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FORMULAS FOR THE STRESS ANALYSIS OF CIRCULAR RINGS
IN A lIONOCOQUE FUSELAGE

By Roy A, Miller and Xarl D. Wood
SUMMARY

The formulas given in this report provide a simpli-
fied method for the stress analysis of fuselage bulkheads
that are approximately circular rings of uniform cross
section. Complicated load systems acting on a ring can
usually be resolved into simplified load systems; and for-
mulas for moment, axial force, and shear for such simpli-
fied load systems are given in this report. Illustrative
examples showing the use of this method in practical stress-
analysis work are also included,

INTRODUCTION

llany airplanes have fuselages of approximately circu-
lar cross section which are built around circular metal
bulkhead rings connected by longitudinal metal stringers
and covered with a thin sheet-metal skin, A typical air-
plane of this sort is the Fleetster shown in figure 1.
The locations of the main bulkhead rings in the "Fleetster"
are shown in figure 1. A sketch of bulkhead ring No. 2
is shown in figure 2; the centroidal axis of the ring is
seen to be approximately circular, and the cross section
of the ring is uniform for most of its circumference, Un-
der the various conditions of flight and landing, this
bulkhead ring is acted on by forces applied at six differ-
ent points on the circumference of the ring, and sometimes
aleo by distributed tangential forces applied through the
skin of the fuselage., TFigure 2 shows a typical loading
of bulkhead ring No., 2. The most practical solution for
the stresses in the ring due to a complicated loading sys-
tem of this sort is probably obtained by resolving the com-
plicated loading system into a series of simpler loading
systems for which the general formulas can be derived. A
typical case of such a resolution of forces is shown in
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figure 3 where the loading system of figure 2 is resolved
into three simplified loading conditions.

The object of this report is to summarize the formu-
las derived .for the simplified loading conditions used in
the stress analysis of the "Pleetstor' and to show how they
may be used in practical stress-analysis work by calculat-
ing the stresses in one of the main rings of the 'Fleetster"
airrzlane.

Several simplified loading conditions are included in
this report in addition to those originally solved by Roy
A, Miller (reference 1), and deflection formulas are given
for several cases, The derivation of the equations has
becen omitted from the present report bocause the equations
may be derived by any of scveral methods, all of which aro
standard and are given in text books and in various papers
on the stresses in statically indcterminate frames, Tae
authors in the derivation of the ocquations prescanted in
this report used the so-called "method of least work,"
(See references 1, 2, and 3,)

FORMULAS FOR SIMPLIFIED LOADING CONDITIONS

Each of the eleven simplified loading conditions is
designated by a case number., Cases No. I to VI inclusive 7
are identical with the cases of the same number appearing
in reference 1. ZFigure 4 is a free body sketch of a por-
tion of the ring showing the meaning of positive signs for
moment M, axial force P, and shear S adopted in ref-
erence 1 and continuned here. Note that the positive mo-
ment is compression on the inside of the ring, positive
axial force is tension, and positive shear is as shown in
figure 4, If figure 4 is viewed from the left side of the
page, the ring may be considered analogous to a beam in
which the distance =X to any point is measured from the
right end of the beam, so that § = - di{/dx, This rela-
tionship between shear and moment will be observed to ex-
ist for all the equations tabulated in this report.

Tables I and II give formulas for M, P, and S for
cases I to IV. These formulas are identical with those
given in reference 1 except Tor the gsimplification of no-
tation shown at the bottom of the tables. Tables III and i
IV give formulas “or cases V to XI in the same manner,
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There are really only four cessentially different cases
considered, namely: I, VI, VIII, and IX, The other cases
may be derived from these four cases by substituting spe-
cial values for the genersl angles 9 and ¢.

Table V cives formulas for deflection of the horizon-
tal ‘and vertical diameters for rings loaded as in cases I
to VII inclusive; positive deflections indicating exten-
sion of diameters and negative defloctions indicating
contractions of diameters as noted at the bottom of Fable
V. The tabulated formulas for deflection of diameters are
of use in coanection with the problem of a ring reinforced
by a brace across a diameter, and Ior the general purpose
of detormining whother the deflections will appear exces-
sive to the occupants of the airplane. Formulas for de=-
flection of any point on the ring relative to some refer-
ence point would also be of use but cannot conveniently
be tabulated because of their complexitys, Such formulas
arc readily obtainable for each loading case, however, by
use of the given moment equations and the genoral integral
equations given in reference S,

LIMITATION OF THE FORMULAS FOR STRESS AND DEFLECTION

The assumptions involved in the formulas here present-
ed include the usual assumptions for the elastic action of
straight beams, An itemized statement of the major assump-
tions follows:

a) That cross sections of tlhe ring which are plane
before bending remain plane after bending; that the elas-
tic limit of the material is not exceeded; that the modu-
lus of elasticity is the same in compression as in ten-
sion; and that bending the beam does not appreciably
change the shape of its cross section,

b) That the inside and outside radii of the ring
are approximately equal to the radius of the centroid of
the cross section of the ring.

¢) That the cross section of the bcam is uniform
and the centroidal axis circular.

Assunptions a) are probadly true within the limits
of experimental mcasurcment for loads that do not produce
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permanent deformation of the ring,

Assumption b) involves negligible error in the deri-
vation of the moment equatioas (see reference 4) but does
involve appreciable error in the calculation of bending
stress from the moment equations, The error is due to the
fact that the bending-stress formula £ = My/I is not ex-
actly truve for bars initially curved, the stress on the in-
side of the ring actually being greater, and on the outside
less, than that given by f = My/I. Boy a Tingeof the
proportions shown on figure 2 (ratio of centroidal radius
to inside radius = 1,07) the calculated bending stress is
about 7 percent in error.

Assumption c¢) involves more or less error when applied
to some bulkheads as, for example, the bulkhead shown in
figure 2, BExperience with other bending problems indicates
that thickeaning a portion of the ring as in figure 2 re-
sults in a greater moment at that point than wounld exist
in & uniform ring, and less moment at other points, Stress-
ges calculated at the thick portion will therefore involve
errors on the unsafe side, but because of the larger sec-
tion these stresses will usually not be the critical stress-
eg in design, It is the opinion of the authors that the
formulas here tabulated may be safely applied to rings in
which the variation in cross section is as great as shown
in figure 2 by using R as the centroidal radius which
applies to most of the ring and using the actual section
at each point for the siress calculations,

APPLICATION OF FORMULAS TO DESIGN OF A MAIN RING

OF THE ""LEETSTER' AIRPLANE

Two examples of the use of the formulas in the de-
of a bulkhead ring follow:

1]
e
g
o]

Bxample l.~ The stresses in bulkhead ring No. 3 will
be calculated for an unsymmetrical loading condition, The
loads acting on the bulkhead ring, as determined from
specifications regarding design loads for low angle of atw
tack with 100 percent load on one wing and 70 percent load
on the other, are shown in figure 5+ Resolution of this
loading system into three simplified loading conditions
is shown in figure 6,
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Figure 5(a) is case X with W = 7,912 1b, and

0 = 186°608;
Figure 6(b) is case I with W = 4,392 1lbv.,

0 = /2, and ® = 135°50!;
Figure 6(c) is case I with W = 445 1b,,

6 = n/z, and ¢ = .

Points on the ring at which the values of ¥, P, and S

wild ‘be found are indicated in figure 5 by A4; B,B';

B 0% B;DVy JHeB); By Plend O The valubd of My Py
and S at these points are the algebraic sum of the sepa-
rate values of ¥, P, and S at the corresponding points
for the three simplified loading conditions represented in
figure 6, The equations for M/WR, P/W, and S/W for case
X may be found in table IV. The equations for ¥/wR, P/W,
and S/W for case I may be found in tables I and II. ZXnow-
ing the values of W and R in each case, the values of M,
P, and § may be found by substituting in the equations the
known gquantities: W, R, 6,2, x, 2z, and W, The value of

R to be used in the equations is that of the radius to the
centroid of the cross section, namely, R = 28,7 inches,
For other notations, see Summary of Notation.

The solution of figure 6(a) follows:

W, = 7,912 pounds

R = 28,7 inches

§ = 135950t = 2,37 radians

¢ = sin 6 = sin 135°50' = 0,697
¢ = cos 6 = cos 135°50! =-0,717

(se + 6) = (0,697) (=0,717) 237 = 1,87

At the point 3: x = 60 = 1,047 radians
7 =i @1 rEaisiD 60° = 0,866
W =" cielTE =acns SOO = 40:500

and the equations for 1, P, and § in the range x = 0
to x = 6, where point 3B lies, are from table IV, case X:
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=
o
°

M s Z
o n o i . 0
5 z + - - (sc + ©)
P Zsc z 6
s P + T e it e
W ) T
.S_ = 4 @ -~ §. - Q_S__C_ = (BQ
W o i T

Substituting numerical values in the above equations:

il

1,0472X0,697 0,865

T x Bes7l

M 7912X28.,7 [ ~0.866 +

=g~ 264800 IDhi=ing

0.866X0.697X0,717 _04866X2.37% — sump 11

P = 7912[0.,866+

i T
= 04697 . 045X0,697X0,717 0e5X2e87 _
§ =2e¥2{0.5 - . - - i o
At the point F: x = 152°54' = 2,669 radians
z = sin x = sin 152°54! = Od56
W = cos x = cos 152°54! = ~0,890

The equations for M, P, and § in the range x = 0 %o

x = 2m - @, where point F 1lies, are from table IV,
case X:

B - S | y

WR~—s+ﬂ+ﬂ(sc+9,

B 1ve o, Gl 8E

w T T

£ - . & _usg WO

W T i 0

Substituting numerical values in the above equations:

X 1871

M = 7912x28.7 [~0,697 + 2+863X02037 ; 0,206

i

= 87,800 lb.~in.

-
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L 02456X04697X0.717 _ Qe456X2.377 _

P = - 2150 1b,

vl

e}
il

o.gg?__o.agoxo.s§7xo.717+_o.s9gx2.37}=2445 Bl

8= 7918 [=

The above values for M, P, and S appear under column (a)
in table VI. In a similar manner the values of M, P, and
S for the other points in figure 6(a) were found, and are
lisbed In btable VI.

The solution of figure 6(b) follows:

W. = 4,392 pounds

Il

R 2867 inches
0 =nf2 = 1.57 vadians

1,000

Il

8= @in 6 = stnmfB

¢ = cos 6 = cos m/2 0
(80 + ¢) = (1 X 1457 + 0} = 1,67
® = 135950!' = 2,37 radians

sin ®=sin 135°50' = 0,697

B
Il

(0]
Il

cos® = cos 135°50' = 8,717

(n® + e)=(0s697 X 2,37 - 0,717) = 0,934
g = (1)% =}

n2 = (0,697)° = 0,486

g2 & n® = (1 = 0s488). =065

At the point Bz x = 60° = 1,047 radians
z = sin x = 0,866
W = cos x = 0,500

The equations for ¥, P, and 5§ in the range X = 0 t®
x = 0, where point 3 1lies, are from tabké I, case I:
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M s + ¢ n® + e W 2 2
| i - == - s
| e + - = + (s 8% + n s
B = st BEy o 0pP
W ™ i)
8 2ouoRElR rgpl
W ™ T

Substituting numerical values in the above equations:

Il

1
4392X28,7 [ + s = .

|
| u
|

= =2370 1lbe—-in,

§ = 4392 [ + O.8§6Xl e O.866§O.485] - 622 1b.,

At the point F: x = 152954 = 2,669 radians
|
l z = gin x = 04456
\
W= g X = = 0aB880

The equations for M, P, and § in the range x = ® to

x =1, where point F now lies, are from table I, case I:
M oerneh gt e Bl g O oo2 2
TR + - . + (s n°)
W i T
S zZ 82 zn=?
- = 4 == -
w T i

Substituting numerical values in the above equations:

9 T TR

| M = 4392%X28.7 [+ *

Il

7150 1be~in,

P = 4393 [ #nQeB20Xk  0.890K0.488,] = c40 b,
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™ ﬂ F

S = 4392 [+

The above values for M, P, and S appear under column (b)
in table VI. In a similar maanner the values of M, P, and
S for the other points in figure 6(b) were found, and are
listed in table VI.

The solution of figure 6(c) follows:

Wa = 445 pounds

R = 2847 inches
0 = nw/Séd B

s =g8in G =1

c =coe8 =0

(8® + &) = 1457
@ =g = 8,14 Pradieng

n=2g8ind® =0

i
1
=

e «= Ygos'®

(nd +e) = -1

g2 = 1
e =
ATy T

At the point B: x 60O = 1,047 radians

t
i

ain X = 08566 %

It

Z

coa X = U000

ff

w

The equationsg for M, P, and Shsin thgmenge x, = 0 b

x = 0, where point 3B 1lies, are from table I, case I:
M sg + ¢ n® + e w 5 2
= = - e NGRS e ¥ 31 o G
WR . (i g T ( )
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E— o BRI “-"-)_S-.g— + @..I_Lz_
w ™ T

S Z s° zZn=
— = 4+ = -

W i

Substituting numerical values in the above eguations:
q

445%28,7 [+ %87 L1 0.0%1

i = PE¥ PSR 0« ) = =200 B-1a,
o Gefixd . Celighy

P = 445 [ e ] = & ¥l 10,

S = 445[ + O.SiPX1~ o.aifxo] = 123 1b.

At the point F: =x = 152°p4! = 2,669 radians

0.456

it

%2 = gin &
W= ooy 2 = 204890

The equations for M, P, and § in the range x = 0 to
x = ®, where P now lies, are from table I, case I:

M sb + ¢ 2d + e © — "
= = - + SEEr Yeiinl + - Z
WR o s 41 ( ) .
P wse wn=
= = - L
W T + i
2 2
W i T

Substituting numerical values in the above equations:

1l

M = 445x28,7 [ + 2oL 4L _Q830KL 4+ 0 - 0,456] = 1010 1b.-in,

TF T

p = 445 [+ 28301 _0.890X0 , o ,456] = 330 10,
§ = sap[ + S8 RE_ DREREHD _ 0,8907 .= .~ Z83 1be

il (il

The above values for M, P, and § appear under column (c)
in table VI, In a similar manner the values of M, P, and
S for the other points in figure 6(c) were derived,
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The algebraic sum of the values of moment, axial
force, and shear for the simplified loading conditions
shown in figure 6 are given in the last column of table
VI. Using these total values, the stresses and margins
of safety in the cross section of the ring at the points
listed may be computed,

Calculations for the stresses at points B and T
on bulkhead ring No. 3 are shown in table VII. Items (1)
to (3) in table VII are the values of moment, axial force,
and shear just calculated., Items (4) to (12) inclusive
are the properties of the cross sections., Items (13) and
(14) are the stresses in the inner and outer flange at
points B and F, computed from the formula f = % My/I+
P/A by substituting the values listed in items (1) to
(12). A sample calculation for the stress in the outer
flange at point B follows:

f =+ My, /I + P/A
ety OOAE0 N B B _ SEdl
. - 3.49 + 1.20
f = - 17,150 + 1,950 = - 15,200 1b./sq.in..

The sign of this stress being minus, the stress is com-
pressive in accordance with the notation at the bottom of
table VII. If the allowable stress is known, the margin
of safety is computed from the usual equation:

allowable stress ' _
actual stress

Margin of safety =

Item (15) is the shearing stress in the web and is calcu-
lated from the formula fg = SQ/bI substituting values
from items (3) to (12). A sample calculation for this
stress at point B follows:

$Q/bI

590 X 0,982
TV O D64 X 8,49

(=
o]
il

fg = 2,600 1b. /sq.in,

Item (16) is the shearing load on the flange rivets and is
calculated from the formula Pp = Sle/I substituting
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values from items (3) to (12). A sample computation for
this load .at point. B follows:

P, = SQlP/I

B o 590 X 0.852 X 0,8125
r 3e49

Py = Al pounds per rivet.

Example 2.~ In this example, moments and forces will
be found at various points on the circumference of a ring
which is reinforced by a tie rod across its vertical diam-
eter, using the equations for deflection given in table V
as a basis for the solution by tae method of consistent
deflections.

Figure 8 is 2 free body sketch of such a bulkhead
ring acted on by a system of loads determined by the land-
ing load factor for the design. Figure 9 shows the six
free body sketches into which figure 8 can be resolved,
including a free body sketch of the tie rod acted omn by
unknown forces F and a corresponding sketch of the ring
acted on by equal and opposite forces F. The procedure
in solving for ¥ 1is as follows:

(1) Compute the deflection dy of the vertical dianm-

eter under the z2ction of the Torces shown in
figure 9(a), (b), (c), and (d4).

(2) Compute the deflection of the ring (dyeo) and
of the cable (dyfo) under the action of a
force F, = 1,000 pounds,

(3) Compute F from the equation:

(4) Compute the moment, axial force, and shear at
various points on the ring from the equations
of tables I to IV for the five loading cases
shown in figure 9, usiang the value gf T Just
obtained, 'For the ring use:; R = 28,9 inches,
E = 10" pounds per square inch, and I = 3,301
in,¥; for the cable use A = cross-sectional
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area = 00,0387 square inch, L = effective
length = 50 inches, arnd E = 20,400,000
pounds per square inch,

Proceeding as outlined above, and using the formulas
deflection of vertical diameter dy, given in table V:

3 2
For figure 9(a) dya = %%—[:+ % (s-cB)+ c-1 + %—]
3
= 4070x(2829) " 4 0,137=0,407 in.
10" X3:501
& “ 3 WRa
Tor figure 9(b) dyp = .

~ 5420x (28, g X 0,149=0,590 in,
10’ x3,301

For figure 9(c) with 6 = 41°45!

2 HB8| o snal: . 2 (o
dye = S [ = - (sB+c)+ s + 4]

3
= 2200X(28.9)° y ¢ 0542=0,087 in,
107 X3, 301

Il

For figure 9(d) with 6 = w/2, & = 136°15', and

w - 2,670 1b,

=1

B2 sc+6 , ne+d 2

dyd ="S7= [— > - (sB+c) +

td
9

+ s + % (n®+e) - n]

3
= =2670X(28.9)7 y (.0493= -0,096 in.
10’ x3,301

Total deflection, figures 9(a) to 9(d) = 0,988 in.

For F,=1,000 1b, dyeo = ff—l-% ~ ﬁ] with W = 32

500X§28.923 s
2R A e — X0, =0, "
107 X3 .501 298=0,109 in

il
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/
For F, = 1,000 1b,.,, from the definition of E = %7%

7 00 X
dyro = == = 1099 % 89 _ - 0,063 in.
AE  0,0887X20,4X10

dy 0,988
4 =
dyeo‘l‘dyfo 0.109+00063

For F = 1,000 X1,000=5,740 1b,

Referring to figure 8, it may be seen that the effect
of the bracing cable is to transfer 5,740 pounds of
the 10,840 pounds at noint A +to point G, thus
distributing the load more evenly around the ring,

Using the value of F Jjust obtained, the momeant, axial
force, and sheér at various points on the ring may be
computed from the equations of tables I to IV for the
first five loading cases shown in figure 9 by the
methods outlined in example 1,

SUMMARY OF NOTATION

bending moment at any cross section of the ring, pound-
inches, Positive M causes compression on the inside
of the Yings

axial force (tangential) at any cross section of the
ring, pounds, Positive P causes tension in the ring,

shear force at any cross section of the ring, pounds.
Positive S 1is as shown in figure 4,

load applied to ring, pounds,
radiuns to centroid of cross section of the ring, inches.

modulus of elasticity of material of ring, pounds per
square inch.

moment of inertia of cross section of the ring, in.*.
angles specifying location of loads on ring, measured

from radius at lowest point on the ring as shown in
sketches, radians,
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angle measured from radius at lowest point on ring to
any point on circumference of ring as shown in figure
4, radians,

y 5
sin
cHs
sin
cos
sin
cos

abbreviations to simplify
writing of formulas

H K S oOD

change in length of horizontal diameter, inches.
change in length of verticel diameter, inches,
stress, compressive or tensile, 1b./sq.in.
shearing stress, lb./Sq.in.

distance from neutral axis to outer fibers of cross
section, inches,

static moment of half the area of the cross section

about the neutral axis, in.2.
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Table I,

Moments and Forces.
Left Half of Ring

Cases I to IV

Case| Range of x — 0 to © 0OtoB, $tonm € to ¢ § to n
No. Sketch M/WR PAY | S/W M/WR P/ S/W W/AWR
W *se:;c i 2 s@ + ¢ 2 . 80+
e A + n ‘_n_s_ +ZS n
_nd + e w i _nd+ ¢ o w nd + ¢
; B e e T . lamt e "
+ 2(s% - n®) m m + 8(s2 _ g2 A B 7 ‘%(32_“2)
g — 8 =g * + w
s 58 +c s6 + ¢ s 856 tc
Wi \f m , we? | ze? ) we? _g:__z_ &
m m n m
T = +l_s +l_z ..1
/I\ 2 2 E . 2
8|0 2 2 , ® 2
_we? we we
W m TeTRL 7
Range of x — | £=D to x= a2 X2 /2 t6 x=n
L W
> R
il TS i el Sketch below
I 4 +l:'_:_., o ._HL+ & +% _.‘ZT shows meaning
2w =W g =0 ; of x and R
n n
¥ W x=0  %o. x= x=¢ to x=nu
1 1
+=—*n-z: T
nd + e ne + e
Iy 2 :’ $ T TRet e
_ wn? Yl o _wn®
n n
Notation: s = siné n = sing z = sin x For signs of M, P, and §
¢ = cos8 e = cos?® W= cos X see Fig. 4.

29% "ON ©30N TBOTUUOSL ‘V'O'V'N

9TqBL
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Table II. Moments and Forces., Cases I to IV

=
Right Half of Ring o
‘ Case] Range of x —» 2n - 8 to 2n |2n-6/2m, n/2n-3 2n - § to 2n - @ n to 2n-3% 0
P,
‘ No. Sketeh M/WR P/W s/ M/WR P/W s/ :
~
s6 + ¢ 56 + ¢ s@ + ¢ 2
¥ n 0)52 zsz * L wsz 252 * w g
_nd + e - + B _ni+e v il I % il -4
| : g + wn? w? L L m? p ¢
J + s n%) 5 =~y + Ny — n?) Cll gt +¥(sz—nz) e
¢n —s +n +2 o it §
o
=
W : s 02 ¢ ,Se+e¢c RERX: o
n 2 2 n 2 2 n e
3 P R 1 » NE | — 18 1 o
IX ;\ + 2 — n n "-z + 2 .__2. V]
0[e\ _ we? _ ue? R | _ wc?
W - n n n
Range of x —> x=3n/2 %o x=2n x=uw_ to x= 3u/2
) . -3 G § 3 8
itk - g, "'J;‘ ngl 3 Sketch below
III shows meaning
w8 o2 @ + 0 S
B n e m T of x and R
w
X = 2"‘§ to X = 2“ X =W t X = an-i
.l + + .1_
+ n z +
X +mnz _zn? o - wn? an?
v _nd + ¢ n L Ee n et i
m Fau it n
wn? wn®
n v ;3
o'
Notation: s = sin® n = sind 2 = sin x For signs of M, P, and S, 7
| \\\\ ¢ = cosh e = cosd w = eos x see Fige 4. w0




Table III.

Moments and Forces.

Cases V to VIII

Case M/WR P/W s/ M/WR [ em S
No.| Range of x —» =0 2=y x=un to x=2n
v +-;‘:-—z + 7 + w +'12r+z -8 —w
Range of x —> x==0 to x =40 XxX=0 to x = 2me@
<200 ="18
n =
+4(0 — sc) r Z(sc - 6) S
VI A + B(sc - 0) + (g ~ sc) * 4(sc - o)
= + sc — 6
w—> 88w +u—¢ " s ol )
_ 2us _ s
n n
+ 20s — 238 + ws _ 28
ViI % o n n P n n
-= +1 ——
WR WR w n
x®=0 o x36 X=60 1o x=2n
Ly
» SE_ 00 —we *+ z5 + 28 W5 _4e * 25
n n n n
VIII _m";ua _u%ms
B~9 . 1 ey =T s
i sl 2n X 2 2n
Notations s = sinB z = sin x For sig_ns of M, P, and S,
¢ = cosf @ = ¢cos X see Fige 4.
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Table IV. Moments and Forces, Cases IX to XI

g9%'ON 930N TBOTUUO®L "'V 'O'V'N

Case Range of x —» 0, 10 " '9 0 to 6y 2n-% to2nm x=0 to x = 2n-8% 2n-% to 2n
No. Sketch M/WR P/W S/W M/WR P/W S/wW M/WR
2
+ +to -8Bl . pn g0+ ¢ ws?2 | =5 BI 3545 s+
= s c
Z Ed z s I e s -
3 _uﬁ 252 2 252
2n —2n +8te R sl Wi - I i
2 2n 2n 2 2n
ES 2 + .ZL + _zn
2n _29_(52 - n?) _ 2S¢ 20 —8(g2 _ n2)
_ 2s¢C __ wsc n 2n wse 2n
IX v n 2 ) 28 A z
+ ——(sc + 6 L +
2226 _ wé 21‘7(5 2n wd & ﬁ(sc e)
Zn 0] R
zne
_ zne _ wne * gn(ne + ) B T * Znine + 3)
2n 2n 2
- 23 _ wE * 7a(s + n) “;,, _uwb |+ 38 + n)
2n 2n 2n
XS + 2 + @ —— _%
-z ¢+ — A8 o gge —z + 328 _ 2g
2SC wsce w n wsc w
X . m m S
+;(SC + G) _2_9 _ﬁ +_Tz'(sc + 9) __frﬁ _ﬁ +_z(sc+ e)
0 n 0 n
x=0_  to %X =9 x =86 to x = 2uw
+S5_8s8+tc + PR - L) el
2 21:2 c i T R , s n
o i L + 2 .__lS_z e L %S_z 2n _. wsc
XI 2n 2 iy 2m 2n n e L]
2
>4~ e L 28¢ _ WS¢ XS on s
¥ an % 2n 2n T on 5 Eg_
: - 28 _wl 2 — B _we
g L) 2n 2n T 2n 2n
Notations s = sin® n = sing Z = sin x For signs of M, P, and S,
¢ = cos@ e = cosd @ = Cos X see Fig. 4.
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Table 5

Table V. Deflections. Cases I to VII.
s Horizontal Diameter Vertical Diameter
EI
M. W3 o RS 4
2 2
+_S_;n_ 4 955 b iy ss__;_a 5 Aﬁ%
I —-'3'(59+c)‘ —%—(se+c)+s
+§(n§+e) +§(ni+e)— n
s2 + 1 T L K
+ 2 2
1I ——2-(59 +¢)
- 4(s0 + c) .
+ g +-4-
W W
111 - 24 S 149
‘2 T ) p =+ 0,
W 3 n2 + 2 +_ne_%_§
v + 2(nE + o) + 3(nd + o)
A
2 N
R i
v ‘ 1-2=-_ 0,278 4., 0,298
n 2
+ %(s - ¢8) + 2(s — ¢6)
VI A
B i 2
ée + - 2 L o N e e '5_
W W
VIiI /+\ _%’Q ol %ﬁ PO R |
|6
WR WR
s = sin @, ¢ = cos 63 n = sin &, e = cos &,
+ = extension, — = contraction,

M2 5 2 eE
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Table VI.

Moments, Axial Force, and Shear
at Various Points in Bulkhead Ring No. 3 for the
Loading Shown in Figs. 6 and 7.

Table 6

Point Loading Case (sketch at right)
on
ring | (a) (v) (¢) | Total
Moment
A 0 + 7,9%0 |+ 1,750 |+ 9,700
B =26,800 (= 2,370 |= 290 |=29,460
B' | +26,800 |- 2,370 |- 290 |+24,140
¢ |-12,800 |-12,700 |- 2,320 |-27,820
c' |+12,800 |-12,700 |- 2,320 |- 2,220
D |+10,200 |-12,300 |~ 2,940 |- 5,040
n* '10,200 ‘12,300 = 2'9‘0 -25,440
E | +55,400 |+10,700 |- 1,360 |+64,740
E' | -55,400 |[+10,700 |- 1,360 |-46,060
F | +37,800 |+ 7,150 |+ 1,010 |+45,960
F' | -37,800 |+ 7,150 [+ 1,010 {-29,640
G 0 + 4,890 |+ 6,390 [+11,280
Axial Force
A 0 - 718 [- 142 [- 860
B + 2,770 |- 359 |- T1 |+ 2,340
B' | - 2,770 3% [- 71 |- 3,200
c { + 3,200 0 0 + 3,200
+ 3,200 |+ 4,390 |+ 450 |+ 8,040
c'{ - 3,200 |+ 4,390 [+ 450 |+ 1,640
- 3,200 0 0 - 3,200
D |+ 3,000 |+ 4,380 |+ 470 [+ 7,860
D' - 3,010 |+ 4,380 |+ 470 [+ 1,840
4+ 2,235 |+ 3,580 |+ 415 [+ 6,230
E{ - 3,280 |+ 515 [+ 415 [- 2,350
E'{ + 3,280 |+ 515 |+ 415 [+ 4,210
- 2,235 |+ 3,580 [+ 415 |+ 1,760
F |-2,150 |+ 640 |+ 330 |- 1,180
F' | ¢+ 2,150 |+ 640 |+ 330 |+ 3,120
G 0 & T8 [+ 143 |+ “B80
Shear
A |+ 1,450 0 0 + 1,450
B - 15501 622 | + 123 | ¢ 590
B* - 155 | - 622 | = 123 | - 900
c - 1,760 | + 718 | + 142 | - 900
c* | -1,760] - m8|- 142}~ 2,620
D- | -2,840|- 812|- 18 |- 3,670
D* - 2,840 | + 812 | + 18 | - 2,010
- 4,050 | - 2,650~ 220~ 6,920
E{ +1,630|+ 800]|- 220]+ 1,910
B + 1,630 |- 500 |+ 220 |+ 1,350
{ = 4,050 | + 2,850 | + 220 | = 1,180
F + 2,445+ 328 |- 333 |+ 2,440
) &4 + 2,445 | - 328 | + 333 |+ 2,450
+ 2,965 0 = 445 |+ 2,520
0{ + 2,965 0 + 445 |+ 3,410

4=3=33

bedl



N.A.C.A., Technical Note No. 462 Table 7
TABLE VII. CALCULATION OF STRESSES IN BULKHEAD RING
No. 3 at points B and F
Nos Item Symbol | Point B | Peink F
1 | Bending moment, lb.-in, M -29,460 | +45,960
2 'Axial fomes, 1lbs P + 2,340 | -~1,180
3 | Shear, 1b, S 4 590 | + 2,440
Properties of sections
4 | Depth of section, in. d 4,04 4,04
5 | Area, sgo.in, A 1,20 1.20
6 | Moment of inertia. in.* I 3449 3449
7 | Total static moment, in,® Q: + 982 + 982
8 | Static moment of flange, in.®| Q, 852 28652
9 | Dist. to extr., outer fiber,
N ¥, 2.03 2408
B0 I Bieat s 'to S0P, Innet fiber,
1670 ¥ 2.01 2«01
11 | Web thickness, in. b . 064 . 064
12 | Flange rivet spacing, ine. o) s SLS «813
Stresses
13 | Stress in 1b./sgein. | f = =Myo/I + P/4 |+18,950|-27,464
Inner flange
14 | Stress in 1b./sqein. | f = +My, /I + P/L|-15,200|+25,736
Duter flange
15 | Shearing, lb./sqein. | £4 = SQ/bI 2,600{ 10,720
Stress in webd
15| Shear load on P, = 8Q3p /1 117 484
Flange rivets, 1b. .

Tensile stress is +

ote: 5 :
¥ Compressive stress is -
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NOT REPRODUCIBLE

Figure 1.- "Fleetster" airplane. Main bulkhead rings
are at points where wing and landing gear
join the fuselage, and are indicated by
arrows.
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2830 1b. 2830 1b.

15280 1b.

Figure 2.- Bulkhead ring Wo.2 of "Fleetster" airplane
with symmetrical loading.

5 | e - 3: e Z=
15100 16115100 1b. | —+-7 |  15280| S~ 10%%0
Wo = 2830 1b. Wy = 283¢ Wz = 152807 .
(a) Case VI (b) Case I 1D, (c) Case II
with W = 15100 1b. with W = -2820 1b. with W = ~15280 1b.

Figure 3.~ Loading shown in figure 2 resolved into simplified loading
conditions,
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Figure 4.~ Sketch showing directions of moment,
shear, axial force, and angular
location assumed as positive in this réport,
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| 12304 1b.
L —
|
g,
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i
Figure 5.- Bulihead ring No. 3 of "Fleetster"
’ airplane with unsymmetrical loading.
W = Wy = Wy = = 890 1b.
%942 1b. 7912 1bs 4392 1b l
iy o
2 B
/ /4)\ 1 |
\ =
R T Y . TSI VW T—— —
i 3 / / ,
Al g} !
o =\\\/.«\.> / v
4892 3. T = ..
445 1b.
(a) Case X . (b) Case Case I
with W = 7912 1b, with W = 4&¢ 445 1b.,
B =7 and &8 =T

Figure 6:— Loading showm in figure 5
gu g Zu

conditions,.
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| N
o e 3" S
‘< 1 _..040" ekin

V.
& ( J'—‘—j
ade®l f
X1'% = L] }
angles )
1.99"
4:"
Neutral axis *- A =1.20 in.?
i |
.084" web | Ina = 3.49 in.*
] 2,01" Q = 0.982 in.3
|
JiL l
e "
gt '=n 2
Me*L*

Figure 7.- Section of bulkhead ring No. 3
of "Fleetster" airplane.
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4070 1b.

10840 1bH.

Figure 8.- Reinforced bulkhead ring with loads.
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(a) Cese VI (v) Case III (e) Case II

2670 1b.

l/mo 1b1 / 5;« TF
W/\ st
) X

e il el
8 =T/2, ¥ = -2670 1b. FT
(d) Case I (z) Case V (£)

Figure 9.- Loading shown in figure 8 resolved into simplified
loading conditions.
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