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TECHI_ICAL NOTE NO. 614

FUSELAGE-DRAG TESTS IN THE VARIABLE-DENSITY WIND TUNNEL:

STREAMLINE BODIES OF REVOLUTION, FINENESS RATIO OF 5

By Ira H. Abbott

SUMZARY

Results are presented of drag tests of six bodies of

revolution with systematically varying shapes and with a

fineness ratio of 5. The forms were derived from source-

sink @istributions, and formulas are presented for the

calculation of the Dressure distributions of the forms.

The tests u ere made in the N.A.C.A. variable-density tun-

nel over a range of values of Reynolds Number from about

1,500,000 to 25,000,000. The results show that the bodies

with the sharper noses and tails have the lowest drsg co-

efficients, even when the drag coefficicr_ts are based on

the two-thirds power of the volume. The data show the

most im_oorta, nt single characteristic of the body form to

b_ the tail angle, which must be fine to obtain low drag.

INTRODUCTIO_

The National Advisory Committee for Aeronautics is

conducting an investigation of fuselage drag at l_.rge

values of the Reynolds Number. The first phase of the in-

vestigation is the study of streamline bodies of revolu-

tion to obtain datrt on basic forms that can be modified to

obtain fuselages of practical shape for particular types

of airplanes.

Tests were made of six streamline bodies of revolu-

tion with systematically varying shapes mnd a fineness
ratio of 5. The tests were made in the fall of 1935 in

the N.A.C.A. variable-density wind tunnel. The results

cover a range of Reynolds Numbers from about 1,500,000 to

25,000,000.
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DERIVATION OF STREA,_[LINE FORMS

The streamline forms were derived from systematically

varied source-sink distributions (references 1 s nd 2) cov-

ering a range of shapes in which it was thought that the

lowest drag forms for the selected fineness ratio of 5

would be found. The type of source-sink distribution used

is shown in figure 1. The abscissas of the sources are

denoted by _, the intensity of the sources per unit

length by f(_) in which positive values of f(_) denote

sources aud negative values, sinks. The condition that
makes the stream from the sources self-contained is ex-

pressed by the equation

I f(_) d_ = o (l)

The stream function is taken as the quantity of fluid

flowing inside a circle perpendicular to the axis and hav-

ing its center on the axis (fig. 1). In the computation

of the stream function _i due to the sources, the amount

of fluid delivered by the sources upstream from the circle

is deducted from the quantity passing through the circle.

The stream function of the sources is then given by the

formula

_ = _ l_ f(_) z + x -._I
2 r #

0

d_ (2)

where r = J (x - _)s + ye (reference 2).

To this stream function must be added that due to the

suoerim_0osed parallel _._ -,--'O_V

_ = V n yS (3)

The condition defining th.c s_irfa.ce of the body' about which

the flow takes place is

#_ +_2 =_=0 (4)

The source @istributions used are shown in figure
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2(a,b) and the defining con,st:ants are given in table I.
The integration of equation (2) for the type of source
distribution used and the con&ition

,f ,_

o g

results in the following equation:

1 F

' = ......_ re(e + x) - e2 - xr o - Y_ %n
• I °ef i.

r e + e - x]
I

ro - x j

(f-e) 2

i )[__+ - o (rf-r _-
2(f-e e' f

°

i [(h.g)_.+2g(rh_r )_rh(h+x)+ r (g+x)+y_%n
+ [2Th:-p.,_;Tl:g-)- t g . g rg+ g-x J

+ ...................... t(1-h) -2(r 1-r h )+r 1 (l+x)-r h (h+x)-Y _ In
2(1-_)(l-h)L

where

ro = /X 2 + ya

r; _l-x]

rh+h-x]

(5)

r e y(x e) _" 2= -, + y

rf = y(x - f)a + y_

= -- )2 2rg Y-(x g + Y

rh = Y(x - h) a + ya

r ! = Y(x- I) _ + ya
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The formulas for the sneed,s of flow due to the source

distribution normal to the axi_._ (v) and _arallel to the

axis (u) are as follows:

=- ....... + _':.__-__?_ + ......
4wy ef I ....< r e r o / f - e rf r e

2 <xf - x_ - ya xe - :<a - y a)
"'(E- e) r_ r

e

2g

(h - g)(l - g )

h- :: _<- :.:\ 2 ._2 a a _ra)
xh -., - y . xg - x -

< rh rg

+

xv z ( a {=_-(o - :,:) -.,-3................. _ O -]" _[ X .

u: 4w _</ k ....._-ro + .................. _....... +,_nY y_'r o r c ro
!

r O -_ x #

+ 2 fx_ _ ]ca _ .,a _-_ _ _.a ,-a\
......... _ "'--_ _..[9= ..... __-__6-_)
f- o _ ya rf y r e -

w

--_---: ......._- ( + ..... + _,n --
-, ("--e] \ ya rf _;_., r_c r__ r e e - :: + re/

............ 2g (xh - x a - ya xg - x a - Xah

(_:- _)(z - _), :fa rh ya rg ]

t I

a. _...... a -_- h - x +rh\2 {x , ..... ) .._ (,:; ._.) h+x ,- _+_. )+................................ __ ....

(h-d:)(!-g) k ya rh 5'a r_, rh rg """ g- =+ rg

+ ,]
t --o)(l-h) \ ya rl ya rh

].+x h+x
+

r_ r h

I - :: + r_ \ ]
(_)
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It is evident that a group of body surfaces of differ-

ent fineness ratios can be obtained from one source dis-

tribution by choosing different values for the superimposed

parallel flow. The maximum diameter of the bodies to be

derived was arbitrarily chosen as one-fifth of the length

of the source distribution. The _oeed V of the superim-

posed parallel flow to satisfy this condition was deter-
mined as follows:

The station x of the maximum diameter of the body

was found by determining from equation (6) the value of x

at _vhich the velocity v is zero at a value of y corre-

sponding to the selected maximum radius of the body. The

stream function _l was then computed for these coordi-

nates by 3means of equation (5). The required value of V

was then readily determined from equations (3) and (4).

The coordinates of the surfaces of the bodies given

in table II were obtained by computing a number of values

of _i and _2 corresponding to selected values of x

and y, an_ graphicall_r solving equation (4).

This graphical solution (reference 2) consists of

plotting curves of _i for the condition x = constant

against y. The intersections of these curves with that

of equation (3) determine the coordinates x and y of

points on the surface of the body.

In general, the nose and tail points of the body will

not fall at x = 0 and x = 1. For the range of source

distr'_butions used, however, the tail points were not ao-

preciably displaced from the point x = 1 and are consid-

ered to occur at that point. The nose points, however,

are ap_2reciably upstream from the _oint x = 0 and are

not readily determined with sufficient accuracy by the

foregoing methods. These points were determined by finding

the point on the x axis where the velocity from the

source iistribution is equal and opposite to that of the

superinoosed flow. This iooint was determined from a sim-

plific_i form of equation (7) derivocl to hold on the x

axis i_ the neighborhood of x = O. The fineness ratios

of the forms obtained a r'e slightly _reater than 5 because

of this extension of the nose ahead of the noint x = O.

The ordinates of the ten forms computed are given in

table iI and the outlines of the forms are shown in figure

3. Each form is designated by a number of three digits

_hich indicate in a general way the nose shape, the tail

fullness, and the tail anglo.
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The theoretical oressure distribution over the surface
of the body or in the field about the body can be obtained
from Bernoulli's equation and the velocities v and u
computed from equations (6) and (7). The total velocity
at any point is found by adding vectorinlly these veloci-
ties to the velocity V of the superimposed parallel flow.
The theoretical pressure distribution about form I!I has
been computed and is shown in fiiiure 4. It can be seen
that the points of. discontinuity of the source-distribution
curve have no marked direct effect on the fairness of the
ores sur e-di stribut ion curve.

MODELSAND TESTS

Aluminum-alloy models _vere made of forms III, 221,
222, and $32. The models were 8 inches in maximum diame-
ter and were carefull_r finished to prevent drag increases
due to surface roughness (references 3 and 4). Each model
wms built in two sections, the division being made at the
maximum diameter to allow the various nose and tail por-
tions to be combined to form models of different shape.
In this way models approximating the shapes of any of the
remaining six comTjuted forms coul0 be obtained if tests of
these forms were found to be desirable as a result of the
tests of the original four models. Tests were actually
obtained in this way of for_s 121 and 211. The other four
forms were not tested because the results indicated that
they would have less favorable drag characteristics than
the best tested forms.

The models were tested at zero yaw and pitch in the
N.A.C.A. variable-density wind/tunnel (reference 5) at
six vai_es of the Reynolds Number, based on the model
length, from about 1,500,000 to 25,000,000. The test
methods and corrections applied to the results are de-
scribed in references Z and _. The precision of the tests
was as described in reference 4 except that the uncertainty
of the balance calibration mentioned therein had been elim-
inated by the use of an imoroved drag balance.

RESULTS AUD DISCUSSI0!,T

Drag coefficients f_r the six models tested based

both on the cross-section_! area CDA and the two-thirds
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Dowcr of the volume O are shown holettcd against Reynolds
Number ii_ figure 5. T_c bodies with the sharper noses and
tails have thc lowest drag coefficients even when the co-
efficients are based on the two-thirds power of the vol-
ume. The data show the most imnortant single characteris-
tic of the body form to be the tail angle, which must be
fine to obtain low drag.

Values of the drag coefficient corrected to an effec-
tive value of the Reynolds Number of 66,000,000 from the
test value of the Reynolds Number of 25,000,000 are tabu-
lated in table III. The correction (reference 6) allows
for the decrease in skin-friction drag at the effective
value of the Reynolds Number below that for the test value
of the Reynolds Number. The correction is made by multi-
plying the test values of the drag coefficients by a fac-
tor, which is token as 0.875 for a test value of the
Reynolds Number of 25,000,000. The corrected values of
the drag coefficient are believed to be more nearly appli-
cable to flight at the effective Reynolds Number than tile
te_t v:_.lues at the test Reynolds Number.

The fuselage size for some airplanes, particularly
small ones, is largely determined by the cross-sectional
area required by the selected seating arrangement. In
such cases a fuselage shape such as III may save an appre-
ci[tble !_art of thc fuselage drag as compared with a more
conventional shape such as 222. In the case of other air--
planes, such as large transports, the longitudinal distri-
bution of fuselage volume becomes of considerable impor-
tance, and the fuselage size may be determined by consid-
erations other than that of maximum cross-sectional area.
Under these circumstances ,%careful analysis is required
to select the proper form to give lowest drag. Such an
analysis is hampered by the lack of knowledge of several
factors including the variation of drag with fineness ratio,
a study of which constitues the next part of the N.A.C.A.
investigation of fuselage drag.

Langley _lemorial Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Fiel_, Va., Auqust 5, 1937.
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TABLE I

C01'[STA_:JT DEFINIKG THE SOURCE-SINK DISTRIBUTI0!IS USED

Iii

i L'i

%" 0
ld.__

211

221

222

252

_21

Z22

[;;2

0.050000

•050000

•050000

•012500

•012500

•012500

.012500

.006250

.006250

• 006250

O. ZZZZ;IS

mr• o 3 .'43 o ,_

.250000

• 250000

• 250000

.250O00

.175000

•175000

•175000

0.400000

•525000

.450000

•400000

.525OO0

•450000

.550000

.525000

.450003

.5500OO

O. 700000

• 775000

• 925000

.700000

• 775000

• 925000

• 950000

• 775000

.925000

.950000
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TABLE I I I

DRAG COEFFICIENTS AT Ai_T EFFECTIVE

REYNOLDS }[UL{gER OF 66,000,000

(Reynolds !lumber is b_.se<_ on fuselage length)

_ O rr.q

Iii

121

2 !i

222

3S2

C_

0. O179

.0176

.0177

.0178

•0186

.0193

C
D A

0.0401

.0405

.0415

•04 37

•0472

.0508
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p , premature at point on surface of body.

p_ , Btatlc pre0aure of undisturbed stream.

Figure 4.- Theoretical preasure diatrlbutlon about form 111.
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Figure 5.- Drag ooeffloi_ta of NoA.C.A. fuselage forms.




