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SUMMARY

In a two-dimensional field a generalized potential theory applicable
to nonadiabatic and rotational flow is developed. Three partial differ-
ential equations are first obtained determining the three vearigbles which
are: Distribution of additional temperature 9, velocity perturbation ¢,
and an auxiliary function &k characterizing the rotationality of the
flow. With the use of this theory the action of heat sources on the
flow 1s studied, and the heat delivery in a compressible flow at subsonic
and supersonic speeds is calculated. The results.show the effect of
compressibility and the nonlinear cooling. Applications of the results
to hot-wire anemometry are discussed.

INTRODUCTION

In a two-dimensional stationary field, consider a certain distrib-
ution of heat sources placed in a horizontal stream of main velocity U,
which can be subsonic or supersonic. The following points will be
studied theoretically:

(1) Action of heat addition on the motion of a compressible fluid
(2) Effect of compressibility on the heat delivery

(3) Nonlinearity in the relation between heat delivery and temper-
ature difference

For the investigations of these properties, the following problems will
enter, and their analysis will form the main part of the present paper:

(1) Development of a generalized potential theory for the study of
a compressible flow which is rotational and nonadisbatic (i.e., with
heat addition)
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(2) Temperature distribution sbout a heat source in a compreesible
flow

(3) Distribution of the flux of heat delivered by the heat sources
(4) Perturbation of the flow by the heat sources

This theoretical study will, on the one hand, illustrate the charac-~
teristic phenomena in a compressible flow with heat addition, and, on
the other hand, it will find epplications to hot-wire anemometry for the
measurement of velocity in a compressible flow at subsonic and supersonic
speeds. In order to simplify the calculations, without losing the
essentiality of the problems, it will be assumed that the heat sources
are distributed along a flat plate, which corresponds to an infinitely
thin metallic ribbon, edgewise to the flow, so that no appreciable per-
turbations due to the shape of the body will be present, and that pertur-
bations are due only to the heat sources.t Actually a cylindrical wire
customarily is used in hot-wire anemometry for practical reasons, but
from the present celculations it will be seen that the form of a flat
plate is preferable to the form of a blunt body like a cylinder in the
hot-wire anemometry of a compressible flow, because the variations of
the Mach number with the cooling are single-valued for the former body
and double-valued for the latter body. After the calculations of the
heat delivery by heat sources distributed along a flat plate, the heat
delivery by heat sources distributed along a blunt body will be discussed
also. In the present calculations the variations of the physical con-
stants, such as the coefficients of specific heat and the coefficient of
heat conduction, as well as the effect of viscosity and radiation, will
be left out of consideration.

This work was done at the National Bureau of Standards undexr the
sponsorship and with the financial assistance of the National Advisory
Committee for Aeronautics.

lsince the viscosity is neglected, the terminology "plate," which
occurs frequently in this paper, has the only meaning of indicating
the location of the heat sources, without offering any perturbation to
the flow, for example, in the form of a boundary layer.
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GENERALTZED POTENTTATL THEORY FOR ROTATIONAL MOTION OF A
COMPRESSIBLE FLOW WITH VARTABLE TOTAL ENERGY

Fundemental Equations

By writing the equations for the motion of the fluid, the following
usual symbols will be introduced:

X, ¥ coordinates of a variable point in two-dimensional field

ds = \[dx2 + ay2

W vector velocity

u, vV components of vector velocity

P pressure

P density

T absolute temperature

k ratio of specific heat for constant pressure Cp and for
constant volume cy (k = 1.4t 1is taken for air in numerical
calculations) ‘ '

R gas constant (cp - cy = cp k ; l)

o velocity of sound at temperature T (VEET-) -

» coefficient of heat conduction

M local Mach number (w/c)

The following functions will also be introduced:
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2h = pyCp/r
h' = ph
_2-k
g = Bh'U = k-1 yu

The above symbols are frequently used in the present calculations.
Other ones will be introduced wherever needed. The subscript o indi-

cates the state reduced adiabatically to stagnation, and the subscript o
indicates the state in the free stream.

The total temperature at a veriable point is given by the definition

W2
Ty =T + 5;; =Ty + 8(x,y) (1)

where T, is a constant called isentropic stagnation temperature and

3(x,y) is the additional temperature due to an introduction of heat.

For the sake of convenience the relations between the different temper-
ature symbols are shown as follows:

O
(2)
Tg/T = 1
Also,

T[Ty = T L

. (3)

W
= 7(1 - p1)

2cpT0

In the present problem there are four dependent variables w, D,
p, and d. For these four variables four equations will be written by
expressing the following four laws for the motion of the fluid:

(1) The law of conservation of momentum
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(2) The law of conservation of mass

(3) The law of conservation of energy

(4) The law of state of a perfect gas

The conservation of momentum is expressed by the equation of
momentum. In vectorial form it can be written as follows:

l/2gradw2+rotWXW'=-%gradp (&)

In a two-dimensional problem this equation for w can be separated into
two equations for u and v as follows:

du ,  Su_ _109p
uax-"-vay—pax (ka)
v, ., _ 1
sy ()

The conservation of mass of the moving fluid is expressed by the
equation of continuity

div w = I @- (5)
p Os

where ds = \[dx® + dy2 is the length of a segment of the streamline.
The conservation of energy is expressed by the equation of energy,
sometimes called the equation of heat conduction
1
pw - grad ch+—2-w2 = - div (pw) + M div grad T

This equation can easlly be transformed into the following one:

ow - grad (CPT + % w2) =M div grad T (6)
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In equation (6) T can be replaced by T from definition (1), and
the following equation can be expressed:

b = po(T/To)EL 5y
with

)  o(5oS)/F

where S is given by the definition of entropy

1
T ds = Cp aT - ° dp

Then equation (6) becomes

L
div grad (7/un) = EhS]-_(‘l'/u)k-l w - grad T (6a)

where 2h = pocb/k.
Finally the equation of state of a perfect gas is
P = ReT (7)

These five scalar equations (equations (4a), (M), (5), (6a), and
(7)) determine the five variasbles in the problem u, v, p, p, and

The problem is now to reduce the number of equations by eliminating
certain variebles. Therefore a system of three equations will be dis-
cussed which will determine the three principal varisbles u, v, and 9.

The first equation Ean'be obtained from the equation of continuity

(5), by eliminating p and p with the use of equations (la), (¥o),
and (7) as follows:

divw=Xk

ol o
&1

= | =
) owo/
o |3
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or again, by replacing T by 9 from equation (1),

divw=—HJ—+ — —

In the x, y coordinates this equation can be written in its
expanded form as follows:

u2\du uv(dv , du  v2\dv 1 39 od
(l-c—2->$-c—2(${'+$>+(l-z§>$—a<u$+'v§;) (8)

Herewith the first equation of a system of three equations is obtained
which will be discussed in the following paragraphs. The first equation
will be called the equation of motion of the fluid. The second equation
is the equation of energy already glven by equation (6), and the third
equation can be derived as follows from the condition of the rotationality
of the flow which is given by the equation of momentum (4). Simple cal-
culations of the rotational term in equation (4) as a function of 3

and Ty from equation (1) lead respectively to

1
= C
ro‘waw= 1 grad log pk/p --—-Egradﬁ (9)
c2 k-1 © c®

1
X 1 x cp T4
L s oH) - % o 1, 22 (50

1

—

where grad loge <pk/ p) is nothing else than the increase of entropy S,

expressed by

pl/k
grad loge (—p——) = grad (S/cp)

as can easily be proved from the definition of the entropy.
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-

From equation (9a) it is seen that an isentropic (S = Constant) and
adisbatic flow (Ty = Constant) has

rot w X w

=0
) )

Furthermore, by taking the rot of equation (9a), making use of
equations (2), and cbserving that rot grad A = 0, there is obtained

finally

rot w X w

rot )

= - grad Eg-x grad loge r1/2 (10)
c

This is the equation of rotationality of the flow.
The two equations (8) and (10) determine the wu, v field as a
function of the temperature which, in its turn, is determined by the
equation of energy (6).
Generalized Potential Theory for a Rotational Flow -
A system of coordinates formed by the streamlines and their ortho-

gonal trajectorles is taken. The stream function V¥ is used for the
streamlines, giving

[ (11)

A generalized potential function ¢ and an auxiliary function =k
can be chosen such that

u=k gl;
- (12)
v =K %3 J
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or in vectorial form w = k grad @. The function ¢ is called the
"generalized" potential function, because it comprises the particular
function for an "irrotational" potential flow by putting k = 1. The
generalized potential motion can now be determined by three equations:
The equation of motion in the form of a differential equation for o,
the equation of energy which gives the temperature distribution, and a
third equation which determines the auxiliary function k.

It is worth while to remark that the study of the distribution of
a certain physical property (e.g., temperature distribution) about a
body of more complicated form can be made possible by the introduction
of such a set of functions ¢ and V¥ in the generalized potential
theory, because the use of such variables ¢ and V as new coordinates
will transform the body into a flat plate.

The third equation which determines the auxiliary function k can
be constructed as follows. If the u, v field is considered momentarily
as given, the function k will be determined by the following relations -
derived by simple vectorial operations:

rot w = -w X grad loge K (13)
From equation (13) the rotational functions ot wXw and rot TOL ¥ X W

c2 c2
can be calculated as follows:

rot w X w we v - grad loge

= -—5 grad loge k + L (14)
c2 c@ © c2
w - grad log, k
rot EQE_EEK_E = - grad E; X grad log. k - = S wx grad loge k

w - grad log., k\
= ) (15)

w X grad < e
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By comparing equation (15) with equation (10), the equation for &k
is obtained in the vectorial form as follows:

W e ad lo K
grad fe X grad loge k + &r 5 Be W X grad loge kK +
c C
W o ad lo K
w X grad ( er > Ee ) gra.d w2 5 X grad loge T +1/2 (16)
c

The velocity potential ¢ can be written in two parts as follows:

P=90+0 (27)

where @ is the perturbed velocity potential, @ = Ux is the velocity
potential in the free stream, and ¢ 1is the potential perturbation.

Also,

u = g(U + 30/dx) = U + u'
u' = k 30/dx + (k - 1)U (18)
v =v' = k3¢/dy

where U 1s the velocity in the free stream.

After substitution of relations (18), equation (8) becomes

= R N
with
redw 2o 30 - aR) vt - a9
where
ds = \ax2 + ay2
N |
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It may be useful to group the main equations as follows:
(a) Equation of motion (see equation (19)):
u2\3% | uv 320 v2\3%
1-2)22 w0, 1 _Y)9°_.,
c2/dx2 c2 Ixdy c2/dy2
where f is given in equation (19)
(b) Equation of energy:

1
Ap~1r) = en(r/w) Tt w g—:

2 2
where A = EL— + EL— This equation is the analytical form of

dx2  Jy2

equation (6a).

(c) Equation of rotationality (see equation (16)):

W ad lo K ‘
grad Hg X grad loge K + er ge W X grad loge K +
c2 c2
W . ad lo K
w X grad gr 5 ge = grad E; X grad logg T1/2
c c

If 8 and n represent the unit vectors along a streamline and
along a normal, respectively, the following equations can be written:

a loge K
W ————————————
os

W + grad loge K

a loge K
W t—

w X ad lo K
ar g o

3M° O loge kM2 O loge k
ds on T on o8

grad M2 x grad loge k =
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Using these formulas and assuming

0 log. k o log. k
e ® Ee

s > (20)

there is obtained from equation (16)
k& T (21)

In an adiabatic flow (9 = 0), the expression (21) reduces to the well-
¥nown value k = 1. Assumption (20) expresses the condition that the
gradient of the additional temperature (or additional energy) must be
much smaller along the streamlines than along thelr orthogonal trajec-
tories. This condition exists in problems of the introduction of a heat
boundary (problems of combustion), of heat sources, or of a hot body in
a gtream moving at & high speed. In all those problems the motion of the
fluld is extraneous to the heat introduction. Otherwise condition (20)
will not be valid, for example, in the case of an explosion, where the
predominant motion of the fluid is created by the heat emission itself.

In the present paper the problem of the rotational and nonadlebatic
fiow will be treated under the assumption (20) and hence with the value
of k given by expression (21). Substituting expression (21) into
equation (19), the equation of motion becomes )

B\ wv % [, v2 _ .

(1 ) c2)ax2 ® ey ( c2>ay2 :

with - (22)
£ = %(1 + kMe)T'3/2w% ]

Small Perturbations

As a first approximation, equations (6a) and (22) can be transformed
into linear ones by introducing the assumption of small perturbations;
that is, it is assumed that the perturbations u'/U, v'/U, ¢/¢, and
3/T, and their differentials are small compared with unity, such that

terms of second order are negligible.
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Under this assumption, the equation of energy (6a) and the equation
of motion (22) become, respectively,

(a) Equation of energy:

9% 3% _ ,
g

32 342 ox

where L,

(23)

2-k

Tk-1
g€ = Ko hU

(v) Equation of motion:

5 3%% ., 020

NI

where i (24

i

DISTRIBUTION OF TEMPERATURE AND HEAT FLUX FOR
A HEATED BODY IN A COMPRESSIBLE FLOW

Temperature Distribution

The convection of heat is governed by equation (23). It has the
following solution:

= Aengo(gr) (25)
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where r = \/x2 + y2 and K, 1is a Bessel function. TFor larger values
of gr, K, can be expanded into a series which will be given later in

this section. The constant A can be determined if the heat delivery Q
is known. Consider first the case of a line source. The formula of
temperature distribution about a finite body can be constructed by
considering a continuous distribution of heat sources on the body, and
will be studied in the following section.

The heat delivery @ should be egqual to the total heat flux around
a closed circuit formed, for example, by a circle of radius r enclosing
the line source. The following formula can be written:

_ il
Q _j; ds(-har + pcpUd cos n) (26)

where ds i1s a segment of arc on the circle and r and 1 are respec-
tively the radius and the angle in the polar coordinates.

The question is in what sector of the circuit the heat flow will be
effective. At large velocities, the major part of the heat flow occurs
through a very narrow sector so that the magnitude Q will be at first
approximation independent of the limits of integration, provided these
are taken of sufficiently large range. Therefore as a first approxi-
metion there can be written in place of formula (26), for all kinds of
velocities (subsonic and supersonic),

T
Q = 2r:r f dn(—% + 2gum’l13 cos n) (26=)
0 A
Putting
1 " ]
Io(z) = % f aneZ SO8 1
0
I (27)
1 [T
I,(z) = 2 f dne? €% M cos q
o -




NACA TN 2436 15

formule (26a) can be written as follows:

1t
Q = 2\Agr [-Ki(gr) J[‘ dneng°S1]-+
O -

(Eum'l - l)Kb(ST) i/ﬂrdnegr CO8 M cos %]
0

= 2m\Agr {[—Kl(gr)lo(gr) + KOII:l - 2(1 - u,,,"l)KoIl} (28)
By the use of the following expansions,

K (z) = e éjiz-(l - 8%)

1y(s) = 22w =1 - &
Y 7@ T g\ 82
formula (28) becomes
Q = 2mMApe T

Herefrom A is obtained, and from formula (25) there is obtained

8 = 55 8K (gr) e (29)
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Flux Distribution and Heat Delivery
The distribution of temperature about a line source is given by
formula (29). This formula is valid for subsonic and supersonic flows.
Consider now a flat plate of length 4a. ILet q(E)dé represent the heat

flux from an elementary segment dE of the plate. The temperature
contribution by this segment at a variable point x,y is

s = 5“% aka( E.)eg(x'g)Ko(s\.‘z2 + y2)

where z = x - §. By integrating,

21N

La
3(x,y) = L= f ﬁlE.q(E)Eg(x'g‘)Ko(g\Jz2 + ye) (30)
0

Formulsa (30) gives the distribution of temperature in the flow region
about a plate. This formula contains & function g which will be deter-
mined, in the calculations which follow formula (30), by the integral
equation (31) for the surface condition on the plate.

On the surface of the plate there can be written for 0 £ x £ La

X
8y = 5 | ata(e)e® B [alx - ] +

b
e [ asatere™ 5k fae - ) (31)

2n\
X
or, by uslng the asymptotic expansion of Kb(z) for large values of 2z,

- e e e -
X

(31a)
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The second integral on the right-hand side decreases rapidly with &,
and therefore as a first approximation it can be written as follows:

~2g( £-x) T R 5 T
j:adgq(g)e \/eg(g_x) q(x)\/;;j(; agy e

7C

= a(x) 5

For the sake of simplification of writing, introduce

-
p'co
ap(x) = é‘;— o 4(x)
where ' [r (31p)
&y = Qg/ﬂ

The relation (3la) between the heat flux and the wall temperature then
becomes

B X q]_(g) -1
%__é‘dg\(;’__EJrg* ql()

or

ql(g)

8, = ag(x) f‘a 32)
&y, q1X+g*O§\lx___§ (

First the integral equation (32) will be solved for the general case of
a variable wall temperature 9. Later the particular case will be

derived of a constant 49, which is true, if the plate is supposed to
be & very good conductor.
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The integral equation will be reduced to a linear differential
equation of first order by & differentiation with respect to x. First,

put x - £ = §2 in order to prevent the singﬁlarity which would occur
when £ = x. The differential with respect to x of the integral in
the right-hand member of equation (32) is

a_ X Ql(g)_ a_ £3 o)
=N x_g-edxf atay (x - £2)

0 0

(x - ¢2 VX
(At + 2f xd&él(x - £2)
\JE §=v§ 0

where él(g) = ggéél.

By applying this rule to the differentiation of equation (32), there
is obtained

. 0 a; (& .
a;(x) + g, %)— + g, j(;x dg 3;{(__2 =89, (33)

This formula is fulfilled by the flux at the distance x. The flux
at the distance x, will fulfill

(0) %o q, (&) .
) + gy =t g, [ at L - g (34)

Vo *J Vo - ¢
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Multiply every term of equation (3k4) by dxog.(x - XE)—l/E,

integrate with respect to xp between the limits O and X, and sub-
tract from equation (33); it follows:

A 0
él(X) + 8y ql( ) - g*qu(o)k/qx dxp S S

= A Vxa(x - %)
o [X X0 at él(ﬁ) Ce3 -g2 X 3 %2)
o [T [P e e
(35)

The first integral on the left-hand side of this equation has the
velue x. In the double integral the order of the integration can be
inverted as follows:

x 2 3 (8) . x 1
dxp dg = dtg; (&) '
‘/c; */c: V(x - ) (x2 - ) [x : '/; e Y(x - x2)(x2 ~ £)

The last integral with respect to x, has the value =n. Hence the
value of the double integral becomes

fox e j: ® Vex - :SEXe T8 ﬂEll(x) ) ql(oﬂ
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Substituting this into equation (35),

(.ll(x) - qul(x) = F(x)
Where \ | g (36)
- 2, e o [X . Sy(xp)
F(x) = -8, (0)x" + g%, - g, fo 2w ]

The integral equation (32) is thus transformed into the linear
differential equation (36). Its solution is

ay (%) ql(o)eng+f dgF(g)eeg(X-g)

(0]

a1 (0)e®EX(1 - err \Bax) + g (%) (37)

!

where

o pfRax 32
erf 2gx’=—ﬁb£ d.xg-

and q;'(x) is the flux Gue to the gradient of the wall temperature

ay" (%) =f‘ aEF (E)e
(0]

with it (38)

Fr(e) =g*aw_g2 dx. =l
+ j: %2

=

p—

2g(x-£)

~
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In the particular case of a plate which is a good conductor, the
vall temperature can be assumed constant; then formula (37) becomes
simply

0 (0)e”F¥(1 - ere \Eex) (37a)

ql(x)

or, by returning to q,

I

a(x)

q(O)eggx(l - ert JEEE)

This relation is plotted in figure 1, where \’ is denoted by wu,
which can be expressed as

2-k

u‘\f—wm\lrg

where P is the Peclet nmumber as will be defined later.

The constant gq;(0) in formula (37a) can be determined by putting
= 0 in equation (32) which gives:
q;(0) = enxg* a(0) = g, (37p)

Now pass over to the calculation of the heat delivery. By definition,

@ = j;ha dxq; (x) = foha dqu(O)eng(l - erf @)

Qy/a1(0) = fu‘a axe“8* _ flw axe™®* ert \[Bgx
. Yo 0

or

et ot e e e e —e - - ————— .- — .
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The first integral of the right-hand member is evident. By changing

the variables n2 = 2gx, the second integral of the right-hand member
can be written as follows:

1]
&l
1]

(e¢]
o3
©
[
H
La]
Qo
13}
®
1
1,5} I‘_'
E
QO
®r
m'

Hence,

Q __ % _ 1 2 \Bga - 8ga(1 _ err \Bga a
a(0) ~ (0 ~ 2g[(ﬁ Vee l) e 8ga)] "5 (¥
vwhere, for ga >>1, o; 1s

o = \[—21_? \Bge (392)

Define a Nusselt number N such that
Q = NA ’3w/4&

where A 1is the area per unit length 8a. Hence,

N =2 (ko)
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From expression (37b),

a(0) = oM, 5& - (41)
Hence,
V= 5 = ok, = 2 (Bl (42)
2)‘-8‘4 l/ o n & ©

The above calculations give a picture of the distribution of the
heat flux. However, in the order of approximation adopted, it seems
that the pattern of distribution of the heat flux does not influence
very much the heat delivery. This is readily seen, since the expression
for the heat delivery (formule (42)) can also be obtained by the
following more approximate method which does not take into account the
detalls of the flux distribution. To this end, if in equation (31)

a mean heat flux q is introduced and x is put equal to

J
the following equation can be written:

Ty
o Po ho-E
I, % n qj; dﬁeg( )Ko[g(ha - gil
hga
n _
= E;%-ﬁg l\jr dueuKo(u) (k2a)

0

This integral is known and has the value VBnga - 1. Then,

q = zmwﬂgpw'l(\/é?g—é - 1) -1
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and N which is defined by

ag
200,

becomes

W = 5 (Brem + 1) (43)

By comparing formulas (L42) and (43), it is seen that formula (43) gives
a very good approximation to formula (42) which was obtailhed from the
considerations of the exact distribution of heat flux.

A generalized potential theory has been developed and three differ-
ential equations have been obtained which determine the three variables:
The distribution of temperature difference 4, the potential pertur-
bation ¢, and the auxiliary function of rotatiomality k. As a first
approximation, the equation has been linearized by neglecting terms of
the second order in perturbations u'/U, ¢/P, and d/To (see section

Small Perturbations). Then the equations can be solved for 9 (section
Temperature Distribution), the heat flux can be calculated (this section),
and hence the heat delivery can be obtained as in formula (43). How-
ever, the results show only a linear relation between the heat delivery
and the temperature difference. In order to show the nonlinear char-
acter, a second approximation must be pursued by keeping the second-
order terms of perturbations in the calculations of heat delivery. To
this end, the distribution of temperature difference 9 obtained in

the Tirst approximation will be used to calculate first the potential
perturbation ¢ (two following sections), and herefrom the velocity per-
turbation u'/U. An "effective velocity” which 1s the average perturbed
velocity of the fluid along the plate can be introduced in the expression
of the heat delivery which will then be of nonlinear nature (see first
section under Nonlinear Cooling of a Heated Body at Supersonic Speed).

It is to be remarked that the process mentioned above will give a
second approximation with sufficient accuracy without entering into the
integration of the nonlinear partial differential equation in the form
of equation (6a).
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ACTION OF HEAT ADDITION ON MOTION
OF A COMPRESSIBLE FLOW
Flow Perturbations by Heat Sources
at Subsonic Speed
In this section the flow perturbation at a subsonic speed by heat

sources dlstributed along a flat plate will be investigated by using
equation (24). By means of the transformation

Xi=X
Yy =@ (hk)
¢y = VO

equation (24) can be brought to a Poisson's equation of the form

%, 3%
L, L pvg2 (15)
axiz ayiz

For the sazke of mathematical convenience this equation for the
motion of the fluid about a plate can agaln be transformed by conformal
representation into an equation for the motion of the fluid about a
cylinder of radius a, using the formula of conformal transformation

2
a
Z—Z+E-

Where 2z = xy + 1y represents the plane of the flow about the plate,

and Z =X + 1Y the plane of the flow about the cylinder. By trans-
forming equation (45) into an equation for a cylinder, there 1s obtained
the following equation:

BEQi 62¢i _olaz 2
5 5e e - 0

~
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This equation can be made dimensionless by dividing X and Y by
a, and ¢; by 2Ua. When R and 7 are teken as the polar coordinates

' of the Z-plane, and

dz 2

-1 - op=2 -4
awl = 1l -2R“cos 2qn +R

the right-hand member of equation (L6) becomes

39 /T,

= (¥7)

ty = %’V“_e(l + kMgz)(l - 2R"2 cos 29 + R‘u)

where O9/dx should be obtained by differentiating expression (30) for
the temperature distribution. However, the latter expression's being

of integral form will make the Poilsson's equation (U46) rather cumbersome
to0 handle. As a convenient but not as a necessary step, the perturbation
function ¢; 1is considered as a superposition of elementary perturba-
tions corresponding to elementary heat sources. First calculate the
elementary perturbation produced by an elementary heat source from
equstion (46). An integration according to the proper distribution of
heat sources will gilve us the resultant perturbation.

Following the above procedure, consider first a heat source of
intensity Q, placed at the origin of the coordinate (center of the
plate); then 9/3x can be calculated from formula (29), and expres-
sion (47) can be written as follows:

-gars(1-xy/r 2
Ty ® BV 1. 1(1-x1/ i)(J_ - Xi/ri) %% (472)
Vgari
where
d
By = 1 a,"e(l + kag)uw v _Q ga
Lyaxn T, 2\,

It is worth while to transform this formula into the polar coor-
dinates R and 7 of the Z-plane. To this end, note first that the
exponential term in the function £; can be reduced to the form

~constent X ga(R-1)2
:E'i~e
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Since large values of ga must be dealt with, the function f; keeps
a significant value only for { =R - 1 << 1. Therefore the approxi-
mation { << 1 can be introduced in the transformation process. Under
such an approximation, the variables x; and y; 1in terms of { and
1 become

Xy 2 cos 1

1l

T3 2; gin 7

ry = /Xie -

It follows that, at a varisble point downstream of the source for
-n/2 <K 1 << + /2,

with

2
- 2 (81029 42 _ga sin?y 2
Ty = BrY \2ga cos 7\co8 "1) S Cos n ¢ (W)

Now the integration of Poisson's equation (46) for the Z-plane will
be considered. It is to be remarked that the effect of the presence of
a right-hand member in equation (L46) is equivalent to that of a certain
continuous distribution of sources throughout the region of flow, the
intensity dI of the source distribution in an element of area 1 dl1 dX

being

T1
2n

dI 1 41 ax

where 1 and X are the polar coordinates. The potential function
induced by this distribution of sources can be calculated by the method
of image (references 1 to 3).

Consider first a unit source placed at a point ZQ = 11X in the
flow field outside the cylinder. The velocity potential induced by this

source at a variable point Z = Rein is equivalent to the velocity
potential of the unit source placed at ZQ, its unit imege placed at the

point Z, = 1-LeiX reciprocal to Zg, and a unit source of intensity -1
placed at the center of the cylinder. When the potential function and
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stream function of the perturbation induced by the unit source are
denoted by ¢* and ¥, respectively, there can be written

¢* + 1¥* = loge (Z - ZQ) + loge (Z - Zr) - loge Z

By taking the real part of the above complex equation, there 1s obtained

¢*=%1°8e (12 - 2IR cos (X - 1) +Rg)+

%[1 - 2(2R)™L cos (X - 9) + (IR)2

Evidently this expression can be written in the two following identical
forms:

)=

loge 12 +%loge 1 - 2¢7 cos (X - 1q) + 512:, +

%loge 1 -2t cos (X -17)+ g22]
_ 1 2 1 1 1
= 5 loge R* + 3 loge [1-2&,1 cos (X-n)+(§1)2:|+
5 loge [:l - 285 cos (X - 7) + 222] ' (L48)

vwhere, for the sake of simplification,

E,l = R/Z
£' = I/R

& = ()7t
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The total induced velocity potential can be obtained by integrating
®* for the whole region outside the cylinder as follows:

© 21
o =L [ ~£ ax1£3 (2, X)0%(1,X) (49)

Thus the solution of Poisson equation (46) is reduced to the solution
of the double integrsl (19).

Substituting expression (48) into formmla (49), the double integral
can be written as follows:

0 = 5= 1 axifyq5 loge R +§loge[:l-2§1 cos (X - 1) +
1 0

§1'2:| +%loge [l - 28y cos (X - n) + '5‘22]}+

0 25
1 1 1
—u{; di .[ d)(lf:L ) loge 12+ > loge EL - 2&1 cos (X - n) +

glz] + 5 loge [1 - 265 cos (X - 1) + &, ]} (50)

=

Only the velocity perturbation at the surface of the cylinder (R = 1)
is of interest; this is

1 2n
50 = 53 f d1 f dX1f; logg 1 +
1 0
1 [ fgﬂ . 2
E/; ail A axfy log, E- 2t cos (X - n) + g] (502)

wvith & = 1/1.

It can be proved that for a flat plate the perturbation upstream
of the heat source decreases very rapidly with the distance, in the
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-2galx
proportion e 28 I il, and hence it is negligible with respect to the
perturbation downstream. This means that the variations of £4(1,X)

have to be restricted to the half plane corresponding to -n/2 and
n/2. Therefore the limits of integration in formula (50a) will be
—n/2 and II/E. In order to carry out the integrations of the right-
hand member of formula (50a), the following simplifications can be
introduced:

(1) The verisble 1 can be changed into 1 + ¢ with ( <1

(2) since log, 1 m {, the first double integral of the right-hand

member of formila (50a) can be neglected in comparison with the second
one

(3) The order of integrations in the second double integral of the
right-hand member can be interchanged; by first integrating f5 with
respect to ¢,

f ates(1,%) = ByV 21% (ga) 2tgX

Hence formula (50a) is reduced to

/2
Oy, ™ BV 1 (ga)-2f dX logg {2[1 - cos (X - n)]} tgX

’*\IQ_’T- —:t/2
/2  sin®X 1 1 - X -
_ Blv (ga)_Qf ax Toge cos ( Tl)
nfax o cos X sin X 1 - cos (X + 7)

As the logarithmic term has predominant ebsolute values in the
proximity of X ~ 1, there can be written by approximation

2
(ga)~2 sin23 fﬂ/ ax —1L log 1-cos (X-1)
Lyfon cos 1 Yy sin X ©1 - cos (X + 1)
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Now the integral on the right-hand side has the following limit values:

(1) For n =0 it is zero

"(2) For 7

T it is
2

no

ﬂ/edX 1. l-sinx_ 2
sinx " ®e T xsinx 2
O .

(See reference 4.) For intermediary values of 1, the approximate

2
form —%?-sin 1 1s suggested. Hence,

PIOE -2 sin33
Lo} -Bqv —— 1L
io ® ~P1 83 (ga) o8 1 (51)

The distribution of the potential perturbation ¢, on the compres-

sible field along a plate of length U4a can be obtained by multiplying
formula (51) by 2Ua, by using relations (M), and by replacing
cos 1 by x/2a; then,

b0 = 21 2 (o) tm 2 - (o7

or, by substituting for B,

%o = -3 Bolihe™" ex%sw B2y - ( /2«.:.):,3/2 (52)

where B, represents for the sake of simplification

3
a 21 + ®M.2) 7 (53)
O

Bs =

Sl

Formula (52) gives the potential perturbation by & single heat source at
a point x from the source.
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Now consider a continuous distribution of heat sources such that
the intensity in the region between £ and & + dE from the leading
edge of the plate is q(&) d&: Thus the elementary perturbations by
g(t) d¢ along the downstream part of the segment of plate which has a
length Lta - & can be obtained from formula (52) by replacing 2a by
ha - & and x by x' - &, wvhere x' is the distance from the leading

edge. For x' - £ 20, .

3/2
ba - 1o g\2
st - rama S8 2 - ()]

The total downstream perturbation corresponding to & continuous
distribution of heat sources along the whole plate is obtained by an
integration of the above expression with respect to £ Dbetween the
limits O and x' as follows:

__x Mo 1 [ ba - & ue?’/e

In order to calculate the integral in the right-hand member of the

above expression, the following simplifications are introduced:

(1) The asymptotic form of the formula (37a) for flux distribution
will be used

1

\’2ng§

a(t) ~ q(0)

where

Heo 1 \~1
q(0) = (§§'§x§;>

l -
(2) A change of variables EE—:—% = cos u transforms expression (54)
into the following type:

o e an —=0__ §(y)
o cos=lv Vv - cos u
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vhere F(n) is a trigonometrical function which appears in the course of
the transformation and v 18 a parameter which turns out to be

v = x'"/ha. The detailed form of F(n) will not be written out here.

As the fractional term has predominant values in the proximity of

' cos u a VvV, there can be written by approximation

n/2 /2 sin
f an —22— F(n) = F(v)f an ———v__l;_
cos~Ly v - cos u cos~Lv v -cosu

The integral on the right-hand side can be immediately calculated, and
there is obtained

. -1/2
9 = -ztBQ\J—;U_;:_&—v /21 - vy + v)3/2

The gradient at the center of the plate will be taken as the effective
gradient ¢ which is

1% 38 g 1
U ax I 2 \Bea
. 3
- iﬁ’é_i Vo (1 + m 2) 2 L (55)
1 T \[Baa

It is seen that in a subsonic field the fluild increases its velocity by
passing over the heat sources.

Flow Perturbations by Heat Sources at Supersonic Speed

In this section the flow perturbations at a supersonic speed by
heat sources distributed along a flat plate will be investigated by using
again equation (24). The equation will be first solved for a single
heat source placed at the origin. The perturbations of the flow about
a flat plate will be derived by a superposition of heat sources as done
in the preceding section. Equation (24) can be made dimensionless by
dividing the coordinates by a, and the potential perturbation by 2Ua,

e e en e
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where ULa is the length of the plate and U 1is the free-stream velocity.
Thus,

1% Po_ . |
o° Ix°  Jy°
where
f=£(1+kM°°2 39/T,
b = b (56)

No = Mach angle

By means of a change of variables

X = 0oX
(57)
Y1 =Y
equation (56) can be transformed into the following form:
2
e 3% _. (562)

ayiQ axi2

Equation (56a) has its characteristic lines given by y; I x; = C; these

are two families of straight lines meking an angle of 450 with the
X, -axis.
i

The problem is to find a solution of equation (56a) such that it
satisfies the following two boundary conditions:

(a) The term 03/dyi vanishes at yj = O

(b) The perturbation ¢ vanishes along the front shock waves, which
are formed by the characteristic lines originating at the leading edge.
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In particular, the solution at various distances x; on the x;-axis is
of speclal interest.

The method of characteristics will be used for the integration of
equation (56a). Therefore, take a point x; on the xj-axis, and draw

a line xyp parallel to On' (see fig. 2). In the plane Xx;y; apply
the Gaussian theorem in the form

[f dxy in(%;—i' - %—3;) = jg(U axiy + V dy1) (58)
Ox4qp

vwhere the double integration 1s extended over the area O0x;p, and the

line integral along the contour of this area in the positive direction.
If in equation (58) there are inserted U = 0¢/dy; and V = 30/dxy, it

follows from equations (56a) and (58) that

ﬂgi—id"i*g—f;;d@ =-ffd:advif (59)
Oxip

It is evident that dx; = dy; on the line Op, and dxy = -dy;y on the
line xyp. Consequently,

19 1Y
o0 o0 _ f 0 Jol) e
4? (5;I dyy + __I dxi) = (S;Z axy + r—; &yi> = ¢P s
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and it follows from equation (59) that

*i o6
¢X1-2<Dp+¢o+ dXi'a—y—'—-— dxy dyif
0 1

Now, from the boundary conditionms,

&,

yi=0

Hence,

oxy = - || axy ayye (60)

0xyp

The above formula can be transformed from the x4,yi-plane into the

x,y—.plane according to relations (57). Omitting the details, the result
is

o 2 L
<I’x=-gfx dxlf drif(xy1) (61)

where 1/c is the ratio between the two areas of integration in the
respective planes

1 _o(xy)
o o(x1,y1)
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For a heat source placed at the origin, £ is given by expres-
sions (56) and (29), and there results

T s By' L1 (l_x/r)(l - x/r)
qgar
with : . 62
- (62)
1 8w Q
B! = —— (1 2 =
1 hVEE (1 + 14y Ty 23y &

-

It is to be noted that an integration of f with respect to 1
means an integration with respect to

v = ﬁga(rl - x)

while keeping x constant. After some simplifications,

U

X 1
1 By -2 1
f Ay £(x1,y1) = -—= (ga) = = f dvve
0 V2 1%

By substituting this into formula (61), it follows that

e

o, = Y235 1 )-efx/eﬁf“ga(ﬁ-l)xld 2 -2
x e o 1% "

and, introducing a new varigble u such thst

u = Vga(V§ - 1)x
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there results

\f@ u
o, = -—2\(—§B 1(ga)~2 du dTV2€_v2 (63)
X [o] 1 ‘—{; u j(:
where
V2 - 1

By interchanging the orders of integration, there can be written

X

= VE2
o =--2—;/—_2_Bl'(ga)'2f dvvze"v2[ ?l_u

0]
V2 -
=_¥Bl'(ga)"2 loge X5 f dvvie ve -
0
X2
f V=2 dvvzé'v2 log, V (64)

0

For very small values of x,, ¢, 1is small, but it increases
rapidly until a value of Xpo in the order of l/ (ga) is reached. Then
the integrals take practically their asymptotic values which are

‘/ﬁ\'/g_}wdv‘vae'v2 RS -‘hﬁ
0]

dvv e loge v = Constant

Vo> -
fo 2
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Hence formula (64) becomes

) =_\f—_1_

A

(gzaL)'2 loge \[Xp - Constant

As the constant does not play a material part in the wvelocity pertur-
bation, it can be disregarded, and there is obtained

o, = _-‘?_% (ga.)_2 loge \/—XE

and, by substituting for Bq' from expression (62),

= 2 -1 W
o = ~8— (1 + WM )pnofga)” T B

lOge \/— (65)

Now consider a continuous distribution of heat sources over the
length 4a of the plate, such that the intensity of the source on the
segment between & and & + d¢ is q(&) d&, where g has the distrib-
ution law given by formula (37a). The elementary potential pertur-
bation dd, due to q(E) d¢ at a point situated at a distance x from

the leading edge on the x-axis can be easily obtained from formula (65)
by changing in formula (65) Q into q(¢) d¢ and x into x - &.
Then,

ady = -lé—o (1 + kM2 (ga) ™ % (ai)ws 2 1oge l}a Ee_—l (x - gﬂ
W

If the perturbation upstream of the source is again negligible as
in the subsonic case, the perturbation ¢, corresponding to a contin-

uous distribution of the heat sources along the total length of the
plate can be obtalned by integrating the above expression between the
limits O and x of the varisble . Thus,
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3 3
Oy = -fé; (1 + w2 (ga)™t . j;x Z)(j) log [ga fg-z—l (x - Eﬂ

o W
(66)
For the sake of simplification in the following calculations, the
integral in formula (66) will be represented by
*  ale) V2 -1
So = f dt —== loge |ga —= (x - ¢) (66a)
A oAby, 2

Generally in a supersonic flow ga 1s very large, so that a(e)
decreases very rapidly with ¢; therefore expression (66a) can be written

in the following approximate form:

_ V2 -1 a(e)
Sy = loge (ga——2—x>\/(; d¢ —— Y

W

The integral of-the right-hand member has been calculated in the case with
formulae (U42) and has the value

wvhere X is now the distance in absolute value from the leading edge.
Hence formula (66) becomes
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The perturbation ¢y increases in absolute value from the leading edge
to the trailing edge with an average gradient

ady 1 1 Ay 1 V2 -1
X == (1+m2 X loge [~——=lga U (68)
ax W o “’ 1 VBga =\ 2 °

It is seen that in a supersonic flow the heat sources will produce a
decrease in the velocity of the flow which passes over them.

b NONLINEAR COOLING OF A HEATED BODY AT SUPERSONIC SPEED

Nonlinear Cooling of a Flat Plate

The role of the heat sources along a body in a compressible flow can
be imagined to heat a thin layer of air which perturbs the motion of the
main flow, just as if the body were deformed instead of being heated.

The average velocity which passes along such a deformed body is then an
"effective velocity" defined by

as.
Ugpe = U + —
or
ao
1 x
Uere/U =1+ 5 &

vhere ddy/dx is given by formula (55) in a subsonic flow, and by
A . ) b

formula (68) in a supersonic flow. For the sake of convenience of
writing, introduce

a0,
ax

Uepr - U
U

(69)

=31
U

ag the correction coefficient of the effective velocity

Uere/U =1+ ¢
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Introducing this effective velocity in the expression of heat
delivery (43),

N = Eulzl:\/Bnga(l + ¢/2) + l:l (70)

where

In problems of heat transfer, the following parameters play an
important part: ’

(1) The Nusselt mmber N as introduced previously in formula (40)
is defined by

Q = M4 9,/d

vhere Q is the amount of heat delivered in unit time by the unit length
of an immersed body across an area A, 9, 1is the difference between the

temperature of the body and the isentropic stagnation temperature, and
d 1s a representative length. For a flat plate of length La, N 1is

S
N = SR
(2) The Reynolds number R = poUd/n, where U 1s the free-stream

velocity, p, 1is the isentropic stagnation density, and 7m is the
coefficient of viscosity

(3) The Prandtl mmber Pr = 2hn/py, where 2h = PoCp/*>

(4) The Peclet mumber P = R X Pr = 8hUa

It is to be noted that if the Prandtl number is a constant, the
Peclet number is proportional to the Reynolds .number. If the results

are to be expressed in terms of P, the quantity 8ga which occurs
frequently in this paper becomes

2-k

k-1
8ga = Py,
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Hence an alternative form of formula (70) for the heat delivery is
obtained as follows:

k
“2(k-1) -
2N = :rP(l + % e)uoo + My 1 (70a)

where ¢ 1s given by formulas (55) and (68) for the subsonic and the
supersonic speeds, respectively, as follows:

(a) In a subsonic speed:

1 kM2 =5 -3
+ =
3\1?\[— u 2061 Peﬁw/TO (71)
(b) In a supersonic speed:
1 2-k 2-k
= -— (1 + KM 2) (M2 - :L)2 2(k-1) \,l_ ‘5 -1 wTk'l) '

(72)

By substituting formulas (71) and (72), formula (70a) can be written
also in the following form:

3

2N = Co\mP + Cq - (02 log, \P - 03) % (70b)

where N 1s the Nusselt number, P is the Peclet number (it is equal

to the Reynolds mmber, when the Prandtl number is gnity), 9, 1is the

difference between the temperature of the body and the isentropic stag-
nation temperature Ty, and finally C,, Cy, Cp, and C3 are the

following functions of the free-stream Mach number M (see figs. 3
and 4).
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(a) In a subsonic flow:

k
2(k-1
Co = He
Cq = P-co—l
r (73)
Co =0
W3 1+ w2 1
C3 = n Ko
232 1-M2
J
(p) In a supersonic flow:
-
k

~2(k-1)
C0 = He
Cl = p-w_l

N _ 1o 4 L (732)
Cp=75 (1L+ W 2) (M2 - 1) Ty
2 -k V2 - 1

Cy = Co|——F— 1og, 1 - logg [—
378k -1) 0 e © 4

-

1 M2, and k is the ratio of the coefficients of

where U =1 + > o=

specific heat.

From the formula (70b) for the heat delivery of a plate, the
following properties can be seen (figs. 5 and 6).

(a) Subsonic flow:

‘ (1) ¥ increases with 9,. The rate of change does not depend
on P. Since Q = 2NAdy, Q does not vary linearly with 9, (fig. 5)
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(2) N decreases as M, increases
(3) N varies linearly with P

(4) For very moderate M,, even for M, & 0, formula (70b)
reduces to ’

oN = er+l+%\/)+319w/To

It reduces to the formula of King (reference 5) only if GW/TO vanishes.
(b) Supersonic flow:

(1) N decreases as 9, increases. The rate of change depends

on loge Vf- and therefore is larger in absolute value than the rate of
change in a subsonic flow; Q does not vary linearly with 4, (fig. 5)

(2) N decreases as M, increases. This is true for a flat
plate with a sharp nose. It will be seen in the following section that
for a body with a blunt nose different aspects will appear

(3) N does not vary linearly with /[P, because the temperature
term in formula (70b) contains a function loge YP. However, the devi-
ation from the linearity is small owing to the small magnitude of ﬁw/To'

Some Remarks on Heat Delivery by a Body With
a Blunt Nose in Supersonic Flow

In the preceding sections, a certain continuous distribution of
heat sources Immersed in a flow of velocity U has been considered. By
the use of a generalized potential theory developed for a nonadiabetic
and rotational fluid, the action of the heat sources on the flow has been
studied, and the heat delivery has been calculated.

In order to show in the theory the fundamental action of heat on
the flow, and to obtain the characteristic physical features, it is
believed that the extraneous action of the shape of the medium, that is,
the metallic bedy introducing heat to the fluid, must be eliminated in
a first study. Therefore, in the present calculations, a fine plate has
been chosen which does not offer any shape perturbation to the flow.

This circumstance approaches the theoretical distribution of heat sources
without Interference from an extraneous body. Fundamental investigations
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of the physical phenomena under such a simplified circumstance may serve
as a basis for the study of the phenomena under other more complicated
circumstances, for example, the action of heat combined with the action
of an extraneous body. Hot-wire anemometry in an incompressible fluid
takes usually a cylindrical wire for the introduction of heat to the
fluid. No difficulty has ever arisen since its body perturbation is
known by elementary theory. In a supersonic flow, the body perturbation
is more difficult to calculate. However, for the study of the heat
delivery an approximate estimation can be made by starting from the
following considerations.

A blunt body like a cylinder will produce a detached shock wave
which is strong on the front region and weak on the two branches. Behlnd
- the shock wave, the flow about the cylinder is subsonic on the front
region and supersonic on the rest of the region. From the present cal-
culations (see section Flux Distribution and Heat Delivery) it is known
that the air in the front region gives the largest contribution in the
heat delivery. That part of the air, heated under a subsonic state,
passes the sonic zone and leaves the cylinder with a supersonic velocity.
While the detailed picture of the phenomens has to be studied more rig-
orously, a rough estimation of the heat delivery can already be obtained
by giving to that contributing part of the air an effective velocity
after a Mach wave, and an effective subsonic Mach nmunber M; which can
be derived from the unperturbed Mach number M, before that part of
the shock wave which is approximately normal. The known relation between
such Mach numbers is (see fig. 4)

1+ k -1 Mm2

2 = 2 (7h)
w2l (k-2

The temperature distribution about a cylinder is given by

929 328 _ 2g 38

(75)
Q2 N2 U 39

This is the general form of equation (23). By choosing a system of
coordinates ¢ and V, this distribution reduces to the temperature
distribution in = uniform stream flowing along a flat plate, as given
previously by equation (23). The same method used in the sections
Temperature Distributlion and Flux Distribution and Heat Delivery can be
applied here in order to calculate the temperature distribution and




NACA TN 2436 y7

finally the heat delivery for a cylinder. Omitting the details, the
result is

Q= xawul'l(denso a/U + 1) ‘ (76)

The limits of variation of the potential function are O and Boe Inm
the case of an elliptic cylinder of semiaxes (a,b),

Bo = 2(a + 1)U

As By = hUa for both cases of a circular cylinder of radius a and of

a plate of length U4a, it is seen that the expressions of the heat
delivery for both cases without heat perturbation must be identical. It
is also to be noted that, for M; = O, the expression of the heat deliv-

ery reduces to that found by King. Further, for a circular cylinder,

-9
Ne = T
P = L4hUs

C

(Pc)gpp = MU o8

Hence formula (76) becomes

we = & oo mPe)oas + (m) (77)

The mass of alr on the front part of the cylinder, heated at a
subsonic state characterized by the subsonic Mach number 'M; will leave

the cylinder with a supersonic velocity which is approximately the
effective velocity after a Mach wave

U

ofpP = U(1l + €

e e —— e o e e e~ s~
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where ¢ is given by expression (72). By substituting expression (T2)
into formula (T7),

1 5 i
NC = ?@CO\/—@.F T Cl - g(CE loge V'P_c - C3)ﬁ (78)

vwhere the C's are the following functions of the Mach numbers:

X
“2(k-1)
Co(My) = 1
Cy(M) =m ™t
_ Co(M1)
Co(My) = Co(M) Coli)
C3(Mp) = Co(My) E%E::Eff loge Mo - 10ge yz:ﬁlié

Formula (78) remains valid for a subsonic flow, provided the values
of the C-functions are taken from expressions (73). ’

The smount of heat Q does not vary with J (see fig. T), although
the deviation from linearity is not so important as for the case of a
flat plate.

For small values of 9y/T,, the body perturbation becomes predominant
compared with the heat perturbation. Therefore N, increases with M,
for M, > 1, a behavior directly opposite to that for a flat plate

vwhich does not offer any body perturbation (see fig. 8). On the other
hand, for large values of ﬁw/To (see fig. 9), the body perturbation
becomes less important compared with the heat perturbation. Therefore
No decreases with Mo for My, > 1, a behavior comparable with that for

a flat plate (cf. fig. 6).

From the above formula for the heat delivery, it is seen that @
is proportional to the coefficilent lqﬁ_ or A\JPr X Re. In the present

theoretical investigation, this coefficient has been assumed as independ-
ent of the temperature gradient in the neighborhood of the wire, .and
the viscosity has been assumed negligible. In view of this simplification
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and of the uncertainty attached to the value of A, the theoretical
value of the coefficient, calculated for a constant temperature of 17° C,
seems too high compared with the experimental ones. By comparing the
formula of King with the experiments on cylindrical hot-wires at zero
Mach number, it is seen that the ratio of experimental coefficient to
theoretical coefficient is in the range of 1.5 to 1.7. These consider-
ations have to be taken into account in the numerical interpretations of
the results.

Some Concluding Remarks on Heat Flow and
Some Notes on Effects of Viscosity

In this section various detaills of the reasoning are reviewed, and
the effects of viscosity are studied. This will furnish at the same time
an opportunity of pointing out briefly the various principles and hypoth-
eses underlying the theory, and the difficulties which herewith are
connected. '

In the present paper, it wus Intended to elucidate some fundamental
theoretical features of a heat flow, namely,

(1) The generalized fotential theory for a flow with rotation and
variable heat energy

(2) The distribution of heat energy furnished by a heat source
(3) The distribution of heat flux

(4) The amount of heat delivery

(5) The perturbations of the flow by heat

A simplified model was chosen for the study; it consisted of a
straight array of continuous heat sources, placed parallel to a stream
of uniform velocity. The heat sources on the array were of such an
intensity distribution as to furnish a prescribed surface temperature,
for instance, a uniform temperature. In order to fix the idea, such an
array was called an "infinitely thin flat plate,” which has the only
significance of indicating the location of the heat sources giving a
constant surface temperature, without offering any body perturbation to .
the flow, for example, in the form of a boundary layer.

The theory of generalized potential flow has the advantage of per-~
mitting the use of the potential-streamline coordinates, and hence the
application to more complicated shapes of heat source distribution, other
than the sbove straight array. In fact the use of such coordinates can
transform a complicated distribution into the straight arrsy, which is
therefore the most fundamentel distribution.
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The simplified model has served to illustrate certain physical
features. However, it may, of course, deviate appreciably from an actual
body supplying heat to the flow. For example, the flow in the boundary
layer of the body should be actually retarded, and therefore the heat
delivery should be less intense. But before going to such problems of
a nonuniform stream, it was necessary first to study the more fundamental
problem of a uniform stream, which gives a clearer analysis of the pre-
dominant physical characteristics. The heat delivery by a blunt body,
for example, a cylinder, gives rise to additional difficulties which were
not investigated, because the nonuniform flow behind a curved detached
shock wave, as produced by the blunt body, is in itself also a difficult
problem, even without heat introduction, and must be left out of the
scope of the investigation at the present time. In that respect only
some phenomens behind such a wave have been roughly stipulated in the
preceding section, illustrating the difficulties which arise, rather than
their explanations.

The theory of the heat flow (nonadisbatic, rotational, and with
variasble total energy), in connection with the above enumerated aspects,
was elucidated in the preceding sections by neglecting the effects of
viscosity, a procedure generally adopted in the theories of such a com-
plicated flow. In the following lines the effects of viscosity will be
estimated.

For a viscous flow, the equation of energy is (see reference 6)

DT _Dp _ =
PCy S XVQT + &

+ w - grad

7|
Yo

® is the dissipation function (¢ 4is used for potential perturbation,
and the symbol ¢ is therefore chosen for the dissipation function)
and all other symbols have been explained in the first section of the

present paper.

By substituting for p from the Navier-Stokes equation

Dw
—_— = . d +
P Dt grada p nww
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where 17 1is the coefficient of viscosity,

p %E(QPT + %;) - %% = AVET + (nwvew + 5)

For a stationary flow,
W2 o\ 5
pw - grad cPT+?=A.V2T+ wWew + 9 (79)

This partial differential equation determines the spatiel distribution
of the temperature T, or, following equation (1), the spatial distrib-
ution of 9(x,y), that is, the additional temperature furnished by the
heat source. As was done in the section Small Perturbations, small
perturbations will be considered by keeping only terms in § of the
first order, and hence it is possible to transform equation (79) into a
linearized partial differential equation for 8. From the equation of
continuity (5), and from the relation of the density-temperature ratio,
it is observed that Bwi/axj is of the same order as Bﬁ/BXJ and hence

the second-order terms

owy Owy

(i,j,k,l =1, 2 3)

Ox; Ox

J 1
are negligible.
The difference between equation (79) and the energy equation (6)

used formerly lies in the presence of the last expression within paren-
theses, which represents the effects of viscosity.

Now, .

WP = VP2 - 3wy /oy )
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The last term of the right-hand member is a second-order term in 9 and
is therefore negligible. So is ¢ too. Hence by neglecting second-
order terms in the last expression between parentheses of equation (79),

2 2
pw - grad (CPT + %;) AVET + nve %;

“p A2

If the Prandtl number is written as Pr = ncp/x =1,

Cc,P
ve(e T + EE =2 5. grad [(c T + Hg
P A L

The density p can be transformed into T, and the temperature T can
be further transformed into 4§, using the formulas of transformations (2)
and (3). By leaving out second-order terms, after transformation there
is obtained

-

v2 = 250 &
ox

- (80)

where

and g, h, K and U are defined as usual in the first section of

the paper. Equation (80) is the partial differential equation for the
spatial distribution of I, by taking into account the effects of vis-
cosity. It is seen that equation (80) is of the same form as the non-
viscous distribution represented by equation (23), except the coeffi-

cient 2g in equation (23) is replaced by 2g' in equation (80).

The spatial distribution of the temperature ¥, the flux distrib-
ution, and the amount of heat delivery follow from equation (80), exactly
in the same forms as formulas (29), (37a), and (43) with the new coeffi-
cient 2g' as follows:
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1
a(x) = q(0)e®® *(1 - err \Zg'x)

with q(0) = 209, 2g'/u_ (according to formula (k1))

N = Eﬁz(VBng'a + l) (81)

It is seen that the viscous distributions of § and q are "rounded
down," that is, not so sharp as the nonviscous distributions, and that
the heat delivery is diminished by the viscosity. The effects of the
viscosity, which increases with the free-stream Mach number, are thus
to modify the magnitude of the physical quantities considered above,
without changing the forms of their differential equations and their
formulas. :

From formula (81) for the heat delivery, it is seen that N is
proportional to QET, and. hence to Vﬁ; Now the horizontal velocity U
is subject to perturbations by the heat transfer. Those perturbations,
of the order of 4, were assumed small, and as a first approximation they
are neglected in the elucidation of formulas (43) and (81) for the heat
delivery in a nonviscous flow and a viscous flow, respectively. Later,
as a second approximgtion, the flow perturbations by heat were calculated
in the sections explaining flow perturbations by heat sources at subsonic
and supersonic speed, by neglecting the viscosity. It is an easy matter
to substitute the perturbed velocity in the formmle of unperturbed heat
delivery in order to find the perturbed heat delivery. Probably the
viscosity will again have certain effects on the flow perturbations.

But, as the flow perturbations play only a second-order part in the heat
delivery, those effects will not be studied further here.

Curves are plotted in figures for the case of a nonviscous flow,
i11lustrating the general properties of a heat flow. The corresponding
curves for a viscous flow are not added, in order not to make the figures
too cumbersome.

The effects of viscosity will reduce the slope of the curves for
heat delivery 1n figures 6, 8, and 9, without changing the Intercepts
with the vertical axis. The slope of the curves in figure 6 will have

- -
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to be multiplied by a factor uw_l/a, that 1s, Cll/e, vhere C; is

given by figures 3 and 4. The slope of the curves in figures 8 and 9
will have to be multiplied by the factor

-1/2

ul-1/2 _ (1 Lk = 1 Miz)

vhere M; is given by figure LI in terms of M.

National Bureau of Standards
Washington, D. C., August 9, 1950
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