displaced 0° with reference
to the engine couple.

In roality, since the velocity W is not strictly constant
and since the variations of the couple and the forces of inertia
are large, the general solution is a periodic function decompos-—
able into elementary series of sinusoidal form, adnitting nany

harmonics, whose periods are functions of w and its multiples

and whose first term is given below:

z = & gin (Wt - a).
P
The engine transmits the vibrations to the support by means
of a spring, in reality with the interpolation of a more or less
elastic joint. The corresponding force can be represented at
each instant by the tension of the spring, which is equal to
BE ] 3 .
cz = k M351n (wt - a), that is, on replacing the letters by

their values in terms of the coefficient of the primitive equa-

o

tions (1) and (3) (formula given by Mr. Lecornu)

12
@ e ( F C' Sin ((.Ut 5o a) = E' Sin (UJt - G:)

Nie = M WB)2 4+ 412 we

Such is the variable and periodic force with which the spring

adnits the same per-

©

presses on the engine support. This forec

D

iod as the forces of inertia of the

=

~
0]
(=N

ne.

7
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For an engine with X cylinders, we saw that the forces
r
transnitted are periodic functions of EKwt and % W ks whdeh
modifies the values of W corresponding to the critical periods.

It is advantagecus to recduce to & minimum the anplitude

E' of this force ® and, for this purpose, to reduce the forces

of inertia F and the angular velocity w, and to incrcasc N

and the coefficient of danping. In an extrene theoretical case,

M is very large, the coefficients b of damping and ¢ of the

recoil tension of the spring are negligible, in conparison with

M, and the maxinun value of ® tends toward %f and is inde=
pendent of the velocity. The engine is mounted on a very light
and flexible support, constituted, for example, by two overhung
girders, In the case when the engine support is rigid, the re-
coil tension of the spring becomes predominant and the maxinun
value of ® tends toward wWeE, Aside from these extrene cases,
the amplitude @ varies with W.

Under the influence of this periodic force, the engine sup-
port has therefore a tendency to vibrate, which makes it, impor-

tant that the period corresponding to the number of explosions
X S

or revolutions of the engine should not coincide with the natur-

al oscillation period of its support. The vibrations of the sup-

]

ne gn

(¢

port react in turn on t ine and are susceptible of varying

UL

the critical speed of certain revolving parts, for exanple, the

crank shaft.

The combined engine and its supporting airplane in reality

represent a sort of double pendulun consisting of the engine with




a nass M, connected nore or less elastically with its frame,
and of the airplane itself, which may be likened to a certain
nass M'!' resting on fixed points, by means of an intermediate
conplex springs These fixed polnts are nmaterialized either in
the contact points of the wheels with the floor of the hangar,
or in the points of applicatlion of the forces of sustentation to
the wings, when the airplane is in flight. The critical speed
nay therefore differ in the two cases. In practice, the vibra-
tions are greater on the ground, than during flight.

Under the influence of the engine vibrations, the airplane
tends to assume a vibratory motion, whose eguation has the same
form as the one already indicated for an engine supported only
by springs. If we let ¥y represent the displacemcnts of the en-
gine, we will then have, in order to determine its value, after

making the seme hypotheses for the same of simplification,

2
(3%) Mt &Y 4 2pt &Y 4 ¢el'y = E (sin Wt - q)
at® at

the same equation as above (3) in which the corresponding letters
are accentuated.

The same conclusions apply therefore to the supporting air-
plane. The coefficients of this equation are much nore conplex
to determine, but the general solution is still a complex period-
ic function, with the same period as that of the engine, also ro-
solvable into elementary sinusoidal functions.

The period of the oscillations proper of the support is

shortened in proportion to the rigidity of the systen and the




shortness of the displacements allowed by the connections.

The critical speeds corresponding to equations (3) and (31')
are not generally the same, but there are nevertheless critical
speeds for the whole system of this sort of double pendulum con-
stituted by the engine and the airplane.

The foregoing general equations occur in the study of all os-
cillatory and periodic phenonena, especially in alternating elec-
tric currents, which originate in a circuit containing a self=-

jnduction coil and a condenser. The coefficients sinply change
their significance.

Since the nmass of the supporting frame is snall, it is in=-
portant to nmake it cither as rigid as possible, so that it will
have its own vibration periods, much shorter than those due to
the explosions and the forces of inertia, or very flexible; 80
that it will have very long periods, different from those of the
disturbing forces. In the first case, the enginc is supported
by a very rigid frame of wood or metal, with the interposition
of elastic pads to act as shock absorbers, and is held in posi-

tion by Belleville washers designed to preserve the contact. In

the second case, the engine is supported by two flexible woolen
beams. In reality, the whole airplane forms the support and is
subjected to the vibration of the engine. It is inportant to
determine the vibration nodes, in order that they may not become
dangerous in any vicinity by producing distortions beyond the
elastic linit of the substance. We know that the vibration period

of simple systems (such as cables, struts, spars and levers of




sinple geometric form and practically uniform cross-section and

of small size in comparison with their length) depends on the
cross-section and the distance between their fixed points.

These fixed points are generally the points of support deternin=-
ed by the construction of the airplane itself, and which conse-
quently, cannot be shifted. In order to change the vibration per=-
jod, it is sometimes possible to create supplementary nodes by

the introduction of intermediate stays and struts.

3., Vibrometers and accelerometers.- In order to determine

experinentally the amplitude of the vibrations, the conparative
nethod is employed, either by utilizing empirically the inpres-
sion received by holding the hand on the vibrating part or, nore

scientifically, by examining the indications of a vibrometer.

A vibrometer should give not only the period, but also the
value of the maxinun local acceleration at any instant and the
pnaximum anplitude of the oscillations, indispensable clements
for characterizing numerically the destructive power of any shak-
ing in the airplane. Most of the vibrometers utilize the incr-
tia pendulum. We will only mention the one of Auclair and Boyer-
Guillon and the one of Bourlet and A, de Gramont de Guiche.

The essential part of the inertia pendulun is a mass parti-
ally solid with the systen and guided in such manner as to be
able to move in only one given direction. This mass, under the

influence of the effect of inertia and opposing forces, takes a

relative motion with reference to the system. The pendulum and its
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danmping device must have an inertia as small and a coefficient
of damping as large as possible, in order to minimize the "dis-
placenents" of the inscriptions and the "lancers." In general,
the opposing force is produced by a spring or by the weight.

¥e may adopt, for the displacements of the pendulum, the law al-
ready indicated for the vibrat Pons proper of the sinmple systen.
The relative displacement =x of the inertia mass and the abso-
lute displacement y of the pendulum support are both assuned
to be notions of translation. The force transmitted to the pen-

dulun by its support is proportional to the acceleration of the

2y

ds®
The differential equation binding x and y 1is consequently the

support, that is to which is a function of the time *t.

following, according to the one already given at the beginning

of the chapter for the motions of an engine resting on a spring:

2 2 24
aleta op 58 o ox « &K 25 - ¥(t).

pos)

at? at at® at®

in which a 1s the coefficient of inertia of the pendulum, b
the coefficient of damping and ¢ the coefficient of recoil.
These coefficients are characteristic of the instrument.

What we observe are the displacements =x of the pendulunm,.
From these we deduce by means of the above equation, the function
F(t) of the displacements of the support. The pendulum thus be-

cones an anplifier for revealing the scarcely visible motions of

the supporte

The pendulum is generally provided with a recording mechan=-
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isn which automatically traces a curve representing, as a func-

tion of the time, the relative motion of the inertia mass. This
curve is a graphic representation of the solution of the differ-
ential equation binding ¥y to x.

As a particular solution of this equation, we may consider

the one which satisfies the initial conditions of the notion.

We have already seen that the general integral of the equation

in the second member tends towards O at the end of a certain
time, so that, after the speed has been once established, the ine
ertia pendulum follows the law given by the particular integral.
Conseguently, whenever the initial conditions of the relative
motion of the inertia mass are fixed, the diagrams obtained are
conparable, when the function F(t) remains the sane.

Every periodic motion of the support, the frequency of which
has become established, can be recorded by the inertia pendulun
and the same analyzed. The complex periodic motion of the sup-
port may be considered, according to Fourier's theory, as the
resultant of the sinmple sinusoidal motions, £(t), f2(t) weeo..

fn(t). with periods equal to sub-multiples of the period of the

resunltant motlion T I ..2 .
& n
Flt) e £.(¢) + £5(8) + & 2,05},

The search for an integrel of the complete equation returans
to that of the simple elementary equations. Now, an integral of

the differential equation:
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£(x) = £5(t) = Ep cos (ant + Bp) @ =
is a simple sinusoidal function, dilsplaced with reference to it.
Hence, if the notion of the pendulum support is a simple sinu-
soidal motion, the motion of the inertia pendulum will also be
a simple sinusoidal one with the same period, dut with a certain
difference in phase. Their amplitudes will bear a definite ratio,
provided therc is no synchronisn. If the motion of the support
is a conmplex periodic motion, the motion of the pendulum will
also be complex and have the same period. Thus we have the theo-
retical means for recording the vibrations. The diagram obtained

makes it possible to determine, for each value of t, that of

F(t), by neasuring on it the value of x, of ax and of dzx.
at ds®

In order to be able to obtain practical results, the coeffi-
cient of danmping nust renmain nearly coanstant, the recording de-
vice nust introduce no disturbance, nor be subjected to shocks
from its support, and the vibration period of the pendulum nust
not be the same as that of its support.

The manufacture of these instruments is difficult. In fact,
we nust keep the recoil force strong enough so the pendulum will
not be sensitive to slight external perturbations. The damping,
on the coantrary, nmust be so slight as not to injure its sensi-

o

tiveness. In order that its period may be large, that is, that

ac - b*?

the expression be large, it is advantageous to have a

a
long or heavy pendulun.
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The accelerometer of Auclair and Boyer-Guillon (Fig. 64),
sometimes called a maxinum accelerometer, has a mass supported
by a sprinsg, whose tension can be regulated and which rests on a
shoulder. The nass remains stationary so long as the force of

than the sum of the tension of the spring and the

[
=}
0]
H
ot
'..l .
o
e
0
-
@
]
w

weight of the nass., The maximunm ordinate is noted by an ampli-
f¥ing device with a recording drum. The instrument may be ad-
justed so that the nmass will leave the shoulder only at the in-
stant of this nmaxinum by utilizing, for example, an electric

contact. At this instant the mass has the same acceleration as

(force of inertia)

its support and we have the equation a!
= b'R (tension of spring) + c'P (weight), at!, b?' , and c!' Ybeing
the constants of the instruments.

We thus have the means for studying the vibration phenomena.
In a sinple sinusoidal notion, the maxinum acceleration and the
amplitude of the motion are conbined by a simple law resulting

from the properties of the sinusoidal functions:

X =0 gdnl Wit
d y
E% = Awcos WH,
d®x .
= = AW2 gin Wt.
dte

e

The naxinum amplitude is A and the maxinum accoleration is

equal to "

60
n being the number of revolutions or double oscillations per nmin.

AW? when W =

When the vibrations are very complex, which is the case with

engines, it 1s necessary to increase the nunber of measurements,
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with varying tensions of the spring, which constitutes a diffi-
cult operation.

In the vibrometer of Carlo Bourlet and A. de Granont de
Guiche (Fig. 65), it has been sought to obtain the nmininum in=
ertia and the maxinum coefficient of damping, while coanserving
a very great sensitiveness. The very light rod is attached to
the very taut membrane of a Marey air capsule. The oscillations
of this rod, mounted on a vibrating part of the engine support,
acquire an oscillatory motion with the same period as the support,
and with an amplitude which is a function of that of the support.
The oscillatory motion produces varying air pressures in the cap-
sule, which are transmitted by a flexible tube to a second iden=-
tical capsule, insulated from the vibrations of the engine frane
and connected with & recording stylus. The instrument is com~-
pleted by a2 tuning-fork whose synchronous vibrations are recorded
on the sane strip of paper, unrolled at a uniform speed by a re-
cording drun, and give the neasurement of the time.

The diagranms in Fig. 66 show the interesting results obtain-
ede  They correspond, of course; to the wibratory condition pro-
ducéed by the engine at the point of the support to which the cap-
sule is applied.

The instrument has three capsules, placed in three diffcr-
ent rectangular planes, which consequently, give the three conpo-
nent vibrations.

In order to enable a comparative study of the vibrations of

two engines, it is necessary to employ the sane support and the




same revolution speed. By placing it on wvarious parts of the
engine support, or of the airplane it enables the determination
f the critical speeds, that.is, the naximun vibrations at any
point. It has not yet been possible to determine, for each
speed, the absolute values of the vidbrations. The indication of
their relative size already constitutes, however, a valuable in-
dicatione.

These have been made on the theory of the vibrations of
blades and of frequency neters, which give information on thp
nunber of revolutions, but not on the amplitude and acceleration
of the motionse As a vibrometer without inertia and of great
sensitiveness, it will perhaps be possible sonmetine to utilize
lanps with grills, which will enable the neasuring of the vibra-
tions of a small metal cylinder, solid with the engine franme, by
the vibrations of the electric field produced in an annular sole-
noid, independent of the engine franme.

Accidental causes of vibrations. - Any failure in the egui-

libriun of the rotating masses or any accidental variation of the
couple or torque causes vibrations or tremblings, according to
the character (periodic or not) of these actions.

Anmong the moving masses, especial inportance nmust be attach-
ed to the propeller, not only from the point of view of its stat-
ic but also of its dynamic equilibration, to its perfect symmetry
from the aerodynanic poiat of view and to its mounting on the en~-

gine. The propeller axis nust be perpendicular to that of the en-
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gine, so that it will describe a disk or a cone. The breaking of

a propeller blade, from a lack of balancing of the centifugal

(o]

orting

forces, may result in wrenching the engine from its sug
frame. The propeller nust be attached to the engine shaft in
such nanner that its motion will be perfectly regular, Any dis-
placement of the propeller about its hudb causes, by reason of its
fnertia and variations of the engine couple, dangerous vibrations
and friction, capable of raising its temperature even to setting
the wood on fire.
Variations of the couple, due either to the fuel supply or

its carburetion, or to the filling of the cylinders (distribu-

w0
N
O
e |
ct
(e}
ct
=
(0]

tion, intake, valves, tightness of the piston ring
ignition, cause serious disturbances fron the point of view of

the vibrations. These variations nust be closely watched and re-

1.

duced to the nmininum, before making any alteration in the engline

or its support, for the sake of reducing the vibrations.

Translation by the FNational Advisory Committece for Aeronautics.
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llarey's capsule with elastic membrane. | -

Fig. 65. - Vibrometer of A. de Gramont de Guicae i

and Carlo Bourlet.
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Fig. 66. Vibrations recorded bv a Guiche

vibrometer on a 140 HP Dion engine
movnted on a testing bench and running
at 1860 T.p.=.
1. Lateral vibrations; 2. Vertical vibrations;
2. Vibrations of tuning fork; 4 Longitudinal vibra




