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THE UNSTEADY LIFT OF A FINITE WING

By Robert T. Jones
SUMMARY

Unsteady 1ift functions for wings of finite aspect
ratio have been calculated by approximate methods involv-
ing corrections of the aerodynamic inertia and of the an-~
gle of the infinite wing,

The starting 1ift of the finite wing is found to be
only slightly less than that of the infinite wing; whereas
the final 1lift may be considerably less. The calcunlations
indicate that the distribution of lift near the start is
similar to the final distribution,

Both the indicial and the oscillating lift functions
are given, Approximate operational eqguivalents of the
functions have been devised to facilitate the calculation
of 1ift under various conditions of motion,

INTRODUCTION

The two-dimensional potential theory of airfoils in
unsteady motion was set forth by Wagner (reference 1) and
has been extended to problems involving the motion of
hinged or flexible airfoils by Theodorsen (reference 2)
and Kissner (reference 3).

It is known that, in the case of steady motion, a
correction is necessary pefore the results of the two-di-
mensional theory can be applied to actual wings of finite
agpect ratio, No corresponding correction has, however,
been developed for the conditiong of nonuniform motion.*
The calculations contained herein lead to such a correc-
tion, which is applicable, within the usual limitations,
to arbitrary dynamical conditions of motion,

*A discussion in general terms of such a correction has
been given in a recent paper by Cicala (reference 4).
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THE INDICIAL LIFT

Influence of the Wake

Owing to the pregsence of circulation, the lifting
wing leaves in its wake a surface of discontinuity whose
local vortex strength will be determined by the rate of
change of circulation taken both across the span and along
the flight path, (Seec fig. 1,) The formation of such a
wake and the configuration of the vortices in the wake are
determined by the assumption that the flow at each instant
conforms to the Kutta condition. An essential feature of
the problem ig the determination of the influence of thig
wake on the wing.

‘It is important to note that the wake is supposed to
remain plane -and undistorted, The consequence of this as-
sumption is ‘that the effects of the wake are additive, per-
mitting the various flows to be built up by superposition,

Thus, if the solution is known for the case of a sud-
‘den sgtart of the motion - or what amounts to the same
thing under the agsumptions involved, a sudden change in
angle of ‘attack - this solution may be used as the element
in an integral that giveg the 1lift in any variable motion,
Tith this point in mind, attention will firgt be directed
to the special cagse in which the wing starts suddenly from
rest at t = 0 and maintains the uniform flight wvelocity
V with the normal velocity w thereafter,

Before the three-dimensional problem is considered,
it will be helpful to review certain aspects of the two-
dimensional theory. Figure 2 shows the slemental flow
used as a starting point by Wagner (reference 1),

Thig flow 1s caused by two vortices, representing an
element of circulation around the wing and the vortex left
‘in the wake when this circulation was generated., The
streanlineg of this flow are eccentric circles and one
such circle of unit radius is chosen to represent the wing
section, The axes are then placed so that this circle has
its center at the origin., - The geometry of the pattern is
such that, when the wake vortex is at z,” the wing vortex
must be at l/z. Such spacing preserves the unit circle as
a streamline of the flow, R ‘
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Transfprmaiidh of the'patterh:by the formula
2t=12z + & : (1)

~flattens the unit circle into a thin-line wing section
“and distorts the orlglnally circular streamlines into oval
Joukowski figures (flg. 2). ‘

The transformed pattern thus represents the circula-
tory flow about a series of symmetrical Joukowski airfoils
with an associated countorvortex in the wake For conven-
ience, the ideally thin airfoil is chosen.’

Bach elementary flow of the type shown (fig. 2) con-
tributes a certain velocity around the trailing edge of
the airfoil, An instantaneous flow due to an angle of at-
tack of the airfoil also gives a trailing-edge velocity,
but of opposite sense. On this basis, the problem of cir-
culation with varying angle of attack may be solved by an
inverse procedure, Assume somec convenient distribution of
wake vorticity and calculate the trailing-edge velocity at
each point along the flight path corresponding to the for-
mation of the prescribed wake, The particular variation
of angle of attack necessary to cancel this trailing-edge
. flow at each instant (Kutta condition) can then be deter-
"mined. If a number af such curves are found, they may be
added in various proportions so as to approximate any pre-
scribed variation of angle of attack; the corresponding
curves of variation of circulation along the flight path
are then added in like proportions.

It was in essentially the manner just described that
Tagner (reference 1) built up the flow produced by a wing
during the uniform motion following a sudden unit change
in angle of attack. The integrated pressures over the
airfoil give a 1lift coefficient that approaches asymptoti-
cally the known steady value 2. The startlng lift isg
found to be exactly one-half this value, " The center of
pressure remains at the quarter-chord point throughout the
motion.

In the case of the finite wing, an element of the
wake will be as depicted in figure 2 but will, in addition,
contain vortices completing each circuit to the wing
through the tips, Near the start of the motion, these tip
vortices will be short and their influence on the Wwing will
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consequently be small, - Hence, the starting lift of the

finite wing will be very nearly equal to that of the in-
finite wing, As the wake lengthens, the correction will
increase and finally approach the magnitude given by the
Prandtl theory.

. In the present problem, it is desired to follow along
the lines indicated by the Prandtl theory insofar as pog-
sible, using the existing two-dimensional theory as a basis
and determining the effect of aspect ratio as a correction,
#ith long tip vortices:and with smooth distributions of
load, calculations show nearly uniform distributions of
downwasgh over the wing. With a short wake, however, the
calculations show proportionately much greater curvature
of the induced flow so that the effects near the start
cannot be approximated by a simple angle-of-attack correc—
tion as in the Prandtl theory.

Lift Near the Start

The starting lift of any wing may be expressed in a’
very simple manner based on the Xutta condition. It is
seen that, as a conseguence.of this condition, the portion
of wake adjacent to the trailing edge must move as an im-
permeable extension of the wing surface, The flow pro-
duced at the first instant is the same as-that caused by:
the wing in process. of growing wider at the rate V., It
follows that the starting 1lift may be thought of as the
reaction to.uniform motion of & wing with increasing mass:

T “dmt s
L =w _-E_ (2)
it , )

where ' is the mass representlng the aerodynamlc 1ner~
tia of the wing. :

In order to apply equatlon (2) to the finite wing, -
it is necessary to know the inertia factor for such a
wing as a function of the width, In general, it would
therefore be necessary to determine the potential flow
for normal motion of each wing of given shape., Solutions
are provided, however, by classical hydrodynamic theory
~for elliptic plates, and it is possible to use these solu-
tions to represent approximately the initial rate of in-
crease, of inertia of a wing of conventional gshape.
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The distribution of potential over each chordwise
section of an elliptic plate in normal motion has the
same form as the corresponding two-dimensional potential,
At a certain value of the normal velocity, this distri-
bution ig given by a circle with the chord of the section
ags the diameter, Thus

P=w /1 - (7

In two-dimensional flow, the normal velocity is 1,00 and
it ig slightly greater for the finite digk: The factor’
of increase igs the ratio-of the semiperimeter to the span,
given by the elliptic integral ®, 1i,e,,

p = 1 - t®

B

If the edge of the plate distorts into a slightly
wider ellipse (fig. 3), the potential differences arising
will be measured by the differences between the ordinates
of the original and of the slightly expanded circles, The
change in the factor E may be neglected, The pressure
differential at any point is given by the formula

p=~2ofv959+§59] (3)
L ox o}

where

) S (ay
o) -
* 1 - xa _
and, from the geometry of the circle,
3 ! bc | 3 1 A
JE = JE_ 9_3 =V -EL =V E cot l'e (5)
dtly_, Obc dt Iy dbelpny 2 2
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The pressure across ‘the plate Wlth normal ve1001ty w = B
and flight ve1001ty V. is, therefore

= pV

Pi=o !

ZCAOItG'—cot_-eé-:]"_:' (&)

Integration of this pressufe“qver any section gives the
1ift coefficient

¢, =TIy o
E VY B . ) :

with each local center of pressure at the quérter;chord'
line,

The start of the elliptic wing is eguivalent to a
uniform lengthening of each chord, so that the true cllip-
tic outline is not preserved. It may be shown, however,
that such a change does conform very necarly to a change
into another slightly larger ellipse at all points except
~those near the tips. Furthermore, if it ig assumed that
the wing ig distorted in any of a nuunber of ways into a
slightly different elliptical plan form, it i¢ found that
the change of virtual inertia is dbut little affected Dby
the change in shape and depends primarily on the over-all
change in size, Each such distortion can be thought of as
representing a certain distribution of the starting veloc-~
ity V around the edge of the wing. ZEgquation (7) is exact
for all these distributions and, since they may be made to
fall closely on either side of the curve V = constant
(representing the start of a rigid wing), the equation is
congidered applicable to this case also,

The Downwash Correction
A fairly accurate curve of the growth of 1ift night

be drawn by connecting the starting value given by equa-
tion (7) asymptotically to the known steady value, After
the wing has progressed several chord lengths, however,
the effect of the vortex wake can be treated simply as a
modification of the angle of attack and in this way it
will be possible to obtain a closer approach to the true
form of the curvs,

Figure 4 ghows how an elementary loop vortex in the
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-wake of fhe finite wing can be formed by cancelation from
an element of the wake of the iInfinite wing, The flow
produced by-segments BCD GFH accounts for the aspect—ratlo
effect :

The relatlon determining the spacing of the vortices
A and E (fig. 4) is found in the two-dimensional theory,
(See fig. 2,) At the instant an element of circulation is
acquired by the wing, the bound vortex and the counter wake
vortex coincide at the point correspondlnr to the trailing
edge of the airfoil, The wake vortex is subsequently car-
ried downstream with the fluld at-the velocity V- while
the bound vortex moves ahead into the wing as shown, It
is important to note that the position of the centroid of
the wing circulation is unchanged by the transformation
from the circular to the flat wing sections, Thus, when
the wake vortex is at {, the flattened bound vortex re-
tains its centroid at 1/z, The eguivalent length =x of
the tip vortlces, in terms of the flight-path distance s,
becomes o

1 oo e o o
X = 3 [1 + 8 + /52 + 25 - L 1 Js(s + 2) (8)
. 1+s+«/8+2J

The tip vortices do not, of course, terminate abruptly

but merge into the wing. The effective length =x gives

a good approximation to the effect at some distance, Fig-
ure 5 illustrates the rapid spread of the discontinuity
into the winz subsequent to its origin at the trailing
edge,

Since the vortex wake is supposed to remain plane and
undistorted, the principle of superposition can be applied
%0 the calculation of downwash w;(s). Then the downwash
due to any distribution of vorticity along the flight path
and-over the span can be computed by integration of the-
effects of elementary lines of the pattern indicated in
figure 4, In the simplest agpect of the problem, the sur-
face of discontinuity may be replaced by a "skeleton" com-
posed of two tip vortices of finite strength connected
across the span by a vortex sheet, The tip vortices are
located in such a way that their influence at the middle
of the wing approximates the influence of the spanwise
grading of digcontinuity The problem will first be treat-
ed in this manner and Wil] later be extended to 1nclude
the elliptical form of spanwise loading.
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A straight downwash flow at the center being assumed,
the calculation for an elementary loop is carried out at
the chordwise centroid of the wing vorticity where the
small influence of segments B and G disappears., By
the application of Biot-Savart's rule, the downwash due to
segments DC and FH 1is found to be ‘

"dwi 1 X vy _ 1 1
L= [GrD—=—="-3]

dy : ul . Jx2 o+ y&

The transformation of the length =x 1o the distance s

ig accomplished by equation (8).

With the tip vortices at the fixed spacing y, the
downwash due to any variation of vorticity along the flight
path Y(s) may be found from

g

. . & 4w, .
wi () = %%- (s) ¥(0) +,/ _-d%- (s - 54) V' (s;) ds, (10)
. oo ’

Circulation and Lift
The circulation‘aroﬁnd the wing at later gtages of’

the motion may be determined from the two-dimensional
‘theory by using the effective angle of attack

Qg = O = Qf° (11)
where
LE}
a. = w————
i v

Let Iy (s) be the rise of circulation following a unit
jump of angle of attack (indicial circulation) as given
by Wagner (reference 1) for the infinite wing. (The sub-
script 1 1s used hereinafter to denote the effect of a
unit jump of angle of attack occurring at s = 0,) Then,
for the finite wing,

8

‘

Y(s) = Ty(s) ae(0) + / Ty(s - so) ae' (sg) dsg, (12)

o
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The determination of the.effective-angle of attack and the
circulation of the finite wing thus depend on the simul-
taneous solution of integral equations (10) and (12).

The formal solution of eguations (10), (11), and (12)
for the indicial downwash 'Wil(s) and for the indicial

circulation ¥, (s) would be expected to be gquite diffi-
cult, It igs, however, a fairly easy matter to find satis-
factory curves by trial, particularly since it is known
that Y,(s) coincides with T, (s) and that Wil(s)

at the beginning (s = 0). Figures 6 and 7 show curves
determined in this way for two different walues of vy,

w3

N _ | .
corresponding to aspect ratios 3 and 6 (y = =3 for the

elliptical wing).

The 1lift at the later stages of the motion is found
by combining the effective angle of attack qg(s) with

the two-dimensional indicial-1ift function ¢; (s) of
: 1

Wagner, The total indicial 1ift for the three-~dimensional
wing, .neglecting the small increment due to acceleratlon
of the downwash flow, is tnerefore

o
I

o, (e) = oy (s) +/ %}(s - 50) Ge,! (s0)dsg  (13)

v
o
Plots of CL1 determined by graphical integration are
given in figure 8,

The 1ift of the finite wing approaches a steady value
much more rapidly than indicated by Wagner's curve. It is
obgerved that the downwagh due to the tip vortices inw
creasgses so0 slowly that an effective reduction of the angle
of attack does not occur until the 1lift has risen nearly
to its asymptote, :

Lift with Elliptical Span Loading

The foregoing calculations of qg(s) and TI'(s) were
applied to wings with finite tip vortices. Any preassigned
variation of the loading across the span may be built up,
however, by the addition of elementary vertex loops.
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The expression for the downwash at the center of the
wing may be integrated in the case of elliptic loading.
Let

Y = Yy sin © (14)
ay = v, cos 6 a8 (15)
b
and let y = — cos ©
2
2 2 _ b 2 2] - 2
ve o+ x® = [(2/ + x J [ 1 k® sin 9] (16)

wWhere

08
b 2 2
(5) tE

Then the downwagh due to a series of loops of the form
CEF (fig. 4) is

1 L Ti/2 % cos® 6 a8

2m o- /x +(2\8 / (g)a M/l—kEVSiné 5

- ¥ (k) + -3; [K(k) (k - % 4 1% B (k) }1((18)

where K(k) and E(k) are the complete elliptic inte-
grals, (See Peirce's table.)

The induced downwagh per unit circulation around the
wing, as defined under The Downwash Correction, is

dw. 1 k -
—2 (x) = x — K(k) + i- {K(k) (k - §>+T];E(k) - 1}}(19)

ay < )
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It is necessary, as before, to find the equivalent
length x from the distance s, (See equation (8).)

The indicial-1lift functions (fig. 8) were determined
by graphical integrations, as in the preceding case,

OPERATIONAL FORMULAS FOR THE LIFT

Indicial Lift Functions

The lift of a wing under various dynamical conditions
may be conveniently found by the operational method de-
gscribed in reference 5, In order to facilitate the use of
the 1lift functions in such problems, approximate formulas,
together with their operational equivalents, have becen de-
vised: :

I'BS

cLl (8) = Co + C,072% + C e (20)

Values of the constants are listed in the following table:

TABLE I
» 2 -0.330% ~0.0455 ~0.670m ~0.300
6 a.71 -1.740 ~.324 0 0
3 3.77 -1.07 -.490 0 0

Points shown in figure 8 illustrate the degree of ex~
actness of these formulas.

The operational eguivalents of the preceding expresg-
gsions are readily formed from the relation

whence

CLl(S) =

r
ES=

8L (D) i(s)::(co + oo,

D
D - r

1(s)

+ Cg —
D,—rg

D

(21)

)1(3) (22)
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Lift Functlons for an 030111at1ng Airf011

Follow1ng the general formula

cL<s) = Cp,_ (D) als) (23)
the 1ift in sinusoidal motion, where '
o = elns B (24)
is given by
. _ _ _ ) |
¢y (8) = T (D)e ™ = T (D) ——=m 1(s) (25)
n B ' D - in

where the instantaneous 1ift due to acceleration is omit-
ted, On expansion of this operator it is found that,
with the exception of trangient terms,

CLn(s) = CLl(in) gtnS ’ (26)
The real and the imaginary parts of Eil(in) corre-

spond to the functions F(n) and G(n) developed for
the two-dimensional case by Theodorsen (reference 2):

Ty (in) = 2n [F(n) + 16(n)] (27)
wWhere
2 : : n2
r,® + n® rga + n@
g = -0y TR g __Tam
rl8 + n® X r82'+ n2

Pigure 9 shows these functions as calculated from the val-

ues listed in table I.

Langley Memorial Aeronautical Laboratory,
National Advisory Committes for Aeronautics,
Langley Field, Va,, December 14, 1938,
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