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AN APPLICATION OF TEE VON KARMAN-MILLIKAN
LAMINAR BOUNDARY- LAYER THEEORY AND
COMPARISON WITH EXPERIKENT

By Albert E. von Doenhoff
SUMMARY

The von Kdrman-Nillikan theory of laminar boundary
layers presented in ¥.A.C.A. Technical Report No. 504 is
applied to the laminar boundary layer about an elliptic
cylinder on which boundary-layer and pressure-distribution
measurements were made at the Wational Bureau of Standards.
An outline of the procedure of the von Kdrmgn-Millikan
method is given.

Good agreement is obtained between the calculated and
experimental results, indicating that the method may be
applied generally to the laminar boundary layer about any
body provided that an experimentally determined pressure
distribution is available. It appears that for all
Reynolds Numbers above 24,000 the separation point for the
elliptic cylinder should occur at a constant distance be-
hind the point of minimum pressure, provided that the
boundary layer does not become turdbulent.

INTRODUCTION

From consideration of the relative order of magnitude
of the various terms in the fundamental differential equa-
tions of flow, Prandtl has shown that the effects of vis-
cosity at the high Reynolds Numbers common to aeronautical
problems are of appreciable importance only in the thin
fluid layer next to the surface of the body, thus consid-
erably simplifying the fundamental equations. The actual
solution of the boundary-layer equations has been a matter
of considerable difficulty. It was shown, however, that
separation of the flow from the surface is to be expected
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when the boundary layer encounters rising pressures in the
direction of £ lows

The simplest case, that of the boundary layer along a
flat plate with zero pressure gradient, has been success-
fully treated by Blasius. ZFor this case no separation was
to be expected. The treatment of the flow about todies
when pressure gradients exist has thus far not been com-
letely succéssful., Numerous methods have been devised
ut either the prediction of the location of the separa-

n point has been of doubtful accuracy or the methods
have been applicable only to limited types of pressure
tributions.

O
o

Experiments on an elliptic cylinder have been con-
ducted at the National Bureau of Standards to study the
separation phenomena and, in particular, to check the the-
ory of Pohlhausen. (See reference l.) The results, com-
pared with Pohlhausen's approximate solution of the von
Karmgn integral equation, have demonstrated that the Pohl-
hausen method could only be depended upon to give reliable
results when the pressure in the outside potential flow
was decreasing; with increasing pressure separation may
actually occur when Pohlhausen's method fails to indicate
any flow separation.

Von Xdarmdn and killikan have recently devised a theo-
ry of laminar boundary layers involving separation (refer-
ence 2) that appears to have certain advantages over pre-
vious theories. This solution of the laminar boundary-
layer problem can be applied more generally than former
methods; the equation that is used to determine the sepa-
ration point is a close approximation near the surface
where the separation condition is applied, thus permitting
a more accurate determination of the separation point.

The purpose of the present study is to investigate
the extent to which the theory presented in reference 2
may be expected to give reliable results. This investiga-
tion was accomplished by applying the theory to the bound-
ary layer about the elliptic cylinder on which the Bureau

of Standards tests were made. A comparison is made between

the calculated and experimental results, especially with
reference to the location of the separation point,
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EXPERIMENTAL DATA

The tests (reference 1) consisted of pressure-distri-
bution and boundary-layer measurements on an elliptic cyl-
inder. The pressure distribution was measured by a manom-
eter connected to orifices in the surface of the cylinder.
A hot-wire anemometer was used to make the boundary-layer
surveys. The elliptic cylinder on which the tests were
made had @ major axis of 11«78 dneches and a miner axis of
3.98 inches. It was placed in the air stream with the ma-
jor axis parallel to the general flow. The tests were
made at a Reynolds Number of approximately 24,000, based
on the length of the minor axis. .

CUTLINE OF THE VON KARMAN-MILLIEAN PROCEDURE

The solution of the boundary-layer problem presented
in reference 2 is divided into two parts, an outer and an
inner solution. The outer solution is obtained by trans-
forming the boundary-layer equation into a form analogous
to that for the conduction of heat, the solution of which
is well known., This part of the solution is most accurate
in the region where the boundary-layer velocities are near-
ly equal to those in the outside stream, i.e., the outer
part of the boundary layer. For reasons peculiar to the
analysis, it is convenient to join the two solutions at an
inflection point of the boundary-layer velocity profiles.
Thus the range of this solution is taken as the region
from the outer part of the boundary layer to the inflec-
tion point, or to the wall if no inflection point exists.

The inner solution is obtained by transforming the
boundary-layer equation by certain approximations into an
ordinary differential equation, which is most accurate
near the wall.,. The inner solution is used only when the
boundary-layer velocity profiles show an inflection point.
Its range is then over the region from the wall to the in-
fleetiiom point.

The steps involved in computing the characteristics
of the laminar boundary layer by this method follow.

lowing computations the velocity at an infinite distance
from the cylinder U, is considered to be the unit of ve-
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locitys The minor axis 1 of the ellipse is used as the
unit of length. These units of velocity and length lead
to the formation of the following dimensionless gquantities:

: Upl = S Byl ) 2 ; 3 it
R = ~%—, Reynolds Numbe;A(v, kinematic viscosity).
& 2 T y :
P = T nondimensional velocity potential.
0
* ¥ . . .
Vo= ﬁ“i'lgt, nondimensional stream function.
0 o
N = g nondimensional velocity in the boundary
0 Lager.
¥ 9] g : : : :
U = g nondimensional velocity Jjust outside the
0 boundary layer.
2 2 '
N
* 2 a s s 0 ars T
gle ——=— = —rgw. DoBfdtiensional 'energy defeet’ 4dn
Uo Uo the boundary layer.

dropped for simplicity, . and nondimensional gqguantities thus
formed are always to be understood.

In the following computations, the asterisks are

Yabion of outer gelution.- In order to emlecunlate

Calculat
the outer solution, it is necessary to know the wariation
of the sguare of the outside velocity U? with the veloci-

bty pot euntiial @ @sleng the swrface; Reference 1 gives ex~
perimentally determined values of U as a function of the
nondimensional distance s along the surface. This rela-
tion is plotted in figure l. The velocity potential

S

@ = [ Uds 1is determined by a graphical integration of

0
th s, clPvick Both U and ® are then known as functions

] : . 2
of the distance aloeong the surfaee. The UT,9 cunve,
shown in figure 2, is determined by choosing corresponding

values of U and ® at several points along the surface.

The next step in the calculation is the expression of

: 2 ; : :
the U®,9 curve In terme of power geries. °'The calcula-
ticngiarelfmroaitilly S npll SEled s the U2,9 " curve is arbi-
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trarily divided into two regions and a separate power se-—
ries is used to approximate the curve in each region; that

n .
is, for ® £ 9, ™= & el

S
AY/

m
g ! o = Z

where @3 is the arbitrarily chosen value of @ separating |
the two regions. It was found possible in this investiga-

tion to obtain a satisfactory approximation to the experi-

mental U®,9 ‘curve by using terms involving only up to

the second power of @. It appears that the: U°,9 curve

should be fitted with greater care in the neighborhood of

the separation point than elsewhere. The value of @

chosen was 0O.4. The following approximate expressions for ‘
the Uz,@ curve were then obtained:

7.386@ - 8.85502

A

o
g
c

&)
]

for Q

14388 50,4380 = Ol amp®

for P 2 Ogl U°

. 2 - .
The approximate U",9 curve, given by the foregoing ex-
Pbressions, is also shown in figure 2.

It is now possible to compute the energy defect zy,

at any point in the boundary layer as a function of ¢ and
V. (The subscript  denotes the outer solution.)

2w (p,¥) = {5oho* + ¥1918,% - WEQHzgz*-}

+ @ {bl(hl - hy*) + Bihi* + 2y 0a(g.* + gz*)}

+ @2 {bz(hg - n*) + B,he*} {13
for = 5
Wy = Wy = 51 Vo= by = B
For @:8:Q1- put PBay iPso ho*» B iy i @y B8
equal to zero. The factors h, By wd Bge * By dog

v

s are funetions of 7o only, and thus do not depend on
A

i
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the bartlcﬂlar case. The same functions as the foregoing
¥ g v * *
vut formed for the Yetiehla ge——r—s @06 hg 4 Hy v 1Nz
* * : R L 5
g.*, and g5*. Equation (1) corresponds to equation (19)

in reference 2. The terms arising from the use of powers
of ¢ greater than 2 have been deleted.

Substituting the values of the known coefficients in
the expression for 3y (equation (1)),

zg = L .3930 hy' + 2.7864 g,° + 1.3931 ga*}
+ ¢ {7.3800 b, - 6.9660 h,* - 6.9656 g,* .~.6.9656 g;z*}\
L
4 ©° J 8.8550 hs + 8.7070 hg*} (2)
The functLons o+ €11 82> hy, hl, B33 'are gomputed

2
from the following relations:

'
g (&) =1 (1-28)) £ =
3 ~ i3 ;\/l "
vhere P(E) is the probabdility.integral,
e
2 - P = p
L [ df, a tabulated function.

2

g (8 = - 7&: ¢ e—g g8 (1 - P(§)>

2
(]
—
yce
A
il
‘V(\-
(7‘
l
!
|
l
1
i
e
@
(¢
U
+
|
u e
S
B
1
o)
N
u e
=
N

hy(€) = go(i)
Batd) = e ki) # g tl)
nalf) = 2,060 + BE 00 e el

These functions are plotted throughout their useful range
in figures 3 and 4. '
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In the subsequent calculations, ‘the power-series ex-
pansions of these functions are required.

¢ 3 5 A
g,(£) = 0.5000 - 0.5642¢ + 0.1881E°% - 0.0564%
g (&) = -0.5642¢ + £° - 0.5642¢° + 0.0940¢°
& Sk Yo 1= 10l 88U s 0.5642t% + 0.6667t" - 0.2821%° L (3)
hl(é) = 045000 = 1.1284t + &7 = owg7ert’ + o.oB7t”
na(£) = 0.5000-1.50458+26%-1,5045¢%+0. 66678 -0.1505¢"

It is now possible to compute the z,,V¥ curves.

This computation is performed by choosing the value of 9
corresponding to the desired distance along the surface
and calculating 1z, for several values of V¥ by equation

(2). The outer limit of the boundary layer is chosen as

the point at which relative emergy deficiemcy ;- = 0.01

2 0 !
where 2z4 = 2;. The velocity is then 0.995 the outside ve:
locity. 5

From the 2z,,¥ curves and the relations

Zo
- v
v '\I/ R = % f __._i}k____

O 1 P ‘Z

A/ Zo
the velocity profiles in the boundary layer are obtained.
Because the integrand in the expression for y«/R becomes
infinite as the lower limit of integration is approached,
it is necessary to evaluate the integral by a combination
of graphic and analytic methods (reference 2, p. 10). For
values of =z mnear z,, that is, for small values of VYV,
z 1s expanded in a power series in V¥, using equations
(2) and (3), and integrated analytically from V¥ =0 to
some small value of V¥, say V¥ = 0.05. From that point,
the integration may be performed graphically by means of a
planimeter or Coradi integraph.

In cases where the wu,y (or =z,V¥) curves have no
inflection point, this procedure completes the solution
for the particular value of @ <chosens When the « B,y
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curves have an inflection point, it is necessary to deter-
mine certain quantities from the outer solution at the in-
flection point to aid in fixing the boundary conditions
for the inner solution.

The power series in W fox . w; is again used to de-
termine the position of the inflection point. Since the
inflection point, in general, occurs at small values of
¥, powers of ¥ higher than V® may be neglected. The
position of the inflection point is found by equating

a2 = 0, and solving for VY. This value of V¥ is denoted
by W where the subscript Jj designates a Joining-point

3

cnaract@rlstlc. The values of < and =z:- are then

found by substituting ij in the power—series expansions

for these quantities., This procedure completes the outer
solution when the boundary-layer velocity profiles have @n
inflection point.

Inner solution.- The inner solution is given (refer-
ence 2, equation (29)) in the form

- b [y ¢ § P e g

(4)
/5
il 1 .

" : oz
wileve =zt 3=
Q
2

The subscript i denotes the inner solution; B 1is a con-

SN @

o

stant of integration proportional to et v amdit  Zo
. wragin \3Y / 4
i
zo', and @ are derived directly from the outside pressure

distribution, which has been experimentally determined.
The value of Cj is taken from the outer solution and is
equallyFto Wz BNzl o

4 0 w3
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& -
)

ity st o wibelnio tiegd s thall

(e¥]] OJ

when §; = Cj. An-

&),

= 0
g )
other boundary condition is that ( é >

This condition gives the equation

£s)

B Kj;“r—’ 1/4

_QS%) = B wie //—;——? —l> el DR (5)
=

for determining B, the left-hand side of which is known
from the outer solution. The value of ° B thus found is
substituted in (4) an Ei is then computed for several

values,of .the . .ratio Zl between 0O and 1.

It will be found, in general, that &1 is not equal

1]
to ij. In order to make the final solution continuous,
the values of Ew are shifted by an amount € = gij = gwj’
that is, for the outer solution ¢ = Ew e

With this information, the {,¥ curve can be drawn
continuwounsly for both solutions. «As before, «the uw,¥y
profile is determined from this curve by the following re-
lations

5
w=U0U/——=
e
v |
B av
YyJ/R =2 S =
Uo Ez

For the inner solution; this, integral may be eXpressed
aanalytical by, In this case

wliere

Past the joining point, the integration is most easily

carried out graphically.
=

Since B 1is proportional to C@1> » the condition
y

=

=0
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for separation is that B shall equal zero. The position
along the surface for which this relation holds is deter=-
mined by trial and error.

RESULTS AND DISCUSSION

A comparison of the calculated velocity profiles and
experimental results at several points along the surface
of the elliptic cylinder is given in figures 5, 6, and s
The calculated Pohlhausen curves, which have been discussed
in reference 1, are shown for convenient comparison. The
agreement becomes better forward of the separation point.
Close to the separation point the calculations show, in
general, too low velocities at corresponding distances
from the surface, but the shape of the calculated separation
point profile is in good agreement with the observed veloc-
jty distribution at the experimentally determined separa-
tion point.

The positions of the ‘calculated and experimental sepa-
ration points are indicated on the pressure-distridbution
diagrams shown in figure 8. 'The calculated separation
point was found to occur at a distance along the surface
s = 1.92, Actual separation was observed at s = 1,99, 1In
view of the many approximations and arbitrary procedures
involved in the analysis, this agreement is considered very
good. '

I4 is to be noted that the curves given in figures o
6, and 7 are independent of the Reynolds Number, except
insofar as Reynolds Number affects the pressure distribu-
t Homns It is, of course, assumed that the boundary layer
does not become turbulent. An example of the effect of a
change in the pressure distribution on the position of the
separation point is given in figure 8, where the calculat-
ed separation point is shown for the perfect~fluid pressure
distribution about the cylinder. In this case the position
of the separation point is . at s = 2.38, consideradly aft
the position found with the experimental pressure distri-
bution., TFigure 8 shows that, for both pressure distribu-
tions, the separation point occurs at approximately the
same distance, s = 0.7, aft the point of minimum pres-
sure. Since it is to be expected that the pressure distri-
butions for higher Reynolds Numbers will be between the ex-
perimental curve shown and the perfect fluid-pressure dis-
tribution, this result indicates that ‘for all Reynolds Num-
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bers above 24,000 the separation point for the elliptic
cylinder will oceur at a distance s = 0.7, aft the point
of minimum pressure provided, of course, that the boundary
layer does not become turbulent.

A general view of the flow about the elliptic cylin-
der in the N+A«C.A. smoke tunnel is shown in figure 9.
The effect of separation on the entire flow configuration
should be noted.

CONCLUSIONS

The computed and experimental characteristics of the
laminar boundary layer about the elliptic cylinder are in
good agreement. This agreement indicates that the method
may be generally applied to the laminar boundary layer
about any type of body provided that an experimentally de-
termined pressure distribution is available. It appears
that for all Reynolds Numbers above 24,000 the separation
point for the elliptic cylinder should occur at a constant

‘ distance behind the point of minimum pressure, provided
| that the boundary layer does not become turbulent.

‘ Langley Memorial Aeronautical Laboratory,
National Advisory Committece for Aeronautics,
Langley Field, Va., October 10, 1935.
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Figure 9.~ Smoke-flow photograph of the flow
sbout an elliptic cylinder,

Fig, 9



