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TECH~ICAL NOTE NO . 207. 

THE SIMPL I FYI NG ASSU~PTI ONS, REDUCING THE STRICT 

APPLICATION OF CLASSICAL HYDRODYNAMICS TO 

PRACT IC AL AERONAUTICAL COMPUTATIONS. * 
By Max M. Munk. 

The applicati on of cl:1.ssic:1.l hydrodyna.niics to the solution 

of aeron:l.utiC:1.l probleills is b:l.sed on simplifying :l.ssumptions of 

a fundaffient:l.l nature , :l.S the process involves setting :1.side the 

viscosity :1.nd compressioility of the a.ir in the first place. 

These two properties greatly cOiliplio :l.te any ~nalytic treatment of 

aerodyn.:l.ll,ica.l Ciue s tiol1s , a.nd by negl ect ing thew it b eCOII,es possi-

ble to obtain v~luab le, though approxini.:l.te results, which 3.re of 

great practic:1.l use. 

The errors introduced by neglecting viscosity and compressi-

bility, and the correcttons therefore necessary, as well as the 

criteria for model tests free from such errors, h:l.ve often been 

discussed and are not the s ubj ect of this paper. But the simpl i-

fying assumpti ons which simply a l low the :l.pplic:1.tion of hydrody­

namics :l.re not enough . The rna thelfi:l. t ica1 treatment required is 

still too ihvolved an~ di fficu~t for use in practice. This paper 

deals then with the siffiplifying assumptions necessary to maKe 

classical hydrodyn~nics adapte~ for pr:l.ctic:1.l use. 

* Paper re:l.d at Internation:1.l Congr ess for Applied Mech:l.nics, 
Delft, Ho1l:l.nd, April 22-28, 1924. 
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A similar development took place in the theory of elasticity. 

The asrrQmptions expressed by Hooke's Law and by others removed to 

a great extent t he difficulties caused by the physical aspect of 

the problem. But even then, the mathematical treatment had to be 

simplified too, and it was not until the theory of infinitely 

elongated beams and columns had been ~orked out, that the theory 

of elasticity became a valua0le tool in the hands of practical 

engineers. 

The general method followed to simplify the numerical 

work in hydrodynamics consists merely in neglecting quantities of 

a low order of magnitude . I proceed at once to discuss how this 

is done in the different problems of aeronautical hydrodynamics. 

The solutions having found a practical application up to now are: 

1. Theory of the lateral air forces on airship hulls 

2 . Theory of wing st!)ctions in a two-dimensional flow 

3 . Theory of wings with a finite span 

4 . Propeller theory 

1. The Theory of the Lateral Air Forces on Airship Hulls . 

There are earlier attempts to investigate t he flow around 

airship hulls with circular cross-section moving parallel to 

their axis, the method consisting of first choosing a certain dis­

tribution of fictitious sinks and sources and then determining 

the shape of the hull and of the streamlines corresponding to that 

distribution . By substituting doublets for the simple sources or 
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sinKS, the l~teral ffiotion of ~irsnip hulls with cylindrical cross 

sections can be investigated in quite ~n analogous way. It is 

difficult, however, to finj such a pair of jistributions of 

sources and sinks, ani of dQublets which give rise to the same 

shape of the hUll. The meth01 is rather laborious; furthermore, 

it is not adapted for practical use. 

Airship hulls h~ve an elongation ratio of the lengt~ to the 

maximum diameter up to 10, and more, ani it suggests itself to 

introduce the simplifying assUTtiption of an infinite elongation 

ratio. This is not of so great use for the problem of longitud­

inal motion (parallel to the axis), since, with diminishing diam­

eters, logarithmic terms become dominant. The hydrodynamic flow 

set up by the longitudinal moti on is not of so great pr~ctical 

importance, however. It is Known that tne a~~itional ~pparent 

~ass of the hull in this case is s~all nhen compared nith its ac­

tual mass. In many cases it can be neglecteu. Tne velocity of 

flow at all points is small ~hen compared fiith tne velocity of 

motion , and hence the pressure differences are small too. A 

blunt nose is an excepti on to this rule, but then, a blunt nose 

is in contradiction to the assumed infinite elong~tion, which 

should reduce all zones of the hull to ~n approximately cylin­

drical shape. Near the b~unt nose , therefore, large ~ir veloci­

ties and pressure differences do occur in a straight flight. 

Along the larger portion of the hull, however, the velocity of 

the air relative to the hull c~n oe assUllied to be equal to the 

velocity of flight. 
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The most important practical problem n~xt to the drag exper­

ienced by the hull in straight flight iEl the computation of the 

lateral forces acting on the hull when flying with an inclination 

of the axis with respect to the direction of motion, or when fly-

ing along a curved nath . The computation of these forces and of 

the pressure distribu tion giving rise to them becomes greatly 

simplified by the assumption that the elongation be infinite. 

Each zone of the hull can then b e considered as cylindrical, and 

the component of the velocity distribution set up by the lateral 

component of mot ion can be supposed to be the tWB-dimensional flow 

around this cylinder, corresponding to the lateral velocity cOmpo-

nent . This two-dimensional flow is generally known in pract~cal 

cases, the cross-section is often circular or at least approaching 

a circle or ellipse and the flow produced by its motion can then 

easily be computed . The potential of this two-dimensional flow 

may be denoted by ¢, and some provision may be made so as to 

make the potential of all cro ss-sections equal over all points of 

one surface at ri ght angles to all streamlines. For circular 

cross-sections this could be the plane through the axis at right 

angles to the lateral component of motion. Then 

o¢ v -- ox 

gives the longitudinal velocity near tne surface set up by the 

lateral motion . I n practice it is small when compared with the 

longi tudinal veloci ty component of motion. Thi s suggests the ad­

di tional simplifying assumption that the angle a, between the axis 



and the direction of motion be always small. Then the pressure 

variation, which according to Bernouilli I slaw conte.ins the square 
~ 

of the veloci ty to the hull (V + v) , becomes approximately linear 

in v and proportional to 2 Vv , the term with V 
2 

giving rise 

only to a constant pressur e and the term with v2 being small of 

the second order of magnitude . I t follows, for the main case of 

circular sections , where, as i s known, the potential of the two-

dimensional flow i n question at tile pOints of. the circle i,s pro-

portional to their distance from a diame~er, that the pressure 

gradient parallel to the plane of symmetry of the flow at the 

points of the boundary of such a cross-section is constant. 

I fall cro ss- sect ions ar e geometrically simi lar, their appar-

ent additional masses in the two- dimensional problem are propor-

tional to their areas ; with ci r cular cylinders in particular, 

the apparent additional mass i s equal to the mass of the displaced 

fluid. Hence the apparent additional mass of a very elongated 

hull with circular sections fo r lateral motion is equal to the 

mass of the displaced a ir ; i f the section is not Circular, the 

apparent additional mass is k t i mes as large, where k denotes 

the corresponding r at iO fo r the section in a two-dimensional ,flow. 

It follows that the entire couple of the lateral air forces is 

equal to 

V2 P s i n 2 a x Volume 
2 

(where p denotes the densi ty of the a.ir). (Ref. 1 . ) 
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A formula equally as simple can be found for the distribution 

of the lateral forces along the axis . 8'~p -oose the ship to fly 

straight and hori zontally with the a.xi s pi tcn8d up und.er an angle 

a. with t11e horizo::..tal . Consid.er a vertic;::-l layer of ai:t::' at right 

angles to the plane of symrr.etr r of the ship. When the hull passes 

through it, a two-dimensionaLt:Low is set up in that layer, corre-

sponding to the lateral veloci ty corr:ponent V cos eL and to the 

cross-section of the hull where the layer of air in~ersects it. 

The area of the cross-section, and hence the apparent adQitional 

mass of the two-ilimensional flow in the layer is varying as the 

hull passes along with the velocity V. Hence a change of the 

momentum of the two-dimensional flow in the layer takes place con-

tinuously, giving rise to the reaction 

where 

sin (2 a ) k Q,§ 
c.x 

iT denotes the veloci ty of flight 

a. the angle of ~itch 

S the area of cross-section 

k the coeffi ci ent of a·Jparent ad<5..i tional !!lass of 
cross-section 

p the density of air 

x the coordir-ate along the axis of the hull. 

For circular cross- sections, k ~ 1 . 

The same assumptions and arg~ments lead ~o useful for~ffillas 

for the lateral forces on airshi p hulls flying in a curve· The 
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detaiis can be found in Ref . 2. 

2. The Theoty of Wing Sections i n a ~wo-Dirnensional Flow. 

The t heory of the wing section is in a way the two-dimensional 

analogy to the theory o£ airship hull s with circular cross-section . 

A large amount of literature exists about the former problem, I 

mention only Kut ta, who originated this branch of aerodynamics, and 

Joukowsky, who obtained most publicity in connection with it. 

The ,method followed by Kutta and his successors is based on 

the conformal transformation of the wing section boundar y into a 

circle, a process requiring ve r y laborious ITathematical work, and 

which cannot be applied to most actual wing sections but must be 

restricted to certain s i mple s ect ions distinguished by no other 

advantages . 

In order to reduce the so lution of this problem to computa­

tions to be made in the off i c e of an airplane factory, it suggests 

itself to consider the wing section as infinitely elongated in 

analogy to the airship hull just treated. The assumptions are 

then that (a) the maximum t hickness, and (b) the maximum namb er, 

i s smal l when compared wi t h the length of the chord . These two 

assumptions are fai rly wel l complied with by nearly all wing sec­

tions used in practi ce . In addition, it is convenient, though not 

absolutely necessary , to assume the angle of attack between the 

chord and the di rection of mot ion to be small too . Then the veloc­

ity of the flow c reated by the moti on of the wing is small when 
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compared with the i.~eloci ty of matton, and can be neglected when 

added to it. The simplification leading to a convenient develop-

ment of the main forlThlla c ons i sts now i~ substituting a new Dound-

ary in the problem . I nstead of the boun<iary of the section, the 

chord , that is a strai ght line in the i~e~iate nei ghborhood of 

all points of the section, is taken as the reference line for the 

conditions of f low. For t ne computation of the lift, for instanc e , 

the wing section can first oe rep lac ed by its middle line, having 

as ordinates the arithmetical mean t, of the upper and lower or-

dinates of the wing section, the chord being the axis of abscissae 

x. Then the velocity component of the flou at any point of the 

chord and normal to it is approximately V d ~/dx and this re-

duces the ori ginal proble~ to one the solution of which is well 

known . Any desired quantity referring to t h e flow can be ex-

pressed as a linear funct ion of all mea n ordinates of the section, 

either as an infinit e seri es or as a definite integral. The lat-

ter is more c onvenient for practice, particularly if t h e chord 

passes through the rear edge of the section . The lift is g i v en 

by the condition that the air does not flow around the rear edge; 

this leads to ' the fo r mula 

~ dx 

(1 - x) j 1 2 
- X 

(length of chord = 2) 

The pitching moment with respect to the middl~ of the chord re-

su Its 
+, x ~ dx 

_.1 = f 
-1 j 1 - Y? 

(Reference #3.) 
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wnen computing the pressure distribution around the wing sec­

tion, the thickness of the section cen no longer be disregarded 

but gives , rise to similar Qefinite integrals giving terms of the 

same order of magnitude as do the mean ordinates. The pressure 

on both sides is diminished owing to the thickness and hence a 

section of finite thickness is supported more by suction on its 

upper side t~an by pressure on the lower. 

The practical difficulties of t h is uroblem lie in its being 

a three-dimensional one . As is well knovffi, Jr. L. Prandtl at­

tacked it wit~ the methods existing for the investigation of three­

dimensional flows, using Eelmholtz vortex lines, a method which 

was also tried by Lanchester . In th,is way, Dr. Prandtl obtained 

valuable results , though chiefly qualitative ones· Practical 

computations can only be made by reducing the problem to a two­

dimensional one by means of suitable a ssumptions. It is signif­

icant in this connection that Dr . Prandtl from the very first vir­

tually abandoned the thr e e-dimensional treat~ent by assuming the 

vortex lines to be parallel to the direction of flight rather 

than to coinc ide witt the streamlines. The strict two-dimensional 

treatment of the problem requires in addition that the components 

of the flow set up by the ling parallel and lateral to its motion 

be neglected when added to the velocity of flight. Then, the use 

of the 5elmholtz vortex lines can be avoided altogether and the 



N.A.C.A. Technical ~ote No . 207 10 

usual methods for investigat ing two-dimensional flows can be used 

instead. This is a prooee6ing muen more desirQble, for the method 

of vortices and vortex lines seerr.s not to appeal readily to minds 

not thoroughly traine~ mathematically, a~d gives rise to confusion 

among practical men rather than serving to enli ghten them. 

It should be mentioned in this connection that Dr. A. Betz 

investi gated the air forces of a biplane cellule by combining in 

a particular way the wing theory and the wing section theory. 

Following Dr. Prandtl he as~~med the actual vortex lines to be 

parallel; and furthermore, he replaced the wings by fictitious 

concentrated vortex lines , obtaining thus a continuous system of 

vortices. He obtained valuable qualitative results, but his method 

is too laborious for practice and no exact quantitative results 

can be expected from it . His assumptions amount to replacing the 

wings by cylinders of infinitely small diameter, which does not 

seem justified to me as the distance between the upper and lower 

wing of a biplane cellule is not large when compared with the 

wing chord. And even if it were much larger than it is, sa that 

neglecting the chord TIould be permissible, it would not yet be 

evident that the first term, that is, the circulation term char­

acteristic for the lift and vanishing inversely as the distance, 

is dominant. It seems to me that at least the second term, char­

acteristic for the rr.oment of the air force and vanishing inversely 

as the square of the distance, should be taken into account too, 

as it is of the same order of magnitude as the first one (Refer-
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en c e s 4 and 5). 

The fundamental assumption of the simplified wing theory is, 

accordingly, that the air contained in a plane layer at right 

angles to t~e direction of fli ght remains inside the sa~e layer 

and moves as a two-dimensional flow. Far in front of the air­

plane, the layer is supposed to be at rest. While passing through 

it, t:i1e wings gradually bui 1 t up a two-di me::'lsional flow in it. 

After the wings have passed, the momentum of t~is flow is equal 

ane opposite to the lift transferred from t~e layer to the wings. 

The two-cimensi onal flow is further determined by the condition 

that the impulsive pressure, necessary to create it and acting 

along the boundaries of the front view of the wings, is equal and 

opposite in direction to the distribution of the lift transferred 

to the wings . It can be de~onstrated i n particular that the twe­

dimensional flow has only ootained half its strength when the 

wings are passing the layer . This factor 1/2 finds its analogy 

in many other branches of theoretical mechanics . 

The kinetic energy of the potential flow can be computed. 

The work consumed in overcoming the drag of the wings (called the 

induced drag) is equal to the ki netic energy transferred to the 

layers after the wings have passed them. The two-dimensional 

flow, already half created in the neighborhood of the wings gives 

rise also to a difference between the lIeffective ll angle of attack 

(between chord and relative air flow) and tne IIgeometric ll angle 

of attack (between chord and direction of motion), called the 

II induced angle of attack. II 
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As an additional assumption, the induced drag and induced 

angle of attack are generally replaced by the minimum value of 

these two quanti ties compatible wi th the area of the surface, the 

span of one wing or plan vi ew of several v;ings, t~e masni tude of 

the lift, the density of the air and the velocity of flight. A 

further additional assumption which is often used is that the as-
2 .. 

pect ratio b,j~:r , is large . 1'hGl'e are, further, very simpl e 

rules referring to the d i minution of t~e lift or the rolling mo-

ment caused by the induction, which primarily apply to elliptic 

wings only. These are wings, the chord of which plotted against 

the span, gives a half ellipse . With them, and 3ssuming the lift 

to be proportional to ' the effective angle of attack, this factor 

of diminution depends on the aspect ratio only. The same factor 

can be used approximately for any wings having the same aspect 

ratio. 

The main formulas of the wing theory are: 

Induced drag of a ·wing 

Di = 
L2 

k
Z 

b
2 

ff V
2 P 

2 

Mean induced angle of attack 

L 
Q . = 1 

k
2 

b
2 

n v:J p 
2 

Factor of lift reduction 

1 

Factor of reduction of the rolling moment 1 

• 
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Induced yawing moment My due to the rolling moment MR 

where 

D· 1 = 

(1. 
1 = 

1 = 

C1 = 

S = 

T = 

b = 

V = 

P = 

k = 

the 

the 

the 

the 

the 

Mv 
J. 

= M...., C12 S 
h b 

induced drag 

induced angle 

lift 

of 

lift coefficient 

entiTe wing area 

attac:{ 

L 

SV
2P 

2 

the moment of i nertia of the wing area with 
respect to the axis 

span 

velocity of flight 

densi ty of air 

a factor dependent on the shane of the front 
. ~ t"h . I k 2 b2 11 .C' 

13 

Vl ew or l;e ~71 ngs \ '- 4" is the &'1'e3. 0 ... 

apparent mass of the front view of the wings). 

k = 1 for monop l anes . 

(Reference 3.) 

4 . Propeller Theory. 

The assumptions which lead to a practical formula for the 

efficiency of a propeller, or rather to the upper limit of the 

efficiency, were first made by Froude. The density of thrust per 

unit area of the ~ropeller disk is assumed to be constant and the 

rotation of the slipstream is neglected. The efficiency t hen has 
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the maximum value compatible with the thrust, the velocity of mo-

tion, the diameter of the propeller, and the density of air, and 

becomes 

2 x )1 T 
+ 

D2 n V2 p 
4 2 

~ = 

1 + )1 T 
+ P 
~ TI~ 4 2 

where 
T = thrust 

D = diameter 

v = velocity 

P = density 

Other information about the properties of propellers is ob-

tained by combining the wing section theory and the slipstream 

theory of Froude. The blade elements are supposed to act like 

the wing elements of an ordinary wing, moving along spiral paths . 

This procedure is rather involved, too, and it seems judicious to 

simplify it by considering the blades as one unit. The main as-

sumption is that variation of the shape of the slipstream, but 

not of its velocity v, may be neglected. Then the slip s tream 

velocity, as follows from the consideration of the physical dimen-

sion of the quantities determining it, is necessarily a linear 

function of the velocity of f light and the tip velocity of the 

blades U. The ratio U/V for zero thrust can be obtained by ap-
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plying the wing section theory to the blades. It will often be 

exact enough to consider a mean blade section only, say at 0.7 of 

the propeller radius, and to find the value of U/V where its 

lift becomes zero, the air being supposed to be at rest. 

The application of the wing section theory in conjunction 

with the slipstream theory of Froude leads to an approximate for-

nrula for the constant differential quotient dv/dU. The choice 

of O.7r as mean radius of actio!l gives the formula 

~ 

dv 
2.8 ~ 

D (Reference 7) = 
dU 1 + 1 . 4 S (~ /0 

-;:-2" 

D 

where (U/V)o is the value of U/V for zero thrust and S the 

entire blade area . By means of this formula, and of the rela-

tions between the slipstream velocity and the thrust, the thrust 

can be computed for any value of U/V. 

5. Oonclusion. 

The simplifications of hydrodynamical co~putations discussed 

in this paper are of more than practical value for the computa-

tion. They are also of great instructive value, as they point out 

the main causes of the different actions of the air. These are 

always the same as in ri gid mechanics, each force is the reaction 

to an acceleration of mass es. The kinetic energy contained in an 

air flow, and the momentum giving rise to it are its main charac-

teristics, and play the same part as do the kinetic ' energy and the 
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momentum of rigid bodies in the me chanics of rigid bodies. These 

conceptions appeal to the engineer and give rise to creative 

thoughts . T~'ley should therefore be ~?U t in the very front in aero-

dynamical papers intended for eQucation, instead of aDs tract math-

ematical concepti on like vort i ces , whic:1 are chiefly of use for 

special scientific research . 
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