NOTES ON THE STANDARD ATMOSPHERE.

By Walter S. Diehl
Bureau of Aeronautics, U.S.N.

June, 1922.
NOTES ON THE STANDARD ATMOSPHERE.
By Walter S. Diehl.

Summary.

This report contains the derivation of a series of relations between temperature, pressure, density and altitude in a "standard atmosphere" which assumes a uniform decrease of temperature with altitude. The equations are collected and given with proper constants in both metric and English units for the temperature gradient adopted by the National Advisory Committee for Aeronautics. A table of values of temperature pressure and density at various altitudes in this standard atmosphere is included in the report.

Introduction.

Certain interesting and significant relations exist between pressure, density, temperature, and altitude in a "standard atmosphere" which assumes a linear decrease of temperature with altitude. Such an atmosphere is in extensive use in Europe and has recently been adopted by the National Advisory Committee for Aeronautics for Official use in the United States. The derivation of
the more important of the standard atmosphere relations and their tabulation in form for ready reference seems to be a practical method of indicating the way towards a utilization of the many advantages of a standard atmosphere.

The nomenclature followed throughout this report is standard, i.e.:

\[
\begin{align*}
p &= \text{pressure}, \\
p &= \text{mass-density}, \\
T &= \text{temperature, absolute}, \\
R &= \text{gas constant for air}, \\
a &= \text{temperature gradient}, \\
y &= \text{altitude}. \\
\end{align*}
\]

Standard Atmosphere.

A discussion of Standard Atmosphere may be found in National Advisory Committee for Aeronautics Report No. 147, by W. R. Gregg. A few brief remarks will be made for the benefit of those who do not have a copy of that report available for reference.

"Standard Atmosphere," as the name implies, is an atmosphere in which fixed values of pressure, temperature and density are adopted, more or less arbitrarily, for each altitude. Such an atmosphere is required in comparing the performance of aircraft and aircraft power plants. The most satisfactory of all proposed standards is that based on the so-called "Toussaint's Rule," which assumes the air temperature to decrease uniformly with alti-
tude from 15°C at sea level to -50°C at 10,000 meters, or, expressed in symbols

\[T = T_0 - ay \] \hspace{1cm} (1)

where \(a \) has the value of .0035 in the metric system (\(T \) in °C, \(y \) in meters) and the value .003567 in the English system (\(T \) in °F, \(y \) in feet); and \(T_0 \) is the temperature at sea-level, i.e.:

\[273 + 15 = 288°C \] (or, \(418.6°F \)).

While it is desirable that a standard atmosphere be a close approximation to actual conditions, this requirement should not be stressed. The chief purpose of a standard atmosphere is to supply a basis for comparison of performance and not to specify the temperature and pressure obtaining at a given absolute altitude at all times. It so happens that "Toussaint's Rule" expresses with considerable accuracy the average annual conditions for latitude 40° in the United States. This is not altogether accidental since the temperature gradient is based on averages, but it is very doubtful if the standard atmosphere ever expresses the true conditions at a given instant. Nevertheless, the "standard atmosphere" when properly understood and used is of great value in aeronautics.

Table 2, taken from National Advisory Committee for Aeronautics Report No. 147, gives values of \(t, \left(\frac{t}{T_0} \right), \left(\frac{p}{p_0} \right) \) for a series of values of \(y \) in both the metric and the English units. It should be noted that the standard air density used in the United States and England is based on a temperature of 60°F.
instead of 59°F. This introduces a slight density difference which may lead to confusion in certain cases unless the proper value be used. The difference is negligible in engineering calculations, however.

Fundamental Relations.

Since for all practical purposes air may be considered as a "perfect gas," the fundamental relations are the assumed

\[T = T_0 - ay \quad \ldots \ldots \ldots \ldots \ldots \quad (1) \]

the perfect gas law

\[p = \rho RT \quad \ldots \ldots \ldots \ldots \ldots \quad (2) \]

or,

\[\left(\frac{p}{p_0} \right) = \left(\frac{\rho}{\rho_0} \right) \left(\frac{T}{T_0} \right) \quad \ldots \ldots \ldots \ldots \ldots \quad (3a) \]

and

\[dp = -\rho g dy \quad \ldots \ldots \ldots \ldots \ldots \quad (3) \]

From these three relations there may be derived a series of equations which are of great value to the engineer. The derivation of equations (4) to (8) are original, although equations similar to (4) and (5) were derived by Pistolesi in "Bollettino Tecnico N.18" of the Italian Air Service, and an equation somewhat similar to (7) appears in R & M 324 of the British Advisory Committee for Aeronautics.

Since the preparation of these notes, articles containing similar equations have appeared in the "Bulletin Technique" (Service Technique de l'Aeronautique) No. 4, March, 1922, and in the Aeronautical Journal for May, 1922.
Derived Relations.

(a) Between temperature and pressure.

Dividing (2) by (3) and substituting \((T_o - ay)\) for \(T\)

\[
\frac{dp}{p} = -\frac{g}{RT} dy = -\frac{g}{R(T_o - ay)} dy
\]

Integrating

\[
\frac{aR}{g} \log \left(\frac{p}{p_o}\right) = \log \left(\frac{T}{T_o}\right)
\]

and

\[
\left(\frac{T}{T_o}\right) = \left(\frac{p}{p_o}\right)^{\frac{aR}{g}}
\]..... (4)

The value of the exponent is obviously independent of the system of units. In the English system \(a = .003567\) and \(R = 53.34g\) or 1716.3. Therefore,

\[
\frac{aR}{g} = 0.190
\]

and

\[
\left(\frac{T}{T_o}\right) = \left(\frac{p}{p_o}\right)^{0.19}
\]..... (4a)

\[
\left(\frac{p}{p_o}\right) = \left(\frac{T}{T_o}\right)^{5.255}
\]..... (4b)

(b) Between density and pressure:

From (2a) and (4a)

\[
\left(\frac{p}{p_o}\right) = \left(\frac{p}{p_o}\right)^{1 - \frac{aR}{g}}
\]..... (5)

\[
\left(\frac{p}{p_o}\right)^{0.81}
\]..... (5a)
or

\[
\left(\frac{p}{p_0} \right) = \left(\frac{\rho}{\rho_0} \right)^{1.235} \quad \ldots \ldots \ldots \ldots \quad (5b)
\]

(c) Between temperature and density:

From (4) and (5)

\[
\left(\frac{T}{T_0} \right) = \left(\frac{\rho}{\rho_0} \right)^{\frac{aR}{g-aR}} \quad \ldots \ldots \ldots \ldots \quad (6)
\]

or

\[
\left(\frac{T}{T_0} \right) = \left(\frac{\rho}{\rho_0} \right)^{4.285} \quad \ldots \ldots \ldots \ldots \quad (6a)
\]

\[
\left(\frac{\rho}{\rho_0} \right) = \left(\frac{T}{T_0} \right)^{4.255} \quad \ldots \ldots \ldots \ldots \quad (6b)
\]

(d) Between density and altitude:

From (1) and (6)

\[
\left(\frac{\rho}{\rho_0} \right)^{\frac{aR}{aR-aR}} = \left(1 - \frac{a}{T_0} \right) y \quad \ldots \ldots \ldots \ldots \quad (7)
\]

\[
\left(\frac{\rho}{\rho_0} \right)^{0.235} = \left(1 - \frac{a}{T_0} \right) y \quad \ldots \ldots \ldots \ldots \quad (7a)
\]

\[
\left(\frac{\rho}{\rho_0} \right) = \left(1 - \frac{a}{T_0} \right) y^{4.255} \quad \ldots \ldots \ldots \ldots \quad (7b)
\]

(e) Between pressure and altitude:

From (1) and (4)

\[
\left(\frac{p}{p_0} \right)^{\frac{aR}{g}} = \left(1 - \frac{a}{T_0} \right) y \quad \ldots \ldots \ldots \ldots \quad (8)
\]
\[\left(\frac{p}{p_0} \right)^{0.19} = \left(1 - \frac{a}{T_0} \right) \cdots \cdots \cdots \cdots \cdots \quad (8a) \]

or

\[\left(\frac{p}{p_0} \right) = \left(1 - \frac{a}{T_0} \right)^{5.255} \cdots \cdots \cdots \cdots \cdots \quad (8b) \]

A modified form of the well-known Halley's equation which is frequently used, is included for convenience:

\[y = 3.3026 \ H \ \left(\frac{T + T_0}{2 \cdot T_0} \right) \log_{10} \left(\frac{p_0}{p} \right) \cdots \cdots \cdots \cdots \cdots \quad (9) \]

In this equation \(H \) is the height of the "homogeneous atmosphere," i.e., the height to which the atmosphere would have to extend if its density were uniform throughout and of the value required to produce standard pressure at sea-level. This height is 7991 meters, or 26,217 feet.
<table>
<thead>
<tr>
<th>General Equations and Constants</th>
<th>Metric System</th>
<th>English System</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_0</td>
<td>$760 \text{ mm. (10330 } \text{ kg/m}^2$)</td>
<td>$29.921 \text{ in.kg. (2116 lbs/ft}^2$)</td>
</tr>
<tr>
<td>$\frac{p_0}{p_0}$</td>
<td>0.00125</td>
<td>0.00237</td>
</tr>
<tr>
<td>Gravity $- g$</td>
<td>980.6 cm/sec^2</td>
<td>32.172 ft/sec^2</td>
</tr>
<tr>
<td>T</td>
<td>280°C</td>
<td>418.6°F</td>
</tr>
<tr>
<td>α</td>
<td>0.0065</td>
<td>-0.003567</td>
</tr>
<tr>
<td>R</td>
<td>29.27 g</td>
<td>53.34 g</td>
</tr>
<tr>
<td>$T = T_0 - ay$</td>
<td>$T = T_0 - 0.0065 y$</td>
<td>$T = T_0 - 0.003567y$</td>
</tr>
<tr>
<td>$p = \rho R T$</td>
<td>$p = \rho R T$</td>
<td>$p = \rho R T$</td>
</tr>
<tr>
<td>$d\rho = -g \rho dy$</td>
<td>$d\rho = -g \rho dy$</td>
<td>$d\rho = -g \rho dy$</td>
</tr>
<tr>
<td>$\left(\frac{T}{T_0}\right) = \left(\frac{p}{p_0}\right)^{-\frac{aR}{g}}$</td>
<td>$\left(\frac{T}{T_0}\right) = \left(\frac{p}{p_0}\right)^{-0.19}$</td>
<td>$\left(\frac{T}{T_0}\right) = \left(\frac{p}{p_0}\right)^{-0.19}$</td>
</tr>
<tr>
<td>$\left(\frac{p}{p_0}\right) = \left(\frac{T}{T_0}\right)^{\frac{aR}{g}}$</td>
<td>$\left(\frac{p}{p_0}\right) = \left(\frac{T}{T_0}\right)^{5.255}$</td>
<td>$\left(\frac{p}{p_0}\right) = \left(\frac{T}{T_0}\right)^{5.255}$</td>
</tr>
<tr>
<td>$\left(\frac{\rho}{\rho_0}\right) = \left(\frac{T}{T_0}\right)^{\frac{g-aR}{g}}$</td>
<td>$\left(\frac{\rho}{\rho_0}\right) = \left(\frac{T}{T_0}\right)^{0.61}$</td>
<td>$\left(\frac{\rho}{\rho_0}\right) = \left(\frac{T}{T_0}\right)^{0.61}$</td>
</tr>
<tr>
<td>$\left(\frac{T}{T_0}\right) = \left(\frac{\rho}{\rho_0}\right)^{-\frac{aR}{g}}$</td>
<td>$\left(\frac{T}{T_0}\right) = \left(\frac{\rho}{\rho_0}\right)^{-3.235}$</td>
<td>$\left(\frac{T}{T_0}\right) = \left(\frac{\rho}{\rho_0}\right)^{-1.235}$</td>
</tr>
<tr>
<td>$\left(\frac{\rho}{\rho_0}\right) = \left(\frac{T}{T_0}\right)^{\frac{g-aR}{aR}}$</td>
<td>$\left(\frac{\rho}{\rho_0}\right) = \left(\frac{T}{T_0}\right)^{4.255}$</td>
<td>$\left(\frac{\rho}{\rho_0}\right) = \left(\frac{T}{T_0}\right)^{4.255}$</td>
</tr>
<tr>
<td>$\left(\frac{\rho}{\rho_0}\right) = \left(\frac{T}{T_0}\right) \left(1 - \frac{a}{T_0} y\right)$</td>
<td>$\left(\frac{\rho}{\rho_0}\right) = \left(1 - 0.00002257y\right)^{0.235}$</td>
<td>$\left(\frac{\rho}{\rho_0}\right) = \left(1 - 0.000006878y\right)^{0.235}$</td>
</tr>
<tr>
<td>$\left(\frac{\rho}{\rho_0}\right) = \left(\frac{T}{T_0}\right) \left(1 - \frac{a}{T_0} y\right)^{\frac{aR}{g}}$</td>
<td>$\left(\frac{\rho}{\rho_0}\right) = \left(1 - 0.00002257y\right)^{4.255}$</td>
<td>$\left(\frac{\rho}{\rho_0}\right) = \left(1 - 0.000006878y\right)^{4.255}$</td>
</tr>
<tr>
<td>$\left(\frac{p}{p_0}\right) = \left(\frac{T}{T_0}\right) \left(1 - \frac{a}{T_0} y\right)$</td>
<td>$\left(\frac{p}{p_0}\right) = \left(1 - 0.00002257y\right)^{5.255}$</td>
<td>$\left(\frac{p}{p_0}\right) = \left(1 - 0.000006878y\right)^{5.255}$</td>
</tr>
<tr>
<td>$\left(\frac{p}{p_0}\right) = \left(\frac{T}{T_0}\right) \left(1 - \frac{a}{T_0} y\right)^{\frac{aR}{g}}$</td>
<td>$\left(\frac{p}{p_0}\right) = \left(1 - 0.00002257y\right)^{5.255}$</td>
<td>$\left(\frac{p}{p_0}\right) = \left(1 - 0.000006878y\right)^{5.255}$</td>
</tr>
<tr>
<td>$\gamma = 2.3026 H \left(\frac{T_0}{T_0}\right)$</td>
<td>$y = 18400 \left(\frac{T_0}{T_0}\right) \log_{10} \left(\frac{p_0}{p}\right)$</td>
<td>$y = 60370 \left(\frac{T_0}{T_0}\right) \log_{10} \left(\frac{p_0}{p}\right)$</td>
</tr>
<tr>
<td>$\log_{10} \left(\frac{p_0}{p}\right)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2

<table>
<thead>
<tr>
<th>Air Dry Metric</th>
<th>Standard Atmosphere</th>
<th>Gravity Constant English</th>
</tr>
</thead>
<tbody>
<tr>
<td>y meters</td>
<td>$t^\circ C$</td>
<td>$(\frac{T}{T_o})$</td>
</tr>
<tr>
<td>0</td>
<td>15.0</td>
<td>1.000</td>
</tr>
<tr>
<td>500</td>
<td>11.7</td>
<td>0.989</td>
</tr>
<tr>
<td>1000</td>
<td>8.5</td>
<td>0.977</td>
</tr>
<tr>
<td>1500</td>
<td>5.2</td>
<td>0.966</td>
</tr>
<tr>
<td>2000</td>
<td>2.0</td>
<td>0.955</td>
</tr>
<tr>
<td>2500</td>
<td>-1.2</td>
<td>0.944</td>
</tr>
<tr>
<td>3000</td>
<td>-4.5</td>
<td>0.932</td>
</tr>
<tr>
<td>3500</td>
<td>-7.7</td>
<td>0.921</td>
</tr>
<tr>
<td>4000</td>
<td>-11.0</td>
<td>0.910</td>
</tr>
<tr>
<td>4500</td>
<td>-14.2</td>
<td>0.898</td>
</tr>
<tr>
<td>5000</td>
<td>-17.5</td>
<td>0.887</td>
</tr>
<tr>
<td>6000</td>
<td>-24.0</td>
<td>0.865</td>
</tr>
<tr>
<td>7000</td>
<td>-30.5</td>
<td>0.842</td>
</tr>
<tr>
<td>8000</td>
<td>-37.0</td>
<td>0.819</td>
</tr>
<tr>
<td>9000</td>
<td>-43.5</td>
<td>0.797</td>
</tr>
<tr>
<td>10000</td>
<td>-50.0</td>
<td>0.774</td>
</tr>
</tbody>
</table>

\[
\left(\frac{T}{T_o} \right) = (1 - 0.00002257y)
\]

\[
T_o = 288^\circ C
\]

\[
p_o = 76 \text{ cm. Hg. g } \rho_o = 1.225 \text{ kg/m}^3
\]

\[
\left(\frac{T}{T_o} \right) = (1 - 0.000006878y)
\]

\[
T_o = 418.6^\circ F
\]

\[
p_o = 29.921 \text{ in. Hg. g } \rho_o = 0.07635 \text{ lbs/ft}^2
\]