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OPERATIONAL TREATLENT OF TEE NONUNIFORM-LIFT THEORY
IN AIRPLANE DYNAMICS
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nonuniform-1ift theory to problems of airplane dynamics, _
The method is adapted to the determination of tne 1ift under
prescribed conditionsg of motion or to the detsrmination of
the motions with pregcribed disturbing forces,
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INTRODUCTION

Problems in airplare Aynamics are ugunally treated on
the assumption tkhat the air forces are instantly adjusted
to each motion of the alrplane, Since the development of
recent theories for thns nonuniform motion of airfoils, it
hes become pogsible to consider more exact laws for the ad-
Jusgtnent of the 1lift,

The nonuniform-1ift tieory hasg already bteen applied to
certain dynamical problems, notably to the problem of flut-
ter. Thess applications have, however, been confined either
to approximate solutiong or to cases in which the fype of -
motion ig prescribed beforehand, The more usual problen,
in which the resulting motion is unknown, reguircs the so-
lution of integral eguations. The present paper shows how
golutions of these equations may be obtained fairly simply
by operational methods.

SUPERPOSITION OF LIFTS

In nearly every aerodynamic problem, the approximations

that rnust be made to effect solutions are such as to lead to

linear relations, Thug, in the case of the unsteady lift of
a wing, Laplace's equation combined with the assumption of
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an undigtorted wake leads to a linear relation between the
1lift and the angle of attaclk, Such a relation meang that
the 1ift due to the sum of two variable motions ig equal

to the sum of the liftg for the two motions taken independ-
ently. ' '

In particular, if the lift following a sudden unit
jump of angle of attack is known (see reference 1), then
the 1ift for any variable motion is easily obtainei by
breaking the given motion down into a succegsion of small .
Jumps or steps and adding the liftsg lancident to each one,
The cage treated by Wagner thus becomes the key to the '
calculation of lift for any variable motion,

Vagner's function (reference 1) giving the 1ift after
a sudden unit jump of angle of attack (two~dimengionagl
case) may be denoted by ¢, (s). The superposition of
1

lifts for any variable motion q(s), as previously ex=
plained, 1g accomplished by the integration of Duhamelts
integral - ' _

-]

[ o (s - 80) a'(sy) deg (1)
/ Zl : : .

(Ses refarence 2.)

OPERATIONAL SOLUTION OF INTEGRAL EQUATIONS

It 1is evident that, in order to take account of un-
steady ailr-flow nhenomena in the theory of airplane dynamn-
ics (including stability and related problems) the custon-
ary instantaneous sgquatione of motion mugt be replaced by -
equations involving tne integral (1), The equations of
motion then become linear lantwmgral equations, Soluticns
of these equationsg may be conveoniontly obtained by opera-
tional wmeothods.

Let D represent the operator d/ds and let 1 = 1(s)
ropregent thne unit Jump fuction, that—1is, a function of s
having the value 1 at ¢ > 0 ‘and having the value 0 at
s < U, Then a function of s may be represented by a com-
bination of operations on the unit jump function

o{s) = (D) 1(s) (2)
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The combination of'operations ®(D) on 1 necessafy
to reproduce the function ¢@(s) is called the "operational

equivalent" of the function o(s). The operational equiva-

lent ® of a given function ¢ may be found by the infi-

nite~integral theorem (refersnce 2)

o(a) = ah/ﬁfp(x) e" 8% ax : (35

(o]

A zeneral operational eguivalent 1is
s% = T (1 + 1) D77 1(s) (4)

(see Peirce's table, p. 63, no.1493.)

The operational treatwent of integral equationg isg
baged on the proposition that an integral of the form

8

p(s) = 2(s) X(0) +Q/q Z(s - sg) X'(sg) dsg (5)

(o]

may be regarded asg the solution of a linear differential
equation, Ag such, i1ts operational equivalent is

® (s) = Z(D) X(s) = Z(D) X(D) 1 (=) (6)

woere 2 and X are the operational equivalents of the
functions Z and X, ' - -

In order to illustrate the operational solﬁtion, let

it be required to find the function X(s) from

8
n X'(s ) 4, a/2 a

dgy - 2X(s) = 5 - 8 (7)
o Vs gq S ' o

e
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agsuning that X(O’ = (. Here the function corresponding

to Z(s) in equation (5) is 1/,/5. With the aid of equa-
tion (4), the various componenets are writton in operational
form : : - - '

Z(s) = 1(1/2) B 1 (8) (8)
_4/3s %Py = ~(F(l/2) -5;) t (s) (9)

Equation (6) becomes

2
r'(1/2) ¥ X(s) - 2%(s) = <Fii;§) “';g> 1 (e)

r(i/2) 2
D D D2
or I(s) = z 1(s)
I{1/2) VD -
Simplifying: 2
I'(1/2) - —— -
1 /D 1 1
X(s) = = 1 =-51 =2 & (10)
Dz ) D 2 _ B
F'(1/2) = == B '
~/D

It will be helpful to review. certain amspects of the
theory of unsteady 1ift before proceeding to-the applica-
tion of this theory in airplane dynamics; It ig found
convenlent to think of the 1lift on the alrfoll as composed
of three parts: (1) A part due to instantaneous acceler-
ation of the noncircuvlatory potential flow, Thig 1lift ig
equal to ths v1rtual additlonal mags of the wing .

2 R
(17 %? P per unit span, for infinite aspect ratlo\ timeg
the rate of increase of the relative wind velccity normal
to the chord, (2) A part due to the c¢irculatory flow
and dependent on the angle-of-attack varlation, i.e., the
lift ziven dy ¢ (s). (8) A part due to the circulatory
1

C:Uﬂ
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flow and ascribed to a relative curvature or camber of

the airfoil in pitching motion., The third component ‘will
be automatically included with the sedond if the angle of
attack is obtained by resolving velocities at the 75-per-
cent-chord point. )

With thege provisions, the ingtantaneous 1lift of an

airfoil in cowmbined pitching and vertical motion may be _
written (see fig., 1) -

c,(s) = p (a'(s) + 1 er"(ss).I

50 J R

. @
— . =2(s) A8 = L85y _

Ex(0)+-l 8! (O) cy (s)+;/_ ‘Il(s- so)Laf(so) +1, 9"(505]dso
° (11)

wnere | 1s a coefficient for the virtual additlonal mass

of the wing (u = m for infinite aspect ratio). Now let

cy be the operational equivalent of Wagner's functlon c
. I

.._J._._..T.__l

c.(s) =1 [Dcx+-%ODae} + 311(9)'[a@+ 175D&% a2

¥o concige formuls for CL () 1s known although it
ig found that Wagner's curve i reproduced almogt exactly
by the equation i

) A
¢y (s) = C4 + G;éhls + Cge 28 (13)
1 . i L
where Co = 2T
Gl = 0,330 1
X, = -0.0455 ' . -

Ay =--0,300

and where s refers to the half-chord as unit, that is

?(\3 _
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0/2
In this form, the operational equivalent ig readilly
found from the relation

D
e%s = i ¢ 1( ) (See reference 2) (14)
D - A
whence
_ D D :
cy (D) = Cy + c, —— + 0, ——— (15)

The calculation of 1lift under a prescridbed variation
of angle of attack cdan be 1llustrated_-by assuming that the
airfoil is given a pinusoidal motion

a(s) (or 6(s)) = R.P. or I,P, of olns (16)

Thig variation is reduced to operational form (see equation

(14)):
—(D) — D N (17)
@ B D -~ in :
¢y (s) =D 2 i+ (Co + 0, D + Cg D > D1 (18)
o D - in _ B-N, D-Aa 4 D-in

(See egquations (12) and (15),)

The resulting operatdr may beﬁeyaluated_by the'Heavi-,_ _

side expansion theorem:

£ (D) £(0) z £ (N) As
F(D0) T=F(0) t A RFI(A) ° (29)

where the A's are the roots of PF(D) = O,
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‘ 1 ' i : 3 oo
¢, (s) = p ine ™% 4+ [004-01 2y Ca _in_ ] etB8 )
‘n in- A, ia - Ag |
L O ___i}_* Ais .__=>\§____ Nas  ron)
oYL ' ® (eV)

The termsg involving eks disappear in time and hence
may be disregarded in.a continuous oscillation. The terms

1 in C e e e
I }.ﬂ*‘!:c - ___n Cl F e m——— c ] eins = 2[_[ [‘F + iG:l eins (21)

vyield approximate expressioms of the 1ift functions for
tno oscillating airfoil introduced by Theodorsen (refer—

ence 3): -
1'12 na
2nF(n) = G, + C, - + Cg e
A2 o+ n® Ag® + n® )
(22)
Ajn Agn
ame(a) = - G al z Ca a 3 * 4 —
Ay 4+ n Az” + n /

As pointed out by Garrick (reference 4), Theodrosen's
funection for sinugsoidal motion -
¢(in) = F(n) + iG(n) (equation (21))
may be regarded as the operational equivalent of Wagner's
curve, i.e,, -

2mG(D) 1 = ?:'L (D)1 = ¢y (9) (23)
1

This fact may be verified by referring to sguation (15),
This relation is especisally intoresting because it shows a
connection betwesn the Fourler and the operational analysos.
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Thusg, if the response of & linear gystem to 2 continwuwous
gsinusoidal excitation is known,

R,(s) = £(in) olR® C(R4)

Q

Then the function f furnishes immediately the operational

equivalent of the unit—response so -that for any variable
excitation 2Z(s), '

R(s) = £(D) Z(s) = £(D) Z(D) 1 (25)

In general, the motion of the airfoill or airplane
will not be prescribed beforehand but must be detsrmined
from dynamical equations, This type of problem can be ili-
lustrated simply by considering the digsturbed vertical mo-
tion of the alrplane without pitching. The dynamical
equation in thig case is -

m dw _ resisting force = impressed force, 2 (286)

at

where w 1s the vertical velocity of the airplane and m
is the masg including tne virtual additional mass of the
wing. Sincse

a .. .
LA (27)

2
: v
n &% o BB x5 p/2 o/ x — 32 (28)-
it s ep/2 ¢ c/2 ds

Making the gubgtitution

2m
— =g (29)
S p/2 ¢

and writing the equation in coefficient form,

Do +Ty (D) @ = o (s) © (30)
1 o :

}
ik
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where cl is the 1lift cosefflcient of the given disturb-
0

ing force, The operatlional solution isg

ale) = S o, (s) (31)

oD + Ell(D) o

Again, as in the case. of the 1lift, the solution for the
elementary jump is the key to solutions for variable con-
ditions.

1

a, (s) = - 1 (32)
oD + &, 1(D>

Replacing Ez (D) by (15) and simplifying:
1

(D = A,) (D = Ag) Lo f(D)1

aD® + pD® 4+ ¢D + 4 (D)

(33)

a,(s)

which is in gtandard form for evaluation by the expansgion
theroem (19), Finally,

0

' s
a(s) = clo(o) a, (s) +U/: a,(s - so) e, ' (sg) dsg (34)

The extension of this treatment to provlems involv-
ing a number of degress of freedom will be evident.

Langley Memorial Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., September 12, 1938,
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Figure 1.~ Moving axes.

Fig. 1



