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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

TECENICAL NOTE No. 84,

NEW DATA ON THE LAVS OF FLJID RESIETANCE, *
By
C. Wieselsberger.

Vhile very noteworthy results have been obtained, especially
i1 recent vears, with the aid of the theory of the frictionless.
_fluid,'this is the case in a much emaller degree for the resulis
6f the theory based on a fluid with internal friction or viédos—

ity. The fluids with which we actually have to do always possess
some viscbsity, which is the very reason for the resistance en-
countered by a body moving in a fluid., TVhen this resistance or
drag has been reduced to a mininum by streamlining the body, the
affect of the viscosity becomes so small that the actual flow very
nearly agrzes with that calculated on the basis of the theory of
the frictionless or non-viscous fluid.** This is not ths case,
unwever, with shapes which cause a great resistancs, since the vis-
ccelty of the fluid here plays a decisive role; Thug far all at-
tempts at the quantitative determination of the drag, on the basis
of the theory of viscous fluids, with the exception of.3 few srec-
ial cases, have met with but slight success. For this reason,‘

whenever a more accurate knowledge of the drag is desirable, it
* From "Physikalische Zeitschrift," 1921, Vol. 22, Ppp. 321-33¢.

** Fuhrmann, Theorie und experimentelle Untersuchungen an Ballon-
modellen, Dissert. ,. Gottingen, 1911, also Jahwbuch der Motorlu‘i-
acbl’Istudie g°sellscha1u, 1911-1912,
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must Le determined by experiment. In thias article & few experi-
nmerntal results w21l be givan on the drag of a cylindor 2Xpos8ei
+5 a stream cf air at right angles to 145 axlis, It will be gshom
shat the dreg depends on the aopsoluie Gime neions of the body and
the velocity and viscosity of the £1luid in a much moTe complex
manner than has heretofore been supposed.

It is customary %o 1'elresen’c the drag D encountered by &

body in moving through a fiyid of the density p, bY the formula

5 o2
D ¢S 5

in which V denotes the velcoity with which <hg body moves
through the fluid and S generally represents the projected ared
of the body on & plane pe;pendicular to the direction of motion.
Instead of this area, We may take any other chazauwcrlqulc area
of the body; for exarple, in the c&se of d@lOfOllJ, the greatest
projected ared. The diteﬂsionless coefficient ¢ 1is termed the
coefficient of drag. For a long time the opinion held, mainiy on
the strength of Newton's conception of the resistance of the air,
that for & given fluid this coefficient of drag ig independent

of the veloclty and of the absolute size of the pody and may ac-
cordingly be regarded as & constant whose value depends only on
+he geometrical shape of the body. 1t wes thought possible, from
+ha knowledge of the drag coefficient (obtained for.a single ve-
locity of a given oody by weans of the above GTag formula), to
aetermine the drag for any other size of the body and for any

cther velocity, geometrioal similarity of shape veing assumed.
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In reality, as we shall see, the relations are not nearly so

simple.’

More accurate experiments on the mutual influence of the
forces which produce the drag, have shown that the coefficient of
drag remains constant only for geoﬁétrically similar flows. The
latter do not however necessarily follow from geometric similar-
ity of the bodies experimented upon. The decisive conditions:
for the production of geometrically similar flows were first de-
termined by O. Reynolds. If any desired linear dimension of the
body (which must however be identiéal in the cases compared) is
designated by d and the kinetic viscosity by v = p/p (in
which W is the coefficient of viscosity), the two flows are ge-

ometrically similar only when the quotient lki; R 1is the same

)
in both cases. The coefficient R 1is dimensionless and is calléd
Reynolds number from its discoveres.

Consequently, it cannot be expected that the coefficient of
drag ¢ (which characterizes the resistance of a body) will re-
main unchanged in the transition to another Reynolds number, for
example, by changing the velocity or the size of the body. In
fact, a dependence of the coefficient of drag on'Reynolds para-
meter %g is observed for most bodies. The kind of change is
determined by the geometrical shape of the body. The above ex-
pression is usually employed for the drag, even in the cases where
048 nbt a constant. The least changes in the coefficient of
drag occur for bodies with sharp edges, when the latter are perpen-
dicular to the direction of flow. Thus, for example, according %
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prrevious experiments on sharp-edged disks perpendicular toc tae
flow, ths coefficient of drag remaine constant for a wide range
¢f Reynolds numpers and has a valus of about c¢c = 1.1, On the
contrary, bedies with convex upper surfaces may give very diﬁfar-
ent results. With Reynolds numbers (which ars small in comparison
with vnity) the drag increases direcitly as the velocity, as a8
firegt demonestrated hy Stokes for the case of falliﬁg srheres.
This flow is characterized by the fact that here the inertia com-
rletely disspresrs and the motion iz onl& influenced by the forces
cf viscosity.

In ozder to trace the couwse of the coeificient of drag in
at least one case, we rscently carried ouf’a series of experiments
with cylinders. Each cylinder encountered the air stream at righ
angles to its axis. All measurements were made in "uniplanar flow]
that is, where the particles were.all moving parallel to a plane
perpendicular to the axie.of the cylinder and whereby morsover the
sams streamline form existed in all planes parallel to said plane.
The coefficients of drag found were therefore for infinitely long
cylinders. Since thers was only a moderate range of velocity
{oetween 1.2 and 36 =2/sec) at disposal and since, on the other
28ad, the value of the kinetic viscosity 7as practically constant,
82 long as ths experimeris were.performed in the séme fluid, cviin-
ders of different diameters had to be used for great varistions in
“eynolds mumber. It was found that Reynolds number could be varied

ir this wayr bstveen verv wide limits. Experiments were tried wita
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nine oylinders ranging in diameter frcem 0.C5 to 300 rm. The ex-
periments accordingly embraced & Tange of Reynolds nuﬁbe:s fron
1.2 to 800,000,* with the adoﬁtion of the diameter of the cylin-
der as the characteristic length d. The dr&g of small cylinders
{up to 8 rm. in diameter) was determined by suspending each one
vertiocally in the air stream on a long wire, which was attached
+o the ceiling of the experiment chamber and carried a weight at
the bottom, below the alr siream. From the deflection of the
thus-constituted pendulum, under the influence of the air sffeam,
the drag was readily determined. In these exreriments the cylin-
der extended through the air stream. Although deviations from
the ﬁniformity of thé flow certainly occurred on the edges of the
sir stream, these could not materially affect the rnain flow;
gince in all cases the length of the cylinder was Very nuch greab—'
er than its diameter (280 times, in the most unfavorable case)
and the disturbances on the edge of the air stream extended over
diatances of only a few cylinder jizmeters. Tith cylinders of
much larger diameter, however. this marginal disturbance could
not be disregarded and some other nethod had to be employed.

The thicker cylinders were accordingly placed between two flat
rigid walls located inside of and parallel with the air strean.

A special kind of vacking (1abyrinth packing) was placed between

the ends of the cylinder and the two flat walls, so that the aiZ

P L

+ The vaius of ihe kinétic viscosity for air at 760 mm pressure
and 15°C is v = 0.145 cm?2/sec.
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could not pass between, and thus a uniform flow was produced.*
A system of wires led from the cylinder to a balance whioh mez.s-
ured the drag.

Fig. 1 shows the results of all the experinenvs. The drag

17

ccefficient © 1s here plotted against Reynoids numoer R = ﬂ;

on logarithmically divided coordinates. The logarithmic methcd

of presentation was adopted in order to represent all fields uni-
formly side by side. It is first seen that the drag oefficient
increases as the Reynolds number decreases. The experimental
values of the latter extend down to about 4.3. Now a formula for
the drag coefficient was given by Lamb (Phil. Mag., 1911, Vol. 21,
Pp.120, "On the Uniform Hotion of a Sphere through a Viscous Flviag"
for motion with very small Reynolds numbers ("crseping motion'),
on the basis of the theory of viscous fluids, similar to the one

given by Stokes for the sphere. Lamb's formula for the drag coef-

ficient of 2 cylinder reads, with our symbols,

c = 8 1 i
R (2.002 - 1aR)

in which R represents the Reynolds number with refererce to the
diameter ¢f the cylinder. This formula is derived from an approx-

imation theory and is only applicable for values of R which are

small with reference to unity. The values corresponding to this

* A detailed description of this arrangement, which has hitherto
been principally employed for testing aerofoils in a two-dimen-
sional flow, ie given in "Zeitschrift for Flugtechknik und lictor-
luftechiffanrt," 1919, ».85, and in "Ergebuisse der Aerodynamnis-
chen Versuchsanstalt," first report, 1931, pp. 54-53, published
by R. Oldenbourg.
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formula ars represented by a dash line in Fig. 1. It is evident
vhet the continuation of the curve passing through the experimen-
tal points connects well witkh the course of the calculated curre,
so that the region in which the experiments can no longer be ocar-
ried out, is bridged over., With R ~ 2000, there is a very not-
iceable downward deviation, confirmed howsver from another side..*
From R = 15,C00 to R = 180,000, +he quadratic law of drag is
approximately satisfied by the value of ¢ = 1.8.

Tith R ~ 300,000, a verv rapid fall of the drag coefficient
(from 1.3 to 0.3) takes place. A very similar behavior had been
previously observed in determining thé rasistance of spheresg**
and a2fterwards also for many other bodies with convex upper sur-
faces. The Reynolds numoer corresponding to this transitional
region is usually designated as the "critical Reynolds number. "
The decrease of ths drag coefficient is =0 great in the region,
that even the absolute value of the drag for a cylinder of given'
diamster, contrary to all previous experience, decreases with in-
creasing velocity. The qQuantitative relations are shown by fig.a,

in which the dreg in kg rer mater length of a cylinder of 3C om

* E. F. Relf, "Discussion of the Results of lMeasurements of the

Pesistance of Wires, with some Additional Tests on the Resistance
of Wires of Small Diameter," Technical Report of Advisory Conrit-
tee for Aeronautics, 1S13-1914, p.47. :

** G, Eiffel, "Sur lz Resistance des Spheres dans 1l'air en rouve-
ment" Comptes rendus, 1312, No. 155, p.1597; further, Capt. G. Cons-
tanzi, . "Alcune sspsrienze di idrodinemica," Rendiconti delle esper-
ienze e degli studi nello stab. di esr. e constr. aeron. del genio,
Vol. II, No.4, Rome, 19123; L. Prandtl, Der Luftwidergtand von
Kugeln Nachrichten der Xoniglichen Gesellschaft zu Cottingen, lMathe
Phys. Klasse 1914; C. Wiesclsberger, Zeitschrift fiir FlugtechniX
und Motorluftschiffahrt, 114, p. 140, :
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diameter is plotied against the velocity of the air. It is sesn
vha% witl the incrsase of the velocity froz 15 to 30 m/sec. the

absolute value of the drag falls from 4 tc about 2.5 kg. The pura

W

Quadratic law of drag which is represented in Fig. by the two
dash lines (parabolac), is obeyed neither before nor afier this
crivical point within a cénsiderable region. In corneotion with
Fig. 1, it should z2lso bs noted that the Reynolds law of simileri-
ty, in accordance with which it was necessary to have equal crag
cosZficients for =gual Reyholds numbers. was very well satisfied,
since the sections of the curve corresponding to *he diameters of
tas Cifferent oylinders connected well wifh or coversd one another,
Along with the magnitude of the drag coefficient, the formsof
flow, corresponding to the different Reynolds numbers, are also of
interest &nd are capable of shedding muckh ligkt bn the phenomena
of flow. It nhas ailready been mehtioned that, with vexy sﬁall
Reynolds numbers. the nature of the flow is largely determined by
the viscosity. On the basis of H. Lamb's article, already refar-
red to, we have calculated the streamline form of the uniplanax
cylinder flow for the Reynolds number R'=1, in which the cosffi-
cient of drag given by Lamb's formula/égkroximately correct.
Fiz, 3 shoms the absolute, ard Fig 4, the relative streamlines of
this flow, The absoluts streamlines give, as may be hers recalled,
the direction of motion of the fluid particles for an obsarver at
T2t with reference to ths fluid, while the relative streamlines,

on the contrary, give the direction for an observer at rest wish

reference to the body. Thsse two diagrams show that the flow is
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not symmetrical witL reference to a vertical plane passing through
tae axis of the cylinder and perpendicular to the direction of the
‘mAiegturbed flow. The relative streamlines come less closely to-
gether behind the bedy than in front of it, whioh signifies that
the flow behind the cylinder is considerably retarded in comparison
with the undisturbed flow. This is clearly shown by ithe velocitr
curves in Fig, 4. Curve 3 shows that the velocity, at a distance
Of 7«5 cylindor diameters bekind, has fgllen off to less than half
the value of the undisturbed velocity, while the retardation at
the same distance in front of the body (curve 1) is only slight.

On the surface of the cylinder the velocity of flow is zero (curve
2). The "wake" formed behind the cylinder is conditioned by the
factlthat Lamb's valuation for the flow avbout a qylinder does not
entirely neglect the acceleration terms gf the differential equar.
tion, as is the case in Stokes' flow about a sphere, but, féllow;ng
the example of Oseen's calculations for a sphere; takes' them into .
account to a certein degree. If, in the case of tae ;ylinder, we
should consider only the effect of viscosity, as done in Stokes!
calculation for the sphere, we would obtain a f}ow which is syrmet-
rical with zeference to a vertical plane passing through the axis
of ths cylinder and perpendiéular to the direction of the flow
(whereby in this case, however, the velocity in infinity would not
have a finite value). With a decreasing Reynolds‘number the flow
'about & cylinder will therefore graduélly appreoach a symmetrical

form, while with an increasing Reynolds number up to about R = 80,

the flow retains the character of Figs, 3 and 4. This was con-




- 30 =

firmed by a photograph of the flow with R = 3.5, hence already
considerably outside the apvlicability of Lamb's formula.* A coyl-
inder of 12.8 mm diemeter was moved thiough a syrup solution and
the moving particles of lycowodium, sprinkled on the surface of %he
liquid, were photographed, the camera béing meved with the oylin-
der. The quantitative relations at fairly great distances from “he
cylinder can hereby make no claim to parfect agreement with the no-
tion of an unlimited fluid, on account of its relatively small ex-
tent, ths dimensions of the fluid being only 34 em long, 34 cm wicde
and € om deep. The charzcter of Lamb's flow, esnecially the ab-
sence of vortices behind the body, is, however, clearly shown. 4
condition of transition to the flow with fully developed vortices
behind the body iz indicated by the wake's beginning to show an os-
cillatory motion, at about R = 100, With a further increase of
the Reynolds number, very regular vortices were formed, which have
been very thoroughly and successfully investigated by Von Kzrman. **
The existence of these vortices can be easily demonstrated acousti-
cally, since they set the air in vibration by their regular suc-
cession, thereby produoiné audible tonss. In this manner 7e have
demonstrated the presence of Karman vortices up to a Reynolds muin-
ber of about 100,00C. In sxcess of thz critical Reynolds murbz:>

a considersble further ckange in ths forr of ths flow taﬁes rlace,

in that the point on the surface of the cylinder where the forma:-

* A cut in the original raper is omittsd here.

** T. von Karman and H. Pubach, Ueber den Mechanisrus des Fllssig:
keits und Lufiwiderstandes, Physikalieche Zeitsohrift, 1913, Vol.
13, p.49,
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tior of vortices bagins, the "separation point," is shifted more
toward the rear. Both these forms of flow are shown diagrammatic-
2lly in Fig. 5, where the vortex regions are indicated by cross-

natching., It is seen that, beyond the critical number, the width

n

of the vortex region, which constitutes an approximate criterion
for the magnitude of the drag, is considerably less. The point at
which the smooth flow leaves the surface is designated by a. The
pressure distribution on the cylinder in uniplanar flow, both be-
low and sbove the critical point, is shown in Fig. 6, according.tc
English experiments.* Tha angles recorded on the axis of abscissas
are calculated from the foremost point ("rest-point") of the cylin-
dei, while the ordinates indicate fhe ratio of the pressurc meas-
ured at any point to the pressure at this point. Tre dash line
indicates the rressure distribution resulting from the theory of
the frictionless (or non-viscous) fluid, which would not give rise
to any drag. This distribution is approximated conszideradly more
closely by the distribution for the Reynolds number R = 176,000,
than by the distridbution below the critical point for R = 64,000.
More thorough investigation now showé that the shifting of the sep-
aration point toward the rear is connacted with the fact that the
flow (influenced by the viscosity in the immediate vicinity of tﬁe
surfice, whick originally consists of a smooth gliding of the finid
layers), zbove a certain Reynolds rurber, suddenly bscomes perme-

ated with small vortices. The surface layer is said to become

* G. J. Taylor, Pressure Distribution Round a C iin&er: ;ecbnic'L
Report of the/Advisory Committesz for Aeronauticg, 1915;1916, p.§c.
British
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"turbulent." If $his turbulence (whic:h occurs automaticeally for z
certain Reynolds number) is artificially createsd by special devic:s
~ fox example, By placing a coarse sisve of suitzble mesk in front
of the experimental body or by means of obstaclas (zoughness) on
its front surface -~ the location of the separation point can be
shifted backward, even for smaller Reynolds nurbexrs.

Evaen after the critical_number is passed, very peculiar phe-
nomena occasionally appear, as manifested in marked variations of
the drag coefficient. Any roughness of the surface ssems to play
an especially important réie here. ©Suckh a case is represented by
Fig. 7. Hers the coefficient of drag is again plotted against the
Revnolds number %%, in which d represenfs the thickness, per-
pendicular to the direction of ths flow, of = corlindez tapered in
the rear, as shown in the diagram. Txzz continuous line wa.s ob-
tained with a perfectly smooth surface; the dash line, with a rough
surface. It is seen that in the latter cass, after vassing theé
critical number, which is here about R = 70,000, a rapid increase
of the drag coefficient again takes place, so tha’ even for this
region the quadratic law of resistance is by no means obersd with a
constant coefficient of drag. It will bz an essential task for ex-
reriusntal aerodynamics to find the explanation of these peculiar
phenomena. |

In concluding, the writer wishes %o eéxpress his heartiest
thanks to Professor Pr:ndtl for the active support he has given
this work.

Aerodynamic Institute, Gottingen, April, 1931.

Translated by National Advisory Committes for Asronautics.
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