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TECHNICAL NOTE NO. 139.

INFLUENCE OF RIBS ON STRENGTH OF SPARS.*

By L. Ballenstedt.

In calculating the strength of airplane wing spars, the as-
sumption is usual that the ribs are connected to the spars by
flexible joints. This assumption is not accurate, as the ribs
are attached very firmly 4o the spars by means of brackets, nails
and glue. This method of attachment is so rigid, with reasonably
good workmanship, that it is justifiable to assume that the ribs
are rigidly attached to the srars.

The aim of the following investigation is to determine what
effect this type of joint has on the strength of the spars. The
investigation was suggested by the striking fact that the practi-
czl loading tests generally gave greater strength and smaller de-
flection than strength calculations based on the assumption of
ribs attached by flexible joints, The difference was particularly
noticeable, with heavily offset loading and arises from the fact
that the more heavily loaded spar transmits a portion of its load
through the ribs to the more lightly loaded spar.

Fig. 1 shows the framework of the wing in perspective. It
consists of two spars with nine ribs, and rests on points A - B -
C - D. A statically determinate system is produced, when all the
ribs are cut through with the exception of the rid A - C (hatched

in Fig. 1). Two simple spars A - B and C - D are thus obtained.
* From Technische Berichte, Volume III, No. 4, pp. 100-107, (1918).
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The Rib A -~ C 1is required in order to prevent the spars from turn-
ing about their lengitudinal axis. For symmetry, the central rib
night be considered as part of the statically determinate sysiem
“and the Tib A - C could then be cut, but this is not of advantage
in the computation, since it makes the determination of the dis-
placement ©0g5, O63n .... etc. more complicated. At the points of
section of the ribs, three unknowns generally appear: longitudinal
force, shearing force and bending moment, and the system is, there-
fore, 3 X B = 34-fold statically indeterminate,

In order not to complicate the investigation unnecessarily, the
fellowing assumptions may be made, viz:

1. The external- forces act at right angles to the plane
through the longitudinal axis of the spars, The longitudinal
forces in the (straight) ribs will then be zero.

3. The moments of inertia and the areas of the two spar sec-
tions are equal and the external forces act only on the spars, not
on the ribs. The bending moments in the central portions of the
ribs thus become zero. The strict proof of this is put in the
Appendix in order not to interrupt the course of the analysis.
Besides, the arrangement shows at once that the elastic lines of
the ribs must have a point of flexion at the center i, Fig. 11,
since the angle of torsiom A ®, of corresponding cross-sections
of the two spars must be equal with equal cross-section and without
load on the ribs.

The wing frame is now only eight-fold statically indeterminate.
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Let the shearing forces acting at the center of the ribs be desig-
rated by Xa, Xp, Xg, etc. With rigid supporis, these must satis-

fy the elastic conditions-*

1. X5 835 +Xp Gab + X Gc+ -«:-Xn Ban = ZPp Oma
2. X3 8ap+Xp Opp +Xg Opg + -..-Xn Opn = ZPm Omp

3. X, bac + Xn OSpc + X O8cc + ---.Xn Ooh = ZIPm Sme ‘

Pm  Cmn

I

8. Xa Sah + X Oh+% O6h+ ....Xn Onn

1. Calculation of coefficients of the unknowns.

With loads X3 = -1, Xp = -1, X; = -1, etc., etc.
ribs are subjected to bending, and the spars to bending and tor-
sional stresses (Fig., 2).

in general, let -

Y, denote the bending moment resulting when Xp = -1
Mg " n n " 1 n Xq =il
Tp ’ " forsional " . y Lp = =k
Tq " n 1t 1" n i Xq = -1

for any section of the wing framework.

* Muller-Breslau: "Die neueren Methoden der Festigkeitslehre und der
Statik der Baukonstruktionen" (Recent methods of the theory of the
statical strength of framed structures), T.B.1913, p.309.




Further, let -

I denote the equatorial moment of inertia of the espars,

4 . " 1 " l " 1 OO - -

. " " polar moment of inertia of the spars, |
E . " modulus of elasticity, |
S " s 4 " shearing, \

-and we get -

MM T, T ®. N
o7 "Bt ax bl RS B8 ag."
g o i i e h e

where the first two integrals are taken over both spars and the
last one over all the ribs. The section of the spar has, for the
sake of simplicity, been assumed to be circular or annular. If

this is not the case, it becomes necessary to introduce the ex-

E E! . " - ‘V’ l

in place of Ip.*
On the assumption, which corresponds with actual conditions,

that
1

we obtain -
EI bpg=/Yp Mg dx+5/Tp Tq dx + 6/Mp Mg dz.

The evaluation of E x I x § follows at once from Figs, 3 to

- % Tbid p . 211 and 255,
®¢ "Hutte" 22pd edition, Vol. I, pp. 570-1.
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7, in conjunction with Table 1. The calculation of E X I X 8ypg
will be exhibited here for easy comprehension. The bending and
torsional moments produced in the syars under the conditions,
Xp = -1, Xg = -1, are indicated in Figs, 4 and 6, Fig. 7 shows
the bending moment in the rib b or d, and in the end rib
A - C, The distance between the ribs is taken as s, and the dis-.
tance between the spars at the same time as 3s. By reason of the
load Xy = -1, pressures arise in the spars of the magnitudes

6

% 8 and =+ g and the bending moments on the spars, for the

parts from A and C as far as to the rib b, are, therefore:

b
from ©ib/to ridb 4
e ar B 8 L Pl . T E 1
My, [823+( lj t] [ 8 8E

froml rib ‘4 to rib h:

-
a :‘_t-.
My 8X
In the same manner, from X3 = -1 (Fig. 6) for the parts from

A and C up to rib b, there arises the moment:
4
Mg = + &
d ) X
From rib b to rib 4:

Mg

It

i-g e« t) |

From rib d to rib h:

-5
+ 8 X

Il

Mg



Thus we obtain:

S My, Mg dx=2{§ ¥p Mg dx =

s 6 4 P b 2 4
—2[6/8)(8*{ d.x+fQ(8s-8£\8(2s+E)dE+
&S _
K ey 2T
+ é g X' g X dx'] = 12
The torsional moments of the spars arising from Xy, = -1 are:-

For the parts from A and C to rib b:
To = * s

Brom Tib b %o rib h:

sy

T, = O (See Fig. 4).

I

and from Xg = -1
for parts from 4 and C to rid d:
Tag =% ¢

From rib d $0- rib h

9 18 s

= [ Tp Tq dx =2 é£ L e

0.5 N

and finally from Xy = ~1, there arises in the rib b and in the
end rib AC the bending moment My, = + z (compare Fig. 7).

For the remaining ribs we find My = O.

In the same manner, we obtain with Xg = -1 in the ridb d

and in the end rib AC: Mg = + z and in the remaining ribs,

Mg = O.



We therefore, get -

8
6 [Mp Mg dz=2 6 [ z z dz =45
The integral extends here only over the end rib because

Mp X Mg = 0 for all the other ribs, Thus, we obtain -

E I 5bd=—l—§gs3+-1~%s3+483=88883

The other coefficients of the unknowns given in Table 1 have

been determined in a similar manner,

3. Determination of ZPy X Opq

In the case where the same load P acts at each node of a
spar, we have in general: I Py Opg = P Zdpygqg- Since the loads
P act at the same points of the spars as the shearing forces
X5, Xp, Xc, etc., and as they only produce bending moments in the

one spar, the values ©&yg may be taken direct from Table 1,

column 1.
E I 5Py bps = 5igs (49 + 81 + 95 + 94 + 81 + 59 +
% 31) »” =-§%g P g%
E I SPp Bpp = goqy (81 + 144 + 175+ 176 + 153 4

4+ Y18 + BB) & =~i—2Ps3:

E I 5Py 8po = 5ogs (95 + 175 + 335 + 234 + 207 +
+ 153 + 81) s° = 282 p &2,
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E I EPy Opg = gocs (94 + 176 + 234 + 256 + 334 +

+ 176 + 94) g® = 838 p g3
12

‘ B 1Dk e =X 1028y B, =B B
g R TR

: |

i B 30, ST TPy G =B,

E 1 ZPm 6mh - O‘

3. Galculation of the unknowns,

We obtain:

1. 177%g + 161Xy + 175Kg + 174%g + 161X + 139%p +

+ 111Xg + 80Ky = 245P,

2. 161Xy + 304Xy + 287X, + 288Xg + 265Xe + 324Xf +

+ 171X + 113Ky = 450P,

3, 175%; + 287Xp + 417X + 378Xg + 351Xe + 297Xge +

+ 335%g + 144Xy, = 585P,

4, 174X, + 288%p + 378Xc + 480Xg + 410Xe + 352Kf +

+ 370Xg + 176Xn = 633P,

5. 161Xy + 265K, + 351Xg + 410Kg + 481Xg + 383Kg +

S

+ 303Xg + 208Xp = 585P,

etc.




8. 80Xa + 112Xy, + 144X, + 176Xg + 208Xe + 240Xf +
+ 372Xg + 353Xp = O.

Since, from symmetry, Xo = Xg, Xg = Xy, Xg = Xg,
the first five equations are sufficient to determine the unknown,

Equation 8 serves as a check,

1. 288%5; + 300Xy, + 336X, + 174X3 + 80Xp = 245P,
3. 332X, + 538Xy + 553X, + 288Xy + 113Xy = 450P,
3. 400Xy + 584Xy + 768Ko + 378Xy + 144Xy = 585P.
4, 444%Xa + 640Ky, + 788X, + 480Xg + 176Xy = 632P,
5. 464X5 + 648Xy, + 833X, + 410Xg + 308Xy = 585P,
e oA . Mg aorEy =0

Since the shearing force in the uncut rib is equal to Xh,
owing to the symmetry, it would have been possible to obtain
equation 8 from the equations for moments in the longitudinal axis
of a spar.

We have from the equations 1 to 5:-

Xqg = + 0.544 P,
Xc = + 0.497 P,
Xy = + 0,315 P,
Xa = -~ 0,117 P,

Xp = - 0.857 P,

These values put in equation 8 give:



2 (0.497 + 0.315 - 0,117 - 0.967) + 0.544 = O,
b 2 {« 0.273) + 0,544 = O,
0 =0,

Then the forces P - X act on the loaded spar, so that:
Pq = + 0,456 P,
By = 4+ 0,505 P,
Py =+ 0,685 P,
Pa= 4 1.117 P,

Ph = e any Tk

4, Bending moments and stresses.

In Fig. 8, the forces on the loaded spar are plotted as ordi-
nates and the end points joined by a smooth curve. The curve re-
sembles a parabola. The horizontals which unite the end points of
the loads P were drawn for comparison. It is known that the load
is transferred from the center to the suprorts on account of the re-

action of the ribs. The maximum bending moment is

Moar = P 3 (2.533x4 - 1,117 %3 - 0,685%x3 - 0,608 x1) =

4,908 P s
against -
Mpax =P s (3.5%X4 -~ 3 -23-1) = 8000 P s,

The maximum bending moment, therefore, only amounts roughly to

49

go of that obtained when the effect of the ribs is neglected.

T R !
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The areas of both moments have been plotted for comparisen in
Fig. 9. Fig. 10 shows the course of the moments of torsion on each
of the two spars.

The main sfress is only slightly increased by the torsional
moments as will be seen from'the following calculation.

For a circular section, for instance, in the section a-b
where the torsional stress is greatest, there arises,

3.949

the normal stress: 0O = - B T

1.084
P .

Il

the shearing stress: T 8 T

e S A .
so that v 2 208 o - 0.137 .
With m =3 and ¢, = 1* we obtain the principal stress:

ty

O max = 0.333 6 + 0.667 /02 + 4 X0.I51Y o = 1,088 o

For the section at the center of the spar we get:

s 0 = 0,0377 9,

O'pax = 0.3330 + 0,667 /oﬂ 4% 0,0277° 0 = 1.001 ©.

The increase of the principal stresses is, therefore, insig-
nificant both in the section of maximum torsion (2.5%) and in the

section of maximum bending moment (0.1%).

The bending moments in the ribs are also of such magnitude
that they can well be obtained from the present sections. In the

worst case, in the rib h -

M =0.987Ps=n % TR

* Compare "Hutte" 32nd edition, Volume 1, p.527.



Since the moment of resistance of the ribs is generally 1/6

to 1/8 of the moment of resistance of the spars, there is no dan-

ger of the Tibs being overloaded.

S, _ Conclusion.

The above invesitigation demonstrates that the loads are.dis-
tributed between the spars in a satisfactory manner by means of
ribs. In general, this results in an increase in strength, since
in most cases the external forces act very unequally on the two
spars. If the forces act only on one spar, oT on one SpPar upwards
and on the other spar downwards, then the gain 1s considerable, 1in
the present instance about 40%. The investigation only proves
this, however, for simple bending, but similar conclusions may be
drawn for buckling, as the deflections will be diminished in the
same proportion as the bending moments.

This favorable result brings up the question, whether in se-
lecting methods for calculating airplanes, with the object of ap-
proximating the actual stresses as closely as possible, the results
will not be too unfavorable. The calculaiion of stresses with a
multiple of the load, for instance, ié not used for other purposes,
not even in bridge building, where safety is as important as in an
airrplane,

Would it not be sufficient if factors of safety were determin-
ed from the stresses of unitary load? The breaking tests with

wings show that the stresses @lculated with unitary load come




nearest to the actual conditions.

Apart from the fact that the calculations with & multiple of
the load frequently lead to impossible dimensions of the spar, the
diminished work, at least in the design of new airrlanes, should
not oe underestimated, But even theoretically, it is more correct
to use the rules and formulas within the limits of proportionality

for which alone they hold good.

Appendix:- For the case where the moments at the center of the
ribs are not zero, there must be introduced for each section
& h e ... B, amoment X's, X'y, ¥'0, vy« X'n. The elasticis
ty equations, under the same assumptions as before, are then

1. Xa B2z + X'a 8ata + Xp Opa+ X'p Spra + Xo Bea +

e le Thia 5. % Efn 6ma,

3. Xa Baa' + X'a 8atar + Xp Opa' + X'p bprat + Xo  Scar +
+ X'g c'al + s..0 = 2Pp 5ma',

5 Xy B+ X'a Gab+ Ty By + Xp Zprn4 Xo Op +
+X'¢ S + .... = IPm Omp

e

4' Xa 6a LI X_' 6 1 1 4+ X 6 T 4+ X"D 6‘0'b' + XC Cb' +
b a a'b b b

Xt Barpt £ . = TPy Smp!

etc. to 16.
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If i denotes the point of application of any shearing force

X3+ and k' denotes the point X'y, we have, as above:
;Gik:—“—f i i Sl LR PR . o
e 8 Iy £ L
The moment Xy' = -1 produces the moments Myr and Ty
for both halves of the wing with the same sign. The shearing force
Xj = -1 moments Mj; and T3 with opposite signs,

From symmetry, we accordingly have:

Pige =D

If, therefore, we substitute in equations 1 to 186 -

fta = %1a T Y 2 e =0
B = Bpar = v = ... 50
s = By = % Ty 2 0
ete.

we obtain two groups of eight equations, each with eight unknown
quantities, of which the first group contains the unknown quanti-
ties X5, Xp, X5, etc., and the second group only the unknown Quan-
tities X'y, X'y, X'y, etec. The first group agrees with the equa-
tions given at the commencement of the present paper while the sec-

ond group is as follows:

Batat % sees = IPm Egasty
B S Bainr 4 D'y Bpupr « Xle Sovpr 4 ... IBn Oppts
3. X'g Ozigt + X'y Gpigr + X'g Oprgt 4 ... = IRy Ot

|
|
|
|
|
|
!
|
|
|
Wy Basae o X'y Bpigr & X'g
|
|
|

ete. tao 8.

R N R O
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As the loads P only prodtice bending moments in the spars
and the loads X'y = ~1, X'y = -1, X', = -1, etc. only produce
bending moments in the ribs and torsional moments in the spars,
we get

ZPm 6ma,' = ZPm 6mbl = ZPm 6mc' L)

The right hand sides of the last eight equations are, there-
fore, zero,
For the coefficients of the unknowns, we obtain, in accordance

with the previous work:

8 4 2 2 : 2 8
— - X = - =
E I 0514 2 3 .é 1° dx + 4 X8 _é g gl 3 8 + 24 s
®: F 65.'b' =iy F 6&'0' S Do 6a'd' e A
8 s
4 2 2 44
= 2 3{ 1" ax+23x 6 [ 1 dz="3 s,
28
4‘ = s 2 16
ek & = B Tx / ol 4 5 1 dz =" &
b'b! 2 i S X fO 3
88
S e e

-

3
1 6b'0' =EkE I 6bldl =l el 6ble‘ N e =

fl
%
O s

28 S
{‘ 1" x4+ 8% 6 J 1" 2=
eta.
Multiplying by 3/4 we obtain:
LR M T LIRS § LD | i ¢ PR O . PR s P

+ 11 X5 4 11 X'y = 0,




These equations
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+ 32 X'y + 13 X'e + 13 X'g + 13 | SN

+ 13 X'g + 13 X'y =0,

+ AR I+ BT, 4 16K 4+ 15 X,

+15X'g + 15 X'y = 0O,

18 % 415 By + 38 X'y + 17 37

o 17 X'g 4 17 X'y = 0,

A 0 X'b % 15 X'C S X'd + 28 X'e

+ 19 X'g + 19 X'y = 0,

SR S O [ SRR - S L

+ 31 X'g + 31 X'pn = 0.

+ 13 X'y + 15 X'c + 12 X'3 + I9 X'e-
+ 32 X'g + 33 X'y =0,

S B TR AT X, 4 10 g

+ 33 X' + 34 X'y = 0.

can be reduced to the form:

i 20X'a - 9X'p = 0,
RS R T (PG
% ANy, 3 FOEY, - FWig = O,
4 Bt . s BETg - B = 0,
8. -9X'g + 30XK'y Sl

= 8 X'f +

3+ 15 3¢ 4

+ 17 X'¢ +

+ 19 X'f +

+ 30 X'f +

+221¥ X g4

s By
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If we substitute in these equations:

1l

X85 = A 2z, +4 B 2z,
X'-.O:A z]2+B z.°2

X'C=A Z13+B ZB

X‘g=A Ziv-i-B 25

|
Xﬁ

z,°+ B 1z,

where 2z, and z, are the two real roots of the equation -

Dt 2 P s-E=0
we obtain from equation 1,
BO(A21+B22)—9(A212+B222)=O

or,
A (20 z, - 9 2,2) +B (20 z, - 9 3,°) =0

But, by assumption, we have -
2021-—9212=20z2—9222=+9
whence, A must equal -B.
We find from equation 8:
st s BAY) s W B3R 0

or, with A equal to -B,
B v a9 0 1=0,

A 2,7 (-9 + 230 zy) - 257 (=9 + 30 25)3 = 0.

But, by assumption:



- 18 -

-9 + 20 z, = 9 z;,

therefore,

& 9 =] L 3 %
Since (z; - z» ) = 0 cannot become zero in this equation,

we find that A and, consequently, also B must be zero, From

this it follows that -

I
e

Xiy = Xy = ch AR

Translated by
National Advisory Committee
for Aeronautics.
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