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Introduction

The logarithmic polar curve has for several vears been used by
the most prominent aerodynamical laboratories as well as by airplane
manufacturers in Europe.

The vast possibilities of the method, when once thoroughly mas-
tered and properly used, and the saving of time and expense in-
volved in the analytical treatment of performance, amply justify
its use. Any one who familiarizes himself with the method will,
within a short time, find a large number of applications, not men-
tioned in thig note, which, however, will come up in connection
with airplane design. As examples, some additions to the original
method which I ‘have made wmyself and which may increase the useful-
ness of the method for performance estimation, are described and
their construction shown.

To show more clearly the practical application of the polar
curve, a series of examples are appended hereto with suggestions
for solutions. I am indebted to Mr. Elliott G. Reid of the N.A.C.A.
Langley Memorial Aeronautical Laboratory for his thorough checking

of the manuscript and also for the valuable suggestions he has made.
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Iin making up the appended chart, engineering units have been used
throughout, as they are more convenient to use in a desi ofrice
| y D ¥

giving directly the results in easily vigvalized units.

g wofking on the problems connected with aerodynamics and re-
lated subjects, graphical solutions are often used due to the facil-
ity with which the designer can obtain from them hig data and thence-
forth make suitable changes in his deeign, if needed, to meet cer-
tain requirements. To show graphically the relations between the
air forces acting on an airplane, its velocity, angle to the rela-
tive wind (angle of attack), climbing ability, etc., is therefore
desirable - and several attempts have been made to obtain a satis-
factory graphical method.

One method was demonstrated by Eiffel in his work "La Resist-
ance de L'air et L'aviation" and mentioned in his later works, among
others, "Nouvelles Recherches sur la Resistance de L'air et L'avia-
tion," and in a modified form in "Zeitschrift fur Flugtechnik und
Motorluftschiffahrt," by Dr. E. Everling, but they are lacking in
several details. The last named, especially, has the undesirable
feature that certain values necessary for the design cannot be
solved, but only approximately estimeted. One method, based on vec-
tor algebra, which has great merits and shows in a very neat way
the variations of the performance properties of an airplane sub-

jected to different arrangements of power plant, supporting surfaces,




(O}

N.A3C:A: Technical Note No. 305

etc., has been suggested by Rith, of the Eiffel Laboratory at futsuill,
France.

I have attempted by this note to outline the theory and to show
some of the posgibilities of the Rith method, generally known as the
tlogarithmic polar curve" for the predetermination of airplane per-
formance, and 2lso to show some modifications regquired by more re-—

cent coaceptions of performance.

I. The Theory of the "Logarithmic Polar Curve."

In the study of airfoil profiles, several organizations make use
of a polar curve in Cartesian coordinates which must not be confused
with the polar curve in logarithmic coordinates, the latter being
used solely for the study of complete airplanes. The different
forces acting on an airplane may be replaced by one force R which
in turn may be divided into the two components D, or drag, parallel
to the direction of flight, and L, or 1lift, perpendicular to D.

We can obtain the common polar by plotting the values of L and D,
for unit velocity, along the axes of a Cartesian ccordinate system.
Herein a line drawn from the origin to any point on the curve repre-
sents the direction and magnitude of the resultant air force R-

If, instead of plotting the values of 1 and D themselves,
we plot their logarithms as Rith has suggested, we obtain a continu~-
ous curve, the logaritamic polar curve.

To plot the polar curve, we must, therefore, know the values of

“these forces for different angles of attack. These values may be ob-
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tained by wind tunnel measurements or analytically. When they have
been obtained, one way or another, we plot their logarithms along
the regpective axes in a logarithmic coordinate system. With the
help of the graduations found on a glide rule, or better, by using
logarithmically gracduated plotting paper, this can easily be done.
For foutine wmork it is advisable to have blanks made up cimilar to
Fig. 14 of Appendix TII.

Let us adopt the following notation:

P'= Thrust power in lb.-ft. per second.

W = Weight of airplane in pounds.

i

S Wing area in sq.ft.
V= Velocity in feet per second.

oy = Lq (Lift coefficient, absolute).

sq
Ciny = %— (Drag coefficient, absolute).
wherein
L = Lift force in pounds.
D = Drag force in pounds.
S ﬁ>g12 = Dynamic pressure in 1b. per sq.ft.
P = Mass density of air (slugs per cu.ft.)

The two fundamental aerodynamic cauations are:

P =cCpsqv= £ opsv?® (1)
W =o0p8q = £ opsv'?® (2)
wherein

Cp Sa = Drag
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If the following values be substituted:

P
5 Op S = K'x (Drag in 1b. at V = 1 ft./eec.)
o} E 3.5
5 O, 8 = K'y (Lift in 1b. at ¥ =1 ft./sec.)
the original equations become:
P' = Kiy v1° (3)
e 2 '
W o= R,V (4)

Writing (3) and (4) in logarithmic form:
Log P' = log K'x + 3 log V! {5}
Log W

log K'y + 2 log V! (8)
and transposing, we have

log K'y = log P! - 3.log V! (7)

1

Il

log XK'y = log W - 2 log V! (8)

These equations define the logarithmic polar curve.
Congidering 1log K'x and log X'y as abscissa and ordinate,
J
respectively, the above equations show that each has a component

expressed in terms of log V'. The components of 1log K'x and

log X'y are plotted, diagremmatically, in Fig. 1.* Now as V! has

the same value in both equations, i.e., the equations are simultane-

ous, and as the components in log V' bear a constant relation to
each other, the addition of a third axie to the diagram makes it
possible to plot the resultent of the two components, -3 log V!
and -2 log V', directly. This "velocity axis" has the slope 2/3

and is also graduated logarithmically. Its modulus is

* gee Page © for footnote.
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R
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3.805 times the modulus of the XK'y and K!', axes.

To make the chart more directly applicable, the scales are grad-
uated doubly, i.e., along the Kx scale we have P in horsepower,
along Ky there isa W scale reading in pounds, and the V scale
may be graduated both in M.P.H. and ft. per second, if desired.

When a reference value (Vo) 1is chosen on the V axis, the re-
lations between the other double scales become fixed. (It is worthy
of note that only the directions, and not the positions of the loga-
rithmic scales are essential to the use of the chart.) For practical
work I have found it advisable to use a value Vo = 200 M.P.H.

As the M.P.H. scale on the V axis will be most generally used

* It will be noted taat -3 log V' and -2 log V' have been plotted
as positive quantities, if referred to the X'y and K'., axes. The
reason for doing this becomes evident from an examination of equa-
tiong (3) and (4). There one will see that K'y varies with

1/ and Ky with 1/v'®. It then becomes necessary to graduate
the V axis so that this inverse variation will hold. This is done
by giving the axis the slope 2/3, a modulug 3.805 times that of the
Kx and Ky axes and making its positive sense toward the left and
downward.

That this process is the rational one may be confirmed by the
following case. lLet us suppose that the polar (Fig. 1) intersects
the Vv axis at the point (log P', log W). The ¥V components are
then zero and, under these conditions, the airplane represented by
this polar will maintain level flight at the velocity V,, chosen
as reference on the V axig. Now let us suppose that P' and W
are increased in such proportion that the point (log By, log W, ) is
on the 7V axis, but to the right and above the point first consid-
ered. In this case, the resultant of the velocity components must
be directed downward and to the left. That this vector must repre-
sent a velocity greater than 7V, is evident from the fact that both
conditions of flight involve the semé attitude and, consequently,
the same values of 0y and L/D. As in the second a greater weight
is being supported, the velocity of flight must be greater to pro-
vide the additional 1ift necessary.
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we must transform equations (3) and (4) accordingly. Also we will

now express P in horsepower rather than lb.-ft. per second. The

equations then become

PR 5280
2 (5,_2 _Q\ (v ";'5“0’0_3'/
3600

550 P x 3600 _ 375 P

or Kx =

5280 V°
TR
~ (§£§Q\F ( %600
3600
or K — W_
v 7

wherein
P is power. in HP

Kx is drag in lb. at one M.P.H.
V-'ig weloegity "in HMEEPIHE

Ky ig 1dft in 1b. ‘oo ne e HE

ArTbitrarily assuming P = 100 HP and W = 1000 1b-.,

golve (92) and (10a) and find
Ky = 0.00468
and Ky = 0.035

0.00468 corresponds to 100 HP and

il

Thus,  Kx

K 0.025 to 1C00 lb. at 200 M.P.H.

il

X

(9)

{Qa)

(10)

(10a)

we now

To still wore increase the value of the system we will add two

more scales.

The first scale, or rather, scale system, is designed to obtain

the thrust horsepower when propeller efficiency T, and engine
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horsepower P, are known. This scale system is originated by the
writer, and its application is shown in Fig. 2.

To obtain thrust horsepower when engine horsepower and propeller
efficiency are known, draw a line parallel to the lines shown on the
appended graph from engine horsepower at a. A line from propeller
efficiency at b parallel to the X-axis intersecting the oblicue
line at 4 will give thrust horsepower at ¢. The graduation on the
proveller efficiency scale is naturally logarithmic, with a wmodulusT
independent of all the other scales, and can be given any value suit-
ing the individual user. This system igs introduced for the first
time here and has worked out very well in practice. The influence
of vropeller efficiency on the various performance factors can quiok;
1y be shown and the correct propeller efficiency chosen for each con-
dition.

The other scale is a size scale. If we wish to investigate the
performance of 2n airplane which is geometrically similar to the one
whose polar curve is known, we need not drew a new curve but may use

the size scale for this purpose. Our new axis will be graduated in

terms of the ratio between corresponding linear dimensions of the

two airplanes.
Assume that we want to increase the linear size of an airplane

n times. The supporting erea in the new case will be

S, =108

Then equations (3) and (4) may be written
P=1n K V° (11)

W (13)

1
]
Jﬁ'
-

[ ]
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or logarithmically

log Ky = log P-3 log V-3 log n (13)
log Xy = log W-2 log -2 lcg n (14)

Tith the seme deduction as before, vwe find the slope of the new
sxis o be 2/2 =1 (Fig. 5).

The logarithmic modulus of thisg axie is therefore

J 2 +2° =,/ 8=2.828 times the modulus of the
Ky anc KY aXxes.
This axis is £lgo graduated as an sltitude scale on the basis
of the following prineciple:
If angle of attack and velocity remain constant, the forces on

an airplane vary directly with air density, Therefore we may write

o

z 3 B
Pp B atthe ¥ (15)

“o

i e PN (16
BT g

wherein the subscript ‘z denotes cuantities exigting at the altitude

at which 2ir density is 0y, ond Py is the density at ground level.

rquations (15) snd (1€) mav be put into logarithmic form as

@)
18g K. = 1og Py = 3 log V - log 65 (1)
o)
; o
log Kv = log W, - 2 1l8g ¥ = 10§ pﬁ (18)
: Q

Zere, as in the cese of the n scale, we have equal comaonents

of ordinate anc abscissa, but this time in terms of the density ratio.
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A "dengity ratio axis" will then have the same slope as that of the
n scale, i.e., +1, and a modulus N/_g times that of the X, and Ky
scales (See Fig. 4).

As it is more convenient to work with altitude than density
ratio, a logarithmic density ratio scale has been mace up, the equiv-
alent density ratios noted thereon and the scale of g in thousands
of feet used on the chart.

(The density ratios used are those adopted by the U.3* Navy
Bureau of Aeronautics as "Standerd Atmosphere.® A table of these
ratios is given in Appendix I.)

It must be borne in mind that the altitude scale cannot be used
directly, but mast be used in connection with a method of correcting
the available engine power for the influence of the reduced density
at an altitude.

Let us first assume that engine power varies directly with densi-
%y rmtlo, i.e., P~ é%w To represent this variation we use the con-
struction shown in Fig. 5. The power at ground level is represented
by the vector AB. To find the power at any altitude, we erect a
perpendicular at B and the length of a horizontal line, such as
g, Trom the 7 axis to this perpendicular represents the power
at +the altitude C.

In most modern aviation engines, however, the power decreases

somewhat more rapidly than the density ratio and the general average

gseems to be best expressed by

e <g§>r1




e
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Therefore, if the correcting line has a slope of 1.1 with re-
spect to the Z-axis, the variation is taken care of. To this end,
the scale in the lower right corner of the chart has been provided
and is graduated directly in terms of the power of the density ratio
agssumed to govern the variation of engine power. This scale ig ex-
tended in both directions so that the altitude performance of all
engines, whether supercharged, "over-dimensioned" or not atteining
the 1.1 ratio may be followed. The methods employed in the use of
this system are self-explanatory and can be readily followed on the

complete example worked out in Fig. 14, Appendix III-

II. The Prectical Application of the Polar Curve.

To show some of the methods of applying the polar curve to prac-
tical problems, a series of problems will be given below and methods
suggested for solving the same.

(1) Given: Airplane gross weight W

Engbre Horsepower P
To find: Velocity V end angle of attack Q.
We assume that the polar curve for the airplane is known and is the
one shown in Fig. 6.

Along the respective axis are plotted W and P and the point
a obtained. From a we draw a line parallel to the V-axis until
this line intersects our polar curve. This happens as we see, in
his case, at two points b and c. This shows that thig airplane

can sustain flight at two different angles using the same engbne
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power. The angles of attack are of course the ones correspondiang to
B andie.

The velocities are represented by the vectors aby, candirogie hre—
spsctively; their numerical velues are obtained by laying oft,; from
V5, the vectors in the direction in which they are drawn from a.
(3) Given: Airplane gross weight

To find: Minimum power for level flight and corresponding

angle of attack and velocity.
The construction is given in Fig. 7. A parallel to the V-axis
is drawn tangent to the polar curve. The tangent intersects a hori-
zontal line from the point W at a. The vector Wa represents
minimum power, ab, the velocity, and the angle of attack is deter-
mined from the position of b on the polar.

This is also the condition for maximum duration as minimum pOwer
corresoonds to minirum gross fuel consumption.

(3) Given: Airplane gross weight

Velocity
To find: Required enzime power and angle of attack.

As in Fig. 8, the known velues V and W are marked along re-
spective axes and hersby we obtain point a. Theresfter, a line is
drawn parallel with the P-axis until it intersects our curve. The
angle of attack corresponding to the point b is the required fly-
ing angle and a-b is the required horsepoWwer.

If we move the line a-b parallel with itself we are reaching

as a limit, the point vhere the line is a tangent to the polar curve.
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This gives us the maximum weight of the airplane for a given velocity
and so we have gone over to problem 4.
(4) Given: Velocity
To find: Maximum possible gross weight.

As shown in Fig. 9, if we draw a tangent line parallel to the
P-axis, it will intersect at a a line drawn parallel to the W-axis
from the given velocity and we have hereby our W maXimum.

(5) e¢iven: Engine power and velocity

To find: Gross weight and angle of incidence.

As in Fig. 10, the values P and V are plotted along their
respective axes, thereby obtaining the point a. From a 1is drawn
a line parallel to the W-axis until it intersects the curve. The
angle of attack corresponding to point b is the angle sought and
the distance a-b the maximum possible gross weight with the given
POWET.

Kecping the engim power at the same value but moving a-b 1o
the left we note the velocity increases. With the help of Fig. 11,
we can therefore solve problem ©B.

(6) Given: Engine power

To find: Maximum horizontal velocity and corresponding
optimum weight.

Draw a line parallel to the W-axis and tangent to the polar.
Its intersection with the line of the velocity vector at d fixes
v and dc¢ represents the optimum weight.

Ley 20 £ind: Angle of attack and 1./D ratio for flattest

glide.
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The only forces acting on an airplane during a steady glide are
weight and total air reaction, propeller thrust being zero. The two
forces are, necessarily, collinear, equal, and opposite. 35 I8
known that the 1ift vector forms the same angle with that of the to-
tal air force as does the horizontal with the line of flight. Let
ug denote this angle by Y. Then the best glide possible is that

in which Y is minirum. Now, as ¥ = tan ™’ &z’ this condition is

i
attained when the ratio %ﬁ is minimum or the L/D ratio is maximum.
5 ¥
Let us write Lo C-
=y
Then log Ky = log Ky - log c (19)

This is evidently the equation of a line parallel to the line
: lo
log Kx =/Ky, whose slope is one, and at a distance C above it. To
reach oX minimum, ¢ must also be minimum. From this fact and

Ly :
equation (19) we see thet as C decreases, the line of slope = 1

(45°) will move toward the left. Therefore, we will find %ﬁ mini-

mim, or L/D maximum at the point of tangency of a 45° line with the

' polar curve. This defines the angle of atteck for best glide.*

To find the 1/D ratio of this or any other point of the polar,
a scale has been provided as chown in Fig. 12. As -log ¢ 1is taken
in the direction of the Ky axis and is a first degree term in the
equation, the C - or L/D scale has the same modulus as that of Ky'

We take as reference value, (%},, anv point of the chart for which
(o]

* Tt is known that any straight line which passes through the origin
of a system of cartesian coordinates will appear as a straight line
of slope = +1 (45°) when plotited to logarithmic ccordinates. As the
value of 1L/D maximum is obtained by drawing a polar tangent to the
Cartesian Ky vs. Ky curve, the 45° tangent is the logarithmic repre-
sentation of this line.
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Kx = Ky, i.e., at which % " ks (9
7o find the value of the 1/D ratio for any point of the polazx
it is only necessary to draw a line at 45° through the point and

note ite intersection with the 1L/D scale.
Problems Involving Climb.

To solve problems involving climb characteristics with the aid
of the logarithmic diagram, we rust make the following assunmptiong:*
(a) Engine speed remains congtant regardless of altitude.

(b) Enginepower varies with a given power of the density
ratio.

(¢) 1In climb the engine develops only 90% full power.

In justification of the first assumption there is the fact that
in climb tests the variation of engine speed from sea level to ceiling
is very small, the average drop being about 5 per cent. -With regard
to (b), it has been found that the proper exponent for the density
ratio is slightly different for different enginesbut a good average
value is 1.1. The third assumption is less reliable than the other
two because it depends upon so many factors, the most important being
propeller characteristics. While 90% is a fair value for the averdge
airplane which has a cénsiderable speed range and good climb, the
selection of this factor for any new airplane of unusual character-
igtics will require the use of sound judgment and may vary consider-

ably between different types.

* Tf it is chosen to work out altitude problems '"step by step" these
assumptions may naturally be disregarded.
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To obtain the ceiling of our airplane, we use the construction
shown in Fig. 13. Rnowing gross weight, maximum power and propeller
characteristics, we locate the point A. Drawing the tangent CD,
which is the velocity vector for horizontal flight at minimum power,
we intercept the distance ¢A, which represents the power available
for climb. Now we draw the power-correcting line through A, using
the scale system in the lower right corner of the chart to determine
its slope.

The distance between the tangent defining minimum power and the
power-correcting line represents the surplus power available for climi
at the altitude read from the auxiliary scale ¢z, and we see that
at B, all the available power is required to maintain level flight.
This, then, is the absolute ceiling and the airplane flies at the
speed BD.

To compute the rate of climb, we have only to solve the equation

climb (f£%./min.) = HPgy X 33,000/W
wherein HP,y is the surplus power available. In scaling off this
ouantity it is essential that the ends of the horizontal 1line repre-

senting surplus power be projected parallel to the Z-scale onto the

sea level power vector. The values of thrust power available and
thrust power required may then be read by direct projection onto the
thrust power axis.

The location of service ceiling follows directly from this proc-

cess.* Te merely determine the surplus power necessary to give climb

* gervice ceiling is defined as that altitudeiat which the maximum
climbing velocity attainable is 100 ft./min.
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of 100 ft./min. and locate the altitude at which this excess exists.

The Problem of Speed at Al+titude.

We have developed the solution for maximum speed at seéa level
and now have a close approximation for ceiling. Using these quanti-
ties, we may now solve for maximum 2nd minimum speeds as well as the
speed of best climb for any altitude.

It is known that the R«P.M. of the engine, for maximum level
speed, will decrease with altitude and at ceiling will have the seme
value as those for minimum and best climbing speeds, the three being
coincident. Also, as V/ND decreases, the propeller efficiency for
maximum speed will aporoach that in climb and the two will become
identical at ceiling. Then we may represent the maximum thrust vower
available at any altitude by a line connecting the points ¢ and 7,
as shown in Fig. 14, Appendix III, and the velocity vectors repre-
senting Vpgx for all altitudes will originate in thip line.

The speed of best climb at any altitude is easily found as this
is the speed of minimum power required for level flight.

The minimum speed, being that corresponding to maximum 1ift
coefficient, will be easily found for all altitudes until we approach
ceiling. When such solutions are cesired, care must be taken to
havé the velocity vector originate within the limits of available

power. An example of this kind is shown in the gsolution for minimum

speed at 30,000 feet in the problem of Appendix III.
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U. 8. Navy, Bureau of Aeronautics, Standard Atmosphere.

Altitude, feet.

0
1000
2000
3000
4000
5000
6000
7000
8000
8000

10000
12000
14000
16000
18C00
20000
23000
24000
26000
38000
30000
32000
34000
36000
38000
40000

Appendix I.

Density,ratio

1.000
.9710
.9428
.9152
,8881
.8617
8358
.8106
.7860
.7619
7384
.6931
.6500
.6089
. 5699
.5%28
L4975
L4641
.4324
.4024
L3741
3472
.3219
.2980
B i |
245

18
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characteristics of Airplanc Analyzed in Appendix III.

4800 1Db-.

Il

Gross weight W

il

Engine power P 700 HP

Engine power rcmrins constant to 5000 ft. and then varies as
the density ratio to 1.1 power.

Lift and drag of full sizoc airplane at 1 M.P.H.

Angle of attack Ky Ky
-2 - Q08 .0611
0 .870 .0603
+3 .436 .0630
+4 613 0700
6 .783 .0823
8 , vO85 .0980
10 1.098 «116
i3 1.240 w189
14 1.568 163
16 1.478 «191
18 1.540 .326

20 1.520 .268

A S
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Notes to Appendix ITI.

In Appendix III (Fig. 14), a complete example has been worked
out according to the processces detailed in the preceding pages.
The polar curve shown in this examplc was obtained by wind tunnel
measurements and refers to a two-seater observation airplane of
recent design.

Blank charts (blue line prints) in 18 by 24 inch size may be

obtained upon request.
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Angle of attack
for best glide
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