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TECHN I CAL NOTE NO . 660 

FAT I GUE TEST I lJG OF WITG BEA .1S BY THE RESONAnCE METHOD 

By Wi ll i am M. Bleakney 

SUMMARY 

P r eliminary fatigue tes t s on tuo alumi num- alloy wi ng­
beam specimens subje c ted to r eve r sed axial l oad i ng are 
descr i bed . The method used c onsists i n i ncorporat i ng one 
o r two reciprocating motors i n a resonance system of wh i ch 
the spec i men is the spring element . A descript i on is g i ven 
of the reciprocatin~ motors , and of the method of assem­
bling and adjusti~g the v i brat i ng system . The resul ts i n ­
d icate that the metho d is well adapted to fat i gue tests of 
not only unifo r m wing beams but also wing beans with asyo­
net ri eal local reinfo r cepen ts . 

I . r~TRODUCTIO"'J 

The p resent paper describes ~art of a research pro ­
g ram wh i ch was requested by the Uational Adv i sory Commit ­
teo fo r Ae ronautics to obta i n infor mation on the fatigue 
st r ength of fabricated structural elements o f aircraft . 
The need for such infor mat i on has bocono increas i ngly ap ­
parent with the increased importan ce o f vibration in nod­
e r n h i oh-speed and h i g h - pe r formance ai r p lanes . 

The strength of an ai r p lane under steady fli g ht loads 
can be co nputed with conside r a ble accuracy from tho fli ght 
loads and t ~e strength of the airplane as dete r oined by 
static loading o n the g r ound . Little is known a b out t h e 
correspondin g a b ility to withstand vibrational loads . 

The dete r mi nat ion of the ability of ai r craft struc­
tures to withstand vi b rato r y loads require s on tho one 
h and a knowlodg o of th o nature of the vibratory loads to 
which the a irplano is sub jec ted in fli ght, and on tho othe r 
a kn owl edge o f the strenGth of t~e struc tural parts o f the 
a irpl~no i n withstanding vib r atory loads of th i s nature . 
Info r nation of the f ir st type ~bcing collected by the 
Navy Depart ne nt in its extensive invest i gation on v i bra-
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tion of a irplanes in fl i gh t and by the Nat ional Advisory 
Committ ee fo r Aero nauti c s i n its study of dynamical loads 
unde r flight conditions in a f l ying boat . The work de ­
scr i bed in this pape r is co nfined to information of the 
se cond type. It may be re garded as an extension to st r uc­
tur a l pa r ts of airp lanes of the resonance method of fa ­
t i gue testing developed for airshi p gi rders by the Goodyear­
Zeppel i n Corporation ( refe r ence 1). The exper i en c e of the 
Goodyear- Zeppel in Corpo ration was drawn upon in p l ann i ng 
the tests a nd in pro curing the driving units. 

The p r esen t re po rt describes the appl ication of the 
resonance method t o wing- beam spec imens having various 
types of d iscontinuiti e s such as attachments, acces s hol es , 
r i vets , bolts, a n d sharp ~ngles , which Day affect the fa­
t i gue strength of the wing beam in the f ini shed a irp l ane . 
The presen c e of such discontinuities in t he test specimen 
is considered particularly i mportant sin c e it is well 
known that they intro duce stress concentrations which nay 
l owe r the fa tigue st re ngth to a fractio n of the value found 
in the absence of such c on c ent rations. The effect of the 
d i s co n tinuiti e s can be stud.ied most co nven i ent ly by apply­
ing an alternating axial load to a specimen app r oximate l y 
un iform in section, so that, except in close proxinity to 
the discontinuities, the s t re ss is approximately uniform 
throughout the sp eci men . 

It is realize d t hat the vibratory st re sses in win g 
beams in service will d if fe r from those for th i s type of 
fat i gue test in having a steady stress that is gene rally 
d i ffer ent f ro m ze ro and i n being due ma inly to flexu r al 
rathe r than a x ial loads . 

The effe ct on enduran ce of steady stresses su pe r pose d 
on alternating stresses has been the sub ject of consider­
able s t udy in the ca se of st r u ctural mate rials, and to a 
less extent i n t he case of n otched ,' ri veted, and we lded 
s tructures (reference 2 ) , but no ' well-c ontrolled exper i­
ments are known wh ic h show th~ effect of steady loads on 
the endurance of fab rica ted aluminum-alloy structures with 
lo cal st r ess concentrat i ons . It is hoped that an estimate 
of this effect may be obtained l ater in this investi ga t i on. 

The fa ct that a x ial a lt e r nating st resses rathe r than 
f lexural s tresses a rc s et up in the wing beam does no t 
se riously detract f ro m t he value of re sults f ro m axia l fa ­
tiguc tests s ince the dir e ction of stress i n both cases is 
the same . Thus the fat i gue st r ength of tho flanges of the 
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beam , wh i ch are the parts that may be expected to fa il 
first i n service since they are the most h i ghl y stressed , 
may be estimated f r om obse r vations of flange fai l ure i n 
the ax i al load tes t . In addit i on the effect on fatigue 
strength of stress con c entrat i ons around smal l d i scontinui­
ties in the web may be observod . 

The natural frequency of flexura l vibrat i on of air ­
p l ane wi ngs is so high that the beams may in some cases be 
subjected to many nillions of cyc l es of v i bratory stress 
nea r the maximum range during thei r serv i ce l i fe . The fa ­
t i gue test in the labo r ato r y should therefore be designed 
to p r ovide loads alternat i ng seve ral mill i on times within a 
reasonab l e test pe riod . The mos t convenient nethod of ac ­
conpl i shing this is to make the specimen the elasti c nen ­
ber of a resonant system of h i g h natural frequency , and to 
d r i ve thi s. syst em at 0 r vc r y near thi s frequency . The re s­
onan c e metho d, in addition to shortening the fat i gue test , 
has the advantages of p rovi ding a large alternating load 
with a low amplitude of th e driving for ce , and of loading 
only the specimen and its i mmediate attachments, so that 
the size of the loa d ing nechanism nay be reduced to a mi n ­
i r:1Un . 

A practical p roce du re fo r su ch a resonance fatigue 
test with alternating ax ial loads has been developed by 
the Goodyear~Zeppe lin ~ o rpo ration fo r their fa tigue tests 
on airship g irders and was successfully applied by them in 
tests to destruction of 1 8 aluminun- alloy g irde rs of a 
number of d i ffe rent designs (references 1 and 3) . In the 
present inve st iga t i on the pro c edure used by the Goodyear ­
Zeppe lin Corporation has been mod ifi ed ·to a considerable 
extent ; first, i n order to make use o f existing powe r 
equi pment at the Na t ional Bur eau of Standards and thereby 
simplify th e se t-up, and second , in order to adap t the 
method to wing beams in place of airship g irders . 

II . DESCRIPTION OF WING-BEAM SPECI ~EN S 

The test specimens were supplied by the Na vy Depart ­
ment in the fo r m of conplete wing cells containing 24ST 
aluminum-allo y I beams of typ ical co nst ructi on . The beams 
were removed and cut into conven ient l ength s. This pape r 
des c r i bes tests to dest~uction on two such specimens , cut 
from the undeformed uo rtion of the front and rear beams of 
an upper wing cell w~ich had b een danaged in ser v ice (fig. 
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1) . Car e was take n to l eave undis tur"bed 1:111 I:1ttl:1chments, 
reinforcenents p and rivet jo i n ts which ~i ght set up local 
stress concen trat ions in the · assembled wing "beams . 

Specimen A was the c entral portiort of the rear "bea~, 
extending out to the sections at which the beam "began to 
tape r. It was 96 inch ~s in length , 5 - 3/4 inches in depth, 
and had a nominal cr oss- se c ti onal area of 1 . 11 square 
inches . The web was 0 . 045 inch thick, the lower flange 
1 - 3/4 inches wide and 0 . 15 inch thick, and the u ppe r f l ange 
1 - 3/ 4 inch es wide and 0 . 234 i n ch thick. 

Specimen E wa s an 8S - i n ch l ength of the f ront beam, 
extending 1 8- 1 / 2 inches t o s t a r"board of the center line 
and 69 - 1/2 i nches to po rt, the r emaind e r of the starboard 
end be i ng damaged . The spe ci men tapered slightly near the 
po rt end. The beam was about 9 - 1 / 4 inches deep , with a 
nom i nal cross section of 1 . 1 9 square i nches , including a 
na rrow str i p of sk i n mate rial which was riveted to each 
f lange . At the po rt end of the loaded po rtion of the 
specimen the taper reduced the section to 1.16 square . 
inches . Th e web was 0 . 054 inch thick , and the flange di­
mens ions we r e the same as those of the lower flange of the 
rea r beam , 1 - 3/ 4 inches by 0 . 15 inch . 

III. GENERAL DESCRIPT I ON OF TRE RESO NAN.CE HETRO D 

1 . Arrangemen t fo~ the Fi rst Wing Beam 

The genera l a rrangemen t of the resonant system em­
p loyed f o r spe cimen A is shown in figures 2 and 3 . 

The Specimen S ( f ig . 2) was mounted vertically ~ith a 
stee l we i gh t W attached to its upper end and a cylindri­
ca l ele c t ro magnet M attached to its lower end. The mag­
ne t winding C1 was ene r g ize d wit h di rect current . In ­
serted i n the annular air gap and f r ee to move axially 
re l l:1t ive to the magnet wl:1S the ring - shaped a r mature A. 
This a r matu re wl:1S conne ct ed to the u ppe r we i gh t W by 
mean s of the yo ke Y and the t wo rods R, these connec­
tions "being so rigid that the system moved nearly as a 
s in g l e unit . When a lt e r nat i ng current was suppl i ed to the 
a r matur e winding C2 , a lt e r nat i ng axia l forces acted be ­
tween the armature a nd the magne t in a manne r similar to 
the push- pull a ction of a dynl:1m ic louds~eaker unit . When 
the f requen cy of the a lt e r nl:1ting current was adjusted to 
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coincide with the natu r a l f r equen cy determ i nod by the ratio 
of th e sp ring constant of th e spe ci men 8 to tho mass es W 
and M and the part s rigidly attached thereto , these driv­
ing fo rc o s suppl i ed the power which built up and ma intaine d 
r eso nant vibration. 

The system was isola t ed fro m the franework of the 
buil ding by a tension spr in g 8 1 at the to p and fou r co m-
p re ss ion spr i ngs Sa at the bottom ( f ig. 2) . The stat ic 

load on the spec i men was e limi na t e d by adj u st i ng the hei ght 
of t he upper suppo rt until the length of the t ens ion sp rin g 
8 1 was equal to it s l ength as mea sured befo re the speci men 
was conn e cted to the we i ght W. 

2 . Arran geQen t for the Second Wing Be a m 

Two i dent ica l rec i procating moto r s we r e used to apply 
the load to specimen n , one moto r be ing atta ch ed to each 
end of the spe ci men to fo rm a symmet ric arrangement . The 
me thod o f attachment is s h 6 wn i n f i gu r e 4 . The c omp l ete 
assembly is shown i n fi gure 5 . 

The assemb l y was moun t ed hor iz on tally on a ben ch B 
( f i g . 4) , and supported on snaI l I -inch rubbe r pads § , 
wh ich effe ctively p revented vib r ation f r on travel in g ih r ough 
the ben c h to the floor . The ri g id un it c omp ri s i ng the ar ­
ma tur e A and the yo ke Y was supporte~ in the magne tic 
ai r gap by a system o f 16 flexure p l ates des i gned to con­
f i ne relat ive motion to the axial direction . (S ee F , 
f ig . 8 . ) 

At f irst the two yokes at opp osit e ends of the assem­
b l y were connected by p i pes as in fi gur e 5 , so that this 
system , a c ted upon by vib~atory fo rc es wh ich were oppo ­
s it e l y directed ' at t he two ~nds , re ma ined stationary . The 
p i pes , however , we r e later ' r emoved when it was found tha t 
th e forced v i brat ion s et up in the free l y float ing a rma ­
ture and yoke was not apprec i ab l e a t the f r equen cy of the 
t es t. 

The resulting s i mpl ifi e d assemb l y s howe d a ma r ked i m­
p rovement in the flex i b ility of adjus t ment in cent e ring 
the load . Othe r advantages o f th i s assemb l y o v e r the v e r­
t ica l set - up used i n the first test were g reater facility 
in mount i ng the spec i men a nd in r ead ing strains an d ampli­
tudes, and also the el i minat i on of the r at h e r noisy sp ring 
system used to suppo rt and isolate the fi r s t vibrating 
a ssembly. 
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3 . Capaciti of Ex iit~n g Equipment 

The length of sp ecimen i s limit ed by the a vailable 
s troke of the armature rela tive to the magn et . In the two 
machines supplied for this investi ga tion by the Goo dyear 
Tire and Rubber Co ~pany th e stroke was limited to 1/4 inch. 
The max i mum change in spe cimen len g th in the arrangement 
of figure 2 is t he refore 1/4 inch; in the arrangement of 
f i gure 4, 1/ 2 inch. He nce f or an aluminum .... alloy spe ci me n 
with a stress a mplitude of 10 , 000 pounds pe r squ a r e inch, 
the maxi mum length which can be t est ed is about 10 f ee t in 
the fi rst case, and 20 fect i n the socond . 

With i n the limits of motion imposed by the 1/4 -inch 
s troke, the max i mum alterna t i n g load attainable is det e r­
min ed by the ampl itude of t he a lt e rnating driving f orce 
w~ich can b e attained, ana. by the total amoun t of damping 
in ihe system. For the same amount of damping, it is of 
course tho same for the arra ngeme n t of f igQre 2 as fo r 
t hat of f i gure 4 . For maximum safe currents s upp li ed to 
the magnet and armatu r e, the amplitude of the driving for c e 
was found to be about 4 80 pounds . Tho damp i ng can be con­
venient ly gi ven in t o r ms of the force amplification factor ; 
tha t is, the rat io a f th e an}) l i tude of the load va ria-t ions 
to t he a mplitude of the driving force at resonance. I~ 
these tests this ratio ranged fro m ~O to 120, de p ending 
la r gely upon the tempe r ature of the .syst em. It may be pos ­
s ibl e to obtain values con side r ably higher than these in 
spe cific case s by redu cing the damp ing in the attachments 
which connec t the wei ghts t o the ends of the specimen . 

IV. DR IVING HECHAHIS M 

1 . Pow e r Supply 

To drive the assembly at its resonant f r e quency, ad­
vantage was tak en of the va ria b le-frequency powe r avail ­
able f ro m the notor- gene rator set used in the study of 
p ro pel ler vibration (reference 4).* This set has an alter-

*This is the main di ffe r ence be tween the resonance' ne th od 
us ed he re and tha t used by tho Goodyea r-Zeppol in Corporation 
(referen c es 1 and 3) . The latt~r me t hod makes use of an 
inverter circuit controlled by a magnet ic pick-up at tach e d 
to tho vibrat ing a ss embly to supp ly powe r at the rp quisito 
f re quen cy. 

II 
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nating current c~pacity of 55 amperes throughout the fre ­
quency ran ge from 20 to 180 cycles per second, the voltage 
bein g adjustable. The sharpness of the resonance peak for 
the vibra t ing system required that the alternating current 
frequency be controlled. with great precision in order that 
the amplitude variat ions may be kept wi thin a few percent . 
This was accomplished by driving the variable frequency 
gene rator with a compound wound direct-current motor, the 
direct current current being supplied by a direct - current 
generator driven by a synchronous motor . The f requen cy 
was adjusted by altering the f ield current in the direct­
current motor by means of field rheo s tats . It ~as found 
that the resonan t f requency of the mechanical system 
changed somewhat mo re r ap idly than the frequency of the 
power for a par ticular rheostat setting. (See section 
VII , 2 . ) Consequently , no further at te mp t was made to im­
prove the power frequency control . 

2 . Desi gn of Re ci p rocatin g Moto rs 

As explained in section III, the power i o transmitted 
to the vibrating a ss embly by mean s of on e or two recipro ­
cating motors which con s ist essentially of a cylindrical 
magnet M, a ring a r ma ture A (s ee f ig . 2 ), and mean s 
for guiding the relative motion of these two parts . Two 
such recipro cating mo tors were des i gned and built for this 
project by the Aeronautical Department of the Goodyea r 
Tire and Rubbe r Co mpany. Alt hough new i n design, these 
mo tors have e x h ibit ed no trouble in service . 

Fi gure 6 show s the field magnet of one of these ma­
chines , wit h the a r matur e removed . The winding wh ich en ­
circles the core i s not visible in the photograph . Th is 
part· 'weighs about 580 pounds . 

Fi gure 7 shows t he a r ma tur e ·wh ich is we lded d irectly 
to a tubular yoke designed to fa cilitate co nne ctions to 
members in the vibratin g system . This unit weighs 66 
pounds and contains, be s ides the armature winding , lami­
nated iron partB designed to concentrate th o magn e tic flux 
to the best ad vantage . 

F i gure 8 shows the reciprocating moto r comp le t ely as ­
sembled . Th e a r ma ture is c ente red in the magnetic air gap 
by the system of flexure plate guides F wh i ch effectively 
prevent' contact between the armature a nd the magne t pole 
fa ces . ~he n ominal cl earance here is 1/32 inch. Ducts 
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a re p rov i ded for a ir c ool i ng . The photograph shows the a ir 
h o se co nnec t ed to the a ir inlet a t tho axis of the co r e . 
Exhaust po rts are p rovided at the othe r end of tho nagnet . 

Wi thout art ifici a l co oling the magn et wi nd ing wi ll 
. carry a c ontinuous direct current of 4 amperes , and the a r ­
ma ture a continuous alternating cur r ent of 15 ampe r e s . 
With a i r c oo ling t hese cu rrents may be ma int~ined at 5 and 
30 ampe res , r espect i v e l y . . 

3 . Pe r f ormance o f Re ciproca ting Mo tors 

Tes ts on the ue rfo r nan c e of these machines we r e car­
ri ed ou t at Akron ~efore sh ip men t to the Nat io nal Bureau 
of Standard s . So me of the results on sta tic load t es ts 
obtained with the se t-up shown i n f i gur e 9 a r e plott ed in 
f i gures 10 , 11 , and 1 2 . 

The forces sho wn in f i gure 1 0 as a fun ction of d i s ­
plac emen t of the a r mature r e l a tive to the magnet arise 
from the sp r ing act i on of the f l exure p l ates and f r om the 
att ractive forces be tw ee n the armature and magnet-pole 
f ac e on a cco un t o f the i r on in the a r mature . These fo rc es 
d o not co nt ri bute to t he p ower available, but me rely a ffe ct 
to a slight de g r ee t he natur a l f r equency of th o vi bra ting 
sys t em to wh ich t he r ec i pro cat ing motor is att a ched . 

F i gur e 11 sho TIS s ome typ ica l s tatic load- disp l a c emen t 
c u rve s . F ro m cur ves such as these , taken fo r va ri ou s f i e ld 
currents, data we r e c o ll e ct ed on t he load pe r ampe r e in the 
a r mature at the pos itio n of z e ro d i splacenent . The r esults 
are p lo tte d in figure 1 2 . 

The l oad g iven i n f i gure 12 i s the drivin g force avail ­
able pe r ampe re arma ture c u rr ent fo r very low f re quen ci es , 
s i n ce it was obtained fr an static tests . At h i g h e r f r e ­
que nc i es the drivin g force for g iven a r na ture and f i e l d 
current s may be expe c te d to be somewha t l es s on a cc ount of 
eddy curTen ts and hyste r es is . A dynam ic test was t he re ­
fore carr i ed out at t h is Bureau in the fol lowin g nanne r . 

The motor , i n the uo sition shown i n f i gure 8 , was 
energ i zed wi th 3 ampe re~ field curren t a nd a rnature cur­
rents of va rious f requen ci es and magnitudes , while the am­
pl itudes of osc i l lat io n of the armature and yoke we r e mea s­
u red . ?re c a uti ons were taken to pre vent s tro ng v i b ration 
i n the suppo rts and i n the gu i de system . Th e d isplacement 
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amp l i tude pe r ampe r e al te r n a t i ng cu rre n t in the ar matur e 
is p lott ed i n fi gure 1 3 . Th e va lues of driving f orce p l ot ­
t ~ d in the same f i gu r e we r e obt a i ned i n t h e us u a l mann e r 
for undatlped fo rc ed vibra t ion . (S ee an y tex t on vi bratio n , 
e . g ., Ti n o shenko: II Vi b r at i on Pro b l ens , II or den Ha r t o g : 
II Mechan i ca l Vi b r at ions . lI ) Fo r th e p urp o se of co mpari s on 
n ith stat ic t es t s thes e fo rc es a r e g iven on the bas i s of 
i n st a n taneous a r matur e cu rren t, i nstea d of t he u sua l r o o t ­
me a n - s qua r e va lue . 

It will b e seen fro m f i gure 1 3 tha t the dro p in driv­
i ng f o r c e fo r g ive n arma ture and f i e l d curren ts wa s a p ­
p ro x i ma t e l y a li n e a r f unction o f fr equ en cy within t he 
r a n ge tested , and am oun t ed t o about 9 p e rc en t be t ween 0 
and 1 00 c y c les pe r se c ond . Fro m t ~ e s e results it wa s es ­
t i ma t e d that t he max i mu n ne cnan i ca l powe r a va ilab l e a t 
fu l l stroke , us i ng the max i mum safe a r na ture and fie l d 
curren ts wi th a ir c oo ling as g ive n a bo v e was ab out 1 - 3 / 4 
horse p ow~ r a t 60 cycles pe r se cond , and wa s nea r l y p r op o r­
t i ona l to the f r equ e ncy . The cor r espon di ng dri v i ng fQ rc e 
a mp l i tude i s about 480 pounds . This is ove r th r e e t imes 
t he ma x i mum value use d to da t e i n t ho wi ng- beam t ests . 

v. OUNT I! G OF WIllG- BEA 1 SPECH,fE_ 

1 . Attac hmen t o f End We i ght s 

The succ ess of t h e res onan c e method of fa ti gue t es t ­
i ng de p end s to a con si de r a b le exten t on t he means o f at ­
tach i ng the we i ghts t o the sp e ci men . An i dea l at t a chmen t 
would mee t the foll owi n g f ive r e qu ir e ments ; 

(1) A res i stan c e to f a ti gue g r eat e r than tha t of the 
s p e ci men . 

( 2 ) Un i fo r n l oad a ppl i cat i on t o t he e nd se c t i on of 
the sp e ci tl e n . 

(3 ) Ne g l i g i b l e da np i n g . 

( 4 ) Ease of at t a c hne n t witho ut dange r of weake n i n g 
the sp e ci n en . 

( 5 ) Adaptabili t y to spe ci mens of d i ff e rent s hape s of 
cross se cti on . 
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The attach~en t s used i n the f i rst tes t confo r ned to a 
suff icien t de g ree vith the firs t four requirements , but 
they fai l ed to nee t the f i fth. Those used in tho second 
tes t were des i gned to co nfo r n More close l y to the fifth 
requirenen t . 

The nethod c ons i sted essentially in applying the load 
to a p ort i on of the su r fa c e of the spec i ~en ~ear oach end 
th r ough a th i n laye r of soft ailoy . W~od ' s netal was used 
because it coul d be cas t i n hot water , thus insur i ng that 
n o weaken i ng in the alun i nun- alloy specinen woul d result 
f r on the heat suppl i ed duri n g the casting procedure . The 
fo r n was nade f r on hea vy s t eel i n two parts and sealed 
with thin rubbe r str i ps , so t ha t after cast i ng the two 
pa r t s c ou l d be drawn to ge ther by n eans of bolts until a 
h i gh hydrostat ic p r essure was attain e d . 

F i gure 14 i s a se c tional v i e w of one of the termi nal 
attachnen t s us e d in the f i rst test , a~d f i gure 15 shous a 
pho to ~ raph of the at t a ch~ent taken after r eno vai fran the 
spe ci nen follow i ng the te s t . The attachnent cove r s 9 
inch es of the spe cinen at the end . It could not be used 
in the second t es t because of the dee pe r bean se ct i on (9 - 1 / 4 
inches conpa r ed to 5 - 3 / 4 inches for the f i rst spec i men) . 
The des i gn of the a t t a chnent used in the second t es t is 
shown schemat ically i n figure 4 a nd phot o g raph ically in 
f i gu r e 16 . He r e only a 5 - i n ch leng th o f spec i men was cov­
e r ed because the t h i ckest ~art of the f r ont bean was only 
0 . 1 5 i n ch as compa r ed t o 0 . 23 inch for the top flan ge of 
the rea r beam . The average shear stress on the Wood ' s net ­
a l was o f the o r der of 2 p ercent of the stress a pp l i ed to 
the s pe c i men , but the st r ess may be cons i d o rably higher in 
the Wood~neta l farthe s t re n oved fron the en d s of the spec­
inen . I n fact , it is believed that t he ob se rved variations 
in danping (see se c tion VI r) were due alcost entirely to 
va riations in the tenp e r ature of the Wood ' s ne tal and the i r 
effe ct on the pl asti ~ s treng th of t h is soft alloy . 

2 . Cen t ering of Load 

It i s i npo rtant to l oad the s pe ci ne n as nearl y uni ­
fo r n l y as pract icab l e , in orde r to in sure failure at the 
weakest po ints . 110ree v er , because of the dea rth of de ­
pen dable s tra i n gages , it is not feas ible t~ d e termine the 
load at the po i nt or po ints of failure un l ess the load dis ­
t r ibution ove r the sp e ci rie n is known . 

• • 
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Nonunifo r m loadi ng arises prin ci pa lly f ro m the p res­
ence of flexu r a l modes of vibration in the plane of t h e 
web . Only two such modes have suffici en tly low frequen ­
c i es to be i mpo rtant . Tho first . mode i nvo lves rotation of 
the we i ghts in oppos ite dire ctions and subje ct s tho spe c­
i men to a unifo r m bend i ng ~oment . The second mode invo lve s 
rota t i on of tho weights in the saTIe dir e c tion ; th i s sub­
jects the specinen to a uniform shear ing fo rce and causes 
it to vibrato with a node at the centor. 

I n the fi r st test ne i the r mode caused any trouble. 
Care was taken to place the centers of g ravity of tho 
wei ghts as accurately as poss i ble along the centroidal ax is 
of the specimen . The symnetry of the r eciprocat i ng Doto r 
then in sures that the line of act i on of the dr iving fo rc e 
i s also along the c entro i da l axis . 

However, the same p r ecautions were not suff ici ent i n 
the second t es t becauoo spoc i nen B carr i ed nea r it s center 
a large reinforcement at the po int where in the airplane 
the cabane sup po rt was attached to the f r ont wi ng beam 
(see f i g . 1), and the r e inforc emen t extended a length of 
25 -1/ 2 inches along the u p pe r flange but on ly 9-1/ 2 inches 
along the lower flange . Consequently , if tho load was to 
b e applied th r ough the cen troids of the end sections, p r o ­
vision had to be made for pe r mitting these e n d sections 
and the weights attached t~oreto to r otate , in o rder to 

. accommodate the gr eate r change in length of the lowe r 
f l ange compared to that of the upper flange . 

The posit ion of the load line relat ive to the c en ­
troids of tho end se ctions may be adjusted eithe r by sh i ft ­
ing the axes of the r e cip rocating moto r s relative to tho 
spe cimen, o r by attach i ng addi t ional ec c entr i c weights to 
the motors. The first ~ethod a ppl ie s Doments to the syeci ­
men by p roviding a coupling betwe en the longitud i nal mode 
and tho two flexural Dodes mentioned above . The second 
method , i n addition to p rovid i n g such a coupling , changes 
the frequency of the axial as well as of the t wo flexu r a l 
modes by changing the total nass and monent of in e rtia, 
and also provides dr iving moments , sin c e the l i ne of ac ­
t i on of the driving force is shifted relative to the c en­
ter of Dass of the total we i ght . Or d ina rily the effects 
on lo ad distribution of chan _os in frequency and of d riv­
ing Doments a rc not i nportant unless one of tho flexura l 
nodes has a natur al f r equency very nea r the f r equency of 
the a~pl i ed load . The effect of tho coupl i ng also depends 
upon the difference between the natural frequency of the 
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ax i a l mode ~nd that 6f the t wo fl ~xural modes . Because of 
the comple x i ty of these effects and tne lack of informa­
tion r egarding the flexu r al modes, it is usually more 
p rofitable to f ind by trial the direction and ma gn itude 
o f a g iven effect than to try to est i ma t e the effect in 
advan ce. I n attach i ng additional we i gh ts to the a s sembly 
care mu s t be taken to make tho atta chmen t so ri g id that no 
now mode s of vibration are int r oduced having f re quenci o s 
in the ne i ghborh oo d of that of t~e appl ied load ! In pra c­
t ico this li n its to v e ry small values the s h ift i n cent e r 
o f . g ravity wh ich can be attained by th is metho d. 

I n the t e st on spe c~ men B t ho stress distribution wa s 
found to be v e r y sen si t ive to shifts in the center o f 
g ravity of e ithe r we i ght . The ob serve d strain~ indicated 
that the natural f r equen cy of t he second fle xural n ode was 
very nea r t o the f re quen c y of t he a pp li ed load . ~he re 
we re also indications that t he natural frequen cy of the 
f ir s t fl exural node was not o reatly less . This is a t 
f irst sur p rising since for a s lender bean tho two flexural 
f r e quencies are i n the ratio o f 1 to ,/3 . - In the p resent 
case , howe v e r, the beam i s co mparatively weak in shear, 
and th is te n ds to de c rease the frequency of tho second 
mode, while t he fi r s t n ode is u na ffe cted since no shear 
l oad is p rese n t . Thus t h e na tur al frequen ci e s of the tw o 
f lexural nodes are not necessar i ly g reatly diffe re n t. 

The tw o lo ng stud s shown i n the f o r egr oun d of figure 
5 we r e used f e r atta c h ing smal l we i ghts to the assembly . 
Wit h a s i mila r arrang e men t at the o t h e r end the tpo wei ghts 
wer e adju sted until , f o r a s naIl anpl i tude o f vi brat ion, 
tho st r a in a mpl itude at fo u r stations wa~ i dent ical within 
±2 pe rc ent. Of tho f our stations, two we re located n ear 
each end of th e sp eci n en and at opp osite po i nt s on the two 
f lange s . 

If the . test f re quency is well re n oved from all flex­
u ral f re quen cies so that the stre s s dist ribution i s i nsen­
s itiVG to c ha nges in the ec c entricity of the wei ghts, 
shifting the spec i me n rela t ive to t he Do tors is ordinarily 
the n ost co n v en i en t ne tho d of c entering the l oad. Pro v i­
s ion was nade i n the des i ~n of the t erninal at t a ch ments 
u sed f or the second tes t to p ~ rnit c ons iderable relative 
n o tion for such adjust n cnts. 

3 . Gu iding of Spe cimen 

I n addit ion to flexural n odes i n t he p lane of t he we b, 

. .. 
• 
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nonuniform loading may arise from flexural vibration nor­
mal to the web , from torsional vibration, or from axial 
loads caused by the inertia of the specimen itself. Each 
spec i men alone weighed less than 2 pe rcent of tho total 
woight of the assembly, so that tho variation in axial 
load along the specimen was always less than 1 pe rc ent 
(harmonics involving axial mot ion were not to be expected 
because of their high natural frequenc i es , at least ten 
times that of the fundamental) . Serious torsional modes 
of vibra tion TIere not ob se rved, although coupling existed 
betueen torsional and flexural moti on as a result of the 
various e~centric reinforcements and attachments on the 
specimens. 

It is sufficient for liciting flexural vibration nor­
mal to the web to provide guides at various points along 
the specimen, since only vibration of large amplitudes i n 
this dire~tion will have an appreciable effect upon the 
load distribution . Thus the single guide used in the f ir st 
test (fig. 3), consist i ng of tw o wooden bars clamped to the 
p i pes conn e cting the uppe r weight to the armature at tho 
bottom, with rubber pad~ separating then froe the specimen , 
was all that was needed in this case . Without this guide 
there seemed to be no l icit to the a mp litude which might 
have been attained in this direction . The v ibra tion was 
subharnonic , but amp l e ene r gy was available for building 
it up since the peak compre s sive load was we ll over thr ee 
tiees the critical s tatic Euler load for the beam acting 
as a column without end restraints . 

Another type of flexural vibration norcal to the web, 
a vibration of the web itself as distinct f rom the flan g es, 
appeared to be tho s ource of nearly ~ll tho noise which 
emanated from the specinen , the noiso level being high 
enough to be distinct l y u nplea sant to the operator . A 
rough co mpu tation confirme d the suspicion that this nay 
have been buckling of the 'web near the peak co mp res s ive 
load for each cycle, the web acting approximately like a 
.p l ate with "built-in" edges . It se ee s p ossible that pe ri ­
odic buckling of this ' k i nd " may have had some influence on 
the endurance of the speci me n, but i f so, the fa ilure was 
presumably "compressive" rather than "tensile,1I for the 
buckle would not affect the d i stribution of the peak ton ­
sile stress. 

Although the second specimen was tested with roughly 
30 percent less nominal stress than that app lied to the 
fi rst specimen , the g roat e r beam depth again p ermitted 
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buckl in g i n t he we b . Th i s tine a pa ir o f w~oden menbe rs 
exte n d i ng t h e full length of the specinonand clau pod to 
opp os i te s i des of the web through thin rubber p ads uas 
t r ied, contac t be i ng nade at several p o i nts along the 
spec i men whe r e it was found mo st e ff ect ive in de a d en ing 
the no i se . Th i s gu i de syste n added sufficient stiffness 
to the spe ci me n to p r event o b j e c tionable l atoral vibration 
and a t the sane tinc l owe r e d tho noise leve l below t h e 
threshold of d i s confort to the operator . 

VI . TEST PRO CEDURE 

In any fa ti gue test two quantities are require d, the 
n u nbe r of cy cl es to failure and the peak or turning point 
va l ues of sone quant ity such a s the stres s , t h e st r ain, 
the load , o r the de f l e c tion or relative displacenent of 
s one particul a r point on the specinen. 

1 . Measure nemt of Runb e r o f Cy cles 

In the p r es ent tests the cycl es we r e count ed ne rely 
by not i ng the s tarting and st opp in g tines to the nea rest 
n i nu te, and recor d i n g the frequency as indicated by an 
e l o c t r ona gne t ic tach ono te r connected to the sha f t of the 
gene rato r . Th is tachonet~r was c a librat e d by a revolution 
coun t e r and a s to p wa t ch . 

2 . Measurenent of Ampl itude 

The anplitude o f vibration of one of t he we i ghts i s 
also an easi l y n easur able quan t i ty . The wedg e - shaped 
s cal e sho wn in f i gure 17 was use d fo r th i s pur pose . * The 
wedge s on t h i s s cale ha ve a r a t i o of length to width of 
10 :1, a nd wi th the aid of a te lesco pe or lo w- powe r n icro ­
s co pe i solated f r om the v i brating system readings may bo 
es t i mat ed to 1/ 5 divi sion , which c o rresp on ds to 0 . 001 inch 
double anpl i t~de . So uewha t h i gh e r sensitivity nay b e ob­
ta i ned by r educ i ng the s ize of tho scale and using g r ea t e r 
magn i f i cat i on . 

I n f i gure 17 the amplitude scale is n oun ted with i n 2 
inches of tho ~x i s of th e system so that small rotations 
of the we i gh t a bout i ts ce n t e r o f nass wo uld ha ve a ne g li­
g i b l e effect on tho roa d i ng of the axial conp onent anpli -

* A s i milar scale is de s cr i b ed i n referencc 1 . 

_ J 
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tude. In the second t es t t he scale was mounted on the 
axis at th e arma t u re e n d o f the mo to r by a ttach ing it to a 
fl a tten e d brass rod s cr ewed into the air duct . ( The a ir 
duct is shown co nne ct ed to t he hose line in f i gur e 8 and 
a l s o i n the foregroun d of fi gure 5 .) 

3 . Me asure men t of Strain 

Strain measure men ts were made at various locat ions on 
the spe ci men during pre l i minary runs at low amp litude and 
a lso, in the case of the second test , a t one loca tion dur­
i n g the en tir e te s t. The se measur emen t s were made as a 
moa ns of de t ermi ning the load dist ribut ion over the spec­
i men, · and to pro vi de as dire ct a co rr e lation as p o ss ible 
between the test results a nd t he vi b r at ory s tra i n to be 
measured un der se r v i ce conditions , as ~e ll as to ass i s t in 
the de t e rmi nat ion of s tress concentration factors. 

For most s tra in gag es there is considerable error i n 
the rea ding s if the gage is sub jected to hi e h acceleration. 
Probably t he most reliable gage fo r this c ondition i s the 
Tucke r man optical gage shown in figure 18. This sp ecial 
gage is li ghter and more ri g i d than the regular Tucke r man 
gage (ref e ren c es 5 and 6 ). The gage length is 2 inche s , 
the weight 0 . 8 ounce. The correction is small for long i­
tudina l a c cele ra t i ons up to t en times g r a vity and is neg­
li g ible for accele r at i ons of this order of magnitude in 
any other direction. 

Only two such gages ha ve be e n constructed. To su p ­
plement these spec i a l li ght - we i ght gages regular 2-ounce 
gage s wor e used in the se c ond te s t. Atte mp ts to obtain 
sa tisfactory pe r fo r mance of the heav i e r gages a t the nor ­
ma l runn i ng a mp litude of t h e test fa il ed , even nea r the 
c en t e r of the spe ci me n where the l ongitudina l motion i s 
nearly zero, because of t he l ate r al vibration presen t . 
However, with suff icient Car~ relat ive measur emen ts c ould 
be obtained with these gages durin g the pre limina ry runs 
a t a reduced anplitude , so t hat they were us eful i n center­
ing the load. 

The gages were mounted in pairs at opp o s it e po int s on 
the t wo f l anges of the spe ci men , care being taken to set 
each gage as nca r the c ente r of the flange as pass i ble 
without getting too close to rivets o r o t her a brup t changes 
in section. Several me thods of atta ching the gagei t o the 
spe cimen were tri~d ~ F i gure L8 shows t he ce t ~ od that was 
adop t e d for mos t of t he strain measure ments. 
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4 . Determination of Stress 

For t h e pu~po so of s i mpl i fying the discus s ion, it i s 
conven i ent to express the results of these tests in terms 
o f the IInomina l st r ess o.mp litude ll defined as the anpl i tude 
of the ax i a l st r ess a v e r age d o v er a cross se ction of the 
spec i men f r ee from rivets , open holes, and othe r irregu­
larities . 

E i the r the measured aoplitude of one of the we i ghts 
o r the a verage st rain amplitude as indicated by a pair of 
s train gage s nay be used as a bas i ? fo r conput ing the nom­
ina l stress anplitude . The st r ains were converted into 
st r esses by as s u n in g a va lue o f 1 0 . 5 by 10 6 pounds pe r 
squa r e inch for the Young t s nodul us of the 24ST nate rial. 
This value is taken f ro m the pr i mitive stress- strain g r aphs 
covering a large nu mber of tensile and pack compression 
tests on th is mater i a l a nd is be l i eved to be accurate with­
in ±l per c e~t over the range of stress c overed in the fa­
t i gue tosts . In the Case of dynamic loadi n the adiabatic 
modulus should be used , but sin c e this is only about 1/ 2 
pe rcent g r ea t e r than the i sothe r mal value (reference 7), 
t h e difference may be ne g l ected . Th i s ne thod of co mput ing 
the nominal stress ampl itu de aoes not take ac c ount of any 
phase d i ffe r ence be tw e en tho two st rain gages , wh ich may 
be p resen t as a r esult of flexur a l vibrations in t he p l ane 
of the web . Wi th such a phase difference the i ndicated 
anpl i tude of the ave r age stress would always be i n excess 
of the a ctual ampl itude . 

There are two meth ods by which the nominal stress an­
p litude may be d oduc ed from the ampl i tude of vibration of 
the weigh t . The f ir st was used by the Goodyear- Zeppelin 
Corp orat ion (reference 1 ) to obtain a value for the stress 
anpl itude in a irsh i p g irders, and consists in takin g the 
relat ive displa c emen t between the two we i ghts divided by 
the effe ctive leng t h of the spe c imen as the mean stra i n 
t hroughout the spe ci men , from which the corresponding 
st ress is obtained by means of Young's modulus . This me th­
od was n ot practicable i n the f a ti gue tests of wing beams 
be cause of the un c e rtainty i n t he effect ive length of the 
spe cimen . Both the presence of reinforceme n ts of unknown 
st if fness al ong the Gpec i !CJ.en , ' and the 'fac t tha t the depth 
of penetrat ion of stress i n the terninal atta chnents aF­
pa rent ly va ri es wit h temperature and time, cont ribute to 
th i s unce r ta inty. 

The sec ond neth od consists in deducing the p eak load 
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from the nass and acceleration of one of the we i ghts and 
dividing by the nominal cross-sectional area to get the 
no~inal stress amplitude • 

If the axial displacement of the center of gravity of 
the weight is given by E s i n 2n ft where E is the am~ 
plitude and f the frequency , the peak val ue of the ac -
cele r ation will be 4na fa E, and the nomina l stress am­

pl i tude will be 4n 2 fa EM/Ag where M is the mass , A 
the no ninal area, and g the acceleration of gravi ty . 
The driving force does not enter into this c o mputation 
since at resonance it is p r actica lly 90 0 out of phase from 
the inertia force, and therefore may be taken as zero at 
the instant the peak load is reached . A small correction, 
h owever, ~s required to take account of the ~agnetic at ­
traction between the arnatur e and the magnet as given in 
figure 10 . 

The principal .assumptions made i n this ~ethod are 
that the weight moves as a singl e un i t and that the mo ­
tion is sinusoidal. No evidence has be e n found fo r doubt ­
ing the accuracy of the first assunption . Deviations from 
sinusoidal motion may arise e ither fro~ harnonics or from 
lack of proportionality betwee n load and extension . Har ­
monics involving axial motion are not to be expected be ­
cause their frequencies are estimated to be g reater than 
ten t i mes that of the fundamental, and no ade qua~e source 
of energy having such high frequencies is apparent . 

Lack of pro p ortionality betw e en load an d extension 
may be expected from the e f fect of frictional forces, such 
as friction in the vici n ity of rive ts and bolts, and par­
ticularly f ro m the e f fect of slippage and pla s tic deforna­
~ion in the Wood's me tal at the t e r minals. Although the 
total dampi n g is no~ larg e (see section III, 3), the ef- . 
fe c t of this typ e of da mpi n g on the p eak load is difficult 
to estimate, occurrin g as it does near the p eak load , in 
contrast to viscous da mping w.hich reaches its maxirmm as 
the load ~asses through zero . 

Thus each of the two me tho ds of determining the nomi ­
nal stress amplitude is subj e ct to some uncertainty , the 
first because it a s sume s all ~trains to be in phase, the 
second because it assumes sinusoidal motion . The observed 
discrepancy in the results (see section VII, 1 and 2) docs 
not appear too large to be accounted f or by failure of one 
or both of these assumptions . More ~ata will be necessary 
to determine which of the two methods is the more trust ­
,orthy in the present case. 
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5 . Observati on of Failure 

In fat i gu e tests such as t hese it is des irab l e tha t 
the n umb e r of cycl es befo r e the f ir st appea r an c e o f a vi s ­
ibl e crack be d e t e r min ed , as woll as the numbe r of cycl es 
before a majo r fa ilure . The endurance based on the f ir s t 
criter i on is p robably t h e safer one to u se i ns o fa r as it 
ind icates a weakeni ng of the structure aga inst both s t atic 
and dynamic loa d s . On the other han d, the determination 
of th is endur an ce r0 quires fr equent and careful exam ina­
tions of the spe ci men , wh ich may be impractical in the 
p res e n c e of a guide syste m hiding a con s ide r ab l e po r t ion 
of the spe cime n, such as tha t u sed fo r the second spe ci men . 

Ac tuall~ in these tes ts , no cracks wer e observed un ­
til a sharp re port and a sudden sl i gh t r educ t ion i n r eso ­
nan t frequency ga v e n o t ic e of n ma j o r fracture pass i ng 
completely through one of the flanges . Exam i na tion then 
sh owe d , i n the cas e o f ea ch spe ci men, a numb er of addi­
tional cracks in va riou s parts of the spe ci men and i n vary­
ing s t ages of de velop me nt , i nd icat i ng the locat ion of the 
weakes t po int s in fat i gue , and also in d ica ting the sequen ce 
of fo r mat ion of the la r ge r crack s . I n o r der to sh ow up t he 
smalle r cracks more cl earl y and t o ~eveal poss ibl e incip i­
en t cracks wh ich had been ov e rl ooke d, the spe cimens were 
vibrated at a re duced amplitude for come ti me af t e r the 
ma j o r fa ilure . 

VII . RESULTS 

1 . Da ta on Speci men A 

The data obtained from the fa ti gue test of tho f ir s t 
wing beam are s ummarized in f i gure 19 . The bottom curve 
g ive s the amplitude o f t he lowe r we i gh t as read on the 
scale shoun i n fi gur e 17. The sec ond curve g ive s the fre ­
quen cy _ The da ta f ro m t hese two cu r ves were used to com­
pute tho nominal s tr es s a mp litude g iven by the third curve , 
the calculation being made by t he me t hod des cribed i n sec­
tion VI, 3 . 

Duri ng the p reli mina r y run s co v e ring the f Ir st 107 
mi nute s st rai n ampl i tude readings were taken on the flan ge s 
nea r the c ente r of the spec i men wi th tho two l i ght - we i gh t 
Tucke r man opti c a l gages des cribed i n sect io n VI, 3 . The 
value s of nomi nal s tress arnnl itude deduc od f ro m th e se r ead­
i ngs using fo ~ Yo ung 1s nodulu s 10 . 5 by 106 pounds pe r saua r e 
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inch (so o section VI, 4) , a re g iven by the open circles in 
figure 19. The i mpro ve men t in con s i stency toward t he end 
of the prel i nina ry r uns is p robabl y due to . i npr oved tech­
nique i n the control o f the anplitude. Onl y one stra in 
reading was taken at full amplitude beca~se of the d i ff i­
c u l ty of preventing creeping of the gage po ints as a con­
sequence of the severe lateral vi bration . The strain 
re ad i ngs y i eld a val ue of stress anplitude on the averag e 
about 8 per c en t hi ~he r than that deduced f r on the a mpli­
tude of the we i ght . 

Fron the re sult s of both te s ts it is est i nated tha t 
the fii s t 304 , 000 9ycles on the fi rst spe ci ne n ( f i g . 1 9 ) 
i s roughly 10 pe r cen t of the total endurance a t t he aver­
age ampl itude of 0 . 0225 inch , and 44 , 000 cycles is ab out 5 
p e rcent of the endur an c e at 0 . 036 inch amplitude . Acc ord­
i ngly, taki ng a ccoun t of these pre limi nary runs , the to t al 
endurance at the full amp litude of 0 . 040 inch sho~ld be 
about 15 pe rc ent h igh er than the 452 , 000 cycles actually 
observe d , o r 520 , 000 c y cles . The correspondi ng average 
nominal st r ess ampl i tude is 8 , 300 pounds per square inch 
on the basis of the amp litude of the we i ght, 9 , 000 pounds 
per square inch on the bas i s of s t rai n readings . 

The to p curve of f i gur e 19 g ives the arnatur e current 
in the d riving moto r, wh ich is directly propo rti onal to 
the dri ving for c e and , at constant ampl i tude , very nearly 
proportional to the damp i ng . At the break in this curve a 
r e cess o f about two hours wa s taken . The tendency of the 
syste m duri ng th i s period to r ecove r its original low damp­
i ng value is believed to be due to c ool i ng i n the WOOd ' S 
me tal wh ich had been wa r med and softene d by the p revious 
run. 

2 . Da t a on Sp e ci men E 

The data obtained fro m the fatigue test on the second 
wing beam are sumnarized in f i gu r e 20 . The breaks in these 
curves r epresent recec ses varyi ng in length from a few mi n ­
utes to several days. ~he effec t o f the p reli mi nary runs 
covering the fi rst hou r and ten mi nutes on the endur an c e of 
the specimen is beli eve d to be negli g ible! · nur i ng these 
runs the load was cen tered as de s cribed above . .(See sec­
tion V , 2 . ) Subsequent strain reading s were taken on on ly 
one gage . The averag e value of the nom i nal st ress ampl i­
tude computed f ro n the~e readin gs (s ee fig . 20) was 5 , 740 
p oun ds pe r squa r e in ch, wh ile the average deducod fro m th e 
amplitude of the we i ght was 5 , 220 pounds per s~uare. inch , 



20 N. A . C. A . Te chn ica l Ho t e No ~ 66 0 

leaving a d i scr e pan cy o f 1 0 pe rc en t f or t h e fa t i gu e strength . 
Th e e n du r an c e wa s 2 . 86 by l OB cycl e s . 

Tha t t h e p a r t icu l a r lo cat ion o f the st r a i n gage wa s 
n o t s t r e s sed app r e c i a b l Y , h i ghe r tha n the rema inde r of t he 
spe ci me n i s c le a rly i ndi c at ed by t he fa ct t ha t no cra cks 
were found near the gage . I t appea r s t here f or e t ha t tho 
c on d i t i ons r esp on s i ble for the di s crepan cy i n the f ir s t 
te s t wo re e qual l y s er i ous i n the se co n d . ( Soe s e c tion VI , 
4 . ) 

In bo th t e sts ther o wa s a ma r ked t e n dency f o r t he r e s ­
o nan t fr e que n cy to f al l dur i ng the cour so of t he tes t . 
Such e ff o c ts as change s i n Yo u n g ! s mo dulus a s a r e s ~l t o f 
cha n ge s i n temp e r ~ t ur e , p r o g r ess ive we a ken i ng of the ma te ­
r i a l, al d weakenin g o f t h e s t r u c tu r e as a result of l oos ­
e n i ng r ivet s and bo l t s , a r e c on s i dered i nadequat e to e x ­
p l a i n thi s behavi or. The ob se r v e d va ri a t i ons in f r e quen cy 
a r e b e l i e ved t o b e ca use d by a c o mb i na t ion of nonvi s c ous 
damp i ng a nd of changes i n t he e ffe c t ive f r e e l e ng t h of the 
spe c i me n wi th va r iat i o n s i n the dep th of p enet r at ion o f 
s tr esse s i n the t e r mi n a l at t ach men ts. Both t he damp i n g 
a n d the chan g e i n eff e c t i ve leng th may b e at tr i but e d to 
c hange s in the Woo d I s me t a l l a ye r c onne ct i ng the en d 
we i ghts t o t he spe ci me n . 

3 . Lo cati on of Crack s 

Cr a cks i n va ri ou s s tag es of d e v e lopmen t a r e s hown on 
t h o p hoto g r aph s , f i gure s 21 to 27 i n clu s i ve . Th e loca tio n 
o f th e s e pho t o g r aphs on th e Rp e c i me n i s in d i ca ted by t he 
corre sp ondi ng numbe r i n f i gur e 1. Cr ack Ko . 1, f i gure 21 , 
wa s t h e na i n fa i l u re on the f i r s t s pe ci me n . The rib a t ­
ta c hme n t unde r wh ich it nasse d a n d t he t wo r i vet s wer e r e ­
move d af t e r the t es t t o ~ho w t h e cra ck mor e c l earl y . A 
t ota l of e i ght c r ac k s fo und on t ~e f ir s t spe ci me n a r e s ho wn 
in f i gu r e s 21 , 22 , a n d 23 . 

Cr ack J o . 9 , f i gu r e 24 , i s t he ma i n f ailu re on t he 
s eco nd sp ec i men , an d the additi ona l s i x c r acks f oun d on 
th i s sp e c i me n a r e s h own in f i gu r es 24 t o 2 7 inc l u s i ve . The 
g r oup i ng of a l l t h e c rack s but one , No . 1 5 , n ear one e n d 
indi cate s a c e r tain amo unt o f o v e r lo a d ing of t h e top f lang e 
n ea r th i s en d a n d t o t h a t ex te n t r e f l e c ts the d i ff icu l t ies 
e n c ounte r ed i n c e n t e ri ng the loa d on th i s sp e ci me n . One 
cra ck , No . 1 2 , was fo u nd even i ns i d e the t e r mi nal att a ch­
men t . And ye t t he o c c u r r e nce of No . 1 5 n e a r t he o the r en d 
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of the same flange shows that the second flexural mode in 
the plane of the web, which was the most diff icult to con­
trol , did not predominate during the test for it would 
load the oppo site flange the heavier at that end. 

VIII. CONCLUSIONS 

Preliminary fatigue t ests of two wing-beam specimens 
have ShO\7n that: 

1 . The recipro cat i ng motor · i n conjunction with a 
resonant system is a convenient means of applying rapid 
axial load rever sals to large specimens such as wing 
beams for fat i gue me asure~ents; 

2 . Spec i mens with local asymmetries in section such 
as that portion of the front wing beam which includes the 
cabane - support attachment may be loaded nearly uniformly; 

3 . The load may be applied directly to the speci me n 
through a layer of Wo od ' s ~etal without the necessity of 
"building up" the ends to p revent failure at the t e rmi~ 
nal s; 

4 . The p roble m of determining the st res s app lied to 
the spe ci ~en is no t a simple one but will require further 
de v elopment ; and 

5 . The beans tested had no outstan~ing weak points 
in fatigue but rather exhibit app roximate ly the sa~e re ­
sistance to fatigue around the nany rivet holes and other 
discontinuities distributed thr oughout their le ngth. 

Na tional Bureau of Standards, 
Wash ingt on, D. C., July 1938. 
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~igure 1.- Fatigue specimens of aluminum-alloy wing beams after teste to 
failure. The numbers indicate the location of crack photo­

graphs with corresponding figure number8. 
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Figure 2.- Schematic arrangement of f1r st 
fatigue test assembly. 

Figure 3 . - First 
fatigue 

test assembly be­
fore final run t o 
fa1lure. 
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I 
B 

Figure 4. - Schema tic arrange~ent of 
one end of second fatigue 

t es t ~ssembly, the other end being 
identical to this. 

Fig . 4 
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Figure 5.- Second fatigue test aS8embly with the exception of the guide system and load­
centering weights. The symmetric arrangement reduces the mechanical difficul­

ties and provides greater flexibility of adjustment. 
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Figure 6. - ElectroJIl8.gnet of the Goodyear reclprocat1~ motor. 
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Figure 8.- Reciprocating motor complete with vents for air cooling. 
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Figure 9.- Set-up at Akron for static load tests on the first reciprocating motor. 
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Figure 15.- Rear beam terminal attacbment after removal from specimen 
following the first fatigue test. 
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Figure 16.- End portion of front beam with terminal attachment in place. 
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Figure 17.- Det ail view of lower end of first fatigue test assembly, 
showing double wedge for measuring amplitude. 



Figure 18.- Light weight Tuckerman optical strain gage clamped to the flange 
of a wing beam. 
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Figuxe 21.- Fatigue cracks in specimen A{for location on specimen see figure 1). 
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Figure 22.- Fatigue cracks in specimen A(for location on speclmen see flgure 1). 
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Figure 23.- Fatigue oraoks in speo1men A(for locat1on on spec1men see f1gure 1). 
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Figure 24.~ Fatigue craoks in speoimen B{for looation on 
specimen see figure 1). 

Fig. 24 
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Figure 25.- Fatigue oracks in specimen B(for location on 
specimen see figure 1). 
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Figure 26.- Fatigue cracks in specimen A(for location on 
specimen see figure 1). 

Fig. 26 



• 

I.A.O.A. Teohnical lote 10. 660 

Figure 27.- Fatigue cracks in specimen B(for location on 
specimen see figure 1). 
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