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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHENICAL NOTE NO. 700

THEORY OF AUTOMATIC CONTROL OF AIRPLANES

By Herbert K. Weiss
SUMMARY

Methods of, automatically controlling the airplapa are
reviewsd. Eguations for the controlled motion including
inertia effects 'of the control are developed and methods
of 1nvestigating the stability of the resulting fifth and
higher order equations are presented. The equations for
longitudinal and lateral motion with both ideal and non-
1deal controls are developed in dimensionless form in
terms of control parameters based on simple dynamic tests
of the isolated control unik.

INTRODUCTION

Automatic control implies the process of making some
Physical quantity take on an arbitrary and predetermined
series of wvalues without human supervision. 4 perfect
control for alrcraft would maeintain the airplane along a
desired flight path and would complstely suppress undesired
digturbances in pitching, rolling, and yawing.

The means for applying such a complete consiraint %o
the airplane are lacking. In the conventional airplane,
the pilot can influence the motion only by movement of %the
elevators, the rudder, the ailerons, and the throttlse.

The law by which these controls are pdjusted can be related
to any characteristic of the motion, dut the controlling
influences can be applied only as rolling, yawing, and
Pitching moments, and as a longitudinal force.

The problem of automatic control lies in relating
these controlling influences to the natural characteris-
tics of the airplane so as most nearly to attain tho per-
formance of the perfect control.

In order %o study the motion of the controlled air-
plane, it is necessary to extend the equations of motion
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to lnclude the physical characteristics of the control,
which in any actual case will not act instantaneously and
may possess various kinds of lag., In the following paper,
therefore, attention is first given to the performance of
a generalized control, isgoclated from its controlled mem-
ber, and the complete controlled motion of the airplane is
then established in terms of pvarameters basged on the free
motlion of the control.

STUDY OF THE ISOLATED CONTROL, WITH METHODS FOR
DETERMINING THE STABILITY OF HIGHER ORDER EQUATIONS

Control Charszscteristics

The controls to be dilscussed are all "error sensl-
tive"; that ieg, they operate to maintain some quantity
constant but derive the impulse for their operation from
an error in this quantity. Walle they can make the error
very small, they cannot entirely eliminate 1%.

Three degrees of sensitivity to the error may be notod.
The control force may be a function of the error magnitude,
of the rate at whiech the error 1s changing, or of the sec—~
ond derivative of the error. In the most general case, the
controlling force is proportional to both the error and its
derivatives, and may be expressed as - -

F = aj¢ + agi' + a,_—,'é : (1>

Minorsky (reference 1) has suggested that the error
and its derivatives might also govern the rate at which
the controlling force was appolied. The two additional
cases that he advances may be written as

dF/dt = bye + bgé + bat (2)

2 2 . v '
d F/d % c1€ + cge t* Ca€ (3)

where
€ is the error (differenco betwoen the value

desired and the actual value of_tho con-—
trolled quantity). '
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F, +the controlling force.-

a, o, and ¢, constants of proportiénélity.

The three types will be called Class I, Class II, and
Class III, respectively. It will be seen that Class I
controls allow & constant error when there is a steady
disturbing force., This error can be reduced d»y increasing
the control sensitivity, but it cannot be completely elim-
inated. Most asutomatic controls for airplanes fall in i
Class I and are usually without benefit of the derivative
components (az and az =.0). :

Case II controls are used when the contralled quanti—
ty is subjected to prolonged and slowly changing disturd-
ances. They allow ne steady-state error under constant
disturbing influences for as long as an error is present.
the controlling force increases. OClass III controls admit
steady~atate errors only when the second derivative of tne
disturvance varies. : . -

Tae Control as a Simple Systenm

In most cases, %the assumnption can be made that the
control 1s equivalent to a simple system with only one de-~
gree of freedom. The exceptions are the controls in which
two of the components have approximately equal frequencies;
in this case, the igolated comntrnl may develop peculiari-
ties corresponding to a system with more than one degree
of frcedom. ¢ For practical computations, howeover, the con-
trol may be replaced by an equivalent massg, squivalent
inortia equivalent "static stabillty,“ and coupling ratios.

The control inherently possesses inertia. The smaller
ite indrtia, the more satisfactory a control is likely to
be dbecause the»"inerﬂia lagh is reduced. Damping is often
added Dy design to eliminste the tendency of the control-
controlled system to hunt. Servo mechanisms embodying hy-
draulically operated pistons may possess the equivalent of
damping because of the resistance of thé . £luid in the sup-—
Ply lines to change of velocity of flow.

"Static stability" of the control .requires. that a
small departure from the neubtral . pogition should produce
a.force in the control tending o return the control to
the neuwtral position. When %he eentroiloi quantity has no
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inherent stability of its own, the control will generally
require static stability. Thus, an azimuth cantrol for
airplanes must be statically stadle, in order that. the
airplane - itself insensitive to direction in azimuth -
may hold a given coursse.

It will be assumed that the gontrols digcusssed are of
the type which Hazen (reference 2) calls "continuous con-
trols." Any error, however small, ig considoercda %o pro-
duce .a corresponding controlling influence through the
mechanism., Actual controls may have a small inactive zono
within wvhich they are ingensitive to errors. The motion
of thege controls can be determined by solving for the in-
actlve and active regions separately, with due consldera-
tion for boundary conditions.

Response of the Isolated Control
The dynamic characteristics of a control lgolated
from its controlled system can be pbtained by sudbjecting
the control to an arbitrary forcing function. The sim-
plest disturbance consists of the sudden application of &
constant force or displacement to the control. The theorwy
for these "step functions" will now be devaloped.
Let
x be the position of some characteristic point on
the control, referred to the neutral position
of the control.
m, equivalent inertia of the control referred to x.

¢, eguivalent viscous resistance (damping) of the
control referred to X. '

k, static stadbility of the control referred to 'Xx.
L, a load suddenly applied to the control.
Xer & displacement suddenly anplied to the control.

Coordinates may, of course, be linear or poler, de-
pending on the physical arrangement of the control.

The equation of motion 1s, when the force step func-
tion is considered,
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L - mfX - ¢k = kx = 0 - (4)
" Then let

w, be natural angular frequency of the control (~’k/m).

{ = damping ratio, +the ratio of the amount of damping
present in the conftrol to the amount necessary to
produce motion that isg just short of being oscilla-
tory.. In terms of { and Wy, equation (4) is
then )

i+2§u.h:§:+w x-——wn (5)

and the steady-~state displacement of the control is

I.SS = L/k (6)

The general solution for oscillatory motion (¢ < O)

may be developed as - -
e

x/x = l__eﬁgnt (cosvﬁftjzghnt - ¢ : Sinﬁ/l'-géwﬁf)
VT - JS1o¢2 ;

If the motion is undamped, this equation simplifieos to

xfx o = 1 = cos w,t (8)

and, when ¢ = 1.00, tﬂe motion is critically damped and
is expressed by

- ~Wet ot ] :
x/xSs =1 - e"%n® - w, t-Yn , ) (g)

& dpmping ratio greater than 1.00 produces motion
similar vo critically damped motion but more sluggish and,
as i1t is essential that the control should operate quickly,
the overdamped case will not be of great importance.

Figure 1 iliuvstrates the effect of varying the amount
of damping on the response of the control.

When the conbtrol is suddenly disolacad rather +4an
being disturbed By a force, the oquatishs exXpressing its

return to equilidbrium are the sane as those prescmoa with
the exception that tho 1nit1a1 1.00 is lacklng. Thus, if
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an aperiodic control (equation (9)) is displaced so that
its position of equilibrium wvaries by Xo, the control

attaing its new equilibrium according te the expression

= =¥ Ly po=Un? - (10)

x5
due attention being paid to the proper signs.

Rapidity of response ig desired and, since the motion
becomes slower with increased damping, it is evident that
from this consideration damping should be small. Suffi-
cient dampling must be retained, however, to lnsure that
the corresponding oscillation rapidly decays.

Lag in the Control

For most controls it is o straightforward process %o
set up the equations of controllied motion, assumling that
the control hag no inertia, dead period, or friction, and
actg instantaneously.

It is customary to lump the deficiencles of actual
controls that prevent them from attaining this "ideal' per-
formance under the general heacding of lag, and to calcu-
late thelr effects approximately by some semiempirical
method.

Strictly speaking, a distinction should be made be-
tween the lag of an inasctive zone at the neutral position
of the control, and the lag that extends over fthe whole
range of operation of the mechanism, such as that caused
by the inertia of ths parts.

The methods that have been used in treating lag in a
control may be grouped roughly under four headlngs:

1. Introduction of inactive zone of bonfEbl:
2. Asgumption of constant time lag.

3, Use of semiémpirical approximations.- -
4. Use of control characteristics.

Hethod 1 has been demongtrated by Hazen (reference 2)
and Klemin (reference 3). The solution for the motion is



N.A.C.,A, Technical Note No. 700 7

obtained in parts, with due consideration for the boundary
conditions betwesn regions of active and inactive control,

When lag is known to be present dut cannot be exacvtly
evaluated mathematically, as in the case of lag of the hu-
man pilot, several writers have used the approximation
that the control response lags the error by & consbtant time
interval. Minorsky (reference 1), Callendar, Hartree and
Porter (reference 4), and Cowley (reference 5} treant lag
by mcthod 2.

Minorsky uses a Taylor'!s series directly soc that, if
the controlling influence is a function of conditions m
seconds previous, it may be expressed in terms of present
time % as

£(t=m) = £(t) - mfi(s) + w321 £(%) - ... (11)
and if m 1is small hicher order %terms can be neglected

Callendar, Hartree, and Porter approach the problem
by making the usual assumptlon that the solution of the
differential equation is of the form

and then, if the control movés according o x at time
t~m, the terms expressing the control influence depend on

x = Aex(t"m)._- _ _ (13)

t—m

The resulting equation is no longer linear in A
but can be solved by expanding the exponentlals in a se~
ries and neglecting higher order terms, or by graphical
means (reference 4). - '

Garner (reference 6) has used a simplified method of
treating control lag with empirical constants, which
anounts t0 a consideration of the first two terms of ei-
ther of the foregoing series. The semlempirical approxima-
tioneg of method 3, while useful for a rough check of the
effects of control lag, have the diffizulty of employing
arbitrary constants not always available in any particular
case.

Method 4, the introductlon of the over-all frequeancy
and the ef:octivo damping nf the control into the expression
for the controlled motion, has been followed in the present
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AL T

raper. This procedure has the advantage of using quanti
ties that can be experimentally measured .in the laborat

ry.

Q

"

The introduction of additional degrees of freedonm into
the already.complex expression for the motion of the alr-
plane necessitates the developméiit of.a metiod for the
treatment. .of f£ifth and higher order equatisons. This meth-
od will now be considered.

Higher Order Equations

In order that the motion of the airplane lend 1tsoclf
to mathematical treatment, it 1s necessary either that all
relations be linear or 'that only small motions be consid-
ered, The classical treatment of the mation of the air-
plane. has by now been justified 'as applicadble to disturdb-
ances of appreciable magnitude. The linearity of control
response depeunds on the deslgn of the combtral, but violent
movements will not be expected and a linear responso for
small digplacements 1s a fair assunmpbtion. C-

. Solution is obtained by writing the differential egqua-—
tions of motion, assumineg a soluticn of the form

x = g Ake%kt. . - - (14)

and eXpanding the resulting determinant into an equation
linear in A. The difflculty lies inm the solution for the
various values of A from the eguation, which is of the
form

ANl + DBAR=1 4 oAD=28 4 gAD=3 4 ... = 0 ' (15)

Methods are available (referencé; 7 to 13) for the so-
lution of the guartic equation and for expressing the con-
bPlete motion of the uncontrolled ailrplane. There are also
methods of extracting the roots, complex or real, of the
guintic, sextic, and higher order equationsg (references 14,
15) that result from controlled motion; dut ths methods
are long and troublésome, egvecially when 1t is desired to
investigate a ransge of vosgible wvariations of the control
relations. '

_ It will often be sufficient to determine simply tho
stabllity of the controlled motion.
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Methods of Routh and Hurwit=z

Routh (reference 16) presents a serics of test func-
tions which can be built up for any degree of linear equa-— -
tion and which indicate from the -coefficients of the esqua-~
tion whether the motion it represents will increase or de-
cay with time. The funcitions are obtained by writing the

sequences .- L L _ _ ' |
a % e & & % & o (18) i
b (be~ad) & (ve~af) £ (be-ah) n _ .Qlf)

Beginning with a, each.test function is derived
from the one preceding it by substituting for each letter
in seguence (16), the letter or expression directly below
it in sequence (17) (substituting zero fou letters avove
those appearing in the original equation)f] The motion is
then stavle if the final function and the coefflclents are
positive. '

Obtained in this manner, the Routhian test functlon
for the quintic is - e Cf7) -

p’

L(bc -~ ad) d - b (be ~ af)} (be - af) -~ (be - ad)

. (18)
Hurwitz (reference 17) gives a method of obtaining

the stability functions as an expansion of the determi- -
nant }

b a 0 o) 0 0 0] .
d c B a 0 0 ¢! .

bg = | ¢ e a c b a 0 ; (19)
h 3 f e a e . b, - |

The.motion is stable if the determinant and the coef-
filecients are positive. This form is somewhat simpler than
the one used by Routh for numerical substitution but still
involves considerable work: for equatlons above the qudrtic.

Before a simpler method of following. stabllity changes
as the relations of a mechanical system are systematically
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varied is presented, the form of the solutlon of thae ogua-
tions of motion will be discussed in more detail.

Form of the Solution

When some of the values of %k to be sﬁbstituted in

equation (14) are complex {and therefore conjugate paire
since the coefficients of the original equation were real),
there are palrs of roots of the form a #ib, The part of
the solution corresponaing to these two roots can then bo
written

x = gat (A,; cos bt + Ag; sin bt) (20)

The test functions of Routh and Hurwitz, when posi-
tive, insure that a be negative, so that the oscillatlon
represented, decays with time. If a 1is zeroc, sc that A
is a pure imaginary, the term represents an unending os-
cillation, which is the boundary condition between stabll-
ity and ingtability for the term.

The presence of pure imaginary termg isg indicated by
the fact that Routh's discriminant becomes zero. It should
be noted, however, that the discriminant is also zeroc for
more than one vair of equal pure imaginary roots and, when
two sets of roots are A, .3 = Az_.e = Zib, +the motion is

unstable, being of the form

x = A, cos bt + Az s8in bt + Aabt cos bt + Agst sin bt (21)
’ 21

Transition to Iastability

The fact that a pair of roots becomes pure lmaginary
as the system from which the equation is derived passes
from a stable to an unstable condition is made use of in
determining the point of eritical stability when some
physicel characteristic is varied systematically.

Define the angular freguency Wy of & complete mechan~

ical system of any number of degrees of freedom as the fre-—
guency at which it canm execute unending oscillation. Sim-
Ple systems of onc degree of freedom will oscillate endless-—
ly only in the absence of damvping, but more compllcated
systems easily and sometimes annoyingly perform self-excilted
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oscillations in splte of o large amount of damping (refer-
ences 18, 19) The expressions for natural frequency will
therefore be established in their most genseral form, in-
cluding damping, The most general case of unending cscil-
lation for the systems that can support more than one end-
less motion will be considered as the case in which %he
corresponding equation has only one pair of imaginary roots.

Expressions for Natural Frequency

At the boundary of transition from stability to in-
stability, it is known that two of the roots of the equa-
tlon in A are w%iw,. ZEither root can then be substi-
tuted back into the original egquation, the sum of the real
and the imaginary terms be equated fo zero, and the reduced
equations solved for the fregquency. Performed in detail
for the cublc equation, the process is as follows

2x® + px8 + ex + 4 = 0O

. 3 - 2 -
laWwp® = bdwy,® + ciw, + & = O

€
o]
1l

n c/a . (22:1)
w,® = a/» | . (22.2)

Unending oscillation is indicated when numerical sub-
stitution produces the same value of wy ffom both ex—

Pressions. It is evident that this method is equivalent
to setting Routh'!s discriminant for the cubic (bec - ad)
equal to zero and, for this simple case, there 1is no gain
in simplicity dy performlng the operation in two parts.

For the higher order equations, the pairs of expres—
sions in w, are, when similarly obtained,

QUARTIC w,® = d/b (23.1)
wn4 = (cd = be)/va ' . _ (23.2)
QUINTIC w,® = (be - af)/(be ~ ad) (24.1)

[
i

-~ (de ~ cf)/{(be ~ ad) (24 ,.2)
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a _
SEXTIC w,® = {bo = 2d)f - bg - (25.1)
(be = ad)d - b{be - af)
wp* ~ (d/D) wy® + (£/b) = 0 (25.2)
.
b faed b - g b - h
SEPTIO w ® = (be = ad)(fz = eh) - (bg - ah) _
(be ~ ad)(dg - ch) - (bg = ah)(be - af)
(26.1)
(be - ad) wy® - (ve ~ af) w,® + (bg -~ ah) = 0
(26.2) -

The expressions were brought into the form given by
straightforward mathematical "jugegling." When a single
computation of the stability of a mechanical system is de-
sired, Hurwitz's determinant should be numerically expand-~
ed, 28 this method will be found simpnler than the several
computations necessary to determine, by mecans of the nat-
ural frequencies, whether the system is on the stable or
unstable side of the critical point.

When it is desired to observe the transition from sta-
bility fto inetability of a mechanical system, as when stud-
ying the effects of control lag or lnertia, the frequency
method is much more convenient than that of eithsr Routh
or Hurwitz., In addlition, when the transition point has
been determined by this method, the frequency of the end-
less oscillation is at once available, without further
computation, ' '

Application to Sextic Equabtion

An example of. the application of the method to a
practical case will now be borrowed from a later section
of this report. It 1s desired to lparn within what range
of free natural period a longitudinal contrel of 2 given
songitivity will bo satisfactory, i.c., will not allow
sglf-eXxcited oscillation.

The equation involved is a sextic. It has been de-
termined by applying Routh'!s discriminant to the quartic
equation for the airplane motion under ideal controcl that
the motion 1s stable when the natural period of the con-
trol is infinitely short (Ty = 0O). As soon as a finite

natural period ig admitted, the equation of motion becomes
a sextie. In figure 2 the two expressions for natural
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frequency and Routh's digcriminant .for the sextic have
been calculated and plotted against increasing natural
period of the conitrol,

By elther method, the motlon is seen to become unpta-
ble when the free natural period of the control exceeds
1.95 seconds, but the actual computations were much sim—
Pler for the freguency curves. The freguency of the un-
ending oscillation is, by inspection, about 19 radians per
second. It is interesting to note that the freguency of
the short and heavily damped oscillation of the ideally
controlled airplane considered is 16.9 radians per second.

When the system is nearly critical, it is possidble to
calculate the rate of growth or decay of the nearly end-
less oscillation by a method of Blondel'!s (references 20)
which is based on the assumption that a in the root
a-ib 1is so small that higher powers of =2 are negligible
compared with a itaelf. The root is then substituted
back into the original equation in A, and real and imag-
inary terms are separately equated to zero, when solution
can be made for a and b. ' ;

AUTOMATIC CONTROL OF AIRPLANES

LONGITUDINAL MOTION

If the airplane is slightly disturbed in smooth air
and allowed to execute free longitudinal motion, it will,
if dynamically stable, regain a steady~flight condition as
the disturbed motion decays in the form of two damped os—
cillations. These two modes of oscillation consist of:

l. A heavily damped oscillation of short period (of
the order of a few seconds) involving primarily change of
incidence, in which changes of forward velocity are negli-
glblew This motion disappears almost at once, and in most
airplanes is not noticeable as an oscillation. T

2. A long period, lightly damped oscillation involv—
ing change of forward speed, during which the airplane
rigses and falls. This oscillation depends on the drag of
the airplane for 1ts damping, and is increasingly trouble—
some on "clean" airplanes. .-

Although the short oscillation has been.soméwhat neg-
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lected 1n stadbility analysis, because 1t disasppears so rap-
idly, Jones (reference 21) points out. that, although the
heavy éamping of this mode insures its- rapld subgidence in
calm air, it ilmposes an effective restraint azainst move-
ments of the airplane relative to the air and causes vio-
lent movements of the airplane in rough alr.

Law of Operating Control

The controlling moment in longitudinal control -is ex-
erted by means of the elevators, which are then to be movod
accordlng to some flight characteristic. Haus (reference
22) zives the following table of disturbance detectors and
the quantities to which ocach 1s sensitive.

Ingtrument ﬁecérded quantity Symbol
1. Air-gpeed indica%or Relative speed . U
2. Wind vane Incidence o o= ~ﬁ/u_
2. Free gyroscope, sus- Absolute inclina—- )
nended at its c.g. tion
4. Motor-driven gyro- Angular velocity q

scope with preces-
slional moment

5., Pendulum or accslsr- Direction of appar- du/dt and
ometer along 00X ent gravity pin © '
6. A.c cslerometer along’ Magnitude.of appar-- dw/dt and
02 . " ent gravity .-cos ©
7. Lift indicator . . Magnitude of 1if% iv® or uw
8. Rate-oi-~climb meter Speed aiong verti-~ w_or V gin 6
cal ) ST
9. Torsional accelerom- Angular accolera- i B
cter adbout OY tion

The elevators can be moved according to the indica-
tions of any of thosgse instruments or combinations of theom,
The most successful controls, those of Spoerry (referencos
23, 24, 25) and Smith (reforonces 26, 27) are of tyve 3,
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operating according to the absolute lnclination-of the air-
planc in space. This type will ‘théréfore be considered in
detail. Analysis of the other control types would be car-

ried out in a mannor similar -to ‘the onoe now presonted

Equations of Gontrollod ﬁétién

In its broocdest form, the type % control possesses ve-
locity and acceleration .components (types 4 and 9). 4 zen-
eral solution inecluding the displacement, the rate, and the
acceleration components is no more difficult than that for
the simple control, and .the .full form will thereforo be
considered. S -

The elevators are linked to the con¥rol through a
servo mechanism, so that the pliching moment varies accord-
ing to the displacement of . the control. For small motions,
& linear relatlon can be assumed and, for many controls,
the assumption will also be valid for large displacoments.

Since the control mechanism has inertia, an additional
degree of freedom is introduced, and there are now four si-
multansous equations of motilon:

X =mn(t Wg) (27)
Z = n(y - Uqg) : (z8),
M = Bg : " . (292
F o= m, ¢ (30)
where ¥ 1is force on the control.
m,, effective inertia of the -control referred

to E.
¢, displacement of the control.
The other symbols have their usual significance.

The full expressions for horizontal and vertical force
are as usual, but equations (29) and (30) are now

Q)
=

By = u SM 4 oM . , M _
é‘ au N oW 4 34 :

I

(31)

o))
e
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3F

RN ARE AR ERE RN (32)

m

And, of course, ¢ %% is the controlling moment

corresvonding to a control displacement £, and 6 %%
ig the force tending to operate the dbntrol for an angular

displacement of the airplane ‘6, The remainder of the de-
rivatives signify corresponding linkages. :

Writing now the full determlinant for the complementary
solution where D ig the operator.  d/dt,

D - X, ~X ~g 0
~Zy D Zy ~ -gY - DUy R (53)
~My M D° -~ DM, My
0 0 -D°F; -DF -F, D3+DE\E +F,

It has beern assumed that most of the inertia of the
control is effective after the three Impulses have been
combined to operate the elevators, which ig equivalent to
assuming that the error and the derivative controls have
equal effective inertias and dampings. While experimental
tests are required to determine the accuracy of this assump-
tlon, it is probadly adesquate for well-built controls, and
controls could certainly be built for which 1% would hold
exactly.

Note that in equation (33) the minor consisting of
the first three rows and columns is the determinant for the
uncontrolled airplane, Set the whole determinant equal to
zero for the complementary solution and expand it in torms
of thls principal third order minor. This procedure gives

M, (D®F2 + DFyq + F D - X, =X
o, + (2,.9 q * Fg) w w o
D° + DF& + Fg “Zu D~ Z

(34)

This form can be solved, but the final result will dDe
more advantageous if it 1s put into-nondimensional form.
Going vack to expression (23), write the dimensions of
each term.
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In terms of its dimensions, the determinant becomes

ot Pt T2 0

p 3 p—1 LT~2 0 -
'L—lT—l " ipl =2 g2 (35)

0 0 LT 2 o8

Following the same procedure as in nondimensionalilz-
ing the uncontrolled motion of the airplane, multiply the
derivatives of

the'firét row by T
the second row by T
the third row by LT
the fourth row dy T
the third column by. I ir

the fourth column dDy T

The characteristic length of the dimensionless sys-—
tem is taken as L, the length of the taill moment arm,
The characterigtic time ig defined by '

T = mfp/2 SU) (36)
On this basis, the unit of veloclty is
L/T = U/p o (37)
where B = m/(p/2 SL) _ (38)

and P may be called the "relative density" of the air-
plane, being proportional to the mass and inversely pro-
Rortional to the cube of the linear dimensions of the air-
plane. Glauert notes (reference 28) that avart from the
derivative coefficients of the airplane, K is the only
varametor which affects the stability. '

The dimensionless form of the derivatives is as do-
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fined by Metcalf (reference 29) and other writers, dbut 1t
is necessary to.determine the form of the control deriva-

tives.

In vassing, it should be noted. that ancther dimensilon-
less system in use is based on the quantity o 1nstead of
p/2, as in the present paper., The mathematical expres—
sione, however, are the same for both systems except for
this one difference, and the numerical values of the deriv-
atives differ only by a factor of 2.

Control Derivatives
It will be shown later that, for the purpose of this

analysis, it 1s only necessary to determine the ideal con-
trol derivatives mg q B
* 2

The moment exerted by the'tailplane is

M = OpgySy p/2 U°L (40)
where
GLt is teil 1if% goefficient.
S;, tail area.
U, steady-flight airplane velocity.
L, tail moment arm.
Let 8§, elevator angle.

Following the method of Koppen (referencs 30) in non~
dimensionalizing the control derivatives, write

M (ath> 3as P 2
3¢ < 35/ 3 541U (41)
3l . o - 35
where 35 1s obteained from wind-tunnel data, and 55

depends on the control-coupling ratlos and sensitivity.
Then

MGTZ = (3M/36) (1/B)T2 = pmg (42)
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and B = ﬂmLz, where 1 - is the "masgs-distribution fac-
tor" (reference 29) so that

- L (C’GL'I: (aas S'b (43)
Similarly
NEBIOISHE
= 44
ch T L (44)
this factor is written My e to distinguish it from the
natural ng of the airplane. Finally
P
s, U L
aCLt <68\ ( % )
Mg = mg = (5o TR (45)
Theo fe, fg, and mE derivatives can be adtained in
. a slmilar monner, when it igs desirod to evaluate them in

any particular problen.

The Dimensionless Dcterminant

’ The dimenslonless form of the dsterminant becomes
~Zqy D2y ~p(CyY+D) 0
' - (46)
-1y, ~Ig Da—-DmCl mg
2 2 .
- ! - - D°+DF, +
o} 0 Df‘e qu fe _D _fg_fg

and equation (34) becomes

) a . oL _
° 4 D+ ng + fg -2y D - =z

(47)

Call the second minor A,. Divide the numeyator
and denominator of its multiplier by fg. Then
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A
Ag £t
—2 = 48
A, D%/, + Dfé/fg + 1 (48)
Now
1 M
Mg = 3 35
1l oM
Me = 3 3¢
1 F
Ty = 3 %E
L oF
e =g 4
so0 that
o -
MG = Mg -F"E
gimilarly
fg .
(49)

Bgy = Mg ?E

The subscript 4 indicates that © has not been extract—
ed. This extraction could be very easily accomplished by
proper evaeluation of the other coefficlents, such as moking
bome take the place of me. )

The numerator of equation {48) can now bo written in
terms of the ideal control derivatives, that is, the val—
ues which the control derivatives would have 1f there were
no lag in the control. That is,

Me . ) I
E) a2 .. 2

<f€ (D°f§ + Dfy + ufg) = D'mg + Dm,, + b mg (50)

Bquation (48) can then be written as follows:

D 2
by = 31(32?é+3ch+”me) + AO(E£E—+ ——) = 0 (51)

£ £
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Going: back 'to equation (%2), the control forces sum

as
. e . oF aF « JgF M aF aF .
~ m,¢t + 6 36t a3;t 6B % - ¢ - ? (52)

and, when the error impulses are zero, the eguation for
the control alone is

mf+t 8 4 ¢ 3 o (53)

=
at ot

Compare this form with equation (5) Ior a generaliged
system of one degree of freedom.

'é+2§wn.5+“’n2€=0'.' ' (5¢)

so that the F derivatives can be written in terms of the
natural frequency and the damping of ‘the isolated control
That is,

Fg = w,® = (2m/T,)% (55)

2t (emfT,) (56)

B
I

EE et Wy

How £ =T T8, where T is the characteristic

time of the airplane, and similarly —

fé: = Ff, T
so then X . 2 N
: £y = (2w T/Ty) (57)
£ =28 (em 7/1,) (58)

This form is convenient because Tn and. § for tho

isolated control can bo obtained by simple dynamic tests
in the laboratory. o

Substituting these wvalues into equation (51) gives

a - . a ...
Bo=82(D"m +Dm  +umg ) + B, LDQ(Tn/ZITT)l +_2§(Tn/2n1‘)DJ =0
. . - (59)
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Thig division into three major terms is very conven-
ient. If the control is nearly ideal, T, is very small

compared with T, and the gquantity in the last bracket
can be neglected, giving the equation for the ideally con-
trolled alrplane., If the airplane 1g uncontrolled, the
gecond term is zZero, leaving the original determinant for
the uncontrolled motion.

Although it has not been so noted, during the nondi-
mensionallzing, the operator D was replaced by the di-
menslonless operator DT, which was also written as D.

Effect of Ideal Control

Equation (59)1is the complete form of the determinant
for controlled longitudinal motion, an abridged form of
which, neglecting the derivative components and control
inertia, is given by Klemin (reference 3).

The effect of an ideal control on thé period and the
damping of the osclllation will first be dotermined. As-
suming that T,/T is sufficiently small so that the third
term can be nesglected, the first twe terms of the equation
can be expanded into the form,

a

aD?* + pD® + D% + 4D + & = O (60)

Write £ = 1 - my

wheres * my is the natural damping in pitech of the airplane,

and Ig o is the effective damping in pitch added dy the
first derivative component of the control.,

It is necessary here to differsntiate betweon the ef-

fect of my and of Bye OB the motion. Thelr effect in

demping an osgcillation once bogun is equivéient. However,
my ig derived from the relative motion of the air and the
tall surface primarily, whereas By s derived by taking

mechanically the first derivative of the angle of pitch
snd using i1t to operate the elevators. Consequently, an
airplane with large natural mg way be expected to exe-

cute violent motion in rough air, in censequence of the re-
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straint against motion relative to the gusts. On the other
hand, an airplane heavily damped in pitch by means of the
derivative control is restrained not relative to the air
but to a set of fixed axes in space, Getermined by the
ZFros.

Protection from gusts, as far as the rotary damping
is concerned, would then consist of replacement of the nat—
ural damping by artificial damping relative to space axes,
as far as possible, with the limitation that the airplans
must still be controllable manually in the event of fail—
ure of the automatic pilot.

Returning to equation (60), the coefficlents are

£

a,

D = —-'f(xu+zw) Ead mql

c = £z, z_- xwzu) + mql(xufgw).— Wmg ~ Wmg

a = ~mql(xuzw—xwzu)+umw(xu—0L5)~umu(xw+0L)+“m8(xu+zw)
& = =Cpum_(z,~x 6) - Cppm, (x 6~z ) = pmg(x,z ~x_z,)
‘ (61)

The effect of My UPOR the damping and the period

ls egactly the same as the effect of Mg » and so it will

be sufficient to note here that increasing the gensitlvlty
of this component of the controel will, over the normal-
flight range, increase the damping and lengthon the period.

It ‘is interesting to note that by making mj = 1.00,
f c¢can be made zero. This method is equivalent to giv1ng
the airplane zero inertia in pitch. The guartic equation
"theén reduces to a cubic. T

- As the mg -éontrol is the most widely wused, it will
be considered first.

Effect of Simple Displacement Control

Let mg = Bge = 0. Let the coefficients of the quar-
tic roprescnted by A, be &g, Pgs Cos dps ©ge Thon the

effect of addineg the mg derivative is to increase these

coefficients so that
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b = by
c = cy = pmg

d = &y + pmg (x, + =)

ume(xuzw -~ Xy ) (82)

@
n

)

o
!

The effect of small valueg of mg on the long and

the short oscillation has been caleunlated for two typical
girplanes. Airplane 1 is the transport considered by
Metcalf (reference 29) and Airplane 2 is a small 6Q-horse-
power parasol monoplane treated by Soulé and Wheatley (ref-
srence 31),

Flgure 3 glves the variation with mg of the poriod

and the damplng of the long oscillation. The effect of
ng on the short ocscillation in the range plotted 1s given

by the following table for Alrplans 2.

mg Period Time to damp te
4 amplitude
(gec.) (sec.)
0] 407 1.08
-.20 : .39 1.19
"‘.50 2.89 1-40

The effect of mg on the short osclllatiorn is not

very great.- The period is shortened, as might be expected,
since mg 1s a spring constant in pitch. The long oscil-
lation shortens briefly and then, asg its damping lncreases,
lengthens its veriod, and finally becomes a pailr of simpls
subsidences, ‘

With complete restraint in pitch (mg infinite), the
eguation in D reduces to

xu Zu
¥ . (zy+zg ) D+ = 0 (63)
x 4
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The success of the simple displacement conitrol in
Practice is explained by the tremendous increase in the
damping of the long cecillation. The time %to damp %o %
amplitude gan,.in the case conslidered, be reduccd from 20
to 2 seconds. For an ideal control, then, bdoth the long
and the short oscillation would disappear almost at once
after a disturbance.

itoreover, the wvalues of mg, -used in the foregoing

exomple have besn extremely conservative, Klomin (rofor~
ence 3), investigating this type of control, prcsents
Mg = - 2,160 as a practical value for the airplane he con-

slders and, in dimensionloss form, this value is equivalont
to mg = - 900, approximately. Xlemin finds, in conse-

quonce, that the long oscillation disappears completely and
is replaced by a pair of subsidences. -

It should be understood that the control does not cre-
ate any new damping. It simply makes & more economical
use of the damping that is already available in the systen.
The poor distribution of demping betweeon the two oscilla-
tloneg is well known and the mg control may be considered

as & sort of equalizing valve, which allows some of the
damping of the short oscillation to flow into the long os-—
cillation. The simple displacement control iz allowed,
therefore, by the peculiar original condition of the sys-
tem, to produece an effect comparable with that of an errer
and derivative control, Needless %o say, this fact is high-
ly cdvantageous . from considcrations of mechanlcal simplicity
of the econtrol.

Use of the Accoleration Component

The controlling moment can also be made to depend on
the socond dorivative of the angular displacement, which
is equivalont %o increasing or docreasing tho effcctivo
inortia about the lateral axis of the airplane.

The inertia might be. 1ncfeased (m negative) to ro-

duce the initial pitching acceleration under the influence
of gusts, or it might be decreased to permit a more rapid

damplng of the subsequent motion. Simple increase of the

effoctive inecrtia will not be ordinarily toleratocd, howev-
er, vccauso of lts unfavoradblie cffect on the stabillty of

the motion.
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Now suppose a positivoe value of m§ woro choson. A
simple form results if mg is taken as 1.00, as this

choice provides that the airplane have zero effective in-
ertla in pitch. The coefficients of the reducgced equation
then .bear the relation %o the original equation.that

a =0

b= mgy

¢ = ¢y = (Xyzg~xXyzy) = very nmearly ¢
d = dg,

e = e,

A few trial calculations show that my affects the

gshort oscillation almost exclusively, which might be eox-
pected on noting that only the first two coeffleclents are
greatly changed by =nmy. 4 very gocd approximate factoriza-
tion, since b is large, is . ' )

(D + b)) (D + (ve - 4)/p® D + &/p) =0 (64)

and the short oscillation becomes a heavily damped subsid-~
ence, with the long oscillatlon practically unchanged. 3But
the short osclllation was already satisfactorily well
damped. Therefore, the use of a positive accoleration con~
ponent of the control does not seom to be justified, and
the introduction of a negative mg component would dbeo sat-

isfactory only if it wore solective, operating only to op-
pose movenent away from egquilibrium. :

Introduction of Control Lag

Actual controls frequently exhidit a fast residual os—
cillation, which one writer (reference 27) describes as the
effect of the control trying to act upon the short oscilla-
tion. More exactly, this new oscillation 1g probadly
caused by the addltional degree of freedom supplied dy the
control, and certainly depends on control inertia.

In order to investigate the nature of this residual
oscillation, the full form of eguation (59) will now be
used, except that the two derivative driveg will be neg-
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lected, because they are not at'brésent incorporated in
the Snerry or the Smith controls. The eﬁuation ig then

bo - B, pmg + Ag LD (Tn/E-rr'I‘) + 2§(Tn/2n'r) DJ 0 (65)
Let . - - .
. or=T /Tpen . (66)
Let the coefficieénts of A& “be a,, b, c,, d,, e,

and the coefficients of Aoz {the ideally controlled de-
terminant) be a,, b,, c,, 4,, ;. -

Then, wri%iﬁé equation (55) as the sextic
. aD® + D% + cD* + ap® + eD® + £D + g = 0 (87)

the coefficlents. of the- séxtlc are, in terms of the coef~
ficlents of the ideally aontrolled and. the uncontrolled
~motion,-. . . :

g T T e s . B -

a = r- .- . . - - . - - -
. _ -2.. - )

b= 2{r + r®b,

c =1 +-2§rbO + r2c,

d = b, + 20re, + r2d,
e = e, + 2fra, + :aeo-
..f';'dl + Zgreo

& =8y -- o . ' - (685

The effect of increasing the natural period and the
damping of a control for a given airplane and a given stat-—
ic linkage ms can therefore be carried through in an or-
derly manner by the use of the relations given in egua~_ -
tions (88). This procedure has heen carried out for a typ-—

. ical case. - e - . - S

One of the idcal cases treated vas for mg = - 0.50.

This cocse has been extended +o include control inertia and
damping. "It ig very easy to write -down the sgextile, but
its solution is not an enjoyvabvle task, although there are
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methods of-'ace¢omplishing the solution. It ig much easier
simply to determine the effect on the stability of the mo-
tion of allowing the control inertia to become finite.

Effect of Inertia Las on Sﬁability

The simple quartic for the uncontrolled motlon was
D* + 4.20 D3 + 11,96 D + 1,94 D + 1.30.= O

and when mg = -0.50, +this expféssioh_ﬁécoﬁes"

* 4+ 4.20 D® + 20.96 D% + 19.40 D + 7.70 = O

D
This equation is for the airplane of reference 31,
and the derivatlves wero bagsed on p instead of p/2.
The damping ratio of the control was held constant at
£ = 0.20 while the natural period T, -was increased from
zero. The stability changes were followed by both Routh's
diseriminant for the sextic, and the use of ths simultana-
ous equations in natural frequency. The results have al-
ready been glven in figure 2. The airplane becomes un-—
stable when tho natural period of the control oxceeds 1.94
seconds. '

IEffect of.Damping'in the Control

In order to determine the effect of control danping
on stability, the definitely unstable case of Ty = 2.40

seconds was reconsidered with the damping ratio of the
control increased to 1.00, that is, critical damping.
Routh's discriminant then became positive and equal to
1,275. 1Increasing the danping then restores stability or,
in other words, postpones the critical point of neutral
stability.

Although it may seem contrary to common sense to 1lm-
prove the stability by making the contreol act less rapid—
ly, it will be remembered that the uncontrolled alrplano
was stadble, and adding an infinite amount of damping to
the control can do no worse than restoro it to this stato.
If the airplane were originally unstable, damping might
eventually have an adverse effeoct.

As in the constant-spced control, where the effoct
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has been discussed in detail (reference 32), damping in
the control allows the initial surge error to be somewhat
larger on account of the sluggishness of the control, dut
successive error surges are reduced because the tendency
of the conirol to overshoot has been curbed.

Damping ig not completely beneficial, but it can com-
pensate for the worst property of controls, which is. iner-
tla lag, Stability of the motion is attained by damping:
good performance is attained by reducing control inertisa.

Solution of the Critical Case

When the natural period of the control.is 1.94 sec-
onds, the motlon becomes critically stable, and an unend-—
ing oscillation is present. ZFrom the intersection of the
two curves for the frequency,.the froquency of this oscilla-
tion is w, 2 = 19. Two of the roots of the sextic are then

known, and tho sextic can be factorocd into
(0% + 19) (D* + 6.45D® + 35D% + 37D + 15)
The quartic can be solved ﬁy Zimmorman's method
(D + 19) (D® + 1.20D + 0.52) (D® + 4.25D + 28.8) =

Compare this with the factorization for the ideal con-
trolled airplanc with no control inertia

(p® + 1,15D + 0.455) (D + Z.05D + 16.9)

The long oscillation has hardly been affected. It
seems Jjustifiabls, theni to obtain a rough factorizgtion
of the sextiec in any casse below the critical by dividing ~
through by thes quadratic factor of the ideal- quartic, which
corresponds to the long oscillation. :

The short oscillatlion is alsoc not greatly modified.
It is the new, or'residual'" oscillation introduced by the
control that becomes unstable. Because of the characteris-—
tics of the linkages, the residual oscillation apparently -
becomes unstable when its period approaches that of. the
short oscillation,

The period of the residual oscillation shortens and
its domping improves ag the inertia of the control is reo-—
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duced; the oscillatlon vanishes completoly for an ideal
control.

Determination of Control Frequency and Damping

The convenience of the representation of the control
ag a single degree of frcedom system is secen when the lab-
oratory procedure necessary to obtain Tn, §, and mg 1ig

outlined. The complete control, with dummy control sur-
faces suitably weighted to represent their equivalent in-
ertia in flight, is mounted on a test platform so that it
can be easily rotated (in pitch for a longitudinal con-
trol). The platform is Z2liven a very sudden change 1in in-~
clinration, and the response of the control is recorded by
means of a pencil or equivalent recording means, attached
to an output member, such as a control push rod of the
mechanism. From the record, which may show a damped oscil-
lation or an aperiodic avproack to the new position, the
damping ratio and the natural frequency of the control can
be determined by elementary vibration formulas.

The ideal control derivative mg ig determined by

noting the stoady-state control angle for a given angular
displacement of the digturbance indicator of the control.
Given this ratio, mg is determined from equation (43).

Only three gquantities are required, and they are the
" three that express the effect of the control on the motion
of the airplans. Therefore, they also serve as conven-
ient means of comparing one control against another of the
same type.

Methods of obtaining advantageous values of the three
varametsrs remaln in the province of detailed control de-—
sign, but the parameters offer a moang of determining the
suitability of .an oxisting control for a partlcular air-~
plane.

Suppression of Digturbances in Gusts

Insuring a rapid decadence of motions once beogun is
only half the job of a successful automatic control. Tho
other half. consigte of the reduction of initial error
surges from the desired course, as the airplane oncountors
an oxternal disturbance.

The magnitude of the surge error can be investigated
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with the aid of operational calculus.or by means of mechan-
ical methods of solution, such as the dlfferential analyzer.

The initial acceleration of the alrplane under the in-
fluence of various kinds of gust can be written for each
of the three degrees of freedom as follows,

Gust Initial - Derivative
e : - sacceleration depends on ' i
Vertical - v, xwwq _Igduced drag
- ZgWg Aspect ratio
mW  Static stability
Head or Tail - Uo X% ; Total drag
Z, %0 Lift
m,e, " Power application
Rotary gust - 4, 5%
Zq%
Dy, Tall size and effi-~

clency

*These two are negligible.

In. order to reduce the effect of the gust in any case,
the corresponding derivative shouwld be made small, If the
derivative is zero, the airplane will not be affected by a
gust in that sense. Because the motions in each degresc of
freedom are related, however, an alrplane with, say, m, =

zero would develop a pitching motion in response to a head
gust, but the original forcing function would be appllcd
only as a vertical and a horizontal force.

The only derivatives that can be modified approciadly
by the designer are the static stability my and the damp-

ing m,. Experimental data (reference 33) indicate that,
in gcngral, airplanes with shor% period and heevy damping
do the most pitching in rough air, corresponding roughly to
large m; and large mg -
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The initial accelerations of the airplane represonted
by myv, and myg, can then be reduced, and tho stablil-~
ity of the airplane will not be impaired if- the reduced
derivatives are augmented by 1mg and nge supplied by
an automatic pilet. The wvalue of mg is no% numerically

equivalent to myp Dbut has e similar effect, being, in fact,

a much more desirable derivative as it allows a more sat—
isfactory distridbution of damping, both ng and Dgeo be-

tween the two oscillations.

Systematic computations by Haus (reference 34) shows
that, even in the absence of the automatic pilot, reduc-
tion of m. reduces the violence of the motion,

Unfortunately, little can be done to reduce the ini-
tial response of the airplane to a vertical gusi. Fecr
the firet secound or so, the motion ig given very closoly
by :

T
w/wg = 1 ~ ezwt/ _ (69)

and zZy, depending on aspect ratie, cannot be reduced ap-
pPreclably. This situation might have been foreseen for,
if the alr supporting the airplane rises, the airplane it-
self must modify its course in space.

Once started, however, the disturbed motion can be
made to dlsappear much more rapidly with the 2id of an au-
tomatic pilot, as Klemin has shown (reference 3) by a num-—
ber of calculations. Klemin also shows that the vortical
motion in response to a head gust is very much eased by an
mg control. Wilson, in an early paver on the effoct of

guste (reference 35), also indicated the beneficlal effects
of a complete congtraint in pitch.

Conclusgions

On the basis of the material presented, somo general
conclusions can be drawn concerning the operation of a con-
trol sensitive to the angle of »nitch and its dorivatives.

In the absence of completo experimental dota, tho conclu-
slons must be presonted with the rescrvation that, while
they satisfy available data, very little data arc availladlo.

l. The control with gyroscopic roferenccs gives tho
airplane songiltivity with respect to axes fixed in spaco.

>
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2. The simple pitch control readjusts the propor-
tions of the system, -so that the available damping is more
equally distributed between the long and the short oscil-
lation, with the result that the long -oscillation can be
made to disappear as rapidly. as the short oscillation and
to take on the form of two simple subsidences.

3. The benefit of the simple partial restraint in
pitch, therefore, is derived from the ability of the dis-
Placoment control ‘to act as an equivalent rate control,

4, The additieh of an actual rgte control increases
the damping in piteh (mq) of the sirplane, without in-

creasing the sensitivity (q mq) to a rotary gust.

S. There is no advantage in using an unselectivo
second derivative control and not much _advantage 1n using
a selective control. :

64 Inertia in the control introdices z third oscilla-
tion which can be mistaken for the short oscillation when
it becomes troublesome.

7. The third oscillation becomes unstable when the
inertia of the control is increased beyond & critical value
determined by the airplane characteristiCs and the control
damping ratio.

8. Damping in the control reduces the effoectiveness
of the control, but stabilizes the residual ogcillation.

‘g, Flight in rough air will be improved (greater
course stability) by reducing the static stabdllity (m

and the natural damping in pitch (m Y, and by adding an

automatic control to supply sensitivity to angle of pitch
(me) and absoluto damping in pitch (ch)-

CONTROLLED LATERAL MOTION

The latoral motion of the airplane for small disturb-
ances consists of translation along the ¥ axis (sideslip)
and rotations about the X and Z axes (rolling and yawing)
The uncontrolled motion is represented by an equation of
the fifth degree, of which onre-of -the roots is zero, signi-
+fying that the airplane 1s insensitive to direction in az-
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imuth, In the remaining quartic, one of the rcdts 1s very
large compared with the remaining three, and 1s very near-
ly equal to the damping in rell., -That is to. say, the re-
slstance of the airplane to rate of roll is so largeo that
the rolling subsidence proserves its character in spite of
the other latoral motions of the airplane. The rollilng
motion disappears almost at once in normal flight and may
glve trouble only at the stall. )

Of~the remaining throe. roots, two are conJugate com=
plex and one ig real, defining an oscillation and a subsid-
ence (or divergence). The only airplane characteristics
influencing the roots at the disposal of the designer are
the amount of dihedral and the amount of fin and rudder
area. Generally speaking, a large amount of static sta-
bility causes the real roet to become negative (spiral in-
stability) while an excess of negative static stabllity
beyoné a small minimum value will cause the oscillation to
become first of increasgsing magnitude and then to sevarats
into a rapidly increasing exvonentlal mode (reference 38).

Controlled Lateral Motion

The .lateral motion is contrelled by the ruddsr about
the yawing axis and by the ailerons about the rolling axis.
The aileronsg, as a rule, in addition to exerting a rolling
moment, will alsoc apply a yawing moment, usually of oppo-
site siegn to the direction of the desired turn and of the
order of a tenth the rolling moment.

The rudder .control, if actuated by azimuth indica-
tions, makes up for the natural deficiency of the airplane
in azimuth. But the provision of a sense of dlrection
does not guarantee adequate damping of the motion. The
use of an angle of yaw control is in this respect not ao
fortunate as the addition of an angle of ‘pitch control for
the longiltudinal motion. The rolling subsidonce remains
vary rapid, the original sghort-period oscillation is sen-
sibly unchaneged (reference 6), bdut the slow spiral diver-
gence or sudbsidence formerly present has now become a long-
period banking and yawing oscillation which may be poorly
damped and which depends on the dihedral of the airplane
for the regulation of its period, of the order of 15 to 20
seconds (reference 27).

The motion ¢an be modified by operatling the rudder or
the ailerons according to other characteristics of the mo-
tion.
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Haus (reference 37) has given the following table of
disturbance detectors, according to the indications of
which the ailerons or rudder can be operated.

Instrument

Vane with vertical
axXxis

Pree gyroscope
Free gyroécope

Gyroscope produc—
ing precaessional
-couple

Gyroscope, or dif-
ference in 1lin-
ear speed of wing
tips

Pondulum in ZOY
plane, or acceler-
ometer along 0OY

Torsional acceoler-
ometers about
X and 72 axes

Compass

Recorded guantity

Angle of sideslip

Yaw with respect to
axes fixed in
space -

Roll with respect to
axes fixed in
space :

Angular velooity of
rolling

Angular volocity of
yawing C }

Direction of appar-
ent gravity

Angular accelera-
tion about O0X and
02 :

Yow with respect to
earth's magnetilc
field

Symbol

g sin ©

_ +av/at+Vr

It may be stated as fundamental that the primary pur-
Dose of the latoral control is to give the airplane sensi-

In %his respect,

it differs from the

longitudingl control that operated to improve course gta-
bility already present.

- Secondary control com
then used to improve the resulting motion.

ponents are
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The Sperry control operates the ailerons according %o
angle of bank to improve the motion, and the Smith control
employs both aileron and a component of rudder motlon pro-
rortional to angle of bank. The Askanla control moves the
rudder according to both angle and rate of yaw. Garner
has shown (reference 6) that all these socondary controls
affect the damping of the oscillations. The rate of yaw
control, however, affects the short oscillation almost ex-
clusively instead of the long~period "course" oscillation
which i1t was intended to improve. The alleron controls
improve the motion by modifying the distribution of damp-
ing although they are simple displacement controls.

Lag in the Control

There are two separate controls, as a rule, for the
rudder and the ailerons. Consequently, two additional
equations of motion are introduced, one for each new de-—,
gree of freedom, and the determination of the complete mo-—
tion willl require theo solution of a ninth~order equatilon.

It 19 poseidble that the highest order terms may be
neglected, or that lag in the aileron control may bo nog-
lectod compared with lag in the rudder control, because of
the much greater damping in roll than in yaw. Sufficient
calculations are not yet available, however, to endorse
such simplifications.

Following the method of introduvucing control inertia
and damving that was treated in detall under longitudinal
control, the complete equations of controlled lateral mo-
tion will now be presented, for an airplane with rudder
and alillerons moved according to angles and first and sec~
ond derivatives of yaw and roll. This arrangement 1s
analogous to the control provided by the Sperry Gyropilot,
except for the addition of the derlivative components.
Controls using other laws of operation can be similarly
analyzed.

Equations of Motion

For simplicity, the airplane will be considered in
level flight-so that 90 = 0, and the product ¢f inecrtia

E will be considered small enough to be neglected. The
equations of lateral motion are thon



N.A.C.A. Technical Note No. 700 37

Y = m(dv/dt+Ur) (7o)
L = A dp/dt _(71)
¥ = ¢ dr/at - (72)

Where Y is lateral force, L is rolliing moment, and
N ig yawine moment. :

There are two scparate controls, one for the zilerons,
and one for the rudder. Let ' - :

F, force on aileron control.
T, force on rudder control,

£, displacement of aileron control.

i, displacemert of rudder control. ) )

Force derivatives for tho controls are obtained in the
same manner as force and momont derivatives for tno air-
plane.. Thus,

Fg = (l/m l) (B_F/BE) GtC- o (73)

contro

Then the free motion of ecach control, with no fore-
ing function or extornal forcc acting can be written as

o : (74)

Aileron control (D° + DFé + Fg) 4

Rudder control (D% + DTh + Tnl ! 0 (75)

These two equations define the natural period and
the damping of each control.

The full set of simultaneous equations for the com-
pPlementary solubtion of the motinn of the controlled air-
plane is glven by e
Side force

(D-Yy) v+ (=Yu) o+ (DU) ¥+ 0+ 0 =0 (76)

Rolling moment

(<L, v + (DP=DLy)®@ + (~DL )V + (=Lg)E 0 - (7?)_
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Yawing moment

(=Ny)v + (~DNp )@ + (DZ=DN )V + (=Ng)E + (~Np)7

Aileron contral force

2
0 + (~D°Ey-DF,~F )@ +

®

Rudder control force

0+ 0+ (~D°Ty-DT~Ty W + 0 + (DQ+DTH+Th>n

Technlcal Note No.

700

= 0 (78)
0 + (D2+DFE+Fg)ﬁ + 0 =0 (79)
= 0 (80)

Dimenslong of Deterninant

It is again desired to have the derivatives dimen~

sionless.

The dimenslions of the determinant resultlng

from the foregoing equations are

T o2
=1lp—1 o2
L—l -_-a ) T-—a

72
0

i o - 0

P I—ig—2 0

T2 I"ip—® L~ tp—23

0 3 0
T 2 o - a3 (81)

In order to make this expression dimensionless, mul-

tiply
the
the
the
the

the

The unit of time 1ig again

firest line
second and
gecond and

fourth row

by T
third lines by TL
third columns by T/L

and column by T

fifth row and cclumn by T

T = m/(p/2 SU), Dbut the

unit of length according to Koppen's notatlon is the wilng

semigpan

(v/2).
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Expansion of the Determinant

As in the longitudinal case, the determinant can be
expanded in terms of ideal control derivatlives and the
control frequencies and the damping ratios, so that it
willl not be necessary here to evaluate the coupling terms
Lg, Ng, NT[' etc.

Certain minors of the full determinant will be used
sufficiently often to justify a general symbol. Let the
dimensionless determinant for the uncontrolled airplane
be A,. Then : :

by = -1y 8% - dly, A (82)
- n. ~dn.. a® - an.
1 v i 4
Also let
d ~ yeg dp :
b, = (83)
d - ¥ dp .
Ay = v (84)
Ny a2 - dnr :
a4 -3 (P
Ay = v _ L (85)
“Lv ac - de

Now also assume the shorthand notation that
2
“D I@ + Dch

. _ + L¢
£F © PP (r,./2m0)® + D2l (T,,/2nT) + 1

(86)

D2 ne + +
N ey -2 an: = (87)
D" (T, /2nT)” + D2{ (T, /2nT) + 1
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a
D7 (2, /eme)® + Dp2li(n, /2nT) + 1

Note that, if the yawing moment of the allerons is
assumed to be proportional to the rolling moment over the
normal range of alleron angles,

nggp = k lgy (89)

where k is a constant of ﬁroportionality.

In terms of these minorsg and fractions, the fifth-
rder determinant can now be expanded into a form more
onve

venient for treatmens.

[» e

Expanded Form of the Determinant

The expansion is of the form

uncontrolled alleron yaw alleron roll rudder yaw
alrplane com—~ " component component component
Ponsent
rudder yaw .
aileron roll
* side force =~ 9 ) (90)
component

Written symbolically, this equation becomos
ﬂo + HEF Al - tgF Aa - nnT AS + nnT_TgF(D~y7) = 0 (91)

It is interesting to note that, when the rudder is
moved according to the angle of roll, the effoct corre-—
sponds to the yawing action of the ailerons and i1s thero-
fore included in the second term of equation (91). Thus,
rudder movement according to this relation can be made to
balance exactly tho adverse yawing moment of the ailerons.
The operation is one that human pilots perform instinctive-~
ly.
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It is interesting to compare the effects of the var-
ious components of control outlined in the foregoing on
the motion of the airplane.
controls of the rudder and allerons are perfectly guick
and powerful, the airplane is completely restrained in roll
and yaw, and equatlon (91) reduces to simply

D - Yy = 0

If the simple displacement

(92)

which denotes a subsldence in sidesiip, detoermined by the
slde force produced by slideslipping.

minant &, which, when expanded, gives an equation of the

The uncontrolled motion is represented by the deter-

form

ers

D% + pD* + ¢D® + aD® + eD = O

(93)

The effect of the control derivatives is to increaée_or
decrease these coefficilents or to raise them to higher pow-

of D.

Suppose,

first,

that the controls are ideal,

and that they are simple displacement controls with no de-

rivative componentse.

clents can be tabulated.

Add %o
coeffi-
clent

Rudder mo-
ment pro-
vportional
to yaw

0
~png
(T +5 o)
~pny (L 7y)

~uny (B 401,)-

Rudder moment
proportional
to angle o
bank :

0
0
~hngp(ly)

bty ( Uy Yo Hibly )

0

Then the addil

Alleron yaw-
ing moment
proportional.
to angle of
bank :

0
0
“Mm(tr)
g (Vp ¥y +0ly )
0

tiong to the coeffi~

Aileron rolling
moment propor-
tional to an-
gle of bank

0
~kly
Blep (nptye)

~bly (np vy Fpng )

- (94)

When both rudder displacement proportional to yaw and ai-
leron displacement proportional to angle of bank are pres-
ent, there is an additional cross-mroduct term '
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oy wly(D - yy) {95)

Discussgion -

In order that there be course stability, f must be
greater than zero. If a rudder control is usged alone,
then for f to be positive 1 must be greater than zoro
numericelly (negative in this system of units: tv is the

derivative depending on dihedral and with v, zero (slight
negative dihedral), the pilot cannot maintain course sta-
bility without the aid of the ailerons. Addition of the
simole aileron control adds a term from (95) proportlional
to ¥4, the side force in sideslip, and this term in-

creases the course static stadbility. '

If £ were gero, e would determine the spiral sta-
bility of the alrplane. For most airplanes, e 1is nega-
tive, indicating a divergence. If a simple aileron con-
trol is added alone, the positiveness of e can be in~
creased and the airplane made gpirally stable regardless
of a small deficlency of dihedral.

When the rudder control is added, the airplane cannot
be spirally unstable, and the term e becomes indicative
of, but not the criterion of, the damping of the course
oscillation., The damping is evidently improved by large
dihedral, side area, and control derivative [2°%

None of these simple controls affects b, which very
closely ropresgents the rolling subsidence, Therefore,
this component of the motion will be substantially un—
changed by the controls in normal flight.

A satisfactory approximate factorization has not yet
been developed for the short oscillation, dbut its damping
is probadbly improved by a large value of coefficient c.

The effect of the first and the second derivative
components in the controls is to ralse the individual
termg of (94) by one and two rows, respectively, and to
add them to the original simple displacement components.
That is, in the first column, the ny control contributes
—-dny to the ¢ coofficiont. An np, component will con-
trivute -—~pnn, %o the b torm. And so on with the re-

maining terms,.



*
St

N.A.C.A., Technical Note No. 700 43
More detailed conclusiens will require extensive cal-
culations. o -
Nonideal Controls
There is no difficulty in expanding equation (91),
when the controls do not have negligidble inertia. Neglect-

ing the higher derivetive components of the control, which
are treated in a similar manner, and letting

D% (1,,/2mT)® + Degl(mnl/zﬂ) = G,, etc. {96)
Equation (91) expands to |
(C1+1)(Ca+1) A, + (Cy+1) npl; = (0y+1) ol ~
= (Ca+1) nylz + nwlm(D-y%) = 0 (97}
or, when separated into idsal and nonideal componentst’
Ideal 8y + ngphy ~ lpldg = nyhs + AYly(D-y,)
Firgst order contribution +(01+Ca)Ao+01(mpbl~1¢ﬁ2)~canwas

Second order contribution + G, Oz &, =0 : (98)

When either the rudder or the ailsron control is being
considered alone, the frequency expression simplifies con-
sideradly. In its full form as given, i% involves a ninth-
order equation, but OCyCz 1is prabadbly very small compared
with the first-order terms, and possibly may be neglecied.

The stability eof the motion can then be investlgated

by means of the natural-frequency sexpressionsg for the sep—
tic. . : :

January 18, 1939.
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Figure 1.~ Effect of lamping on response of system of one degree of freedom.
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