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THE FLETTNER ROTOR SHIP I N THE LIGHT OF THE KUTTA-JOUKOWSKI 

THEORY AND O.F EXj?ERlliENTAL RESULTS. 

By Frank Rizzo. 

Summary 

I n this paper the fundamental p rinc iples of the Flettner 

rot or ship (Ref{rence 1) a re discussed in the light of ,the 

~utta-Joukowski theory and available experimental ,inf'ormation 

0:1 the subject. 

A br ief exposition of the Kut ta-Joukowski theory is g iven 
I ' ' 

... r.i the speed of the rotor ship Buckau computed, fi rst by 

.! ~ ing effcctivo propulsive force. obtained by the above theory, 

:.:.d t hcn by diroct applicution of wind tunnel data. 

The calculation shows that, although there is a certain 

:-olation between 'theoretical 'and experimental speeds, those ' 

"'':ltained by wi nd tunnel data ar-e undoubtedly closer to the 

:tual speeds' C?f tho ship than are those obtained by the use 

. : theoretical propulsive force. 

I ntroduction 

In s imple terms the theo rem herein 'employed is o,nly a spe

:~:11 CClse of the Kutta-Joukowski (References 2 and, 3 respect.::. 

.' ''ly) theory and it states that, the force normal, to the fluid 

~. ;cction upon a length L of a cylinder of infinite length 
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~ t acroSS a rectilinear flow is equul to the product of t 11e 
:' lu icl density Wig , by the lengt h L, by the circulation r 
: round t he cyli~de r, and by the vclocity of the flbw Vo ' in 
Uch the cylinder is held (Refe rcnce 3). 

v Tho poss ibility of using rotating cyl inders in a.ircraft 
~'lS b8cn discu ssed by var i ous acronautical publications (Ref
erenc e 4); fr om an experiment ul point of view, however, as far 
;:S kilown, the problem has boen so f ur under t aken only at the , 
::.1jk 1 s Studiedienst Luchtvaart, Amstordam, by Dr . Wolff (Ref
", :~nce 5) and at thc wind. tunnel of the National Advisory Corrr
- tt o fo r Aeronautics, by E. G, Reid (ReferE)nce' 6}. 

The liiagnus phenomenon on which the Kutta":'Joukowski theory f 
!3 based , has , been .knO\'TIl for s ome t ime , for Maghus announced 
.: f ir st in 1853 in conjunction with his ballistic ,experiments., 
:-.1 Lord Rayleigh ( Refcrenc'e 7) later 'proved mathematically 

~'::.lt a. lift is generat ed on a cylinder if a circular motion' 
uperposed on a potential flow about the cylinder. 

~ , 

The Kutta-Joukmvski Theory 

3efore p roc eed ing wi t h the appli cation and dis cussion of 
:c 1.1lts, the following brief exposition is given, and in the 
~t liography a li st of r eferences is given f or the reader who 
I ' . ,'l es to go further into this Gubj ect. 

In both hydrodyriamics B.nd a erodynamics ther'e ar e two' moth-
0 '[ treating the motion of a body in a fluid having given ' 

,---- -----
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r'~ " mot ion a nd the form of tho body itself. One method oon-........ 

:i3';S in determining the voloc:!' ty potcnt:Lal and stream func
::' !'l from the condi tion that the contour of the body itself 
c..:.s t be a streamline, since the fluid can only pass tangent i-
! ll y to the surface ,without penetrating it. In hydrodynamics 
"!'l is method of treatment is called the direct method. 

In contrast t ,o this there is the indirect methcd which 
~cr ivos its name f rom the fact that by mathematical trial the 
:orr. of f luid motion and the shape of the body which could 
: 'vc rise , to it rmy be determined. As a result of this, any 
;; ~r camline ca n then be taken as the contour of the body mov:'" 
bf in the fluid. The lat tel' method is the simpler of ' the 
~ 1i' O because 'i t depends on differentiation, whereas' the former 
't"pcnds on integrat ion. Every student of naval architecture 
.J familiar with the indiroGt method and it s broad application ' 

: :1 trot science. Rankine (Reference 8) used combinations of 
':urces and s-inks to produce fi0Ures sui table for ship watoI'- . 

~ n os, Taylor (Reference 9) made use of a, cor.tim,lOus SOUTce 
~ : 0. continuou's s ink combined with a uniform flow 'to obtain 
. !' i p linos of least resistance, and Furham by application of 
~ :.. u ..,a~e principle to a three-dimens ional flow extend'ed the 
' beory to hulls of airships (Referenco 10). 

By the indirect 1:1eth?d, it has been found (Heference 11) 
'-. · ~,J.t the motion of a rotating circular cylinder, immO'rsed in a 

~" :''' cct fluid having a velocity -Vo at infinity, with i~8 

--~-
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I 
I 

~xis paf~ll el to the horizont~l XY plane of a twa-dimensional 
flo 71' , ~nd its transverse s ection parallel 'to the vertica.l XZ 

pl~n0, enn be represented by a complex function of the form: 

F = -Vo Z K + K'i - Z TT 

vrhere Z = x +' iz - r (cose + 

und r = j x2 + Z2 

:he rea.l part of equation (1) 

Kx ~ = -Vo x - -r2 

gives 

Z 
( 1) log -. ro 

i sirtS ) = re ie ( 2) 

the 'velocity , potential: 

(3 ) 

( "-,, _ •• 'Io.L t ho imaginary part the stream function: 

'f Vo + Kz + ~ log 
r = - z -r2 TT ro ( 4-) 

The first a.nd second right members in the last two equa
· :.ons represent a flow around a circul~r c'ylind,er (Fig, 1)) 
~~ ~le the third term in eaeh s tands for qoncentric stream~ines 
~~t r~d ial equipotenti~l lines like t~o s e in Fig. 2. ' The re-

·,~ltQ.nt motion, from' the combination of these two, is that ref)
:,cnented by Fig. 3, as will be explained below. 

Since Laplace! s equation of constant density 'must be sat
r.:ficd 

+ = 0 " ' 

( 5) 

{l 
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7:1e volooity along the X axi s at an infinite distance is: 

[ o ~ ] = _ Vo (1 + Jl) = - Vo 
dX r='O) 00 2 

( 6) 

n,1 d along t h e Z axis t.. 

= 0 (7) 
r=co 

hat is, a uniform- flow with velocity - Vo at i nfinity, par

~llel to the X axis . By using polar coordiTh~tes equation 

(3 ) becomes: 

cI> = - Vo r cose - L r cos e _ K' e 
r2 n 

f rom which the radial veloc i ty :i! s " 
, f 

a~, K 
V r = - = - Vo cos e + -:-:r cos e 

ar r 
(8) 

One of the assumptions made in the theory is that the fluid 

particles hav e no r adial velocity at the surfa ce of the cyl~n-

cr where r = ro; consequently, by s ett.ing equation (8) ,'equal 

~o zero the value of K is obtained as 

~imilarly the qpe ed along the tangent to the' section is: 

Vs ~ r'j:e ~ [Vo sine (1 + ~~~2- ,q r=ro (9) 

t1: ' ' 

:1 \1hich V 
1 

r epresents K' 
nr ' o 

and corresponds to the tangen-

' I 
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t ial speed. component of the circula.tory motion at the surface 
of th~ cylinder. 

The velocity field resulting from the superposition of the 
t'i'IO members of equation (9) gives the diagram of tangential ve
locity of the air on the cylinde;r' sutface shown in Fig. 4. 
In this particular case the values of Va and Vi chosen are 
those corre sponding to figur.es given on photographs of Fig. 8; 
s is plotted radially instead of tangentially for pictorial 

p rposes, posit ive outside the s ection ~nd negative inside. 
Due to the sine term of the above equation the two term's a re 
(l ' dod in the fir st and s.econd quadl'ant and subtract ed . in the 
third and f ourth . The resulting figur e is symmetric about 
tho Z axis, with a much lar ger resultant velocity on thc up-
per semicircle than on the lower. 

If Bernoulli!s equation is appli ed to this st eady flow 
one finds that the pressure 'will be greater where' the velocity \ ... 
is less , and vice versa; hence a f orce is produced along the 
Z axis, at right angles to the X axis,. directed from the side 
of less er velocity towards that of . greater veloc i tye 

The theoretical magnitude of t hi c lat eral force acting on 
a surfa ce element ds = ro de, along the whole length L, of 

., 
:he cylinder, by Bernoulli!s equatio:1 i s : 

th ich, on substity.ting Vs ' for V · (equation 9) g~ves: \ 
'j 
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( 11) 

, 
Due to the symmetry of the flow about the Z axis the to-

tal f orce is obtained by integrating the infinitesimai projec-

:ions on this axis between the limit s rr/2 and 
I and is 

ttcrefore: 

11 /~ 

Fz = - f (? - po) 
:...TtI~ 

w ) 11/2 (2 2 ::; - -( Lr a J Va - 4 Va ')g 0 

(J -11/ 2 
sin2 e - 4 Va V~ sine V 1 2 

) sin e d e 

simplify ing to Fz == - JL L ( 2 TT ro V, )" Vo o == w L,r Vb ( 012 ) 2g g 

The resultant force in the f irec ti on of the X axis is 

cbtaincd likewis e, as: 

11/2 
Fx == - J (p 

o -11/ 2 
(13 ) 

EXPERIMENTAL RESULTS ON MODEL ROTATING CYLIND~RS. 

Boesides Dr. Wolff's experiments, which a pply only t o air

fo ils, and some carried out at the G~ttingen LaboratorY
j 

the 

C0st complete and recent set of experiments available on t ho 

:-ubj ect is that of t he N.A.C. A. Techn.ical Note No. 209. These 

· ests on Orotating cylinder s of various cross sections were 

::-.aie at the Langley Memorial Aeronaut i cal Labor£' tory to °deter

r: in ~ the air f orce act'ing on r?tating cylinders 0 set transverse-o 

1] to the air fl ow. The cylinders were tested in infinite 

0

1 
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lcngth- -diametcl' ratio, by letting the . length extend over the 

r.: olc di ameter of the tunnel seetion, thus very olosely simu-

l~ ~ i ng a two-dimensional air flow , The remainder of the pro

c::·n.m consist cd in recording tbe drag , the cross wind force, and 
.J 

t.IO power required to rotate the cylinders for the controlled 
) 

co~binQtion of this translational and circulatory motion. 
" 

The experimental data of Table I, ~s well as Figs. 5, 6, 

~r~ 8, all referring to t he circular cylinder, are -~aken from 

the above reference. 

Following are the most relevant points of these tests on 

rotating cylinders, as presented in Technical Note No .. · 209. 

(a) The cross wind force dO,es not appear before a ratio 
I . 

r, (peripheral ~elocity/translational velocity) 

'Of 0.5 is rea ched* (Fig. 6). 

(b) Between the ratio r = .5 and r = 2 . the cross wind 

force increases stoa.dilY through quite a range with 

no appreciable variation in the drag (Fig. 5). 

(c) The maximum value of Lin of 7.8 is obtained when 

r = 2.5 approximately (Fig. 5) . 

(d) The drag alopg the axis of the tun.llel (for 

Vo = 15 m/s) varies from a maximum at VI = 0 to 

a minimur.1 for the range of r = 085 to '1' = 2. 0, 

from which point it increases again and at the 

abscissn of groat cst Lin the drag coefficient be-
I 

comes nlmost ident ical with that of the s.tatiqnary 

_ ____ ~c~y_=l:.:inder . (see Fi gs. 5 and 6). 

• 7his is particularly truE) for the 15 m/8 airspeed. 
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In order to directly c ompare thc experimental cro s s wind 

"orces det ermined. f rom wind t unnel t ests and the theoretical 

O:1eS computed according to equation (12), the latter have been 

~abulated a lso in Table r. Fron these data, the dotted line . 
\ 

of Fig. 6, representing theoretical cross wind force coeffici-

nts , is deTi ved for the same range of spe eds and in the pame 

:.:lnner as thos e of the experimental curv e . Fig. 7 is derived 

~rom Fig . 6 and gives the ratio of experimental to theoretical 

::'l.F. coeff icient s a gainst the values of V1/VO • 

As noted in Fig. 6, there is a considerable discrepancy 

betwoen experiment a l and theoret ical coeff ic ient curves which 
I 

1:'18 not rrhol1y unexpect ed, cons ider'ing the assump tions involved 

:l the t heory. In add i tion to ' this quanti ta tive discrepa ncy 

:m inteTcsting point to b e noticed is the irmnediate appearance 

of [l. fin i t 'e theoret ical C.W. l., while the experimental docs 

:.ot start unt i1 a ratio V1/Vo of .5 is reached. These dis-

: rcpancies taken to gether po int out the impoJ;tanc e of using , 
, 

i scrction in the applica tion of theoretical cross wind forces 

~o practical problems. 

THE FLETTUER ROTOR SHIP "BUCKAU. II , 

In the p revious s cction the discrepancies existing between 

:heoret i cal and exp erimental cross wi nd forces on rotating cyl-

1ncie rs have been indicated. In the following paragraphs the 
\ 

~pe ed. of the Flettner rotor ship, "Buckau ," is computed by ap-

'-----~ --- .. 

., 

I 

: I 

I, 
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<) ly i:1g both propulsive forces, using eJ~erimental and, theoretie- . 

'nl coef f ic lent s, so tha.t we may be able ,to see which of the two . 

- 'v~s cl oser results to the actua.l p erformance • 
.J 

Accounts of the II Buc kau ll 11.:'lve appeared in various pUblica-

~.onG and need no further comment here. In brief, the inventor 

~ tro(uces a new method of marine propulsion by bringing into 

effec t the f orce delivered by the wind working on two verti,ca1 

yU 'lders rotat ing in t h e longitudinal p lano of symmetry of 

~bc vessel. The main obj ect of usin~ two cylinders is obvi-

ous l y f or maneuvering purposes, the p roper balancing of the 

~ OltpOn0nts being accomplished by varying the ratio of the 

peripher a l speed of each c ylinder Ito that of the prevailing 

-;indo 

From what i nformation it is pos sible to obt'ain, the 

' 3uckau ll has a d i splacoment of abou t 680 tons, and two cylin-

::cr s 18 . 5 m (60.7 ft.) h i gh and 2 . 8 m (9. 2 ft.) in diameter 

.bich a rc rcvo1ve~ at the rate of 120 R. P.lI. by two 11 kilowatt, 

::?O vol t motors, these being in turn operated by, a 45 HP. 

~ies o1 engine . Under ordinary winds , it has been repOTted that .,. 

it IT'alce s f ive or six knot s . 

If the ve s sel maneuvers in a wind of 5 mis, which corre

~! onds to ~ n ordinary wind of 9.7 knots, the theoretical thrust 

::ormal to the wind direction for each cylinder will be! 

F- z == ; L (2 TT ro V
1

) Vo == 3175 lb •. (1440 kg) 

1 
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and for both cylinder s the thrus t would therefore be 63 50 lb. 

(2880 kG)' 

The i nd icated HP. of an engine necessary to propel 'such a 

'{ eGscl as t h e "Buckau" a t a speed of 12 knots would be . (Ref. 12): 

== _1_ D2/ 3 V3 == 1 ( 68 0)2/3 
Ii? 160 160 

Assuming a propulsiv e coefficient of . 55 , the above horsc-

power i s equivalent t? an e f fective ptI.'opulsion of 12,450 lb • . 

r.'he sp::;ed correspondine.; to t he above propulsive force 1s thcre-

ore: v == 12 ( 6350 ,1/2 == 8_60 knots, 
12450 / 

r:nich is considerably better thQn the p redicted p erformance of 

[, or 6 Y..l1ots. ) 
On tpe other hand, by using wind tunnel data for the s &me 

condition, namely, 5 m/s a nd 120 R. P .li., we get : 

~ == '2 C Aq z C 

== 2 (8. 59) ( 51.7) 1.535 == 1368 kg 

== 3016 lb. 

"': crc Cc Co rr esponding to r == 3.45 is taken from Fig . 6, 

is the p roj cctcd arca of each cylinder on the lI Buckau ll ~nd 

:t is the aer odynamic p ressure ~ P V~. The spe ed correspond-

r.g to this p ropulsiv e for ce is . . 
1 / 2 

V == 12 ( 3010,\ ' == . 5.90 · lcnots. 
12450 I 

Ship speeds similarly comput ed for the wind speeds therein 
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! ~j ica.tcd and a constant cyl indor rotat ional speed of 120 

• . ? '. ~..l'C r;i '.~(:n for comparison in Table II. 

12 

The comparison speaks for itself and points out at once 

~ !:c ..Lcparture between corresponding speeds ~ompu ted by the two 

' I,; ~S of data. One feature of those figures is that increasing 
I 

:. c wind speed from 5 to 15 rn/ s (by 200 per cent) f the ship 

' '''c ed increases nearly 74 per cent when employing theoretical -,. 
~hrust and only 20 per cent when experimental data are used. ' 

GENERAL DISCUSSION. 

There are many phases of the rotor question which are ex-

Hcmely interesting but which require too 9xtensivEl treatment 

·0 be included in .this paper. However, it does ·" seem ap-

propriatc at this time to briefly discuss the most interesting 

po ints relating to the theory 'of these rotating cylinders and 

~be ir eff ect upon the charact er i st ic s of the ship. 

The fact that a much. closer agreement is obtained between 

:.heoretical and experimental cross wind forces on wing sec

tions developed, by this theory (Reference .13): than in the 

apparently simpler case o f these rotating cylinders is undoubt

eely due to fhe l es s problemat ic condit ions of ·the flow around 

r-'J.ch wing sections (Reference 14). The main difficulty met in 

the theory, as pointed out by eminent authorities, lies in the 

determination "of the actual circulation and relative distribu-

ion around the body; , fo~, while in the case of r?tating cy1in-
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) 
!crs the circula,tion is assumed to be inversely as the distance 
_ f rom the cent or, u'nimpaired by viscosi ty, slip, and such .. 

. tl . th d t d by the Go"t-".~ ~ rimental elcmentG, ln, 1e wlng cory aVOca 0 .. ~~ 
~ in,jcn school this circulat,ion is actually det ermined from the 
'ondition of the flow itself ~ 

Yiere the air particles free from at traction and the motion 
~ rictionless, as a,ssumed in the theory, there would be, in this 
-lS C no circulation at all, a nd no Magnus effect expcriEmced ~ , 

J • 

':1 the cylinder, sine e the air next to it would not be aff ect ed 
'0'1 its rotation. This is , contrary to common experience since ' 
, .. 0 s tratum of air in 'the immediate vicinity of the cylinder 
.Jrface adheres to the latter, some circulation resulting , '! 
~'lcrefrom, even though quantitatively less tmn the assumed 
.. lue, and di s sipated a t a very s:1ort distance from the . cylin
~il: surface (Referer:cG 15). 

It goes without saying that the drag in the direction of 
.. : 0 wind is of negligible effect in thc case of the rotor , 

, ,~i; ' ::~ ~p when it is comparGd to the lateral wind force which would 
~ :~ felt by the vessel under the a ction of a sail of the right 
~:oportions . Thi s draij eritirely unaccounted for in the Kutta
· ;ukowski theory (equation 13) in the cas e of the model cyl in
;ocr can easily be accounted, for, llt least quulitatively by such 
, t:othod as Karman has employed in the theory of vortex mot ion. ' 
:" I1Buckau, If fi ttcd w'i th rotating cylinders, will be therefore 
.~ an QQvantage in sudden squallS since the heeling coupl~ 

\ 
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."used by the ttahsVe±13B component of wind force (drag of rotat ..... ., .. 
::- g C; iindel') is coris itleta:b ly lEWs tkn iha t caUEl ed, were it 

:itted with sa.iis; even ihaugh the point of appiioation of this 

~te~ai foroe remairts practicaliy at the safue height above the 

center of lateral resistance of the vessel in both cases. 

From the propulsion point of view, this dynamic drag in 

t le direction of the 'wind is not an ent ire detriment, for it 

-~n at times be utilized by sailing whenever possible along 

-;'ile resultant of the two e,.."'{isting forccs, the effective pro

p' lsive effort along , any other course is (C.W.F.) sin'Y;l; (drag) , 

~o s 'Y, 'Y being the acute angle between the wind vector and 

-;he normal to the ship course; the minus sign for head winds, 

ii:1d the plus sign for lee winds.' Table I shows the gain of 

~ropulsive fo rce ~~t can be realized by sailing along the 

! reet ion of the resultant. 

Another favorable element contributed by converting -the 
. 

13uckau" from sa il tc rotor ship is the low'ering of the center 

~ r gravity of the vessel caused by the difference of the 

eiGhts of the two riggin[!;s and the corresponding distances of 

~ hc e.g . above deck. Thus assuming the old and new rigging to 

. cigh 35 and 8 tons resp ectively" and the e.g. 14 ft. and 8 ft" 

l'c:;pcctively abov e deck, a lowering of the ship's c. g~ resul ts 

:' ieh amounts to approxima.tely 1/2 foot" It is obvious there

!o:'c , that fr om a seaworthiness point of view the "Buckau" has 

~eater reserve of dynamical stability in this case than 

r ~.e it fitted with sails. 
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As ide f rom the above consid.erations, it may be questioned ' 

: 0 \'1 closely the Flettner rotorn provic..ed wi th top disks simu

ate t he conditions existing in t he infinite length model. 

"' he GTi101ce photo grap hs of Fig. 8, taken for the conditions indi-

Clt Ca. t hereon, surely g ive some light on this question .. 

: hese ac tual p icture s b e s ides showing a departure on the wake 

id e of t he actual flow from the theoretical t wo-dimensional 

Cr:8 of ~" ig . 3, also indicate to viha t extent the stratum of air .. . ~/ 

n the i mmediate vicinity of the cylinder is being affected, 

r i"ling t hus a rough idea of the diameter of end disk neces sary 

"v prevent t h e a ir strea m from spilling over the end. 

There is n o ob j e ct in going into finer details as the 
I 

,"ork so far done 0 :1 rota t i ng cylinders is only of a prelimina-

': 'l nature, and more ext ens ive work i s expected to be . carried 

~~t in the nea r future . The publi s hed a ccounts of the rotor 

hip and t :Ce above speed calculations leave· v.cry little doubt 

~ :;at Flettner' s expect3.t i ons have been mat erialized and that 

:. ~ ship can be considered as g iving a very good auxiliary 

-c'lns of propulsion, 

/ 

,\ 

-

, I 

. , 
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CONCLUSIONS. 

The results just discussed ind i cate that in spite of the 

::!.ct that the Kutta-JoukoW'ski theory is based on the motion 

0: perfect fluids, there is nevertheless a certain correspond

ence between theoretical and experimental cross wind forces 

o:~ rotating cylinders. 

This analysis shows tha t it is unwise to use theoretical 
-J ' 

c rOGS wind force. Wind tunnel data give results which are 

:uch closcr to the actual performanc e of the "Buckau. ,11 

In conclusion, it may b e safely stated that in spite of 

' ~e encouraging results obtained in these preliminary invest i
I 
I 

tions on rotating cylinders, considerable ' research still 

:- erains to be done in this new field of aerodyna,mic s if it is 

c:cpectcd that the latter Vlill find an application in the aux-

Hiary propulsion of ships as well as in aeronaut ics. 

.J 

\ 
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TABLE I. 
E).-porimcnta l and theoretical cross wind forces on a revolving 

~£. ,. ELinc;h ~ i .'li·tl8 t(;r ~i rcular c; v linnc;r -
ro VI r E x p e r i m en t c 1 

-:.J s 
n. P . I~I . 

m/s VI/Vo Drag C. W. F. Result CD Cc 
kg kg kg 

15 25 .148 . 010 1.136 -. 010 1.136 .925 - .008 
15 500 2.96 .200 1.136 +.010 1.136 .925 -.008 
15 900 5 . 33 .360 1 .. 26 -. 020 1.02 6 .835 -. 0 1 6 
15 1020 6 .05 .4·08 .942 - .022 .942 .766 -.018 
15 1115 6 . 82 .460 ,8 52 .007 .852 .693 -. 006 
15 1240 7.35 .496 .777 +.003 .77 7 .632 +. 002 
15 1300 7 . 70 . 52 0 .754 .018 .754 .614 +.014 
15 1400 8 . 29 . 560 .740 .150 .755 .602 +.122 
15 1 500 8 . 88 .600 .744 .283 .795 .605 .230 
15 1600 9.48 .640 .744 .400 .845 .605 .326 
15 ' 17 00 10.07 . 680 .750 . 598 .962 . 610 .487 
15 1780 10 . 55 .712 .,751 .662 . 998 .611 .537 
15 1800 10 . 65 -.720 .754 .673 1. 011 .614 .548 
15 1900 11! 2 5 . 760 . 757 .798 1.099 .616 .650 
15 2000 11. 86 .800 . 7 59 .873 1.157 .618 .710 
15 2080 12 . 32 .832 .765 .868 1.157 .622 . 706 

r· 15 2100 12 .45 .840 .764 . 99 7 1. 256 .622 .811 
15 2200 1 3 . 04 .880 .764 1.073 1.319 .622 .873 . . , 15 2220 13.14 .888 .787 1.158 1. 400 .640 .942 
15 2300 13 . 61 ,.920 .772 1.188 ' 1. 416 .628 .967 
15 2400 1 4 . 21 .968 .7254 1. 278 1. 480 .614 1.040 
15 2500 14.79 1.000 .742 1.338 1.529 .604 1.089 
.5 2600 15.39 1 . 040 .729 1.468 1 . 636 .593 '1.194 

., 5 2620 15.50 1 .048 . 724 1. 3 03 \ 1. 492 .589 1.060 I ;:; 27 00 15.98 1.080 .710 1.578 1.726 .. 578 1.284 

en = JL Cc = C.W.F. 
qs qs . 

S = 0.1741 m'2 q = ~ p. V2 kg/m'2 =;, 

13 .. 81 kg/m2 

. / 
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Tab1e, l (Cont 1 d) 
r:ro crimcl1ta1 and theorc ticc]'l cross wind f orces on a revolving 

. ~ '. 4 . 5 inch d i ameter circular cyl inder . 

-, V
1 

r E x P c r i m' e n ,t a 1 
0 R. ? 1I. 

d s m/s Vl/V O Drag C. \1. F. Rcsu1 t CD Cc 
kg kg kg 

, -
10 1300 7 . 70 .780 . 353 . 308 . 468 ; 646 .563 

10 1500 8 ~ 8 8 . 900 .351 • L1r18 .545 .642 .764 

1J 1700 10.06 1.020 .338 .636 .719 .618 1 . 163 

10 1900 11. 23 1.140 .331 .758 .828 .605 1.386 

10 2000 12 . 42 1.260 .322 .978 1.027 .589 1 .789 

10 2300 13 .. 60 1. 380 . 3~J4 1.083 1.130 .593 1.980 

10 2500 lL1r .79 1.500 .333 1. 293 1 . 336 .607 ' 2.362 

10 2700 15.98 1.620 .334 1,403 1 . L~43 .611 2 .564 

10 2900 17 '.15 1.740 .3·16 1.443 1.486 .633 2.639 

q = 6.15 kg/m 2 I 
I 

7 1800 10,.65 1. 540 .167 ) .660 .680 .624 2 • .46 

7 2100 12.45 1.790 .17 3 .860 .877 .646 3 . 21 

7 2400 1 4.21 2 .050 .181 1.140 1.154 .676 4.26 ' 

7 2700 1 5.98 2.300 .197 1.365 1.383 .736 5.10 

7 3000 17.76 2.560 . • 222 1.700 1.714 .829 6 .35 

7 3300 19 . 55 2 . 820 .256 1. 945 1.96 L1 .956 7.26 

7 3600 21.32 3 .070 .287 2.210 2.232 1.070 8.25 

q = 3.01 kg/m2 c' , 

. 
5 1800 10a65 2 . 16 .085 .605 . 613 • 622 4.43 

5 2100 12 . 45 2 . 51 .105 .820 .828 .769 6.00 
;) 2400 14. 21 2.8 7 .130 .995 1.005 .952 7.28 · 

5 2700' 15 .98 3.23 .151 1.110 1.119 1.105 8~13 

5 3000 17.76 3.59 .168 1~170 1 . 180 1 . 230 8.57 

5 3300 19.55 3.95 .188 1 . 250 1 . 263 1.376 9.15 
.. 3600 21.32 4.32 .196 1.295 1.311 1.434 9.48, 
:> 

q= 1.535 kg/rrf3 
I 

I 

- - ---- ~---------------
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TABLE I (Oont'd 

Exporim8nt a l and t hcoret i cal c ro ss vlind forces on a . r'evo1ving 
4 .5 inch diameter c ir cular cylinder . 

Vo The ore t i cal Ratio 
'(['j s R. P . M. 

C. W. F. 00 Exp. o • ~ .• F. 
kg Th . O. v! . F· 

15 25 .15 0.06 • 
15 500 2 . 95 . 1. 22 
15 900 5.31 2 . 20 
15 . 1020 6 .03 2 . 50 j 

15 1115 6 .79 2 . 82 
15 1240 6.33 2.62 
15 1300 7 . 67 3 .18 . 004 
15 1400 8 . 25 3 .42 .035 
15 1500 8 . 85 3.68 . . 063 
15 1600 9 . 4.5 3. 9 2 .083 
15 17 00 10.02 

I 
4. 21 .116 

15 1780 10 . 51 4 . 36 . 123 
15 1800 10 . 60 4. 40 . 125 
15 1900 11 . 21 4 .65 .1 40 
15 2000 11 . 82 - 4.91 .145 
15 2080 12 . 28 5.10 1.138 
15 2100 12.40 5 .1 5 .157 
15 2200. 13 . 00 5.39 . 162 
15 2220 13. 10 5.44 .173 -
15 2300 13 . 57 5.63 .172 
15 2400 14.16 5.87 .178 
15 2500 14.7 3 6.11 .179 

j 2600 15 . . 32 6.36 .188 
-r" 2620 15 .44 6.41 ,,166 j 

15 2700 15 .93 6.61 . 195 

f 

I 
1 

t 
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\, 

TABLE I (Cont 1 d ) . 
. Exp erimental and theoretical cross wind forces on a r ev olving 

4 . 5 inch diameter circular cylinder. 

Vo R.? . l~ . 
T h e 0 r e t i cal 

mls -- Ratio 
C. 'iff . F· Cc Exp. C. :V.F. 

kg Th. C.1.'i .FQ 

10 1300 5.12 4 .78 .118 
10 1 500 5.90 5.50 , . 139 
10 1700 6.68 6.24 .187 
10 1900 7.47 6.97 .199 
10 2000 8.26 7.71 .232 
10 2300 9.04 8~44 .235 
10 2500 9.83 9.18 .257 
10 2700 10.62 9.90 .259 
10 2900 11.40 10.64 , .248 

7 1800 4.96 ! 9.45 .261 
7 · 2100 5 . 79 11.01 

( .292 . 
'? 2400 6.62 . 12.60 .338 
" 2700 7.44 14.18 .360 I 

7 3000 8 .27 1 5 .7 6 .402 
7 3300 9.10 \ 17.31 .420 
7 3600 9 . 93 18.91 .437 

. 
r- 1800 3 . 54 13.26 .334 ~ 

5 2100 4 .14 15.50 .38 7 
5 2400 4 .73 I 17.72 .412 
5 2700 5 .31 19 .88 .408 
5 3000 5 .90 22 .10 

. '. .388 . 
5 3300 6.50' 24.35 .376 
5 3600 7. 08 26 •. 50 .358 

\ 

1: 
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Table II. 
!, 

'Ship Spced by Theoretical and Experimental C. VI . F. 

ind speed in m/ s 15 10 7 5 

II 11 11 knots 29.2 19.5 13.6 9 . 7 

speed of 11 Buc kau II by theory ( knots) 11.70 : g;55 7.98 6.74 

Spe ed by wind tunnel data (knots) 7.10 6.95 6.90 .5.90 
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.1 • FigS4.1,.2 .& 3 

I' 

Fig.l Unipl anar uniform flow around cir
cular cylinder. 

Fig.2 Uniplanar flow around circular 
cylinder considered as a columnar 

...J vortex of strength r 0 

/ 

I \ 

Fig.3 Superposition of two preceding flows" 

.~ 
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z 

z 

Fig.4 VB Distribution. 

Fig.4 

m = Va for 2400 R.P.Mr 
n = Vs for l200 R.P.M. 
u = VB for 600 R.P.M. 

r 
Vo r 

0( \ 
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.L j . I Fig.6 
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Photogt':l.phs -of sr!1okestre '3.m 'Hound ' 4 1/2" revol -ling 
cylinJ.er . 
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