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Surmary

Logical analysis of a box wing neccessitates the allowance
for the contribution of the drag spars to the torsional strength
of the structure.

A rigorous analysis is available in the use of the Method
of Least Work.

The best logical method of analysis is that applying
Prandtl's l{embrane Analogy, in the form
- 2.

The results so obtained vary by a negligible amount from those
obtained by the rigorous method.

The stresses in the members of a box wing should be cal-

culated by the membrane analogy method, but should be subject

 to verification by test before being used in design.

Scope

The scope of this paper is the analysis of the elements of
a conventional type of box wing under a torsional load. This

wing has as a primary structure two wooden box or I beams, their
*Thesis submitted in partial fulfillment of the requirements for
the degree of Engineer in llechanical Engineering Aeronautics,
Stanford University, 1930.




2 N.A.C.A. Technical Note No. 3E6

maximum moments of inertia being about axes parallel, or nearly

so, to the wind chord. They are connected by a plywood skin,

)
forming the wing covering, in such a way that a cross section
parallel to the plane of symmetry of the airplane forms a
rectangle or a trapezoid. Figure 1 shows a typical box-wing
cross section, the two spars proper being box beams, and the
skin covering being plywood which forms part of the airfoil
section, None of the formulas covered in this report take ac-—
count of the curvature which in practically all cases 1s présent
in either the top skin or both top and bottom. It is believed
that this factor is so unimportant that it would not be worth
while to introduce the complexity attendant upon its consider-—
ation into the relatively simple formulas obtained when the
curvature is neglected.

It is shown in this paper that the analysis of a box wing
by rational methods results in the computation of much lower
gtresses in the various members of the box than are obtained
when present design procedure is followed. As a means of
simplifying the computations necessary in such an analysis, it
will also be demonstrated that approximate methods, involving
some reasonable assumptions, are available. Assuming the
validity of this statement, which shall be proven subsequently,
the value of this paper will lie in the application by the
designer of its methods to reduce the material necessary to

carry a given wing load; and by so doing, he will decrease the
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weight of the wing structure.
Definitions and Nomenclature

Lift gpar: A spar formed by two chord members connected by
a web member, the chord members lying in a plane approximately
perpendicular to the wing chord.

Drag spar: A spar formed by two chord members connected by
a web member, the chord members lying in a plane approximately
parallel to the wing chord.

Elastic centrum: A point in the wing structure in such a

position that if the line of action of an imposed load passes
through it, the load will cause no rotation of the cross section.

Included statically determinate structure: The part of a

redundant structure which remains when enough of the redundant
factors have been eliminated to make the remaining structure
statically determinate.

Beam force: A force parallel to the intersection of the

plane of the 1lift spar web and the plane of symmetry.

Chord force: A force parallel to the plane which bisects
the dihedral angle, or the distance, between the planes of the
two drag spars or trusses.

Conventions for Signs:

Forces: An upward beam force is positive. A rearward
chord force is positive.

Moments: The torsional moment on the wing is a pitching
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‘moment; therefore, We will consider a torsional moment positive

which tends to increase the angle of attack.
Theory

The problem covered in this discussion is the division of
torsional load between the various elements of a box wing. The
necessity for new methods of analysis lies in the fact that the
design rules of the Department of Commerce at present assume, in
effect, that the resistance to torsion of the primary structure
of a box wing is confined to the bending strength of the 1ift
spars, that any 1ift load applied to the wing is divided between
the 1ift spars in inverse ratio to the distance of the load from
them, and that any twist on the wing is carried as a pair of
equal and opposite beam loads. This method will result in the
application of very severe loads upon the rear spar in the’
required design conditions of low angle of attack and nose dive.
With most airfoils in common use, the center of pressure of a
positive air load on the wing moves forward as the angle of
attack is increased from a position aft of the trailing edge at
zero oT negative angles to a maximum forward position at about
thirty per cent of the chord aft of the leading edge as the
attitude corresponding to maximum 1ift is attained. 1In a nose
dive, the forces acting upon the airplane are a down load on the
tail, an up load on the rear spar, and a down load on the front

spar -~ a condition cofreSponding to a resultant load acting a
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chord length or more aft of the trailing edge. If we now resolve
our load into an equal load acting at the elastic centrum and a
torsion about the elastic centrum, we see that the torsional load
is exceedingly severe in nose dive and this condition of flight
will in a great many cases be the critical one for the rear spar.
In all except very unconventional designs, the low angle of
attack condition will besthe critigal comdition of flight for

the rear spar when nose dive is not; and in this condition as
well, the resultant load is well aft of the elastic centrum,

with a consequent high value of the torsional moment.

Due to the fact that the airfoil section limits the heights
of the spars, with the rear spar as a general rule being the more
shallow of the two, for a given value of the load the strength
weight ratio of the rear spar tends to be smaller than that of
the front spar. The saving in weight will be a material gain if

it can be proven by a logical method that the actual loads in

" the rear spar will be smaller than those calculated by the de-

sign rules of the Department of Commerce.

The limitation of space prevents the consideration of more
than one type of wing. For that reason g full cantilever, all-
wood. structure will be chosen, with the 1ift spars formed by
two box beams, and the drag spar web formed by a plywood skin.
A cross section of a typical wing is shown in Figure 1. Assume
a torsional megment M applied at the elastic centrum. If the

strength of the drag spars in torsion is neglected, the moment
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is resolved into the loads wp and W acting upon the 1ift
spars, and equal to %-. Now assume that a ‘certain portion
of the moment, Md, is carried by the drag spars. Then W

and WR are obtained from the approximate formula

And also Md

A uniform load of Wy on the front spar, shown in Figure 1,
will result in a bending moment on the spar, resisted by
compressive stresses in chord member A and tensile stresses
in chord member B. The load Wy in the upper drag spar, by
the same reasoning, causes compressive stresses in member C
and tensile stresses in member A. The lower spar, under the

load w is subjected to compressive stresses in member B

L)
and tensile stresses in member D. Laétly, the rear spar,

under its load w is subjected to compressive stresses in

R?
member D and tensile stresses in member €. Member A 1is

then subjected to compression from Ww_, and tension from L

F

member B to tension from WF and compression from WL.

All four chord members of the 1lift spars are not only with-

standing a smaller load, but actually are subject in addition

to stresses of an opposite sign which reduce their net stresses

still further.
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‘ Referring to Figure 1 again, it is seen that under a
torsional load the structure is redundant - we have four
members and but three equations of equilibrium. The redun-
dancy necessitates, for a rigorous solution, the use of one
of the methods of consistent deformations, such as the method
of least work. If rigor is not mandatory, certain simplifying
assumptions may be applied, such as the neglect of the work
done in shear, or the assumption of an undistorted cross section
after the loading.

Four different basic principles are applied to the problem
at hand to determine the eight formulas used here. The first
neglects the strength of the drag spars; upon this, present
design rules are based. The Theorem of Least Work generates
the formula of that name and also the Inverse Ratio Method.
The simplifying modifications of the Theorem of Least Work are
responsible for the simplified Method of Least Work, the
trapezoidal method, Niles'! method, and Burgess' Moment of
Inertia method. The Membrane Analogy is the basis for the
formula of that name. It is reasonable to expect some corre-
spondence between the results of methods developed from the
same groundwork, and this expectation is realized in the Work
done. |

The formulas to be derived in the remainder of the report

will be applied to a sample spar, shown in Figure 2, in order
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to obtain a comparison of the results. The length of this spar
is 200 in., and the type is a full cantilever; the dimensions

of the cross section are shown in the figure.

Present design practice.— The strength of the wing in

torsion, neglecting the drag spar contribution, is equal to the
bending strength of the 1lift spars. A torsional load will then
be resolved into equal and opposite loads on the 1lift spars,
‘and zero loads on the drag spars. Applying a torsion of unity
per inch of span on the spar in Figure 2, the following values
of the running beamn loads are obtained:

0.0286 1b./in.

Il

Wy
w. = —0,0286 1b./in.
wy = 0.0 b lin,

L = 0.0 lbn/in.o
The computations for this, and the remainder of the applications

of formulas, to the sample spar, will be found in the appendix.

The Method of Least Work.-~ The method of least work was

developed and proven rigorously by Castigliano; it states that
the internal work done in a redundant structure by the appli-
cation of external loads will be the least possible consistent
with equilibrium.* The derivation and proof of this theorem

will not be given here, since any textbook on elasticity or

%See Andrew's "Elastic Stresses in Structures.”
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advanced mechanics of materials contains the development in full.
The application of this method to the problem at hand will take
the following form: an expression for the total work done in
the structure, in the terms of one of the unknown loads, will be
set up, differentiated with respect to the unknown, set equal to
zero, and solved. Since there are four unknowns and three

equations of equilibrium, all except one of the unknowns may be

.eliminated from the expression for work, and one differentiation

will serve to determine the solution.
The bending work done on a beam of constant cross section
is easily expressed as

*

L 2

2E1
where W = +the internal work done in bending
M = Tbending moment of external loads
L = 1length of beam
E = modulus of elasticity
I = moment of inertia of cross section

x = distance along span.

Thie does not express the total work done in the structure,
however, since the shearing work done in the beam must also be
considered. The following development for the internal work
done in shear on a box beam is taken from N.A.C.A, Technical

Report No. 180, "eflection of Beams with Special Reference to

*Spofford's "Theory of Structures.m
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Shear Deformations," by J. A. Newlin and G. W. Trayer. On page

18 of the report, we find

X1 an
=he 20 % dvax 4
o ‘@ B 2 (4)

where L = semispan, or length of bean (in inches)
F = ghearing modulus (for spruce, 1/15 E)
I = moment of inertia of cross section
K = distance from neutral axis to flange
X = distence from neutral axis to extreme fiber
t = web thickness (inches)
t = flange width (inches)
g = unit shearing stress (1lb./sq.in.)

gy = unit shearing stress in flange (1b./sq.in.)

gy = unit shearing stress in web (1b./sq.in.)
V = total shear (1lb.)

o P tz

d = 2K, (symmetrical bean)

y = distance from neutral axis

x = distance along span
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ap = T%; ny"tzydy = = (k] —ya? (5)
qw = _I..%_: [‘QKQ £t ydy + ij tlydy} =
b 8
o o [; (B2 = K2)+ 3 (B2 = y?}} (6)
From 4 {{Ifa —:—g—a t Ay = -%—,— _{(Iig 4¥Z L~ 3% dy =

Let iads 8K, * (K, ¢ 8t n? cecdip %)~ (8)
" s alhatis ) T R e Bl -
1 L
and =W =J aves (9)
2 SF o)
K P 7 K 2 5 2
L | L 3 1 VA 2 2 2\2
‘/;) oF ‘bldy F'/c; 2 t,3 [ 4 (KE ~K1) "
txtz 2 2 P t12 2 2,2
et By ~ K2 (K P - 7?) Rl ilas 50 4 B0)
2 t.°K
Eq. 10 = —L [ 2 (K2 - x2)° +
T
g LEX ® ;%

= tlexls} (11)
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T
Let y =—2 [244‘(1{22-1{2)2
V1% .
s Kls 2 P 2 2., 5
by stk i RPEE L S (12)
Then % WS a j‘L y T2ax (13)
w 0 :
For a cantilever bean, unlformly loaded Wlth w 1lb. /1n.
Vv = wx 3 (15)
% ;
= 2(a +v) SO wix?dx = % (o + v) waL® (18)

0

Equations for the internal work in a wing whose spars are
not uniform in cross section are seldom expressible as func-
tions of x. In such cases, a unit length of span will be
treated as a uniform section, the value of the internal work
on that unit length found, and the resulting equation treated
exactly as the one here obtained to get the load division at
the one point; the process is repeated until a curve of load
division is defined, and then the running loads on each com-
ponent of the box are known. .The values of a and Y as
determined by equations (8) and (12), are for symmetrical beams
only. For beams having unequal chord members, only a very small
error is introduced by using « and Y determined for an
equivalent symmetrical beam having the same over-—all height,
Width,‘and the same rmonment of ineitia. This approximation will

be necessary in almost all cases for computations concerning
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the drag spars.

Having the expression for the bending work done, and the
shear work from equation (18), in terms of the rﬁnning load on
the component of the box being considered, the work done will
be expressed in terms of one variable by substitution from the

equations of equilibrium, obtained by'inspection from Figure 1.

Wy cos 1~ Wy, =0 (17)
Monm. at B
wy h, cos m+dwp =¥ =1 (18)
(for moment of unity). ’
Mom., at D
wy; by cos m + dwp =1 (19)

Fron these three equations, all except one of the unknowns in
the total work equation for the spar may be eliminated; having

the total work, then in the form

e f(wx)‘ (20)

differentiate WT with respect to Wyl

g%L-= £t (wy) = 0. (21)
X

This serves to determine Wy, and from the eduations of

equilibrium the remaining three unknowns may be found.
Applying this method to the spar of Figure 3, the fol-

lowing results are obtained by the calculations shown in the

appendix:
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0.0168 1b,/in«

Ve T

WR = «0.,0134 1b. /in.
Wy = 0.0590 1b. /in,
wp = ~0.0589 1b./in.

An examination of the work in the appendix under this
method illustrates the reason for not using the theorem of
least work more often. The calculations are involved and
tedious, with a great many chances for error, and no inde-
pendent check. It does serve the useful purpose, in a paper
of this kind, of constituting a check with which the other

approximate methods may be compared.

Simplified Method of Least Work.— The example used for

the computation by the least work method showed that the per-
centage of the total work done in shear was small. As a means
of obtaining a simpler solution, the shearing work will be
neglected as an approximation, and the load division will be
found on the assumption that all of the work done is done in
bending. The method for this calculation is exactly the sane
as for the complete least work method, the only difference
being that the work done in the member has only one term in it
instead of two. The expression for total work is again ob-
tained in terms of one variable by the same equations of equi~

librium; the equation is differentiated with respect to the
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variable, equated to zero, and solved. The results on the

sample spar are:

Wp = 0.0144 1b./in.
wé = ~0.0103 1b./in.
Wy = 0.0713 1b. /in.
w, = -0.0710 1b. /in.

The difference between these results and those obtained
by the rigorous method is due to the fact that the shearing
work done in the different elerients of the box is not a con-
stant percentage of the total work in each element. 1In the
front spar, the percentage of shearing work is 9.7%; in the
rear spar, 4.4%; in the top and botton spars, 38.1%. This
is not unexpected, since the proportions of the elements are
so dissimilar. As the spar becones deeper and thinner, the‘
bending work under a given load becomes less, while the
shearing work is more (for a given cross—sectional area).

The variation in the running loads obtained from those ob-
tained by the rigorous solution is, for the 1lift spars, -14.3%

in the front and ~23.1% in the rear; for the drag spars, 20, 7%.

Solution of a trapezoid.~ Referring to Figure 1, it is
seen as before that the three equations of ecuilibrium are
insufficient to determine the four unknown loads. To celiminate

the redundancy, the assumption shall be madc that the cross
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section suffers no distortion after a torsional loading; and
as a simplifying assumption, consider the deflections of the
various elements of the box as inversely proportional to theilr
moments of inertia, which corresponds to the previous simpli-
fying assumption of negligible shearing work.

If the cross section suffers no distortion after loading,
the change in slope of two sides of the box may be equated;

and the change in slope will be expressed by the equation

ok by - 6Rd— 6y sin 1 i &8¢y cosh? - 6L (1)
where
g = torsional angle of twist
8 = beam deflection
n = angle between sloping drag spar and

spar opposite

- Kk w
5 = EX (2)

where K is determined by the elastic curve of the beam, and
will be the same for all elements of the box, on the assumption
that the distribution of the drag load is similar to the 1ift

load distribution. By substituting in (1), we find
X w XKw X W, sin 1|
1 { P 2% O e 4 P

d
Ig In Iy

X wy; cos n'+ K wy

i Iy 11, (3)

=y o

: ST DA
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This equation, plus the three equations of equilibrium given
before, will be sufficient to determine the values of the dif-
ferent loads. The solution of the set of four simultaneous
equations in a general form is very cumbersome and should not
be attempted. The process is greatly simplified b& substituting
numerical values in the simultaneous equations and then solving
by any one of the standard algebraic methods. Such a solution,

applying the constants of the sample spar, results in

wp = 0.0140 1b 58k
wg = —0.0098 1b./in.
wy = 0.0731 1b.{ins

w; = -0.0739 1b./in.

The accuracy of this method of solution is poorer than the
simplified least work results, the differences in the 1lift spar
loads being ~16.7% in the front and —26.9% in the rear; the

drag spar difference being 23.8%.

Niles' Method of Load Division.- The basic assumption under-

lying a method developed by A. S. Niles, is that the cross sec-
tion suffers no distortion during the application of a torsional
load. As simplifying weapons, we also assume that the drag
spars are mutually parallel, and are perpendicular to the 1lift
spars, and that the shearing work may be neglected. The last

two of these assumptions simplify the equation equating slope

increment, to the form:
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8 = O Doy = ©
T R L

The term h must be approximated here. It seems reasonable to

use that value of it which is obtained at the elastic centrun,

assuming a linear variation from h  to h, . ". Thie value is
b 4
b= B T (h1 - hz) ()

A further simplification lies in the fact that wgp and

Wp are equal, as well as Wy and Wwp. . They can be expressed

a8
M
WF = WR = ?d]%‘, (3)
iy
and Wy ® Wp = A, (4)

where Iy 1is the portion of the total moment which is resisted
by the 1ift spars, and liy that resisted by the drag spars.

Substituting these values in (1),

I y w7 B 7 T
_1-_ K uI-h & K l.l.h & ;:- K Ild 4 K ...Ld (5)
8 1 Wy aL, : h'| Bl Bl
(% +1
N _a® L
" oty b g (e)
e + =
" LI L

his does not give workable results. The fact that the
section is a trapezoid means that there will be a 1ift component

of the load in the slanting drag spar. Therefore, to obtain
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2V = 0, we must correct the values of w obtained from equa-

tions (3) and (4) in the following manner:;

M
n e T? (7)
i L
" = Gos ) (8)
Wp - Wy = Wy sin m (9)
WFX+WR (d-—X):Mh : (10)

These values of wp, Wy, and Wy, the true values, Will
be proportioned so that the total moment on the section is the
same as that for the first computation.

By substituting the constants of the sample spar, we obtain

the following results for unit torsion per inch of span.

Wo = 0.0143 1k fta.
w. = ~0.0101 1655
W= 0.0719 1b./in.
e ~0.0717 3bs/in.

These Tesults are relatively close to those obtained from
the trapezoidal deriwvation. This is a reasonable indication,
then, that the assumption of parallel spars, as far as the mo-

ment division is concerned, involves no major additional error.




30 N.A.C.l. Teechnical Nete No. 366

Burgesg! lMethod of Load Division.-~ C. P. Burgess has

developed* a formula for load division between the various
elements of a box spar which depends upon the basic assump-
tion of negligible shearing work in the spars; however, by
the same implicit assumption, as in Niles' method the results
are in error by the 1lift component of load in the slanting drag
spar, and must be corrected for that.

The development is as follows: Let s, be the distance
of the member x from the elastic centrum. Then the torsional

rigidity of the member x, on its resistance to torsional load,

is IXSX. The moment of 1ts torsional resistance is IXSXQ.
Therefore, the load w, in the member x 1is expressed by the
equation
_ . ix8x
Wy = Hes——s
X XI g2

The application of this formula, and the corrections, to

the sample spar gives the following results:

w 0.0142 1b./in.

F
wgp = —0.0101 1b./in.
w; = 0.0719 16 78ni
W, =-0.0717 1b. /in.

The close agreement between these results and those ob-
tained through the application of Niles! method would lead one

to believe that the formulas are similar. This is true, and

*N.A.G.A. Technical Report No. 329, "The Torsional Strength of
Wings," by C. P. Burgess.
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the expansion of Burgess! formula inte Niles' is given in the
appendix. For the case in hand, that of a two spar box, either
formula is equally convenient; Burgess'! has the advantage, how-

ever, of being more easily applied if the structure has more

than two spars.

The Membrane Analogy Method.- If we may assume that the

walls of the box spar are thin with respect to their height,
we have at our command a formula developed from L. Prandtl's
membrane analogy.®* The derivation of this formula will not be
given here, but is fully explained in the reference given be-

low. In its basic form, the equation is

o - e

where shearing stress,

11

torque on section,

S
Q
A area enclosed by the centerlines of the sides,
t = thickness of the side being comnsidered.

A modification of this formula will be more useful than

this basic form. If we multiply both sides of the equation by

t, we obtain

iy
¢ =

where 8' 1is the shear per inch of perimeter of the cross
gsection. The value of S!' need then be multiplied only by the

width of the side to obtain the running load w. Applying this
*See Timoshenko and Lesells "Applied Elasticity" pp. 45 et seq.
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formula, we obtain

St - 0,001784 1b./in. of perimeter
and wp = 0.01606 1b./in.

wp = -0.01249 1b./in.

wy = 0.0637  1b./in.

wy = ~0.0625 1b./in.

The only error which enters into this calculation lies in
the variation of the front and rear spars from a thin walled
section. The accuracy, referrirg to the leasf work calculation
again, is excellent; the errors are —4.2% in the front and

~7.2% in the rear spar, and 8.3% in the drag spars.

Burgess! Inverse Ratio llethod for Load Division.- 8. B,

Burgess has also developed a method called the inverse ratio
method for detcrmining load division between the various parts
of a redundant structure.* The basic theorem is that the por-
tion of the inposed load carried by each of the included stat-
ically determinate structures is inversely proportional to the
internai work done in the included structure when carrying the
whole load alone. This theorem is true only when no part of
one included structure reacts upon any part of any other in-
cluded structure; when no member of the structure is comnon to
two or more of the included statically determinate systems into

which the structure is divided: and another error which may

¥See Airship Design, by C. P. Burgess.
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becone involved in the results of this formula is generated
when the applied load is not concentrated at a single point
conmon to the determinate systems but is distributed among
two or more common points. For these reasons this method is

not rigorous in all cases. Applying it, we obtain

wp = 0.0166 1b./in.

Wo = -0, 0132 1. T1

w

1]

o 0.0595 1b./in.
w, = -0.0594 1b./in.

The accuracy of this method, comparing it with the results
from the theorem of least work, is very good. As a rigorous
method, it falls down because the various members interact under
load. However, in a simpler case than the one at hand, there
is reason to believe that the agreement will become absolute,
and such a case, one in which the center lines of the spars form
a rectangle, is analyzed in the appendiz. The results obtained
from inverée ratio and least work agree exactly. The reason for
the agreement lies in the fact that there is no component of load
from the drag spars entering into the 1ift spars. Since in
practice the rear spar is almost always rmore shallow than the
front, this case is apparently of acadenic interest alone.

The variation of the results obtained by inverse ratio,
from those of the least work method, is smaller than for any

other simplified method. The calculations necessitated for
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this method are more tedious than those for the rigorous method
and for this reason the inverse ratio method is at a disadvantage
in comparison with the membrane analogy method.

Summary of Results

T % iR l % Wy % wy, %
Kethod 1b./in! = | 1b./in.| %= |1b./inl ®° |1b./in. ¥
EOr Iox h {0 % id Iror
Present design |0.0286(+70.2|~0.0286{+113.40.0000{-100.0f 0.0000| -100.0
Least work 0.0168| 0.0}-0.0134 0.0{0.0590 0.0{-0.0589 0.0
Simplified 0.0144{-14.3} -0.0103| -23.1{0.0712| +20.7|-0.0710| *20.5
least work
Trapezoidal 0.0140|=~16.7{ -0.0098| ~26.9!10.0731| +23.8|-0.0729| +23.6
Niles! method 0.0142!-15.5| ~0.0101| =-R4.6:0.0719| +21.9(-0,0717| +21.7
Burgess' mom. 0.0142} ~15.5| -0.0101 -24.6;0.0719 +21.9|-0.0717| +21.7
of T. |
Membrane analogy!0.0161| =4.2|-0.0125! ~7.2/0.0627] +6.3!~0,0625| +6.1

Inverse ratio 0.0166| =1.2]-0.0132| =1.510.0595 +0.8{-0,0594] +0.8

Values in table are beam loads per inch of span for a torsional moment of
unity per inch of span on the spar of Figure 2.

Discussion of Results

Present design practice, as the values of the loads in the
summary show, is extremely conservative in computing the loads
in the spars of a box wing, and at the same time does not pro-—
vide any means of computing the considerable shearing stress in
the plywood skin. Due to the action of the drag spars, a large
portion of the torsional load is removed from the 1lift spars,
and stresses of a sense opposing the stresses already present in
the chord members of the box are set up. It must be realized,
at this point, that the calculated stresses detailed in this

paper are all obtained upon the assumption of a perfect structure,
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one in which there is no give in the joints, and more particu-
larly, one in which all the web members, including the skin,
have no tendency to buckle under a shear load. In practice,
the skin of the wing will not carry shear without a certain
tendency to buckle, and for this reason will not maintain the
theoretical transference of load from web to flange. Under
these conditions, the actual stresses in the wing will differ
- from those obtained in the rigorous analysis, and will tend
toward the present design condition. For this reason it is
not possible to recormend the adoption of any logical analysis
without the support of test data. A superficial consideration
of the problem will suffice to show that the internal work in
the spar under a torsional load will be the least when the net
axial load induced by bending morent in the chord members ap-
proaches zero. This condition is that demonstrated in the
nethod of least work.

The application of the method of least work is rmch too
cumbersone a neans of attack to use when, at the expense of a
relatively slight loss of accuracy, much siripler methods are
~available. It is probably the simplest rigorous solution
which can be applied, and for that reason has been used as a
check against the approximate answers obtained.

The method of simplified least work has little advantage
over the rigorous method, since the loss in accuracy is 80

large. It is undoubtedly true that the labor of computation
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has been greatly reduced by the omission of the terms of
shearing; but another approximate method is available which
combines greater accuracy of results with nwuch simplér calcu=-
lations than may be obtained by any simplification of the method
of least work. For this reason, while the validity of the
method is recognized, it has little value.

The solution of a trapezoidal form of box involves two
assumptions: first, that thé shearing work done is negligible,
and second, that the cross section of the wing suffers no dis-
tortion during rotation. The method of simplified least work
has already demonstrated the errors attendant upon the first
assunption. The second has been verified within the limits of
experimental error on a few occasions; its use is, however,
definitely an approximation. The results of this method demon-—
strate the fact that an additional error does enter into the
equation when the second assumption, previously mentioned, is
used. The magnitudes of the inaccuracies obtained by this
formula are such as to reduce the value of the method to a
very small quantity.

A. S. Niles? developrient for the treatment of this problen
may be applied to a trapezoid only if it is assumed that the
drag spars are parallel to each other. The method is essen—
tially nothing more than a special case of the trapezoidal solu-—
tion obtained when the 1ift spar heights are equal, and the

angle M 'is zero. To apply it to a trapezoid is obviously
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unreasonable, on that basis. However, if such an application
is nade, the 1lift spar loads must be adjusted to make IV and
IM equai to zero, involving an error from the rational method
of load division. Ihcluding then, as it does, approximations
in addition to the ones utilized in the previéus method, it
seems logical to expect larger inaccuracies in the results ob-
tained. This does not occur; the magnitude of the error is
less for this method than for the trapezoidal solution. Such
results may not be expected in all cases however, for the rea-
sons stated above, and therefore this equation should be ranked
below the trapezoidai one in point of accuracy; in regards to
utility, it is slightly superior, since it does not involve the
solution of any complicated simultgneous equations.

C. P. Burgess' method has as its main asset the ease with
which it may be applied to a structure composed of more than
two spars. For the analysis of a two spar wing, it lies on a
par with Niles' method, since the two equations are identical.
The two equations, as far as discussion and results are con-
cerned, may be classed as one.

The membrane analogy method is by far the best approximate
method available at the present time for this analysis. It is
the simplest of all seven of the forrmulas covered, and the er-
rors in it are small enough so that.it may be used directly as
a nethod of computation. The only reason for any error entering

into the calculations is that the chord nembers as such do not
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constitute part of "a thin walled structure;" but the inac~
curacy due to this approximation is small enough to be rela-
tively unimportant.

Burgess! inverse ratio method, in this case, gives ex-
tremely good results. The generality of such an occurrence,
however, seems doubtful; and it is evident that this method
involves more labor of computations than the method of least
work. For this reason, and the fact that there is an approxi~
nmation in the inverse ratio theory, there would be no reason
for not using least work if sufficient time and labor were
‘availaple for either method. At best, the inverse ratio method
is inferior to the least work method in both simplicity and ac-

CuTacye
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Appendix
Sample spar #1 characteristics (see Fig. 2).

Front spar:

o E 3 % M .3 h: N
= 6(9.0 w BB ) ¥ 5 X 5 X9 90,7 + 7.6 101.8 in
Rear spar:

& e . oo A o i P Tt

= 5(7.0" - 4.5") + F5 x g x 7 = 42.0 + 3.6 = 45.6 in.

Top and bottom spars:

2o o Bl % s TG :
Neutral axis = X B0 + 210 = 13.48 in. from front spar.

='%.50 x.13.48° + 2.19 X (35.0 « 15,88)° =
= 836 + 1014 = 1650 in.*

Position of elastic centr»um:

_ _35 x 45.6
45.6 T 101.3

=i 1000 Al

(d - x) = 35.00 - 10.87 = 24.13

o S o AR

35.0 = 4-19 b 5 ¢ S

A =y= 41910

n = tan™* g% = ta™ G.OSIR W B AP

gin N = 0.0572; cos M = 0.998




N.A.C.A. Technical Note HNos 866 30

Loads in sample wing, assuming zero drag loads.

Let
M = unity per inch of span
= o
Then WF = —Wp = T
and w, = 0.0286 1b. /i,

WR = =0.,0286 lb./in.
wy = 0.0 1b./in.
w, = 0.0 1b./in.

Loads in sample wing -~ the method of least work.

From equations (8) and (13), pages 11 and 13,

2 v 8
& 8K2
MR RS G M, I E s BT
0= g=73 { 75— K (K, * - 2K R ®+EK, )}
[ 5 £ %K,3

& A &l 2 242 3 3™ 2 T

s Y= 2 1% % T B - BN
1 x

L
then W, = 2(a + ) é w° x3%dx =

2+ 3
g = (o + ) WL,

waloo

From equation on page 9,

SR S R . - .
Wb —.é FT — 40ET (since M =-%WX for cantilever).

To determine the internal work W total,

W= ZWB o ZWS
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Front spar:

# 15, = o = SRS :
¥ 88,700 1b./e8.18, = % = e 1b./sq.in.
K, = 3.75 1b./sq.1in.
K, = 4.50 1b./sq.in.
%, = 0.88 3b,./eq. in.
%o = 2400 I8/eq. in.
$ = 301.3 in?
5
4 S0 ! 8% 25 _ 2,75 (4.5" -
§ x 86,700 % 101.8° .
- % X 4.5° x 2.75° + & X 2.754)¥
- J

R |
& = 8,81 x 10 1°{ 986 - 3.75 (411 - 103 + 10)}
L J

8

= 2.81 % 1068 X 00 &= O e

8

> 1 (2% 205
ST SR 00 % 101.3° x 0.8 U 4

. 4
2 8K O.Bg %S4l (4.52 E 2.752) +

3 =
2 x 0.35° x 2.755j-= 2.25 x 10”° (2.75

+
[20.3 - 7.8)" + By [30.5 ~ 7.8] % 1lidds

(=]

Y = 1.01 x 10

-6 2
Ws = (1.101 + 0.030) x 10 X =% Wpo X 200® = 8.0 sz
wFax 200°
W = = 60.8 w_°
W0 k10" ¥ 1.8 x 10L.% F

(4,59 . 2.78%" o
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Rear spar:

=]
|

]
l

= 86,700 1b./eq., in.

, = 8.35 1b./sq.in.

.= 8,50 1b./84, in.

hy =90,28 1. /eq. iz

B # 3075.10./n0 . 40

T =85.8 in,*

5 1475

X 3.50° R 2
8 x 86,700 x 45,62'{ TR o i Boiad B

%'2.36° +-% X 2.254]}

T Rk TR B {380 -~ 3.85TI00 = A ¥ 5]} 3

% 1

0

- —8
2v18.13 x 23 10 L A

1,75 'k 2.88 ( 2

2 x 88,700 X

1.180 ® 10°°

Il

If

-+

(- 5
W © X 200

58" a5 )
45.8% x 0.25 4

+ 175 X 0,25 X Buge

. (3.5" « B.38") »

2 9

s -—
£ x 0.25° x 3.88 }- % 11.1 % §0

(172 [12.5 - 5,30 @ 2.86 [13.5 ~ 81 + 0.8)

(1.120 + 0.028) x £ x w_® x 200° = 6.1 w2

R R

40 X 1.3 X 10° X 45.6

= 135.0 wy®
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Drag spar:
I = 1652 in.*
%, = 00886 in,

t, = %(1.25 + 1.75) = 1.50 in.

A= 36.9 in.

Then if A = area of one flange,

A = 1658 + 681 = S.43 in.

2.43 :
K, = 18.45 ~ £2%= = 16.84 in.

K, = 18.45 in.

1.8
a = : & x 18,455 _ 16.84 [18.45" -
8 x 86,700 x 18532 ‘15

27 » ®+1x .
- 218.45% x 16.84° + L x 16.54 ]}

& & 900 % 10 *° {1.14 x 10° - 16.54 [118000 - 64500 +

+ 16100]}
Y ¥ 4 —10
8 = Vs¥e X 10 X 0,001 x 10 = Y88 ¥ 30 - Q
is negligibvle.
3 5° x 16.84 2
%= [Le2 21882 (19, 45°

2 X 86,700 X 1652°% x 0.0835

242 1.50 2 2
« 15.84%) 3)(16 (18.45 .. 16.84%) +
2

2 s -11
+ I= X 0.0635° X 16.84"] = 3.34 x 10

[3080 + 8500 + 710] = 4.31 x 10




(1)
2)
(3)

4)
(5)

(6)
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”

2
w

3

%, = 4.91 x 107 X W B 360" = 3.58 w,*
x 200°

L L

e L
_Wb £

840 ¥ 1.3 % 10% x 16528

o 2
= S5l WL

By inspection, from Figure 1,

Wy COS N W =00

L
B ¢os N Wy * dWR

in terms of Wi

¥y = Wy o0 n = 0.

o !
W _.a(l - h, cos
Wy :-%(1 ~ h, cos

h, cos 7 Wy t dWF =

l

=
I
l—l

998 WU

A
n wU) = 33(1 - 7.0 x 0.998 wy)

(0.0886 ~ 0.1996 wy)

1
e T3--5(1 -~ 9.0 X 0.998 wU)

(0.0286 — 0.357 W)

Substituting and collecting,

Total WT =w=2 x[

U
+
+
W
e Wy [1.996 x
é WU
X

—

$7.2 . - 3,88 = O3
U

W, = 0.0590 1b./in.

2.29 + 3.721(1 + 0.998%) + (135.0 +

6.1 (0.0286 — 0.2357 wU)2+
(60.8 + 6.0) (0.0386 — 0.1996 W)

3 x 6.0L + 1411 88 x0.280 + 68,8 %
2 x .1996°] - [668.8 % @ x 0,19968 x 0.0288
141.1 X 8 x 0.257 x 0.0388] = O




(1

(2)

(3)
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Il

w, = -0.998 x 0.0590 ~0.0589 1b./in.

il

W,

5 0310386 ~ 0:1996 x 0.0590

0.0168 1b./in.

.
R

~0.0286 + 0.2357 x 0.0590 = =0.0134 1b./in.

18

Loads in sample wing - by least work, neglecting shear.

By omitting shear terms in total work equation,

p 2
WT = WUE;(3.72) (1.998) + 60.8 (0.0286 - 0.1996 wU) -+

+ 135,0 (0.0286 — 0.257 w.U)2

MWy

55— = Wy (8 x 1,996 x 3.72 + 60.8 x 2 X 0.1996% + 135.0 x

U ‘
X 2 X 0.357%) = {2 x 60.8 x 0.0288 X

X 0:1996 — 3 X 135.0 x 0.0286 X 0.257)
37.56 w; - 3.69 = 0j
W

8,07%a 1h. fin.

U
Wy = 0.0386 —~ 0.357 X 0.0713 = ~0.0103 1b./in.
W= 0.0286 — 0.1996 x 0.0712 = 0.0144 1b./in.

w.

N 0.998 x 0.0712 = -0.0710 1b./in.

Loads in sample wing -~ trapezoidal method.

By the principles of equilibrium, from Figure 1,
WU Cos M = WL =0

WU h2 cos N + WFd =1

WU b, eos B + WRd = I

Il
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And by equating angles of deflection, from page 18, (3),

w. W w.. sin n W, COS N W
4 %[%+TE__Q_T—-—].._]; _.U.i___._.__-{-_fl-'_]:O

Substituting numerical values, collecting,

(1)(5) wy, = 0.998 wy

(2)+(8) Wy

1l

(0.0286 — 0.1996 wy)
(8)(7) wy = (0.0286 — 0.257 wy)

(4)>(8) 0.02868 [0.00987 wp + 0.03190 Wy - 0.00003 W] -

-~ BeEE [O.OOO6OlWU + 0.000803 wL] =0

8§8 w o . - ° ol ° e ° =
(8)>@) p * 2.81 W~ 0,003 W~ 0.338 W - 0.337 W =0

ghbotitute 5, €6, and 7 in 8!

(@) (0.0286 - 0.1996 wy) + 3.31 (0.0386 - 0.2357 wy) -

S 1) it Wi 0206 =
0.241 U 0.2856 WU 0

®) w; (-0.1996 - 0.568 - 0.241 - 0.238) = -0.0386 - 0.0832

1.245 w, = 0.0913; Wy = 0.0731 1b./in.

0.998 x 0.0731 = =0.0729 1b./in.

I

(10 w,

It

(11) w_ = 0.0886 - 0.0731 x 0.1996 = 0.0140 1b./in.

(12) w, = 0.0286 - 0.073L x 0.257 = -0.0098 1b./in.

Load division, by Niles' method.

ORI

0 et
2

R

F R
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45.6

4y 352 [ 2 x 0.000805 9}
@ ¥ = 5375 600087 + 0.021% = 0-667
(3) My + Mg = 1.0

% o BiBB7 . e A

(3)>(2)=(4) Ny = Fgg7 = 0.4005 My = 5—F=5 = 0.600
(5) wy, = 8800 = 0.0717 1b./in.
(6) wy = 0.0717 + 0,998 = 0.0719 1b./in.
) Wp = Vg = Wy sin m = 0.0573 x 0.0719 = 0.00413
(8) Up x + wp (d - x) = 0,400 = 10.87 wp + 34.13 Wy

(7)->(8)=(9) 10.87 wp + 34.13 (wF -~ 0.00412) = 0.400

(10) 35 wp = 0.400 + 0.099 = 0.499; wyp = 0.0143 1b./in.

(1)) vy = wp - 0.004123 = 0.0142 — 0.00412 = 0.0101 1b,/in.
Load division by Burgess! moment of inertia method.
Member I 8 Is Is® L

F.S. 101.8 10.9 1102 12000
.3, 45.6 24.1 1100 26500
u.8. 1653.0 4,19 8930 29050
Lnlls 1652.0 4.19 68930 29050 0.0717
96600
ty = 0.0717 + 0.998 = 0.0719 1b. /in.
Wp = Wp = 0.0572 X 0.0719 = 0.00413
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(3) 10.9 wp + 34,1 wy =1 -~ 4.19 (0.0719 + 0.0717) = 1 -

(4) 10.9 wp + 34.1 (wp — 0.00413) = 0.400

(8 . 3% Wp = 0.400 + 0.099 = 0.499

6) w 0.0148 1b. /in.

F

(7) Wy = 0.0143 -~ 0.0041

It

0.0101 1b./in.

Proof of identity of Burgess' and Niles! Methods

Ls
(1) By Burgess w, = z:t;(‘? M
i .1
(8) By Niles Mg | iy TS
®¥¢ hn? i 41
IF IR
(3)By statics, M, = Wpx + WR(d - )
and M. =

Ipx® + Ig(d - x)?

(4)from (1), M, = (for M = 1)
Ha® .
2 2
(5)from (1), My = Iy(h ~ y) * Iy
Lie?

Ipx® + Ig(d - x)?

Il

\ M
(6)from (4) and (5), ﬁh e -

(?) by definition, x =




(8) (7)s(8)
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2 r 2
I ks

, 1a% o] ; p Nl

My, RN R™ | Ig ® &

M 2 r 2
% Iha_._._I_L_.__..[.Iha—__I.U_.__.
U bIL * oy i -IU 9
e 3
: Ipla(Ip + I5) | [ ;15
(9) e WP LRI s T
Ra: ¥ - R SR
g bt | RS Rl jIII+II
2 * e ¥
Sl P
S
M 20 e ke B
h b 9
@Q) ;e o 1 N () Q.E.D.
¢ B ks o
e R
Loac¢ division, by membrane analogy
b & al
g ZA
& = 36-% %(7 + 9) = 380 sq.in.
g = §“§l§§5 = 0.001784 1b./in. of perimeter
wo = 0.001784 x 9.0 = 0.01606 1b./in.
Wy = 0.001784 X 7.0 = 0.01349 1b./in.
w; = 0.001784 x 35.0 = 0.0635 1b./in.
Wy = Wy ¥ 0.998 = 0.0837 1b. /10,




@)
(3)
(3)
(4)
(5)
(6)
(7)
(8)

(9)

(10

(D)
(12)

Load
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division by inverse ratio.

From pp.30 et seq.,

86.7
141 L] O
5.01
5.01
¢ Ge # p:
85 X Tprorte=—s = 11.24 in.
35 ~ 11.84 = 23.76 im.
0.50 X 8.37 = 4.19 in.
0.50 X 8.37 = 4.19 in.
] kb bt 1+ 0.4 BRI R A
e g
A
3 = 0.0423
B9
0.0422 x £8+7 = 0.0199
66.7 _
0.0432 x £5:7 = 0.469
0.0422 x £8-7 _ 0.489



13)
@4)
(8)

@s)
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Member Q 8 q qs gs® w 1b./in.
P.8. 66, 7 11.24 0.0422 0.475 5.33

R.8. 141.0 235,76 0.0199 0.474 1l.88

U8 6.01 4.19 0.469 1.965 8.34

L.S. 6.01 4.19 0.469 1.965 8.24 0.0394

Sie* = 38.00

wy; = 0.0594 + 0.998 = 0.0595 1b./in.
Wp = wg = 0.0573 x 0.0595 = 0.0034

11.34 wp + 33.76 wg = 1 - 4.19 (0.0595 + 0.0594) =
=1 - 0.499 = 0.501

11.34 wp + 233.76 (wp — 0.0034) = 0.501

35 Wy = 0'581;1 w

p = 0.0166 ib. fin.

Wy = 0.0166 -~ 0.0034

1l

0.0132 b Jfin.

2 x4 x 5%+ 1/12 x 2 x 8) + 1/12 » 1/8 x 12° = 202.8 +
+ 18 = 320.6 im0
Tlkir + 18 & 139.5 0, *

= I = (4 x 6.87° + 13.33° x 2) + 1.33 + 0.17 + 1/32 x 1/12 X

X 31.5° = 534 + 1.6 # 850 = Bal.4 in.
B81.4 = 3(1/18 % 31.5%° ~ 112 ¥ 4" AR = F &

3368 = 9940 = B
X 1890 dn. = 3¢
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4,00 in.
6.00 in.
1/4 in.
4.89 in.

R

U L

4,00 in. 9.3 1m. 8.8 in.

6.00 in. 10.75 in. 10. 76 imn,

1/4 in, 1/16 ia. 1/16 in.

1.85 1n, 2,06 in. 2.06 in.

I 280.8" in. 119.3% in.,  SE1.4" 8. B .4*

e 2485 8 8 & B 2 2
%y = TX 86700 x 500 5F 15 X & -4 (6" -3x 6 x 47 +
+1/5 x 4%)] = 1.80 ¥ 10"
- 2.225° X 4 2.25 x 64
y 400) + 2a82 L 9% %
F 2 x 88700 x 220.82 L 4 ( ) £X 0
X 80 4 et B &N e 1008 % 30"
15 x 18 §r
3.8 . som oo ® ~8
0 = F5E X 2552 X ap = 1.99 x 0.555 x 3.42 x 10 o
= 3.77 x 10 °
4 1.25° % & 8§, 1.85
= 89 400) + Le X
YR e X 88700 X 119.3% : 4 (400) 4K 9
2 . ~
X6lX20+—mX4]-—l.24—3X10
2.06 8 5 4
Wy = : fse X M0LTBT .35 (10.70" «
U= "L 7 §x 86700 x 561.4° 15

~2/% % 10.76 " W a4 1B 8.8 Y

-9
4.72 x 10

~

(=}
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2
$ 5% - 16 e 08 110,757 - 9.35%) *
U L 8 x 88700 » 561.4°

+ 2538 9.35° (10.75° - 9.35%) +

" 2

) — 6
mx9.35 =2.62 XIO

W, = 3/3 (¢ + Y) w'L® = 3/3 x 200° X (@ + Y)w® =

S
2
= 5,330,000 (a + Y)w
e o i w® X _200° - ¥ y 8150
B AT 4% 1.3 %108 IR0
F 20.6 1.100 x 10°°  5.87 wp°  27.0 wp®  33.8 wp"
8 0 119.5  l.281 X107  6.83 wg® . SRETST 0 N
U 818 - 3.58 x I0° - 13.88 W 11.0 wy 24.9 Wy
L S8l  Bes x10* 1388 sz 11.0 wL2 24.9 w,°
WU ] WL
WF == WR

BOWF+1OWU=1

WU go 0 R0 e 8WF

W = 92.1 wy® + 49.8 (0.10 - 2 wy)”

SN . 184.2 w. - 2 x 2 x 40.8 (0.0 = 8 #a) = ©
o, F

p) =




e = MR o B |

L
q-.

33.8
58.3
2449

2"-"209
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PAE.6 ¥ - 19.9 = 0;

R A

I

0842 1b. /10
0348 1b. 18

0316 1b: 718

= 0318 1b. /18

58.3

24.9

¢

Wp 0.0342

qg = 0.580 X 0.233 = 0.135

7.34
12.66
5.0
5.0

0.233
0.135
0.918
0.316

as
1.710
1.710
1.580
1.580

2
pYof:]

qe®

12 .56
23.865
7.90
_7.90
= 49,99

44

33.8 = 1 + 0.580 + 2 X 1.357 = 4.394

W
.0342
. 0342
03186
.0318
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