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SUn1I.lary 

Logical analysis of a box wing necessitates the allowance 

for the contribution of the drag spars to the torsional strength 

of the structure. 

A rigorous analysis is available in the use of the l.iethod 

of Least Work. 

The best logical method of analysis is that applying 

Prandtl1s Membrane Analogy, in the form 

S t -_ S-
2A • 

The results so obtained vary by a negligible amount from those 

obtained by the rigorous method. 

The stresses in the members of CJ.. box wing should be cal-

culated by the membrane analogy method, but should be subject 

to verification by test before being used in design. 

Scope 

The scope of this paper is the analysis of the elements of 

a conventional type of box wing under a torsional load. This 

wing has as a primary structure two wooden box or I beams, their 
*Thesis submitted in partial fulfillment of the requirements for 
the degree of Engineer in Hechanical Engineering Aeronautics, 
Stanford University, 1930 . 
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max i mum moments of inertia being about axes parallel, or nearly 

so , to the wind chor d . They are connected by a plywood skin , 

formi ng the wi ng covering , in such a way that a cross section 

parallel to the plane of symmetry of the a irplane forms a 

rectangle or a trapezoid. Fi gur e 1 s ' ows a typ ical box-wing 

cross s ec tion, the t wo spar s proper being box beams, and the 

skin covering being plywood which forms par t of t he airfoil 

section o None of the formulas covered in this report take ac­

count of the cur vat ure which i n prac tically all c ases is present 

i n either the top sk i n or both t op and bottom. It is beli eved 

that t~is fact or is so unimportant that it would not be worth 

while to introduce the co mplexi ty attendant upon its cons ider­

at i on into the r elatively simple formulas obtained when the 

curvature is neglected. 

It is shown in this paper that the analysis of a box wing 

by rational methods re sults in the computation of much 10weJ:' 

stres s es in the various member s of the box t han are obtained 

when present des i gn procedure i s follovved . As a means of 

simplify i ng the computations necessary in such an ~Dalysis, it 

will also be demonstr ated that approximate me thods, involving 

some reasonable assumptions, are availabl e. Assuming the 

validity of th i s statement , whi ch shall be proven subsequently , 

the value of this paper will lie in the application by the 

de signer of its me thods to reduce the mat er i al nece s sary to 

carry a g i ven wi ng load; and by so doing , he will dec r ease the 
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weight of the wing structureo 

Definitions and Nomenclature 

Lift spar: A spar formed by two chord members connected by 

a web member, the chord members lyin~ in a plane approxinately 

perpendicular to the wing chord. 

Drag spar: A spar formed by two chord members connected by 

a web member, the chord members lying in a plane approximately 

parallel to the wing chord. 

Elastic centrwn: A point in the wing structure in such a 

position that if the line of action of an imposed load passes 

through it, the load will cause no rotation of the cross section. 

Includod statically determinate structure: The part of a 

redundant structure which remains when enough of the redundant 

factors have been eliminated to make the remaining structure 

statically determinate. 

Beam force: A force parallel to the intersection of the 

plane of the lift spar web and the plane of s~n.:mletry. 

Chord .force: A force parallel to the plane which bisects 

the dihedral angle, or the distance, between the planes of the 

two drag spars or trusses-. 

Conventions for Signs:: . 

Forces: An upward be&n force is positive. A rearward 

chord force is positive. 

l'foments: The torsional monent on the wing is a pitching 
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moment; there f or e , we will cons ider a torsional moment positive 

which tends t o increase the angle of attack. 

Theory 

Th e problem covered in this discussion is the division of 

tors ional l oad between t he v arious elements of a box wing. The 

necessi ty for new methods of analysis l i es in the f act that the 

desi gn rules of the Depar t ment of Commer c e at present assume, in 

effect , that the resistanc e to tor i on of the pr imary structure 

of a box wing is confined to the bending strength of the lift 

spar s , that any lift load applied to the wing is divided between 

the lift spars in inver se ratio to the distance of the load from 

them, and that any twist on the wing is carried as a pair of 

equal and opposite beam loads. This method will result in t he 

appli c ation of very sever e loads upon the rear spar in t he ' 

requir ed desi gn conditions of low angle of attack and nose dive . 

Wi th most airfoils in COLmon use, the center of pressure of a 

posi t i v e air load on the wing moves fo rward a s the angle of 

attack is increased from a position aft of the trailing edge at 

zero or negative angles to a maximum forward position at 9,bout 

thirty per cent of the chord aft of the leading edge as the 

attitude cor r sponding to maximum lift is attained. In a nose 

dive, the f orces acting up on the airplane are a down load on the 

tail, an up load on t he r e ar spar, ~nd a down load on the front 

spar - a condition corresponding to a result~nt load acting a 
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chord length or more aft of the trailing edge. If we now resolve 

our load into an equal load act ing at the elastic centrum and a 

torsion about the elastic centrum, we see that the torsional load 

is exceedingly severe i n nose dive and this condition of flight 

will in a great many cases be the critical one for the rear spar. 

In all except very unconventional designs, the low angle of 

attack condition will be t he critical condition of flight for 

the rear spar when nose dive is not ; and in this condition as 

well, the resultant load is well aft of the elastic centrum, 

with a consequent high value of the torsional moment. 

Due to the fact that the airfoil section limits the heights 

of the spars, with the rear spar as a general rule being the more 

shallo';; of the two, f or a given value of the load the strength 

weight ratio of the rear spar tends to be s maller than that of 

the front spar. The saving i n weight will be a material gain if 

it can be proven by a l ogical method that the actual loads in 

the rear spar will be smaller than those calculated by the de­

sign rules of the Department of Commerce. 

The limitat ion of space prevents the consideration of more 

than one type of wing . For that reason a full cantilever , all­

wood · structure will be cho sen, with the lift spars formed by 

two box beams, and the drag spar web formed by a plywood skin. 

A cr oss section of a typical wing is shown in Figure 1. Assume 

a torsional moment M applied at t he elastic centrum. If the 

strength of the drag spars in torsion is neglected, the moment 
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is resolved int o the loads wF and wR acting upon the li f t 

spar s , and equal to M 
d • 

Now assume that a 'cer t a in port i on 

of t he moment, Hd , is carried by the drag spars. Then wF 
and ar e obtained f rom t he approx inate fo r mula 

11 
d 

And al sb 

A unifor m l oad of wF on t h e f r ont spar, shown i n Figur e 1, 

will resuit in a b ending moment on t he spar, resi s t ed by 

compress i ve stresses in chord .memb er A and tens i l e s t r esses 

i n chord memb er B. The load Wu in the uppeT drag spar, by 

the s~e reasoning} causes compressive stresses in member C 

and tensile stresses in memb er A. The l ower spar, under t he 

load wL' is subject ed to compressive stresses i n member B 

and t ensi le stresses in member D. Lastly , the r ear spar , 

under it s load wR' is sub jected to compress i ve s t r ess es in 

member D and t ensile s t res ses in memb er C. Member A is 

t h en sub j ected to compres s i on from wF and tension f rom wU ; 

member B to tension from and compression from 

All four chord memb er s of the lift spars are not only with-

s tanding a smaller lo·ad , but actually are subj ect in addition 

t o stress es of an opposite sign which reduce their n et str ess es 

still f urther. 
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Referring to Figure 1 again, it is seen that under a 

torsional load the structure is redundant - we have four 

members and but three equations of equil ibrium. The redun­

dancy necessitates, fo r a rigorous solution, the use of one 

of the methods of consistent deformations, such as the method 

of least work. If rigox is not mandatory, certain simplifying 

assumptions may be appl ied, such as the neglect of the work 

done in shear, or the assumption of an undistorted cross section 

after the loading. 

Four different basic principles are applied to the problem 

at hand to determine the eight formulas used here. The first 

neglects the strength of the drag spars; upon this, present 

design rules are based. The Theorem of Least Work generates 

the formula of that n~ne and also the Inverse Ratio Method. 

The simplifying modifications of the Theorem of Least Work are 

responsible for the simplified Method of Least Work, the 

trapezoidal method, Niles! method, and Burgess! Moment of 

Inertia method. The Membrane Analogy is the basis for the 

formula of that name. It is reasonable to expect some corre­

spondence between the results of methods developed from the 

same groundwork, and this expectation is realized in the work 

done. 

The formulas to be derived in the remainder of the report 

will be applied to a sample spar, shown in Figure 2, in order 
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to obtain a comparison of the re sults . The length of this spar 

is 200 in., and the type is a full cantilever; the dimensions 

of the cross section are shown L.l the figure. 

Pr esent desi,.,n practice.- The strength of tho wing in 

torsion , neglecting the drag spar contribution, is equul to tho 

bending strength of the lift spars. A torsional load will thon 

be resolved into equal and opposite loads on the lift spars , 

and zero loads on tho drag spars. Applying a torsion of unity 

per inch of span on th e spar in Figure 2, the following values 

of the running berun loads are obtained: 

wF = 0.0286 lb./in. 

wR = -0.0286 lb . /in. 

Wu = 0.0 lb./in. 

wL = 0.0 lb./in . 

The computations for this, and the remainder of the applications 

of formula s, to the sample spar, will be found in the appendix . 

The Uethod of Least Work .- The method of least work was 

developed and proven ri~orously by Castigliano; it stat~s that 

the internal work done in a redundant struoture by the appli­

cation of external loads will be the least possible consistent 

with equilibrium .• The derivation and proof of this theorem 

will not be given here, since any textbook on elasticity or 

IIIS ee kl1drew I s "Elastic Stresses in Stru.ctures . II 
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advanced mechanics of materials contains the development in full. 

The application of this method to the problem at hand will take 

the following form: an expression for the total work done in 

the structure, in the terms of one of the unknown loads, will be 

set up, differentiated with respect to the unknown, set equal to 

zero, and solved. Since there are four unknowns and three 

equations of equilibrium, all except one of the unknowns may be 

eliminated from the expression for work, and one differentiation 

will serve to determine the solution. 

The bending work done on a beam of constant cross section 

is easily expressed as 

L M2 dx* 
Wb = £ 2EI 

where VI = the internal work done in bending 

M = bending moment of external loads 

L = length of beam 

E = modulus of elasticity 

I == moment of inertia of cross section 

x = distance along span. 

This does not express the total work done in the structure, 

however, since the shearing work done in the beam must also be 

considered. The follOWing development for the internal work 

done in shear on a box beam is taken from N.A.C.A. Technical 

Report No. 180, ~eflection of Beams with Special Reference to 

~Spoffordls "Theory of Structures." 
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Shear Deformations , /I by J. A. }!el'llin ai1d G. W. TraJrer . On page 

~8 of the report , we find 

where 

~ 2 J L JK2 
2F tdydx:: 0 

L 
+ 2 J 

o 

Kl 
;3 

qw t dydx 
2F 1 

t ,YdY] 

t1dydx 

2F 

q ;3 
2~ t

2
dydx + 

L = semispan, or length of bean (in inches) 

F = shearinE; rflodulus (for spruc e , 1/15 E ) 

I = mo~ent of inertia of cross section 

K = dist 2..l1ce f roD neutre,l axis to flange 
1 

K = distEl,nce f roEl neutral ax i s to extrene fiber 
2 

t = web th ickness ( j.nches) 
1 

t = flange width (inches) 
2 

q :: unit s~learing stres s (lb . /sq . in . ) 

qy :: unit shearing stress in flange (lb./sq.in . ) 

qw :: unit shearine; stress in web (lb ./sq .in. ) 

v = total sh ear (lb . ) 

b = t;3 

d = 2 K;3 (syr'W-J.etrlcal oee,m ) 

y = distance from neutral axis 

= distance along span 

(I) 
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= V 
It a 

= V 
It 1 

(K 2 
2 

1 
- 1tS 2 F 

[ 

t 2K 
a 1 

4 

t ydy + 
2 

L 

~K, t,YdY] = 

(K: _ y2)] 

= J a. Va dx 
o 

(K 2 _ K 2)2 + 
2 1 

11 

(5 ) 

(6 ) 

( 7) 

(e) 

(9 ) 

(11 ) 
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Let ry = 1 [t2:~. (K,' _ K, ,)2 + 
2FI Zt 1 

+ 1 ~ 1 (K ~ _ K ~) + ~ t :3 K 5 
t t K 3 ~ 

3 <l 1. 15 1. 1 
(12) 

1 W = J L ry V<ldx 
2 Sw 0 

(13) Then 

L 
W = 2 (a. + ry) J V<l dx ( 14 ) 

S 0 

For a cantilever beam, unifo r mly 10c,ded wi th w lb. / in. , 

v = wx (15) 

Equat ions for the internal work in a wing whos e spars aTe 

not un i forEl in cross section are seldom expressible as func-

tions of ;X. In such cases, a unit length of span will be 

treated as a uniforn section, the v El. lue of the internal work 

on that unit l ength found, und th e r esulting equation treated 

exactly as the one her e obta ined to ge t the lo ad division at 

the one point;. t h e process i s r epeated unt i l a curve of load 

division is def i ned, and then t h e running loads on each com-

ponent of the box are known. . The va lues of a. and ry as 

determined by equations (8) and (12) , are for syr:u:letrical beams 

only. For be8.1:ls having unequal chord mer:.lbers, onl y a very small 

error is introduced by using a and ry determi ned for an 

equivalent symmetr i cal beam havi ng t he same over-all height , 

width, and the same mo r:lent of inertia. This approximation will 

be necessary in almost all cases for computations concerning 
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the drag spars. 

Having the expression for the bending work done , and the 

shear work from equation (16) , in ter~s of the running load on 

the component of the box being considered, the work done wi ll 

be expressed in terl'!lS of one variable by substitution fro m the 

equations of equilibril1.r.l, obtained by inspection from Figure 1. 

MOB. at B 
Wu hl cos TJ -t dWR = H = 1 

(for r:1oment of unity). 

Uoo. at D 

(17) 

(18) 

(19) 

Fran t he s e thr ee equations, all except one of the unknowns in 

the total work equation for the spar may be elininat ed; having 

the total work, then in the form 

differentiate WT with respect to wX; 

This serves to determine wX' and frorl the equations of 

equilibrium the re~aining three unknowns may be found. 

(20) 

(21 ) 

Applying this method to the spar of Figure 2, the fol­

lowing results are obtained by the calculations shown in the 

appendix: 
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wF = 0 . 0168 lb . lin . . 

W'R = - 0 . 0134 lb. lin ... 

Wu = 0 . 0590 lb . l in. 

wL = - 0.0589 lb . l in . 

An examination of the work in the appendix under this 

method illustrates the reason for not using the theorem of 

least work more often . The calculations are involved and 

tedious, with a great many chances for error, and no inde­

pendent check . It does serve the useful purpose, in a paper 

of this kind, of constituting a check with which the other 

approximate methods nay be compared . 

Simplified Hethod of Least Work .- The example used for 

the computation by the least work nethod showed that the per­

centage of the total work done in shear was scall. As a means 

of obtaining a siJ:1pler solution, th e shearing work will be 

neglected as an approxination, and the load division will be 

found on the assur.1ption that all of the work done is done in 

bending . The nethod for this calcula tion is exactly the sane 

as for the complete least work method , the only difference 

being that the work done in the mer.1ber has only one term in it 

instead of two. The expression for total work is again ob­

tained in terms of one variable by the sane equa t ion~ of equi­

librium; the equation is differentiated with respect to the 
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variable, equated to zero, and solved. The r0sults on the 

sample spar are: 

WF = 0.0144 Ib./in. 

wR = -0 .. 0103 lb./in. 

Wu = Oe o rl12 lb./in. 

wL ~ - 0. 0710 lb. lin. 

15 

The difference between these results and those obt~ined 

by the rigorous !:lethod is due to the fact that the shearing 

work done in the different elecente of the box is not a con­

stant percentage of the to ta l work in eo.ch eler.1ent. In the 

front spar , the percentage of shearing work is 9.7%; in the 

rear spar, 4.4%; in the top and botton spars, 38.1%. This 

is not unexpected, since the propor tions of the elenents are 

so d.issir.ular. As the SPe.I beconos deeper and thinner, the 

bending we rk under a given load becoaes less, while the 

shearing work is nore (for a given cro ss-sectional aree,). 

The variation in the running loads obtained fro~ those ob­

tained by the rigorous solution is, for the lift spars, -14.3% 

in the front and ~23.l% i n the rear; for the drag spars, 20.7%. 

Solution of ~ trapezoid.- Referril~; to Figure 1, it is 

seen as before that the three equations of ecu ilibriw~ are 

insufficient to determine the f our unknovTIl loads. To eliminate 

the redundancy, the assunption shall be nadc that the cross 
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section suffers no distortion after a torsional loading; and 

as a s imp lifying assumption, consider the deflections of t he 

various elements of t he box as inver sely proportional to their 

moments of inertia, wh ich corr esponds to the pr evious simpli-

fying assumption of negligib le shearing work . 

If the cross section suffers no distor tion after load ing, 

the change in slope of two sides of the box may be equat ed ; 

and the chang e in slope will be expressed by the equation 

68 

where 

= 6F - 6R - 6U sin t) 

d 

e = torsional a ngle of twist 

6 = -beam deflection 

~ = angle between sloping drag spar and 

spar opposite 

6 = K w 
I 

(1) 

( 2 ) 

where K is d etermined by the elastic curve of the beam , and 

will be the s ame for a ll elements of the box, on the assumption 

that the dis tribution of t he d r ag load is s i mila r to the l ift 

lo ad distribution. By substituting in (1), we find 

K v:vF + K wEi. _ K Wu sin ~j- = 
IF IR IU 

= 
r K K ., 1 I Wu cos ~ w1 : - l + -- I 

h IU I1 J 
(3 ) 
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This equation, plus the three equations of equilibrium given 

before, will be sufficient t o determine the values of the dif-

ferent loads. The solution of the set of four simultaneous 

equations in a general form is very cumbersome and should not 

be attempted. The process is greatly simplified by substi t uting 

numerical values in the s imultaneous equations and then so l ving 

by anyone of the standard algebraic methods. Such a solution, 

apply i ng the constants of the sample spar, results in 

wF = 0.0140 lb./in. 

wR = -0.0098 lb./in. 

Wu = 0.0731 l b./in. 

wL = - 0.0729 lb./in. 

The accuracy of this method of soluti on is poorer than the 

simplified least work results, the differences in the lift spar 

loads being -16.7% in the fro~t and - 26.9% in the r ear; the 

drag spar difference being 23 . 8%. 

, 
Niles Method of Load Divis ion.- TI1e bas i c assumption under-

lying a method developed by A. S. Niles, is that the cross sec-

tion suffers no distortion during the application of a torsional 

load. As s i mplifying weapons, we also assume that the drag 

spars are mutually parallel,. and are perpendicular to the lift 

spars, and that t he shearing work may be neglected. The last 

two of these assumptions simplify the equation equating slope 

incr ement, to the form: 
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(1 ) 

The term h must be approximated here. It SeeT!lS reasonable to 

use that value of it which is obtained at the elastic centru::1, 

assuming a linear variation from h1 to h 
:2 

This value is 

(2) 

A further simplification lies in the fact that wF and 

wR are equal, as well as Wu and wL• . They can be expressed 

as 

WF wR 
1.1h 

( 3) = = d' 

and Wu wL 
Md 

( 4 ) = = 11 , 

where liIh is the portion of the total i!10ment which is resisted 

by the lift spars, and Ed that resisted by the drag spars . 

Substituting these values in (1), 

( 5) 

( 6 ) 

This does not g ive workable result s. The fact that the 

section is a trapezoid means that there 'Ffill be a lift component 

of the load in the slanting drag spar. Therefore, to obtain 
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LV ::::: 0, Vie must correct t he values of VI obtained from equa-

tions ( 3) and (4) in the following raanner : 

w
L 

Md 
(7 ) = 11 

w -
wL (8) U - cos T] 

wF ViR ::::: Wu sin T] (9) 

wF x + wR (d - x) = Mh (10) 

These val ues of wF, wR, and wu' the true values, will 

be proportioned so t hat th e total moment on the section is the 

same as that fo r the first computat ion . 

By substituting the constants of the sample spar, we obtain 

the following results for unit torsion per inch of span. 

WF ::::: 0.0142 lb./in. 

wR = -0.0101 lb./in. 

Wu = 0.0719 lb./in . 

W = -0.0717 lb./in. 
L 

These results are relatively close to tho'se obtained from 

the trapezoidal deri~ation. This is a reasonable indication, 

then, that the assumption of parallel spars, as far as the mo-

ment division is concerned, i nvolves no major additional error. 
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Burgess I I!Iethod of Load Division.- O. P. Burgess has 

developed* a fOTI1ula for load division between the various 

elements of a box spar which depends upon the basic a ssump-

tion of negligible shearing work in the spars; however, by 

the same implic i t assumption , as in Niles r method t he results 

are in error by the lift component of load in the slanting drag 

spar, and must be correc ted f or that. 

The d evelopment i s as follows : Let Sx b e t he distance 

of the memb er x from the e l a s tic centrum. Then t h e t or s ional 

rigidity of the member x, 0 11 i t s resistance t o t orsional l oad, 

is Ixsx ' The moment of it s tors i onal resistanc e is Ixsx2 . 

Ther efore, the load Wx i n t he memb er x is expressed by the 

equation 

1xsx 
Wx = 1'11:1 s 2 

Th e applicat ion of thi s formula, 8.nd the corrections, to 

the sample spar gives t h e fo llowing r esults : 

wF = 0 .0142 I b ./in. 

wR = - 0.0101 I b ./in. 

Wu = 0.0719 l b . lin. 

w
L 

= -0.0717 lb. lin. 

Th e clos e agreem ent between th ese results a nd those ob-

tained through t h e applica tion of Niles' method would lead one 

to bel ieve t hat the formulas are simila r. This is true, and 
*N .A . C. A. Technical Report No. 329, "The Torsional strength of 
Wings,1I by C. P. Burgess. 
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the expansion of Burgess I formula into Niles' is given in the 

appendix. For the case in hand, that of a two spar box, either 

formula is equally convenient; Burgess ' has the advantage, how­

ever, of being more easily applied if the structure has more 

than two spars. 

The Membrane Analogy Method.- If we nlay aSS1.une that the 

walls of the box spar are thin with respect to their height, 

we have at our command a formula developed from L. Prandtl's 

membrane analogy.* The derivation of this formula will not be 

given here, but is fully explained in the reference given be-

low. In its basic for~, the equation is 

where 

S -~ - 2At 

S = shearing stress, 

Q = torque on section, 

A = area enclosed by the c enterlines of the sides, 

t = thi ckness of the side being considered. 

A modification of this formula will be more useful than 

this basic form. If we roul tiply both sides of the equation by 

t, we obtain 

Sf - .Q..... - 2A 

where Sf is the she~r per inch o f perineter of the cross 

section. The value of S' need then be TJultiplied only by the 

width of the side to obtain the running load w. Applying this 
.See Timoshenko and Lesells "Applied Elasticitylt pp. 45 et seq. 
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formula, we obtain 

Sf = 0.001784 lb . /in.. of perimeter 

and wF = 0.01606 lb./ in. 

wR = • -0.01249 lb./in. 

wu = 0.0627 Ib./in. 

wL = -0.0625 lb./in. 

The only error which enters into this ce,lculation lies in 

the variation of the front and rear spars from a thin mlled 

.section. The accuracy, referring to the least work calcul ation 

again, is excellent; the errors a re -4.2% in the front and 

-7 .2% in the rear spar , and 6.3% in the drag spars. 

13urgess f Inverse Ra tio lIethod f or Lo ad Division.- C. P. 

Burgess has also developed a method cal led the inverse ratio 

method for determining 1000 division betYfeen the various parts 

of a redundant structureo * The basic theorerJ is tha t the por­

tion of the inposed load carried by each of the included stat­

ical ly determinate structures is inversely proportional to the 

internal work done in the included structure when carrying the 

whole load alone. This theorem is t rue only when no part of 

one included structure reacts upon any part of any other in-

cluded structure; when no mem.ber of the struc tur e is com.r:1on to 

two or more of the included stat ically det erminate systems into 

which the structure is divided; and another error which may 
*See Airship Design, by C. P. Burgess. 
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becor1e invo l ved in the results of this formul a is gener ated 

when t he applied lo nd is not concentrated at a single point 

C0Y.11::10n t o the de t er o inat e sys tems but is di stributed a1!1ong 

t wo or fJore COl!lli10n points. For thes e r easons this method is 

no t rigorous in a ll oS.ses. Applying i t, we obtain 

WF = 0 ~ 0166 Ib. /in. 

w 
R = -0 . 0132 I b . /in .. 

Wu .: 0 . 0595 l b • ./in. 

w
L = -0 .. 059 4 lbo/in. 

The a ccu r acy of th i s I1e thod, conp2.:ring it with the results 

f rom the theorem of least VTork , i s very good. As a rigorous 

method, it falls down because t h e various f.l81nbers interact under 

load. However, in a siDpler C8,se than the one at hand, there 

is r eason to beli eve that the C1gre enent will become absolute, 

and such a case, one i n which the c enter lines of t he spars form 

a rectangle, is analyz ed i n t h e appendix~ The results obtained 

f rOT:l i nver s e r at io and l eas t rlO r k agr ee exactly. The reason for 

t he a gr eeaent lie s i n the fact that thore is no COf:1pOnent of load 

from t he drag spars entering i nt o the lift spars. Sinco in 

praotice the rear spax i s a l nos t a l '"18,YS nore she,llow than the 

f r ont, this case i s appa r ent l y of a cadenic interest alone . 

The variation of the re sults obtained by inver se ratio, 

f ron t hose of the l eas t Hork l!1e t hod , is soaller thEm f or C1ny 

o ther sioplified oetho d . The ca lculations necessitated for 
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this method a r e more tedious than t hose for the rigorous method 

and for this reason the inverse r atio method is at a disadvantage 

in comparison with the membrane analogy method. 

Method 

Present design 
Least \1ork 
Simplified 

l east \7ork 
Trapezoidal 
Niles I method 
Burgess! 

of 1. 
mom. 

Summar y of Resul ts 

WF I % I T,'TR I % I Wu i % wL % 
Ib./ i n. er- 1 1b ./in. er- 1 1b . / i n! er- I b ./in. er-

r or ro r -rr'\"T' r or 
0 . 0286+70.2 - 0.0286 +113 .4! 0.0000 11- 100 .0 0 . 0000 - 100.0 
0 . 0168 0 . 0 - 0 . 0134 0.0 1,0.0590 0 . 0 - 0 . 0589 0 . 0 
0 . 0144 -14.3 -0.0103 -23.1 ,0 . 0712j +20.7 - 0 . 0710 +20 . 5 

i I 
0 . 0140 - 1 64 71 - 0.0098 
0 . 0142 -15. 5 -0.0101 
0 . 0142 -15.5 -0.0101 

-2 6.9 ! 0.07311 
-24.6 :0.0719 
-24.6 !0.0719 

+23 . 8 - 0. 0729 +23. 6 
+21. 9 - 0.0717 +21. 7 
+21. 9 -0.0717 +21. 7 

i I 
Membrane analogy 0.0161 - 4 . 2 -0.0125 -7.~! 0.0627 1 +6.3 -0.06.25 + 6. 1 
Inverse ratio 0.0166 - 1.2j-0. 0132 j -1.5 :0 . 0595, +0.8 -0.0594 +0. 8 
Values 1n table are beam loads per 1nch of span for a tors10nal moment o~ 
unity per inch of span on the spa r of Figure 2 . 

Discussion of Result s 

Pr esent desi gn practice, ~s t he values of the loads in t he 

summary shO'll, , is ext remely conservative in computing th e l oads 

in the spars of a box "wing , and at the sal11e tine does not pro-

vide any means of computing the considerab le shearing str ess in 

the pl ywood skin. Due t o the action of the drag spars, a large 

portion of the torsiona l lo ad is removed from the li ft spar s, 

and stresses of a s ense op:;.Josing the str esses a lready present in 

the chord members of t he box axe set up. It mus t be realized , 

at this point , that t he calculated stresses detailed in this 

paper are all obtained upon the assump tion of a perfect structure, 
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one in whioh there is no give in the joints, and more partiou­

la,.rly, one in VJhi oh all the web nenbers, inoluding the skin, 

have no tendenoy to buokle under a shear load. In praotioe, 

the skin of the wing will not oarry shear without a oertain 

tendenoy to buokle, and for this reason will not naintain the 

theoretioal trans ferenoe of load froo web to flange. Under 

these oonditions, the actual stresses in the wing will differ 

froEl. those obtained in the rigorous analysis, and will tend 

toward the present design condition. For t his reason it is 

not possible to reoOl:1L1end the adoption of any logioal analysis 

without the support of test data. A superfic ial consideration 

of the problem will suffioe to show that t he internal work in 

the spar under a torsional load will be the least when the net 

axial load induoed by bending nonent in the chord netlbers ap­

proaohes zero. This oondit i on is t hat denonstrated in the 

nethod of least work. 

The applicat ion of the method of least work is [mch too 

cunbersone a r:leans of attaok to use when, at the expense of a 

l'elati vely slight los s of aocuraoy, P.luoh s inpler !:lethods are 

available. It is probably the sinplest rigorous solution 

whioh can be applied, and for that reason ha s been used as a 

check against the approxiaate answers obtained. 

The oethod of simplified least work has little advantage 

over the rigorous nethod, . sinoe the loss in aoouraoy is so 

large. It is undoubtedly true that t he labor of oo~putation 
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has been greatly reduced by the 0I:1iS8ion of the terDS of 

shearing ; but another approxinate nethod is available which 

coabines greater accuracy of results with r.1Uch sinpler calcu­

lations than nay be obtained by any sinp l ification of the nethod 

of least work . For this reason, I7hile the validity of the 

method is recognized, ~t has little value . 

The so l ution of a trapezoidal forr.1 of box involves two 

as SUl:'l.pt ions : first, that the shearing vvork done is negligible, 

and second, that the cross section of the wing suffers no dis­

tortion during r otation . The Y.1ethod of sinplified least work 

has already denonstrated the errors attendant upon the first 

assunption. The second has been verified wi thin the lini ts of 

experinental error on a few occasions; its use is, however , 

definitely an approxination. The results of this method denon­

strate the fact that an additional error does enter into the 

equation when the second assunption, previously Bentioned, i8 

used. The nagnitudes of the inaccuracies obtained by this 

fornula are such as to reduce the value of the nethod to a 

very snaIl quantity. 

A. So. Niles f developnent for the trea to en t of thi s probler.1 

nay be applied to a trapezoid only if it is assuned that the 

drag spars are parallel to each other . The Bethod is essen­

tially nothing 1:1ore than c. special case of the trapezo~dal solu­

tion obtained when the lift spar heights are ~qual, and the 

angle " is zero. To apply it to c. trapezoid is obviously, 
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unreasonable, on that basis. However, if such an application 

is oade) the lift spar loads mus t be adjusted to Elake r:v and 

EM equal to zero, involving an err or fron the rational nethod 

of load divi8ion . Inc luding then, as it does, approximations 

in addition to the ones utilized in the previous method, it 

seems logical t o expect larger inaccuracies in the results ob­

tained. This doe s not occur; the magnitude of the error is 

less for this nethod than for the trapezoidal solution. Such 

results may no t b e expected i n all cases however, for the rea­

sons stated above, and therefore this equation should be ranked 

below the trapezoidal one i n po i n t of accuracy; in regards to 

utility, it is slightly superior, since it does not involve the 

solution of any complicated sinultaneous equations. 

C. P. Burgess' method has as its nain a s set the ease with 

which it nay be applied to a structure conposed of more than 

two spars. For t h e anal ysis of a two spar wing, it lies on a 

par with Niles' method, sinc e the two equations are identical. 

The two equations , as f ar a s discu s sion and results are con­

cerned, may be clas sed as one. 

The menbrane analogy nethod i s by far the best approximate 

method available at the present tine for this analysis . It is 

the simplest of all seven of the fornulas covered, and the er­

rors in it are si:lall enough so that . it may be used directly as 

a nethod of conputation. The only reason for any error entering 

into the calculations is that the chord nembers as such do not 
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constitute part of "a thin walled structure;" but the inac­

curacy due to this approximation is snaIl enough to be rela­

t i vely Unil'21portant. 

Burgess ' inverse ratio nethod, in th is case, gives ex­

trenely good results. The generality of such an occurrence, 

however, seens doubtfu l ; and it is evident that this r,1ethod 

involves more labor of conputat ions than the nethod of le ast 

work. For this reason, 2.nd t he fact that there is an, approxi­

nation in t he inverse r atio theory, there would b e no reason 

for not using least worle if sufficient time and labor were 

availaole for ei ther method. At b es t, the inverse r atio Y.1e thod 

is inferior to th e least wo r k aethod in both siLlplicity and ac­

curacy, 
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Appendix 

Sample spar #1 characteristics (see Fig. 2). 

Front spar: 

I 1 ( a 5.5 3 
) +...L X 1 X 9:3 93.7 + 7.6 101.3 in. 4 

:::: 6 9.0 - 8 = = 12 

Rear spar : 

1 :3 4.5
3

) 
1 1 7

3 
42.0 + 3.6 = 45.6 in. 

4 

I = 6(7 .0 - + 12 x "8 x := 

Top and bottom spars: 

Neutral axis ~ 35.0 x ~:i~ = 13.48 in. from front spar. 
3.50 + 

I = 3.50 X 13.482 + 2.19 x (35.0 - 13.48)~ = 

= 636 + 1014 = 1650 in. 4 

Position of elastic centrum: 

35 x 45.6 
x = 45.6 + 101. 3 = 10.87 in. 

(d - x) = 35.00 - 10.87 = 24.13 

y = 4 . 5 10.87 
35.0 = 4.19 in. 

~ = y = 4.19 in. 

'r1 tan- 1 2 tan- 1 0.0572 30 17 t = -= = 
35 

sin 'r1 = 0.0572; cos Tl = 0.998 
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Loads in sampl e 

Let 

wing , assuming zero 

M :::: unit y per inch 

wF 
:::: W - +M 

- R - d 

WF :::: 0 .0286 l b . /in. 

wR :::: -0.0286 l b./in. 

Wu = 0.0 l b. / in. 

wL = 0.0 l b. / in. 

drag loads. 

of span 

Loads in swnple wing the method of least work. 

~t 2 K
1

S
} 15 1 

Frow equat i on on page 9, 

W 1 1 M2 dx 
b= 0 2Ef"= ( s inc e M = l wx2 for cantilever). 

2 

To determine the internal wo r k W total, 

30 
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Front spa).' ! 

F = 86 700 10 / q' - E _ 1.3 x 10
6 

1b / q . , . s . In. - 15 - 15 . s . In. 

Kl = 2 .75 1b./sq .in. 

K = 2 4.50 1b./sq. i n. 

t~ = 0.25 Ib./sq.in. 

t2 = 2.00 lb. /Sq. in. 

I 101 . 3 in. 
4 = 

2.0 

101.3" { 

8 x 4.55 4 
ex, = 15 - 2.75 (4.5 -

8 x 86,700 x 

a. = 2.81 X 

- ~ X 4.52 X 2.75 2 + ~ x 

10- 1o { 986 - 2.75 (411 - 102 + 
L 

= 2.81 x 108 x 10- 8 = 3.04 X 10-
8 

1 f 22 X 2.75 a 
tv = :3 L 4 (4.5

2 
- 2.75

2
) + 

r 2 X 86 ,700 X 101.3 x 0.25 

+ 2 x 0.25 X 2.75
3 

(4.5 2 
_ 2.75 2) + 3 

2 
+ 15 x 0 . 25 2 

X 2.75
5 }= 2.25 x 10 

-9 
(2.75 

[20.3 _ 7.6J2 + 3.47 [20.3 - 7.6J + 1.3). 

ry = 1.01 X 10- 6 

Ws ( 1 .101 + 0.030 ) 
- 6 2 

2003 6 . 0 W 2 = X 10 x - 'if 2 X = 3 F F 

2 200
5 

W
F 

X 

Wb = = 60.8 w 2 

40 X 10
6 

X 1.3 X 101. 3 F 
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Rear spar:: 

F = 86,700 Ib./sq.in. 

K = 1 2.25 Ib./sq.in. 

K = 
2 

3. 50 lb. / sq. in .. 

tl = 0 .25 Ib . /sq.in. 

t2 = 1.75 l b. / sq. in. 

·1 = 45 . 6 .in. ... 

a, = 1 • 75 f X 3 • 50
5 

[ 4 2 2 
8 X 2 - 2.25 3 . 5 - 3 X 3 .5 X 86 ,700 X 45 .. 6 ', 15 

X 2 . 25 2 + § X 2. 25 4) } 

a = 12 .13 x 10- 1 0 
{ 280 - 2 .25 (150 - 41 + 5J} = 

ry = 

-10 -8 
~ 12.13 x 23 x 10 = 2. 79 x 10 

1 {1.75
2 

X 2.25 (3. 5 2 _ 2.25 2 )2+ 

2 x 86, 700 X 45.6 2 X 0 .25 4 

-6 

3 
+ 1 . 75 X 0 .25 X 2. 25 

3 ( 3 .5 
2 2 

2 . 25 ) + 

2 
(172 [12.3 - 5.1 ] + 1 .66 [12.3 - 5. 1J + 0.5 ) 

'Y = 1 e 120 x 10 

Ws (1.120 + 0.028 ) x .9. x W 2 X 200 3 = 6. 1 W
R 

2 = 3 R 

w 2 X 2005 

Wb = R 135.0 :2 = WR 40 x 1. 3 X 106 x 45.6 
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Drag spar: 

Then if 

I :::: 1652 in. 4. 

t1 :::: 0 .0625 in. 

t2 :::: 1(1.25 + 1 .75 ) = 1.50 in. 
2 

h :::: 36.9 in. 

A :::: area of one fl ange, 
2 

I :::: 1652 = 2(3629 ) A; 

A :::: 1652 . 681 = 2.43 in. 

Kl 18.45 2.43 16.84 in. =:: - T:5 = 

K2 :::: 18.45 in. 

1.50 
1652 2 {1~ 18.45 6 4. 

a. = x - 16.84 [18.45 -
8 86 ,700 x x 

2 - 2 :2 1 4. } - 318 . 45 x 16.84 + 5 x 16.54 ] 

a. = 7.92 x 10 1 .14 x 10 - 16.54 [116000 - 64500 + - 1 3 { 6 

-13 
a. = 7.92 x 10 

+ 16100J} 

x 0.001 X 10
6 

is n e gligible. 

-10 
= 7.92 x 10 - a. 

33 

1 
~ = --------------------------

2 x 86 ,700 X 1652 2 x 0.0625 
x 16.84 (18.452 _ 
4 

:2 2 1.50 (2 2) 
-:-:- 16. 84) + 3 x 16 18 . 45 - 16. 84 + 

2 2 5 -11 
+ 15 x 0.0625 x 16.84 J = 3.34 x 10 

[3080 + 8500 + 710J = 4.31 x 10 
-7 



(1) 

(2) 

(3) 
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'INs ;:: 4 . 31 10-7 2 W :2 200 3 x X - X X 3 L 
:2 200 5 

WL x 
\:Vb ;:: == 3.72 

40 x 1.3 X 10 6 x 1652 

By inspection, from Figure 1, 

VI 
U cos 'Tl - w

L 
;:: 0 

h:2 cos 11 Wu + dWF ;::; M ;::; 1 

hl cos 11 Wu + dWR = 1 

In terms of wu' 

No. 366 

;:: 2.29 W :2 
L 

w 2 
L 

(4) wL ;::; Wu cos 11 = 0.998 Wu 

(5) wF ;:: ~(l - h:2 cos 11 wu) ;:: ts(l - 7.0 x 0.998 wU) = 

== (0. 0286 - 0.1996 wU) 

(6) wR = ~(1 - h l cos 11 wU) = 15(1 - 9.0 x 0.998 wU) = 

;::; (0.0286 - 0.257 wU) 

Substituting and collecting, 

Total W
T 

;:: Wu:2 x [2.29 + 3.72] (1 + 0. 998Cl) + (135~0 + 

+ 6.1 ' (0.0286 - 0.257 WU)2+ 

+ ( 60 ~ 8 + 6.0) (0.0286 - 0.1996 wU) 

34 

aVl T -= Wu [ 1 .996 x 2 x 6 . 01 + 141.1 x 2 x 0.257
2 

+ 66.8 x 

x 2 X .19962 J _ [66.8 x 2 x 0.1996 x 0.0286 -

_ 141.1 x 2 x 0.257 x 0.0286J ;:: 0 

47.9 W - 2.88 ;:: 0; 
U 

Wu = 0.0590 I b . /in . 



(1) 

(2) 

(3) 
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WL = -0.998 x 0.0590 = -0.0589 Ib./in. 

Vi = 0.0286 F 0 .1996 x 0.0590 = 0.0168 Ib./in. 

VIR = -0.0286 + 0.257 x 0.0590 - ~0.0134 Ib./in. 

35 

Loads in sw~ple wing - by least work; neglecting shear. 

By omitting shear terms in total work equation, 
2 

W = W ~ ' (3.72) (1.996) + 60.8 (0.0286 ~ 0.1996 w
U
" ) + 

T ' U ' 

aWT aw
U 

= Wu (2 X 1.996 x 3.72 + 60.8 x 2 x 0.1996
2 + 135.0 x 

x 2 X 00257
2

) - (2 x 60.8 x 0~0286 x 

x 0.1996 ~ 2 x 135~0 x 0.0286 x 0~257) = 0 

37 • 56 Wu - 2. 69 = 0 '; 

Wu = 0.0712 Ib./in. 

wR = 0.0286 - Q.257 x 0 '.0712 = -0.0103 lb,./in .. 

w
F 

= 0.0286 - 0.1996 X 0.0712 = 0.0144 lb~/in~ 

wL = 0.998 x 0.0712 = -0.0710 lb./in. 

Loads in sample wing - trapezoidal method. 

By the principles of equilibrium, from Figure 

'\'IT
U 

cos rJ - wL = 0 

w h~ CQS rJ + wFd = 1 
U 

Wu hl cos rJ + w d = 
R 

1 

1, 
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And by equating angles of deflection, from page 16, (3), 

4 

Substituting numerical values, collecting, 

(1)~(5) wL = 0.998 Wu 

(2)~(6) wF = (0.0286 - 0.1996 wU) 

(3)~(7) wR = (0.0286 - 0.257 wU) 

(4)+(8) 0 . 0286 [0.00987 17F + 0.02190 wR - 0.00003 wUJ -

- 0.111 [0.000601 Wu + 0.000603 wLJ = 0 

(8)+(8~ w
F 

+ 2.21 w
R 

- 0.003 Wu - 0.238 Wu - 0.237 w
L 

= 0 

Su b s t i tu t e 5, 6, and 7 in 8 I 

(9) (0_0286 - 0.1996 wU) + 2.21 (0.0286 - 0.257 wU) -

- 0.241 W - 0 . 236 W = 0 U U 

(9~ vvU (-0.1996 - 0.568 - 0.241 - 0.236) = -0.0286 - 0.0632 

1.245 VIU = 0.0912; Wu = 0.0731 1b./in. 

(10) wL = 0.998 x 0.0731 = -0.0729 1b./in. 

(11) VI = 0.0286 -
F 

0.0731 x 0.1996 = 0.0140 1b./in. 

(12) wR = 0.0286 - 0.0731 x 0.257 = -0 .0098 1b./in. 

Load division , by J:Ti1es I method . 

l+l 
IU IL 
1 1 
-+~ 

IF IR 



N.A.C.A. Technical Note No. 366 

h = 45.6 
9 - 2 x 101.3 + 45.6 = 9.0 - 0.63 = 8.37 in. 

Mh _ 35 2 J 2 x 0.000605 l_ 
(2) lid - 8.372 to.00987 + 0.021g:J- 0.667 

(3) 111h + lvld = 1. 0 

(3)~(2)= (4) Mh = ~:~~~ = O. 400;' ~ = 1. ~67 ::: 0.600 

(5) WL = 0.600 = 0.0717 Ib./in. 
8.37 

(6) v:Tu = 0.0717 .;. 0.998 = 0.0719 Ib./in. 

(7) rfF - rJR = Wu sin 11 = 0.0572 x 0.0719 = 0.00412 

(8) HF x + wR (d - x) = 0.400 = 10.87 wF + 24.13 wR 

(7)~(8)=(9) 10.87 wF + 24.13 (wF - 0.00412) = 0.400 

(10) 35 -,JF = 9.400 + 0.099 = 0 .499; wF = 0.0142 Ib./in. 

(11) -,7R = VlF - 0.00412 = 0.0142 - 0.00412 = 0.0101 Ib./in. 

Lo ad division by Burgess t moment of inertia me thod. 

1 ember I s Is 

F.S. 101.3 10.9 1102 

R.S. 45.6 24 . 1 1100 

U.S. 1652.0 4.19 6930 

L.S. 1652.0 4 .19 6930 

(1) ',-;U = 0.0717.;. 0. 998 = 0.0719 Ib./in. 

(2) wF - ~R = 0.0572 x 0.0719 = 0.00412 

16 2 w 

12000 

26500 

29050 

29050 0.0717 
96600 

37 
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(3) 10.9 wF + 24.1 wR == 1 - ' 4.19 (6.0719 + 0.0717) = 1 -

- 0.600 == 0.400 

(4) 10.9 wF + 24.1 (wi' - 0.00412) == 0.400 

(5) 35 wF == 0.400 + 0.099 == 0.499 

( 6) W F == b • 0142 lb. / in. 

(7) wR == 0.0142 - 0.0041 == 0 . 0101 Ib./in. 

Proof of identity of Burgess I and Niles I Methods 

(1) By Burgess 
~ax 

w - M x - 2:18 2 r +1) (2) By Niles Mh == de IU 1L 
Md h 2 1 1 - +-

IF IR 

(3)By statics, Mh == wFx + wR(d - x) 

and Md == WU(h - y) + wLY 

(4)fro lil (1), Mh == 
IFx

2 + IR(d -

~Is :2 

X)2 
(for M == 1) 

IU(h _ y) .2 + ILy 
2 

(5) from (1), Md == 
~Ia. 2 

(7) by defini tion , x == 



(9) 

(10) 
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IFIR( IF + I R) 1 r IF IR 1 
Mh d

2 (IF + I R ) 2 - d Z 
, IF + IR I 
I 

lvId = h:3 I UIL ( IU + . I L) J ~ h2 I IU IL r I 
(r +1)2 - l IU + 11 J U 1 

r 1 1 
I lVIh d :3 IV + 11 @ 

lVId = h2 1 = Q.E.D. 
l+..L 

I IF IR 
L 

Lo acl di vi sion , by membr ane analogy 

8 1 = --=i 
ZA 

A = 35 X ~(7 + 9) = 280 sq. in. 

8' = 2 x1280 = 0 . 001784 I b ./in. of p erimeter 

WF = 0.001784 X 9 .0 = 0.01606 Ib./in. 

wR = 0.001784 x 7.0 = 0.01249 Ib./in. 

w1 = 0 .001784 x 35 .0 = 0.0625 Ib./in. 

Wu = W1 7 0.998 = 0.062 7 Ib./in. 

39 
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Load divis i on by inverse r at i o . 

From pp.30 et seq . , 

(1) Q§ := 66 . 7 

(2) QR = 141 . 0 

(3) QU = 6 .01 

(4) QL := 6.01 

(5) b 35 66 .7 11 24 QF = x 141 + 66 . 7 = • i n. 

(6) sli.:= 35 11.64 = 23 .76 i n. 

(7) e
U

:= 0 . 50 x 8 . 37 = 4 . 19 i n . 

(8) 8 L := 0 . 50 x 8 . 37 := 4 . 19 i n . 

(9) 
1 QF QF QH' 

qF := 1 + Q
R 

+ Q
u 

+ Q~ = 1 + 0 . 47 -I- 11.1 + 11.1 = 

qF == _ 1 _ = 0.0422 
23 . 7 

(10) qR := 0 . 0422 x 66. 7 = 
141 

0 .0199 

(11) qu = 0 . 0422 x 66 . 7 = 
6 . 01 

0 . 469 

(12) qL == 0 . 0422 x 66 .7 -
6 .01 - 0 . 469 

40 

23.7 
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Member Q s q QS qs~ W Ib./in. 

F.S. 66.7 11.24 0 .0422 0.475 5.33 

R.S. 141.0 23.76 0 .0199 0.474 11.28 

U.S. 6.01 4.19 0.469 1.965 8 .. 24 

L.S. 6.01 4.19 0.469 1.965 8.24 0.059 4 

~E! :! = 33.09 

(13) Wu = 0.0594 7 0. 998 = 0.0595 lb./in . 

(14) wF - wR = 0.0572 X 0.0595 = 0.00 34 

(15) 11.24 wF + 23 . 76 wR = 1 - 4.19 (0 . 0595 + 0 .0594) = 

= 1 - 0.499 = 0. 501 

(16) 11.24 wF + 23.76 ( wF - 0.0034) = 0.501 

35 wF = 0.581; . wF = 0.0166 Ib . /i n. 

(17) wR = 0.0166 - 0.0034 = 0 .0132 Ib./in. 

IF = 2 X (4 X 52 + 1/12 x 2 x 8) + 1/12 x 1/8 x 12
3 = 202.6 + 

+ 18 = 220.6 in.4 

IR = 101.3 + 18 = 119 .3 in. 4 

2 :2 
IU = IL = (4 x 6.67 + 13.33 x 2) + 1.33 + 0.17 + 1/32 x 1/12 x 

3 
x 21 .5 = 534 + 1.5 + 25.9 = 561.4 in. 

561.4 = 2(1/12 x 21.5 3 
_ 1/12 X A3

); 21.5
3 

_ A
3 = 

= 3368 = 9940 _ A 3 

A = 18.70 in. = 2 K. 
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F R U L 

K 4.00 i n . 4 .00 i n . 9.35 in. 9.35 in. 
1 

K 
2 

6.00 in . 6 . 00 i n . 10.75 in. 10.75 in. 

tl 1/4 i n . 1/4 i n . 1/16 in. 1/16 in. 

t;z 2.25 i n. 1 . 25 i n . 2.06 in. 2.06 in. 

I 220.6
4 in . 119 . 3 4 i n . 561.44 in. 561.44 in. 

2. 25 8 x 65 4 (6 4 2 62 4 2 + a
F = 

220. 62 [15 -- x x 8 x 86700 x 3 

1/5 4
4

)J 1.99 
-9 

+ X = x 10 

4 2 4 2.25 x 64 
'YF = [ 2 . 225 x ( 400) + x 

2 x 86 700 x 220 . 62 4 4 x 3 

2 4
5
J 

_6 

X 20 + x = 1.080 x 10 
15 x 16 

:2 _8 

~ = 1.25 x 220. 6 x 
~= 1.99 x 0.555 x 3.42 x 10 = 2.25 119.3 2 

- 8 
= 3 . 77 x 10 

'Y 4 [1. 25
2 

X 4 (400) + 1.25 x 
R = 2 x 86700 X 119 . 3 2 4 ~ x 3 

2 5 _6 
X 64 x 20 + 15 x 16 x 4 J = 1.243 x 10 

o.u = 0.
1 

= 2 . 0 6 [ JL x 10. 75 5 _ 9. 35 (10. 75 4 _ 

8 x 86700 X 561 . 4 2 15 

2 / 3 x 10 . 75:2 X 9. 35:2 + 1/5 x 9. 35 4) ] = 
- 9 

= 4.72 x 10 



F 

R 

U 

L 
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16 ~2. 06
2 

X 9.35 (10.75
2 

"I = "I = 9 . 35
2

) 

U L 561 • . :1/~ 4 2 x 86 700 x 

+ 2.06 
~X 9.353 (10.75

2 _ 9.35 2
) 

2 5 

+ 15 x 9.35 == 2.62 x 
x 256 

~;p. 

:IS = 2/3 (a. + "I) 2L 3 W = 2/3 X 200
3 X (ex. + 'Y)w 

5 ,330 , 000 (ex. + 'Y)w 
2 

= 

W, 
W2

L 5 wa x 200 5 w2 
X 6150 = = = T 0 40 E I 40 X 1.3 X 10 6 X I 

I ex. + 'Y Ws Wb 

220. 6 1 .100 X 10- 6 5.87 W 2 
F 27.9 w .2 

F 
-6 

6.83 W .2 51. 5 2 
119.3 1.281 x 10 R wR 

-6 2 .2 
561 . 4 2.62 X 10 1 3.88 Wu 11.0 Wu 

-6 :3 :3 
531 . 4 2.62 X 10 13.88 wL 11.0 wL 

Wu = 0.10 - 2wF 

l;W = 92 . 1 
:3 

vV F + 49 . 8 (0.10 - 2 wF ) 
:3 

oW - 184 2 w 2 X 2 X 49.8 (0. 10 aW
F 

- • F -

10 

.2 
= 

+ 

-6 

WT 
33.8 WF 

2 

58.3 2 
WR 

24.9 
2 

Wu 
2 

24.9 wL 

2 

+ 
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582.6 wF - 19 .9 = 0; wF = 0 . 0342 

wF = . 03,12 Ib . /in . 

wR = . 03 42 Ib./in . 

Wu = . 0316 Ib./in . 

wL = . 0316 Ib./in • 

-±..= 1 + 33 .8 + 2 x 33 . 8 _ 1 + 0.580 + 2 X 1.357 4 .29 4 = 
qF 58.3 24.9 

qF = 0.233 

qR = 0.580 x 0 .233 = 0.135 

qu = qL = 1.357 x 0.233 = 0 . 316 

Q s q q s qe 2 
Vi 

F 3 3 .8 7 .34 0.233 1.710 12.56 .03~2 

R 5 8 . 3 12.66 0. 135 1 . 710 21.63 .0342 

U 2 <io . 9 5.0 0 . 316 1.580 7.90 .. 0 31 6 

L 2 -~ . 9 5 . 0 0.316 1 . 580 7.90 .0316 

L.qs 
2 

49 . 99 = 
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