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TEcwnCA:" NOTE NO. 139. 

INFLUENCE OF RIES OJ STRE1JGTH OF SPARS. * 

By L. B~~lens~edt. 

In calculating the strength of airpl,me -.ving spars ~ the as-

sumption is usual that the ribs are connected to tile spars by 

flexible joints. This assumption is not accurate, as the ribs 

are attached very firmly to the spars by means of brackets~ nails 

and glue. This method of attacr~ent is so rigid~ with reasonably 

good workmanship, that it is justifiable to assume that the ribs 

are rigidly attached to the spars. 

The aim of the following investigation is to deter~ine what 

effect this type of joint has on the strength of the spars. The 

investigation was suggested by the striking ~act that the practi

cal loading tests generally gave greater strength and smaller de-

flection than strength calculations based on the asslli~ption of 

ribs attached by flexible joints. The difference was particularly 

noticeable, ~ith heavily offset loading and arises from the fact 

that tte more heavily loaded spar transmits a portion of its load 

through the ribs to the more lightly loaded spar. 

Fig. 1 shows the framework of the wing in perspective. It 

consists of two spars with nine rios, and rests on points A - B -

c - D. A statically determinate system is produced, ~hen all the 

rics are cut through -ni th the exception of the rib A - C (ha tchec.. 

in Fig. 1) . Two sim le spars A - B and C - D are thus o bt3.i n·::d _ 

* From Technische Berichte, VollL'ne III, No. 4, pp . 100-107 oJ (1918 ). 
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The Rib A C is required in o:rder to prevent the spars f:rom turn-

ing about their longitudinal axis. For symmetry, the central rib 

mj.ght be considered as part of ~he staticc,lly determin3..te sys-':;em 

and the rib A - C coula then be cut, but this is not of advantage 

in the computation, since it makes the determination of the dis

placement Baa, Bab etc. more co~pliGated. At the pOints of 

section of the ribs, three unZnowns gener&lly appear: longitudinal 

force, shearing force and bending moment, and the system is, there

fore, 3 x 8 = 24-fold static~.lly indeterminate. 

In order not to complic:'l.~e the investiga.tion unnecessarily, the 

following assmnptions may be made, viz: 

1. The external forces act at righ'~ angles to tile plane 

through the longitudinal axis of the sp~rs. The longitudinal 

forces in the (straight) ribs will then be zero. 

2. The monents of inertia and the areas of the two spar sec

tions are equal and the external forces act only on the spars, not 

on the ribs. The bending moments in the central portions of the 

ribs thus become zero. The strict proof of this is f 'ut in the 

Appendix in order not to interrupt the co~rse of the analysis. 

Besides , the arrangement shows at once that the elastic lines of 

the ribs must have a point of flexion at the center i , Fig. 11, 

since the angle of torsion 6 e, of corres:r:onding cross-sections 

of the two spars must be equal with equal cross-section and without 

load on the ribs. 

The wing frame is now only eight-fold statically indeterminate. 
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Let . the shearing forces acting at the center of the ribs be desi g-

1. Calculation of coefficients of the unknowns. 

With loads Xa = -1, Xb = -1, Xc = -1, etc., etc. 

ribs are subjected to bending, and the spars to bending and tor

sional stresses (Fig. 2). 

In general, let -

Mp denote the bending moment resulting when Xp = -1 

!.~q (I 11 11 II 11 " Xq = -1 

Tp II It torsional 11 " II Xp = -1 

Tq 11 II 11 II 11 f1 Xq = -1 

for any section of the ";1ing framework. 

* Muller-Breslau: If Die neueren !'1ethoden der Festigkei tslehre und deI 
Statik der Baukonstruktionen 1l (Recent methods of the theory of the 
statical strength of framed structures), T.B.19l3, p t 209. 
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Further, let -

I denote the equatorial moment of inertia of the spars, 

Il " II II II " " " f! ribs, 

Ip If n polar moment of inertia of tne spars, 

E II /I modulus of elasticity, 

S It " If If shearing~ 

·and we get -

1~ Mg Tp- Tg Mp Mg * Opq =-.1 -.::p dx +/ dx + I dz, 
E I S Ip E 11 

where the first two integrals are taken over both spars and the 

last one over all the ribs. The section of the spar has, for the 

sake of simplicity, been assumed to be circular or annular. If 

this is not the case, it becomes necessary to introduce the ex-

pression -

in place of Ip. * 

F 4. 

or, according to Sa.int Venant, ---=-
40 Ip 

On the assumption, which corresponds with actual conditions, 

that 

Ip = 2 I; 
3 

S = 8 E 

we obtain -

E I Opq = 1 Mp Mq dx + ~ 1 Tp Tq dx + 61 Mp Mq dz. 

The evaluation of E x I x ~ follows at once from Figs. 3 to 

* Ibid p' 211 and 255. 
** "Hutte" 22nd edi tion, Vol. I, pp. 570-1. 
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7 ~ in conjunction with Table 1. The calculation of E x I x 0 bd 

will be exhibited here for easy comprehension. The bending and 

torsional moments produced in the srars under the conditions, 

Xb = -l~ Xd = -1, are indicated in Figs. 4 and 6. Fig. 7 shows 

the bending moment in the rib b or d, and in the end rib 

A-C. The distance between the ribs is taken as s, and the dis~ 

tance between the spars at the same time as 2s. By reason of the 

load Xb = -1, - pressures arise in the spars of the magnitudes 

+ 6 
- 8 and ± 2 

8 and the bending moments on the spars, for the 

parts from A and C as far as to the rib b~ are~ therefore! 

b 
from rib/ to rib d: 

from rib - d to rib h: 

Mb = + 2 x' - 8 

In the same manner, from 

A and C up to rib b, 

Md = ± 4 x 
8 

From rib b to rib d: 

Md = ± 4 (2s + U 8 

From rib d to rib h: 

Md 4 = + - Xl - 8 

~ J = ±[ .~ -s 
8 

2 ~ ] 
8 

Xd = -1 (Fig. 6) for the parts from 

there arises the moment: 
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Thus we obtain: 

~~d dx = 

dx + fS ( 12 S _ 2 ~ '\ 84 (2s + ~) d ~ + 
Q. 8 8) 

4iS 2 
+ 1 - x, 

o 8 

4: -..:: x' 
8 · dx ' ] 

176 
= 12 s~. 

The torsional moments of the spars arising from Xb = -1 are:

For the parts from A and C to rib b: 

From rib b to rib h: 

Tb = 0 (See Fig. 4). 

and from Xd = -1 

for parts from A and C to rib d: 

From rib d 

Hence -

to rib h 

Tq 
4 :as 

dx=2-J s 
3 6 ' 

S 

and finally from Xb = -1, there arises in the rib b and in the 

end rib AC the bending moment Mb = ± z (compare Fig. 7). 

For the remaining ribs we find Nb = O. 

In the same manner, we obtain with Xd = -1 in the rib d 

and in the end rib AC: Md = ± z and in the remaining ribs, 
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We therefore, get -

6 J Mp Mq dz = 2 
s 

6 J z 
c 

z 

The integral extends here only over the end rib because 

Mp x Mq = 0 for all the other ribs. Thus, we obtain -

E I 

The other coefficients of the unknowns given in Table 1 have 

been determined in a similar manner. 

2. Determina tion of ~ Pm x 6mq. 

In the case where the same load P acts at each node of a 

spar, we have in general: 2: Pm 6 mq = P ~ 0mq. Since the loads 

P act at the same points of the spars as the shearing forces 

Xa , Xb, Xc, etc., and as they only produce bending moments in the 

one sFar, the values Omq may be taken direct from Table 1, 

column 1. 

E I LPm °ma 
. P 

(49 + 81 + 95 + 94 + 81 + 59 + = 2 x 12 

+ 31) S3 = 245 P 
12 

S3 , 

E I LPm 6mb = P (81 + 144 + 175 + 176 + 153 + 
2 x 12 

112 59 ) S3 
450 P S3, + + = 12 

E I 2: Pm Orne = 2 ;12 ' (95 + 175 + 225 + 234 + 207 + 

+ 153 + 81) S3 = 585 P 
12 

S3 , 
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E I EPm °md = P (94 + 
2 x 12 

176 + 234 + 256 + 234 + 

+ 176 + 94) S3 = 632 P 
12 

S3 
) 

E I l: Pm ° E I L:Pm °mc 
_ 585 P 3 

= S me - 12 ) 

F.: I EPm 0mf = E I L:Pm Dmb 
_ 450 P 
- 12 

S3 , 

E I L:Pm Omg = E I L:Pm Dma = 245 P 
12 

S3 , 

E I L:Pm 6mh ::: O. 

3. Calculation of the unh~owns. 

We obtain: 

1. 177Xa + l6lXb + l75Xc + 174Xd + l61X e + 139Xf + 

+ lllXg + 80Xh = 245P, 

2. l61Xa + 304Xb + 287Xc + 288Xd + 265Xe + 224Xf + 

+ l71Xg + 112Xh = 450P, 

3, 175Xa + 287Xb + 417Xc + 378Xd + 351X e + 297Xf + 

+ 225Xg + 144Xh = 585P, 

4. 174Xa + 288Xb + 378Xc + 480Xd + 410Xe + 352Xf + 

+ 270Xg + 176Xh = 632P, 

5. 161Xa + 265Xb + 351Xc + 4l0Xd + 481X e + 383Xf + 

+ 303Xg + 208Xh = 585P, 

etc, 
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8. 80Xa + l12Xb + l44Xc + l76Xd + 208X e + 240Xf + 

+ 272Xg + 352Xh == O. 

Since, from symmetry, Xg == Xa~ Xf = Xb, Xe = Xc' 

the first five equations are sufficient to determine the unknown. 

Equation 8 serves as a check. 

l. 288Xa + 300Xb + 336Xc + l74Xd + 80Xh == 245P, 

2. 332Xa + 528Xb + 552Xc + 288Xd + l12Xh = 450P, 

3. 400Xa + 584Xb + 768Xc + 378Xd + l44Xh == 585P. 

4. 444Xa + 640Xb + 788Xc + 480Xd + l76Xh = 632P, 

5. 464Xa + 648Xb + 832Xc + 4l0Xd + 208Xh = 585P, 

8. 2Xa + 2Xb + 2Xc + 2Xd+ '"I' 2Xh = O. 

Since the shearing force in the uncut rib is equal to Xh, 

owing to the symmetry, it would have been possible to obtain 

equation 8 from the equations for moments in the longitudinal axis 

of a spar. 

We have from the equations 1 to 5: 

Xd == + O. 544 P, 

Xc = + O. 497 P, 

Xc = + O. 315 P, " 

Xa = 0.117 P, 

Xc - - 0.967 p. 

These values put in equation 8 give: 
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2 (0.497 + 0.315 - 0.117 - 0.867) + 0.544 = O~ 

2 (- 0.272) + 0,544 = O~ 

o = O. 

Then the forces P - X act on the loaded spar~ so that: 

P d = + O. 456 P ~ 

Pc = + O. 503 P ~ 

Pb = + 0, 685 P ~ 

P a = + 1. 117 P ~ 

Ph = + 1.967 p. 

4. Bending moments and stresses. 

In Fig, 8, the forces on the loaded spar are plotted as ordi

nates and the end points joined by a smooth curve. The curve re

sembles a parabola. The horizontals which unite the end points of 

the loads P were drawn for comparison. It is known that the load 

is transferred from the center to the sUPTorts on account of the re

action of the ribs. The maximum bending moment is 

Mmax = P s (2. 533 x: 4 - 1. 117 x 3 0.685 x 2 - 0.503)( 1) = 

= 4.908 P s 

against -

49 
80 

M~ax = P s (3. 5 x 4 - 3 - 2 - 1) = 8. 000 P s. 

The maximum bending moment~ therefore, only amounts roughly to 

of that obtained when the effect of the ribs is neglected. 
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The areas of both moments have been plotted for comparis~n in 

Fig. 9; Fig. 10 shows t he course of the moments of torsion on each 

of the two spars. 

The main stress is only slightly increa sed by the torsional 

'moments as will be seen from the following calculation. 

For a circular section, f or instance, in the section a-b 

where the torsional stress is greates t, t here arises, 

With 

For 

m = 

" .() max 

t~e normal stress~ o = 3. 949 P s r 
I 

the shearing stress: T = 1.084 P s r 
2 I 

t. - 1.084 so that ·, T- 2 x 3. 949 0 = O. 137 o. 

3 and a. = c 1* we obtain the principal stress: 

= 0.333 o + 0.667 j 02 + 4 x O. il.~'Z2 0
2 = 1.025 

the section at the center of the spar we get: 

T = 0.272 0 = 0.0277 0, 
2 x 4 .908 

o . 

01max = 0.333 0 + 0.667 j 0 2 + 4 x 0.0277
2 2 

a = 1. 001 o. 

The increase of the principal stresses is, therefore, insig

nificant both in t he section of maximum torsion (2.5%) and in the 

section of maximum bending moment (0.1%). 

The bending moments in the ribs are also of such magnitude 

that they can well be obtained from the present sections. In the 

worst case, in the rib h-

M = 0.967 P s = tv ~ Mrhax. 

* Compare "Rutte ll 22nd edition, Volume 1, p.527. 
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Since the mome~t of resistance of the ribs is ger.er~lly 1/6 

to 1/8 of the moment of reslstance of the spars:; there is no dan

ger of the ribs being overloaded. 

5~ Conclusion. 

The above investigatior.. demonstrE.,tes that the loads are dis

tributed between the spars in a satisfactory manner by means of 

ribs. In general~ this results in an increase in strength, since 

in most cases the ex~ernal forces act very unequally on the two 

spars. I f the forces act only on one spar, or on one spar up·.vards 

and on the other spar downwards, then the gain is cons iderable, ' j .n 

the present instance about 40%; The investigation only proves 

this, however, for simple bending, but similar conclusions may be 

drawn for buckling" as the deflections will be diminj.shed in the 

same proportion as the be:arling mOP-lents. 

This favorable result brings up the question, ,vhether in se

lecting methods for calculating a.irplanes., with the Object of ap

proximating the actual stresses as closely as possible, the results 

will not be too unfavorable. The calcul~tlon of st~esses with a 

multiple of the load, for instance, is not used for other" purposes, 

not even in bridge bUilding., ;vhere sE.,fety is as imrortant as in an 

airrlane. 

Would it not be sufficient if factors of safety were determin

ed from the stresses of ~~itary load? The breaking tests with 

wings show that the stresses calculated with unitary load come 
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nearest to the actual condition$. 

Apart from the fact that the calculationq with a multiple of 

the load frequently lead to i~possible dimensions of the spar> the 

diminished work, at least in the design of new air~lanes, should 

not be underestimated. But even theoretically, it is more correct 

to use the rules and formulas within the limits of proportionality 

for which alone they hold good. 

Appendix:- For the case where the moments at the center of the 

ribs are not zero, there must be introduced for each section 

a, b, c .. h, a moment X'a .. X'b~ X'o, •..• X'h. The elastici-

ty equations, under the same assmnptions as before, are then 

l. Xa B~ + Xla Bala. + Xb °ba "+ X'b bb'a + Xc boa + 

+ X'o Bc'a + = LPm 6 rna, 

2. Xa Baa' + X'a °a'a' + Xb Bba , + Xtb °b'a' + Xc °oa' + 

+ X'c °ola' + = 2:Pm Oma l > 

3. Xa bab + X' a °a'b + Xb ~b + X'b bb'b + Xo Bob + 

+ X'c °c'b + = 2: Pm °mb 

4. Xa cab' + X'a °a'b' + Xb ebb' + X'b °b'b' + Xc Bcb f + 

+ X'c Bc' b t + " . . . = 2: Pm °mb' 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
etc. to 16. 
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If i denotes the point of application of any shearing force 

Xl '· and k' denotes the point X'k, we have, as above: 

-: ~,f . Mkt T· Tk , Mi Mk , f . , Cti+ J ·0 :7-6'kt== J 1. dx + 1 E I S Ip E 11 

The moment Xk' == -1 produces the moments Mk' and Tk' 

for both halves of the wing with the same sign. The shearing force 

Xi == -1 moments M· 1. and with opposite signs. 

From symmetry, we accordingly have: 

If, therefore, we substitute in equations 1 to 16 -

°ala == °bta == ° c' a = == 0 

°aa ' == °ba t == Dca' = == 0 

° == °b'b = °ctb == == 0 a'b ..... 

etc. 

we obtain two groups of eight equations, each with eight unknown 

quantities, of which the first group contains the unkno,vn quanti

ties Xa , XbJ Xc' etc., and the second group only the unknown quan

tities Xl a , Xl b , XI C ' etc. The first group agrees with the equa

tions given at the commencement of the present paper while the sec-

ond group is as follows: 

1. X'a 0ala' + Xlb 6b,a, + X'c 0cla' + •••• == LPm Gmat, 

2. X'a 0a'b' + X'b 0bfb l + X'c 0e'b l + .••• == rPm 6mb " 

3. XI a 6a ,c' + X'b 

etc. to 8. 
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As the loads P only produce bending moments in the spars 

and the loads X' :::: a -1, X'b :::: -1, X' c = -1, etc. only produce 

bending moments in the ribs and torsional moments in the spars, 

we get 

Oma' = 6mb I = EPm 6 I - ° me •... -

The right hand sides of the last eight equations are, there-

fore, zero. 

For the coefficients of the unknowns~ we obtain, in accordance 

with the previous work: 

E I 6a 'a' = 2 
4 s 

J 12 
3 0 

dz :::: 

E I 6a. ' b I = E I 0a' c' = E I 0a I d I = 

3 S 
4 J :2 

£ 
2 44 

= 2 1 dx+ 2 x 6 1 dz == 3 3 c 

4 
2S s 
fo 12 2 

E I °b'b l = 2 dx + 4 x 6 J 1 dz :::: 
3 0 

+ 24 s = 
88 
3 s, 

E I 6b ' c ' = E I 6b , d , = E I ObI el = 

4 2S s 52 
2 f 12 dx+ 2 x 6 f~ 12 dz = :::: 

3 3 c v 

etc. 

~1ul tiplying by 3/4 we obtain: 

8 s + 24 s = 
3 

s, 

16 
3 s + 

= 

s, 

1. 20 X'a + 11 X'b + 11 X'c + 11 X'd + 11 X'e + 11 X'f + 

+ 11 X'g + 11 X'h :::: 0, 
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2. 11 X'a + 22 X' b + 13 X'e + 13 X'd + 13 X'e + 13 X'f + 

+ 13 X'g + 13 X'h = 0> 

3. 11 X'a + 13 X'b + 24 X'e + 15 X'd + 15 Xle + 15 X'f + 

+ 15 X'g + 15 X' h = 0, 

4. 11 X'a + 13 X'b + 15 X'e + 26 X'd + 17 X'e + 17 X' f + 

+ 17 Xlg + 17 X' h = 0, 

5. 11 Xla + 13 X'b + 15 Xle + 17 X'd + 28 X'e + 19 Xlf + 

+ 19 X'g + 19 X' h = 0, 

6. 11 X'a + 13 X'b + 15 X'e + 17 X'd + 19 X'e + 30 Xl f + 

+ 21 X I g + 21 X' h = O. 

7, 11 Xla + 13 X'b + 15 X'e + 1~ X'd + 19 X'e - + ?21~X'f++ 

+ 32 X'g + 23 Xl h = 0, 

8. 11 X'a + 13 X'b + 15 X'c + 17 X'd + 19 X'e + 21 X'f + 

+ 23 X I g + 34 X I h == O. 

These equations can be reduced to the form: 

1. 20X' a 9X' b = 0, 

2. - 9Xl a + 20X'b 9X'c = 0, 

3. - 9X' b + 20X' c 9X'd = 0> 

4. -9X'c + 20X'd - 9X' e == 0, 
. . . . . . . 

8. -9X'g + 20X'h == O. 
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If we substitute in these equations: 

X' a = A Zl + B Z2 ~ 

X '- = A Z2+ B 2 
0 1 Z2 ~ 

X' C = A Z13 + B 3 
Z2' 

. · . . . . · . . . . . . 
. ~ · . . . . . . . 

X'g = A 7 B 
.., 

Zl + Z-::a , 

X1 h = A Z18+ B 6 
Z2 . 

where Zl and Z2 are the two real roots of the equation -

_ 9 z 2 + 20 z - 9 = 0 

we obtain from equation 1 , 

or, 
A (20 z 1 - 9 z 12) + B (20 z.2 - 9 z 22) = O. 

But~ by assumption~ -·r. e have -

20 9 2 20 zJ - Zl = 

whence~ A must equal -B. 

We find from equation 8: 

-9 (A z 7 + B z./ ) + 20 
1 

or;, with A equal to -B~ 

A [-9 Z 7 
1 

+ 20 z 1 B + 9 z~.., 

But~ by assumption: 

9 
2 + 9 z.2 - Z2 = 

(A z 8 + B z 8) = 0 J 2 
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-9 + 20 

-9 + 20 

therefore, 

Since (Z1
9 

- z; ) = 0 cannot become zero in this equation, 

we find that A and, consequently, also B must be zero, From 

this it follows that -

Translated by 

X' a = X'b = X'c .... X'h = O. 

National Advisory Committee 
for Aeronautics. 
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