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THE SIMPLIFYING ASSUMPTIONS, REDUCING THE STRICT
APPLICATION OF CLASSICAL HYDRODYNAMICS TO
PRACTICAL AERONAUTICAL COMPUTATIONS.*

By Max M. Munk.

The application of classical hydrodynamics to the solution
of aeronautical problems is based on simplifying assumptions of
a fundamental nature, as the process involves setting aside the
viscosity and compressioility of the air in the first place.
These two properties greatly cowplizate any analytic treatuent of
aerodynawical guestions, and by neglecting thew it becomes possi-
ble to obtain valuable, though approximate results, which are of
great practical use.

The errors introduced by neglecting viscosity and compressi-
bility, and the corrections therefore necessary, as well as the
criteria for model tests free from such errors, have often been
discussed and are not the subject of this paper. But the simplié
fying assumptions which simply allow the application of hydrody-

namics are not enough. The mathematical treatment required is

still too involved anu difficult for use in practice. This paper
deals then with the simplifying assumptions necessary to make

classical hydrodynamics adapted for practical use.

* Paper read at International Congress for Applied Mechanics,
Delft, Holland, April 233-38, 1934.
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A similar development took place in the theory of elasticity.
The assumptions expressed by Hooke's Law and by others removed to
a great extent the difficulties caused by the physical aspect of
the problem. But even then, the mathematical treatment had to be
simplified too, and it was not until the theory of infinitely
elongated beams and columns had been worked out, that the theory
of elasticity became a valuable tool in the hands of practical
engineers.
The general method followed to simplify the numerical
work in hydrodynamics consists merely in neglecting quantities of
a low 6rder of magnitude. I proceed at once to discuss how this
is done in the different problems of aeronautical hydrodynamics.
The solutions having found a practical application up to now are:
l. Theory of the lateral air forces on airship hulls
2. Theory of wing sections in a two-dimensional flow
3+ Theory of wings with a finite span

4. Propeller theory

l. The Theory of the Lateral Air Forces on Airship Hulls.

There are earlier attempts to investigate the flow around
airship hulls with circular cross-section moving parallel to
their axis, the method consisting of first choosing a certain dis-
tribution of fictitious sinks and sources and then determining
the shape of the hull and of the streamlines corresponding to that

distribution. By substituting doublets for the simple sources or
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sinks, the lateral motion of airship hulis with cylindrical cross
sections can be investigated in quite an analogous way. It is
difficult, however, to find such a pair of distributions of
sources and sinks, and of dcublets which give rise to the same
shape of the hull. The method is rather laborious; furthermore,
it is not adapted for practical use.

Airship hulls have an elongation ratio of the length to the
maximum diameter up to 10, and more, and it suggests itself to
introduce the simplifying assumption of an infinite elongation
ratio. This 1s not of so great use for the problem of longitud-
inal motion (paraliel to the axis), since, with diminishing diam-
eters, logarithmic terms become dominant. The bydrodynamic flow
set up by the longitudinal motion is not of so great practical
importance, however. It is known that the aaditional apparent
wass of the hull in this case is swall when cowpared with its ac-
tual mass. In many cases it can pe neglected. The velocity of
flow at all points is small when compared with the velocity of
motion, and hence the pressure differences are small too. A
blunt nose is an exception to this rule, but then, 2 blunt nose
is in contradiction to the assumed infinite elongation, which
should reduce all zones of the hull to an approximately cylin-
drical shape. Near the blunt nose, therefore, large air veloci-
ties and pressure differences do occur in a straight flight.
Along the larger portion of the hull, however, the velocity of
the air relative to the hull can pe assumed to be equal to the

velocity of flight.
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The mogt important practical problem next to the drag exper-
ienoéd by the hull in straight flight is the computation of the
lateral forces acting on the hull when flying with an inclination
of the axis with respect to the direction of motion, or when fly-
ing along a curved path. The computation of these forées and of
the pressure distribution giving rise to them becomes greatly
simplified by the assumption that the elongation be infinite.

Each zone of the hull can then be considered as cylindrical, and
the component of the velocity distribution set up by the lateral
component of motion can be supposed to be the two-dimensional flow
around this cylinder, corresponding to the lateral velocity compo-
nent. This two-dimensional flow is generally known in practical
cases, the cross-section is often circular or at least approaching
a circle or ellipse and the flow produced by its motion can then
easily be computed. . The potential of this two-dimensional flow
may be dénoted by ¢, and some provision may be made so as to
make the potential of all cross-sections equal over all points of
one surface at right angles to all streamlines. For circular
cross—-sections this could be the plane through the axis at right
angles to the lateral component of motion. Then

&
ihx

gives the longitudinal velocity near the surface set up by the
lateral motion. In practice it is small when compared with the
longitudinal velocity component of motion. This suggests the ad-

ditional simplifying assumption that the angle a between the axis
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and the direction of motion be always small. Then the pressure |
variation, which according to Bernouilli's law conteins the square }
of the velocity to the hull (V + v)e, becomes approximately linear |
in v and proportional to 2 Vv, the term with ¥ giving rise J
only to a constant pressure and the term with v°® Dbeing small of |
the second order of magnitude. It follows, for the main case of [
circular sections, where, as is known, the potential of the two- |
dimensional flow in question at the points of .the circle is pro-
portional to their distance from a diameter, that the pressure

gradient parallel to the plane of gymmetry of the flow at the f
points of the boundary of such a cross-section is constant.

F all cr0ss—seoti§ns are geometrically similar, their appar- (
ent additional masses in the two-dimensional problem are pTopor-
tional to their areas; with circular cylinders in particular,
the apparent additional mass is equal to the mass of the displaced
fluid. Hence the apparent additional mass of a very elongated
hull with circular sections for lateral motion is equal to the ‘
mass of the displaced air; if the section is not circular, the
apparent additional mass is %k times as large, where k denotes
the corresponding ratio for the section in a two-dimensional flow.

It follows that the entire couple of the lateral air forces is |

equal to

RS,
3 sin 2 a X Volume

(where P denotes the density of the air). (Ref. 1.)
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A formula equally ag simple can be found for the distribution
of the lateral forces along the axis. Suppose the ship to fly
straight and horizontally with the axis pitched up under an angle
o with the horizontal. Consider a vertical layer of air at right
angles to the plane of symmetry of the ship. When the hull passes
through it, a two-dimensionalflow is set up in that layer, corre-
sponding to the lateral velocity component V cos & and %o the
cross-section of the hull where the layer of air intersects it.
The area of the crosg-section, and hence the apparent additional
mass of the twodimensional flow in the layer is varying as the
hull passes along with the velocity V. EHence a change of the
momentum of the two-dimengional flow in the layer takes place con-
tinuously, giving rise to the reaction

2] . as
V sin (3a) k o

o

where
V denotes the velocity of flight

o the angle of pitch

the area of cross-section

(00

k the coefficient of avparent additional mass of
cross—-section

p the density of air

X the coordinate along the axis of the hull.

For circular cross-sections, k = 1.
The same assumptions and arguments lead %o useful formulas

for the lateral forces on airship hulls flying in a curve. The
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details can be found in Ref. 2.

2. The Theory of Wing Secticns in a Two-Dimensional Flow.

The theory of the wing section is in a way the two-dimensional
analogy to the theory of airship hulls with circular cross-section.
A large amount of literature exists about the former problem, I
mention only Kutta, who originated this branch of aerodynamics, and
Joukowgky, who obtained most publicity in connection with it.

The method followed by Kutta and his successors is based on
the conformal transformation of the wing section boundary into a
circle, a process requiring very laborious mathematical work, and
which cannot be applied to most actual wing sections but must be
restricted to certain simple sections distinguished by no other
advantages.

In order to reduce the solution of this problem to computa-
tions to be made in the office of an airplane factory, it suggests
itself ﬁo consider the wing section as infinitely elongated in
analogy to the airship hull just treated. The assumptions are
then that (a) the maximum thickness, and (b) the maximum camber,
is small when compared with the length of the chord. These two
assumptions are fairly well complied with by nearly all wing sec-
tions used in practice. In addition, it is convenient, though not
absolutely necessary, to assume the angle of attack between the
chord and the direction of motion to be small too. Then the veloc-

ity of the flow created by the motion of the wing is small when
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compared with the velocity of motion, and can be neglected when
added to it. The simplification leading to a convenient develop-
ment of the main formula consists now in substituting a new bound-
ary in the problem. Instead of the boundary of the section, the
chord, that is a straight line in the immediate neighborhood of

all points of the section, is taken as the reference line for the

conditions of flow. For the computation of the lift, for instance,

the wing section can first be replaced by its middle line, having
as ordinates the arithmetical mean ¢, of the upper and lower or-
dinates of the wing section, the chord being the axis of abscissae
X. Then the velocity component of the flow at any point of the
chord and normal to it is approximately V 4 £/dx and this re-
duces the original problem to one the solution of which is well
known. Any desired quantity referring to the flow can be ex-
pressed as a linear function of all mean ordinates of the section,
either as an infinite series or as a definite integral. The lat-
ter is more convenient for practice, particularly if the chord
passes through the rear edge of the section. The 1lift is given

by the condition that the air does not flow around the rear edge;

this leads to the formula

=Y f+1 £ dx (length of chord = 2)
AR ¢ Lo o £

The pitching moment with respect to the middle of the chord re-

sults

+' "
M=/ ' x kdx (Reference #3.)
-1

\




N.A.C.A. Technical Note o« 207 9

When computing the pressure distribution around the wing sec-
tion; the thickness of the section can no longer be disregarded
but gives rise to similar definite integrals giving terms of the
same order of magnitude as do the mean ordinates. The pressure
on both sides is diminished owing to the thickness and hence a

section of finite thickness is supported more by suction on its

upper side than by pressure on the lower.

3+  Theory of Wings with Hinlte Soan.

The practical difficulties of this problem lie in its being
a three-dimensional one. As is well known, Dr. L. Prandtl at-
tacked it with the methods existing for the investigation of three-
dimensional flows, using Helmholtz vortex lines, a method which
was also tried by Lanchester. In this way, Dr. Prandtl obtained
valuable results, though chiefly qualitative ones. Practical
computations can only be made by reducing the problem to a two-

dimensional one by means of suitable assumptions. It is signif-

icant in this connection that Dr. Prandtl from the very first vir-
tually abandoned the three-dimensional treatment by assuming the

vortex lines to be parallel to the direction of flight rather

than to coincide with the streamlines. The strict two-dimensional

treatment of the problem requires in addition that the components

of the flow set up by the wing parallel and lateral to its motion

be neglected when added to the velocity of flight. Then, the use

of the Helmholtz vortex lines can be avoided altogether and the
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usual methods for investigating two-dimensional flows can be used

instead. This is a proceeding rmuch more desirable, for the method

of vortices and vortex lines seems not to eppeal readily to minds
not thoroughly trained mathematically, and gives rise to confusion
among practical men rather than serving to enlighten them.

It should be mentioned in this connection that Dr. A. Betz
investigated the air forces of a biplane cellule by combining in
a particular way the wing theory and the wing section theory.
Following Dr. Prandtl he assumed the actual vortex lines to be
parallel; and furthermore, he replaced the wings by fictitious
concentrated vortex lines, obtaining thus a continuous system of

vortices. He obtained valuable qualitative results, but his method

ig too laborious for practice and no exact quantitative results

can be expected from it. His assumptions amount to replacing the

wings by cylinders of infinitely small diameter, which does not

seem justified to me as the distance between the upper and lower

wing of a biplane cellule is not large when compared with the
wing chord. And even if it were much larger than it is, sO that
neglecting the chord would be permissible, it would not yet be

evident that the first term, that is, the circulation term char-

acteristic for the 1lift and vanishing inversely as the distance,

is dominant. It seems to me that at least the second term, char-
acteristic for the moment of the air force and vanishing inversely
as the square of the distance, should be taken into account too,

as it is of the same order of magnitude as the first one (Refer-
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enceg 4 and 5).

The fundamental assumption of the simplified wing theory is,
accordingly, that the air contained in a plane layer at right
angles to the direction of flight remains inside the same layer
and moves as a two-dimensional flow. Far in front of the air-
plane, the layer is supposed to be at rest. While passing through
it, the wings gradually built up a two-dimensional flow 1in 1it.
After the wings have passed, the momentum of this flow is equal
anc opposite to the lift transferred from the layer to the wings.
The two-dimensional flow is fﬁrther determined by the condition
that the impulsive pressure, necessary to create it and acting
along the boundaries of the front view of the wings, is equal and
opposite in direction to the distribution of the 1lift transferred
to the wings. It can be demonstrated in varticular that the two—
dimensional flow has only obtained half its strength when the
wings are passing the layer. This factor 1/3 finds its analogy
in many other branches of theoretical mechanics.

The kinetic energy of the potential flow can be computed.
The work consumed in overcoming the drag of the wings (called the
induced drag) is equal to the kinetic energy transferred to the

layers after the wings have passed them. The two-dimensional

flow, already half created in the neighborhood of the wings gives
rigse also to a difference between the "effective" angle of attack
(between chord and relative air flow) and the "geometric" angle

of attack (between chord and direction of motion), called the

"induced angle of attack."
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As an additional assumption, the induced drag and induced
angle of attack are generally replaced by theé minirum value of
these two quantities compatible with the area of the surface, the
span of one wing or plan view of several wings, the maznitude of

the lift, the density of the air and the welocity of flight. A

further additional assumption which is often used is that the as-
pect ratio b?s’, is large. There are, further, very simple
rules referring to the diminution of the 1lift or the rolling mo-
ment caused by the induction, which primarily apply to elliptic
wings only. These are wings, the chord of which plotted against
the span, gives a half ellipse. With them, and sssuming the 1lift |
to be proportional to the effective angle of attack, this factor |
of diminution depends on the aspect ratio only. The same factor
can be used approximately for any wings having the same aspect 3
ratio.

The main formulas of the wing theory are:

Induced drag of a wing

Mean induced angle of attack
L

Bt B 2 P
R ofl s 5

O_iz

Hgetor of "1ift reduction

p !

1+ %25

Factor of reduction of the rolling moment
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Induced yawing moment My due to the rolling moment Mp

Gy, S
Uy = Mg ~L—

where

Dy = the induced drag

@y = the induced angle of attack
L = the 1ift
Op, = the 1ift coefficient —
SV°5
-

= the entire wing area

T = the moment of inertia of the wing area with
respect to the axis

b = span

V = velocity of flight

p = density of air

k = a factor dependent on ghe shape of the front
view of the wings (¥° ¥ I is the area of
apparent mass of the front view of the wings).

k = 1 for monoplanes.

(Reference 3.)

4. Propeller Theory.

The assumptions which lead to a practical formmla for the
efficiency of a propeller, or rather to the upper limit of the
efficiency, were first made by Froude. The density of thrust per
unit area of the propeller disk is assumed to be constant and the

rotation of the slipstream is neglected. The efficiency then has
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the maximum value compatible with the thrust, the velocity of mo-

tion, the diameter of the propeller, and the density of air, and

becomes
2X/1+ TTT 5
e
D Z-V 5
ﬂ:
v/l
¥ L B
4 2
where
L= s Rruet
D = diameter
V = velocity
o = density

Other information about the properties of propellers is 0Ob-
tained by combining the wing section theory and the slipstream
.theory of Froude. The blade elements are supposed to act like
the wing elements of an ordinary wing, moving along spiral paths.
This procedure is rather involved, too, and it seems judicious to
The main as-

simplify it by considering the blades as one unit.

sumption is that variation of the shape of the slipstream, but

not of its velocity v, may be neglected. Then the slipstream

velocity, as follows from the consideration of the physical dimen-
sion of the quantities determining it, is necessarily a linear
function of the velocity of flight and the tip velocity of the
blades U. The ratio U/V for zero thrust can be obtained by ap-
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plying the wing section theory to the blades. It will often be
exact enough to consider a mean blade section only, say at 0.7 of
the propeller radius, and to find the value of U/V where its
1lift becomes zero, the air being supposed to be at rest.

The application of the wing section theory in conjunction
with the slipstream theory of Froude leads to an approximate for-
mila for the constant differential quotient dv/dU. The choice

of 0O.7r ag mean radius of action gives the formula

: 3eBiie
g D - X (Reference 7)
av 1+ 1425 (=)

D—g v '/O

where (U/V), is the value of U/V for zero thrust and § the
entire blade area. By means of this formula, and of the rela-
tions between the slipstream velocity and the thrust, the thrust

can be computed for any value of U/V.

5. Conglugsions

The simplifications of hydrodynamical computations discussed
in this paper are of more than practical value for the computa-
tion. They are also of great instructive value, as they point out
the main causes of the different actions of the air. These are
always the same as in rigid mechanics, each force is the reaction
to an acceleration of masses. The kinetic energy contained in an
air flow, and the momentum giving rise to it are its main charac-

teristics, and play the same part as do the kinetic energy and the
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momentum of rigid bodies in the mechanics of rigid bodies.

Technical Note No. 207

These

conceptions appeal to the engineer and give rise to creative

thoughts. They should therefore be put in the very front in aero-
dynamical papers intended for education, instead of abstract math-
oY

ematical conceptions like vortices, which are chiefly of use

special scientific research.
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