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LOoADS IMPOSED ON INTERMEDIATE FRAMES OF STIFFENED SHELLS

By Paul Kuhn
SUMHARY

The loads imPOSed on intermediate frames by the cur-
vature of the longitudinals and by the diagonal-tension

effects are treated, A rnew empirical metheod is proposed

for analyzing diagonal~-tension effects, The basic formu-~
lag of the pure diagonal-tension theory are used, and the
part of the total shear 8§ carried by diagonal tengion
ig assumed to be given by the expression

T D
_ )
Spp = 8 (1 - =)

where T, 1is the critical shear stress, T the total

(nominal) shear stress, and n = 3 - g/r where o is
the stress in the intermediate frame, Numerical examples
illugtrate all cases treated.

INTRODUCTION

The structural slements of stiffened shells may be
divided into two main clasges: strength elements and
form elements. The strength elements primarily develop
the stresses necessary to hold the external loads in
equilibrium; the form eloments primarily serve to give
the desired shape fto the structure and to maintain this
shape as long as possible when the loads increase, The
longitudinal stiffeners and the skin of a fuselage, for
example, are strength elements and the intermediate frames
are form elements.

No sgharp line of demarcation, of course, exists be-
tween the two kinds of elements. If the strength members
have any tendency to change their shape under load, then
the form members will develop stresses resisting further
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deformation of the strength members., Consegquently, the
form members might also be called secondary strength mem-
bers. The loads lmposged by the’ strength membersz on the
form members are the subject of the present paper., A4n
appondix gives numerical examples for the application of
the principles developed in the. paper.

GENBRAL ASSUMPTIONS

The stiffened shell, on the stressed-skin structure,
employs two distinct types of strength element: the rel-
atively compact longitudinal sgtiffener and.the relafively
thin sheet. The same two components are characterigtic
of the plate girder, which has besn extensively employed
for a long time in civil englneering. The plate girder
may be considered as a two-dimensional form and the stif-
fened shell, as a three-~dimensional form of gtressed-skin
gtructure,

Civil engineers have establisned the custon of assum-
ing that the flanges of plate glirders take most or all of
the mormal stresseg due to bending and that the web takes
all the shear, Measurements have shown that the actual
stresses are gsometimesg digtributed in a quite irregular
manner and that, therefore, the maximum stresses do not
agree very well with the calculated stresses. The agsump-
tiong mentioned have nevertheless been accepted as a sat-
igfactory basis for design in civil engineering and they
have been adopted for aeronautical design. Hefinements
have been made, however, in establishing formulag for the
effective width of sheet that may be considered to work
in conjunction with the stiffener in carrying normal
gstresses, .

If the normal stresses due to bending are known, the
snearing stregses in the sheet can be calculated, It is
customary to assume that the ordinary engineering theory
of bending applies, which gives for the normal stress and
_the shear: stress, respectively,

uy
o= : (1)
T:i—Q- ' '

bl (2)
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Thig theory neglects shear deformation and isg sufflcientlw
accurate . for englneerlng work wHen applled to bedns of
solid crdss section, Then the theory is applied to stif-
fened shells of round or elliptical-cross s&ction, such as
fuselages, the errors in normal stresses may amount to 5

or 10 percent. Wnen the theory.is applied to wide shallow
tox beaams, such asg wings, the’ errors. may be ag much ag 30
percent, The design of the intermediate frames rests, how-
ever, on the average rather than the peak values of the

Pnbrmal stresses, For most_ preactical purposes, the use of
- the.englneering theory of, bending is believed to be suffi-

ciently accurate for the prlmary analysis of the shell that

must be made to obtain the desizn loads in the lntermediate
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ghell itself, however, it will often be necegsary to refine
the calculation by teking into account the shear deforma-
tion of. bhe skin ;

The shear stresses due to torsion may be calculated
by the formula

T = ———— i .- (3)

This formula applies strictly only to a shell of constant
cross section loaded by shear stresses at the snds. It
is probably sufficiently accurate for design purposes at
all cross sections where intermediate frames are located,

It igs impossible to overemphaglze that all theories
of stress analysis are of limited applicadbility. It can-
not be urged too often that the stress analyst study the
bagic assumptions underlying the theories in order to be-
come acqualinted with their limitations,

PLATE-GIRDER THEORY

For convenience of reference, the term "plate girder!
will be used to denote & girder with a plate web designed
g¢o that the web will netnbuckle under shear loads until the
deslgn load is reached;, As already pointed out, such a
girder may be con31dered as a special case of stressed—skin
structure, the intermediate frames of the shell being rep- .
regented by uprights:or web sbiffeners,in_the plate girder,
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The girder recommends itself by its simplicity as a basis
for discussing the 'necessary principleg; the application”
of these principles to shell structures will then follow
as a natural extension, . . ¥

The Plate Girder with Parallel Flanges

In a plate: girder with parallel flanges (fiez, 1),
intermnediate "frames" or’uprights are required.,  Uprights
aay be wused, if-deésired, to increasge the:critical buckling
gstress of the web:-but they will not be subjected to loads
urntil the wed buockles, .By the definition- of the term
"plate girder! used in the present paper, .this dbuckling
Adoes not occur until the design load is reached or passed,.

The Plate Girder with Curved (or Inclined) Flanges

The plate girder with curved flanges (fig, 2) is the
general case of the girder with inclined flanges, In all
the following discussions, the girdeys will be assumed to
be symmetrical about the longitudinal axisg, at least as
far ag inclination of the flanges 1s concerned,

In a girder with inclined flanges, the flange forces

carry part of the shear load, The vertical component V of
each flange force is given by the formula

Vv = 2% tan & . (4)
h, ,

The horizontal componént H is given by

M
H = e
h, (5)

The shear force Sy In the wed is given by

Sg = P.- 2V = PEZ : | (6)

Uprlights are not indispensable in practice because the
plate wab is capable of taking somé transverse normal
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stregses, although these stresses are neglected in the de-
sign, If uprights are used, they may be analyzed by as-
suming the curved flanges to be Teplaced by straight
flanges kinked at each upright, as willibe shown presently.

The Plate Girder with. Kinked Flaﬁges-

In a2 girder with kinked flanges, it 1s necessary to
use uprights at esach.kink if the web 1s to carry only shear
(fig. 3(a)). The horizontal components .H; "and Hz of
tne. flange forces just to the left and to the right of the
kink will be equal, The vertical components ¥, and V;,
however, will differ by an amount AVy. Application of
formula (4) gives

AVy =V, - T, = ﬁ% (tan 8 - tan 8 ) (7)

The force AV; must be absorbed by an upright to be con-

verted into change of shear force in the webd (fig. 3(b)).
One force AVy acts on the top and one on the bottom of

the upright. The total force exerted on the upright must
be held in equilibrium by the difference betveen the webd
shears Sy; and Swzz ’

24V = 8y - Syp (8)
By formula (8)
_ N )
Sgq = P -EL and Sy, = P —oZ
w1 72 .
ho .0
Therefore
. b h
20y, = Syy - Syp = P E L2 (9)
L -
(o}

It can easily be shown that the values of AVL obtained

from equation (7) and from equafion (8) are numerically
equal, o . -
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Application of Plate-Girder Theory to Shells

Figure 4 shows the cross sectlion of a fuselage, as
well ag the gide view and the plan view of a short section
of the fuselage at either side of an intermsediate frame,
The curved outlines of the actual fuselage have been re~
placed by straight lines between frames.

As indicated in the figure, the gstringer direction
lines .at any one cross section are asgsumed to meet in a
common apezx on the azis of the fuselage, The angle of in-
clination between a stringer and the fuselage axlis 1s de-~
noted by--&v when seen in the projection on the vertical

plane and by &g when seen in the projection on the hori-
zontal plane,

Any two corresponding stringers, for instance, the
upper longeron U and the lower longeron L of figure 4,
-together with the intervening skin may be congidered as a
two-flange girder; the entire ghell may be considered ag a
superposition of several guch iandividual girders, Ths
shear carried in the web of each individual girder is given
by formula (6), if P is understood temporarily to refer
to the share of .the total load carried by each individual
girder, Now, the factor hp/h, is the same forall siringers
at any one sectioa. The shear carried by the skin (or web)
at any cross section of the fuselage ig therefore

ip

Sy = P
w h

(10)
o

where P is again the total load, and the factor hP/hO

may be determined from any one stringer, provided only
that the proper plans of projection is used, namely, the
prlane parallel to the load,

The horizontal load in any stringer is assumed to be
given by formula (1). The shear load per inch perimeter
of the shell gkin is therefore obfained by applying for-
mulas (2) and (1C) as .

T4 = 2 p (11)
21 n,

(It should be noted that, in the application of formula
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(2), the width © 1is taken as twice the actual skin thick-
ness measured normal to ths skin., The use of the "slant
thickness" is incorrect because the shear must be tangen-
tial to .the median line,) At the frame (fig. 4), the dif-
ference between the shear forces Just to- the left and just
to the right of the frame

_ PQ Bpy - Bpa

bt = (T8), - (1%) ~
(o]

(12)

agts as a distributéd shear lOad an the frame (fig. 5(a)).
This digstributed load is held in equilibrium Dby -the dif-
‘ferences bstween the vertical components ‘0of the stringer
forces .

Avy, = -1? A (tan sz-— tan le,) - . (13)

vhere A 1is the cross-sectional area of the stringer under
consideration; y, its distance from the nsutral axis;

and I, the moment of inertia of the shell cross section,
These forces AVL are also shown in figure 5(a)

In the horizontal projcction, the stringers are also
kinked and therefore exert transverse forces on the frame

5 . .
aT, = Iy A (tan Syp - tan 8yp) (14)

The resulting system of horizontal loads acting on the
frame is shown in figure 5(b). The analysis of the frame
for these 1qad systems may be made by any desired_method,

The gkin was assumed to be directly connected to the
bulkhead frame, If the frame is connected only to the
stringers and not to the skin, the formulag will gtill
g2ive the average forces correctly, but there will be force
concentrations resulting in higher maximum stresses. This
fact would influence, for instance, the design of the skin;
the design of the frame, however, Will not be materially
influenced because it depends on the integrated effects of
the applied forces.
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. THE EFFECTS OF BEAM. CURVATURE .

Beams may be curved for two reasons! - They may be.:
built with initial curveture or they may be bent into a
curved shape by the applied loads., r It will be assumed
that the curvature is small,

Curvature may  -be thought. of asg a succession of many
small kinks, and it has been previously shown that therse
ig a vertical component of the flange force at each kink,
as given by formula (7). - If the curvature of the two -
flanges is of opposite sign, as in the cases previously
treated, the vertical components of the two flange forces
act in the same direction and must be balanced by shear
forces, If the curvature of the two flanges is of the
same sign (fig. 5), however, the vertical components will
oppose each other and will give rise to transverse loads,
These distridbuted transverse loads will cause compregsion
"in the shear webs and bending in the stringers between
frames, ' The frawes act as supports to the stringers and
furnigh the concentrated reactions to the transverse loads
on the stringers, The frames are therefors in compression,
ag indicated in figure 6(b),

If the radiug of curvature R of the beam 1g assumed
to be large compared with the depth of the beam, the dis-
tributed transverge force per unit run of gpan acting on
any stringer 1isg

v
—_— (15)
Ax

|

where ¥ +is the axial force on the stringer., If Ax 1is

made equal to the frame spacing d the resulting expres-
sion n ' T

v = Fd . o (18)

: Er - S T

"givea the concentrated force exerted by any given stringer
on the frame.,;_'

According to the tneory of bending, "the bending cur-
vature 1s given by

1 ¥
- = = (17)
R EI
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The stringer force F 1is given by

ile . r . . R .
F = — A ' (18)
I
where A 41is the cross-sectional area of the stringer,
Substituting from eguations (17) and (18) into eguation
(16) and using the fundamental relation (1) gives
AN Aed 2 A4
vV=(=Z) ===¢% == 19
I/ H E c (19)

This load is normally very small; but it may become of
some importance in very shallow flexible beams, being in-
versely proportional to the beam depth, It should be
noted that the effect is proportional to the square of

the applied bending moment, a fact which may be important,
for instance, in connection with strain-gage tests at low
loads,.

The loads V may become gqulite important when the in-
terinediate frame is open; this'case occurs, for exampls,
at a cockpit cut-out when the fuselage isg subgected to the
fin-and- rudder load .

It might be noted in pasging that, whenever the forces
V become important for bulkhead design, the distridbuted
trangverse loads from which they arlsge become important on
account of the local bending which they cause in the T
stringers.

DIAGONAL-TENSION THEORY

The Plane Beam in Puare Diagonal Tension

The diagonal-tension beaw is so well-known to aero-
nautical designers that no long discussion will be given,.
It will be sufficient to recall that the web of the beam
(fig., 7) develops a series of parallel folds inclined at
an angle o to the axis of the beam, The stress in the
web sheet 1s assumed to be pure tension along the lines
of the folds. Uprights are nsecessary, a8 in a truss with
tension diagonals, to keep the flanges separated agalinst
the tendency of the diagonals to pull the flanges together,
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The angle of folds ¢ 1s determined by the formula

sin? ¢ =Mﬂ;5_:-‘ - a (20)
with
ht
+ ————-
24
a = it (21)
dt Bt
Ay 24p,

where Ay is the cross-sectional area of the flange and
Ay is that of the upright, For the practical range of

construction, the calculated value of ¢ 1is around 42°,

On the assumption of rigid flanges and uprights, the the-
ory gives o = 450, which is a convenient value for prac-
tical use and i1s slightly conservative for the design of
the uprights with which this paper is concerned, For up-
rights inclined to the flanges at an angle B8, the assump-
tion of rigid edge members gives o = B/2, which ig prob-
ably always used in design work,

The load on the upright 1is giveﬁ by the formula

a
vy = P =
U "

tan o = Ttd tan ¢ . (22)

for the cage of figure 7, The derivation of the equations
given may be found in reference 1, The application of
these formulas to shellg with plane walls is well enough
known to obviate a detailed discussion,

The Shell with Curved Walls in Pure Diagonal Tension

In curved diagonal-tension flelds, such ag side walls
of fugselages, the calculation of the angle of folds ¢
becomes more complex, The formulas are given in reference
2 but, unfortunately, it 1s lmpossible to give a single
formula comparable with equation (20) that is applicable
"to a curved field, The assumption of rigid flanges and
uprights mads for plane fieldg may also be made for curved
fields, the longitudinals and the rings being assumed rigid
in order to obtain a practical approximation to the angle q.
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The calculation of -the leads impeased by the skin on
-.the ring of & curved diagonal-tsnsion fiseld is also more
complex than the calculation of the load imposged on the
upright of a. plane beam, -For simplicity, the case of uni-
form diagonal tension around the circumference will be
firgt considered, Thisg case occursg in a shell in torsion,

.First of all, ‘the circumferential component of the.
tension in the skin must be counterbalanced by hoop com-
pression in the ring, - This relation is exactly analogous
to the relation between skin tension and upright force in
the plane beam, and formula (22) again applies.

The circumferential tension is transmitted to the
ring by radial presgure, If the ring touchesg the gkin,
this transfer ig continuous and there are no additional
effects, If the ring does not touch the sgkin and receivss
its load through the longitudinalg, then the radial pres-
sure inward is concentrated at the longitudinsals (fig.
8(a)). By application of formula (15), it will be found
that thisg curved beam ig statically eguivalent to the
straight beam shown in figure 8(b), Under the assumed con-
ditions of uniformity, the part of the ring between longi-
tudinals 1s therefore in the condition of a beam built in
at both ends and loaded by a uniformly distridbuted load,
If Pr 1s the radial load exerted by one longitddinal on
the ring, the maximum bending moment M on the ring will
be : '

M =
' 12

occurring where. the ring is loaded by the longitudinal,
Now the load P, s given by elementary statics as

h h
Pr=VU§=A‘rtd ta.nu,-R-

Therefore .

-

W= Ttd tan o (23)

12 R

where h and R are measured on the circle of contact
between longitudinals and ring,
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These equations hold strictly only when there is an
infinite number of longitudinals, They are, however, suf-
ficiently accurate for practical purposes if the number of
longitudinals n distributed around the circle is greater
than 6,

Formula (22) applies to any shape of cross section,
as long as the agsumption of uniform tension along the cir-
cumference is fulfilled, Formula (23), of course, applies
gtrictly only if the radius R 1ig constant between longi-
tudinals, ’ "

If the ring is open, the case ig analogous to that of
a plane dlagonal-tension beam with stiffeners on only one
gside of the web, The pull of the sheet causes an eccen-
tricity moment acting throughout the length of the ring,
or upright, ‘ i

M=7Vye=Ttd tan o © (24)

where e 1g the distance between the centroid of the ring,
or upright, and the line of action of the sheet tension.

In a plane web, e Wwill be constant along the length of
the upright, In a curved web, however, the folds in the
sheet will leave the original plane of the sheet and will
finally lie along the chords from longitudinal to longitu-
dinal, and e will be variabdle,

Eccentricity moments will also arige if the sheet
tengsion and with it the force VU varies along the cir-

cumference of the ring, or alorng the length of the upright.
Consider, for instance, a shell as indicated schematically
in figure 9; assume that the skin has buckled into diag-
onal-tengion fields in the panels next to the neutral axis
but not in the panels next to the extreme fibers, Under
thig condition, eccentriclity moments as shown in the figure
will act on the ring (assuming the load to act downward),
each moment being again expressed by formula (24), In the
general cage, however, when there is diagonal tension inm
each panel, the moment 1s catised only by the difference be~
tween successive forces VU, or

d=o(ly - Vg ) (25)

n n-1

starting the count at the extrems fiber, If symmetry ex-
ists about both axes, the moment at A 1is
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<

= M= ST ' (28a)
My = M= .
and the moment at B ie
My = M <1 - 26) (26b)

The total moments at A and B are obtained by summing_
up the individual contributions from each panel polint, or
for each longitudinal,

The theory of the preceding paragraph is based on the
assumption that the circumferential ‘component of the diag-
onal tension in a given panel does not affect the circum-
ferential tension in the panels adjacent to it on the cir-
cumference., Actually, these circumferential tensions in
the skin can directly equalize themselves to some extent
around the circumference, At the limit, when theyequalize
themselves completely, the hoop compression Vg in the

frame will be uniform around the circumference and the ec-~
centricity moments given by squation (25) will disappear,

The Incomplete Diagonal-Tension Field

Practical experience has prove& that the design for-
mulas baged on the asgsumption of pure diagonal tension -
are too conservative in many cases, It was found that the
crittcal buckling stress of the sheet has to be exceeded
many times before the state of stress in the sheet ap-
preaches reasonably closely to the assumed condition of
pure tepsion. In relatively heavy sheets, and particularly
in curved sheets, the critical buckling stress is-often
exceeded only & few times at the design load, so that the
assumptlons of the theory are not very well fulfllled

The main reagon for ‘the d1screpancy ig obviously the
fact that the sheet continues to carry part of the load
in shear after 1% has buckled, Borrowing an asgsumptilon
sometimes made in structures with compregsion members,
#agner and Ballerstedt (reference 2) and others therefore
proposed to assume that the sheet. carries the critical
gshear stress as shear even after buckling and that only
the excess over the Crltical stress is converted into di-
agonal tension,
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A more detailed study led Schapitz (references 3 and
4) to propose & theory of the "incomplete dlagonal-tension
field.," He considers a sgkin-stringer panel loaded by nor-
mal forces along one axis and by sghear forces, In sectlions
parallel to the normal forces, the stress conditions are
agsuned to be uniform, In trangverse sections, however,
_the normal stress is agsumed to vary continuously from ten-
slon along the center line through zeoro to compresslon in
the longitudinal stiffeners, The second principal stress
is assumed to be a compression equal to tho critical gshear
‘stress,

The law of stress variation 1s assumed only qualita-
tively, A characteristic value determining the quantita-
tive variation is then chosen so that the results of the
analysig give the best pogsidble agreement with tegts, A
gsecond characterigtic value enters into the picture for
curved dlagonal-tension fields, so that there is ample pos-
sibility of adjusting the theory to fit the facts,

Proposed New Theory of Incomplete Diagonal-Tensgion Field

The present paper is concerned with only one single
item of the diagonal-tension theory, namely, the loads im-
posed on the uprights or the transverse stiffeners, 4 de-
tailed discussion of diagonal-tension theories would there-
fore be out of place, Although the theory of Schapitz haes
much to recommend it on the basis of wide applicadility,
it is thought that a somewhat simpler theory built up on
different asesumptions will be suitadble for the present re-

stricted purpose and perhepes for a wider field of app11ca-
tion,

Tho agsumptions underlyinc the proposed theory are ! ‘the
foellowing: ;

1. The angle of folds is given by the curve in figure
10, obtained as follows: In reference 2 are

given cur#es of .- against '% /% calculated

first for closely spaced longitudinals, then for
closely spaced rings. The longitudinals and the
rings being agsumed rigid (a = 0 1in referocnce
2), twq curves are obtainqd for: a. These two

turves intersect, and. the single curve of figure
10 was obtained by using the branches of the two
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- ‘surves that give the hlgher values of ¢ and
fairing aver the break near the intersection,
Experimental evidence to be discussed later
furnished the basis and Justification for this
procedure.

2. The shear force s is carried partly as shear
SS and partly as diagonal tension Spp

The parf;eerriedees diagonal tenéion is given
by the expression. .

n
8]
SDT = § <l_ -;—-) o : (for T > T°> (28)

where T ‘is the actﬁai.nqminal shear stress
(i.e., total shear force divided by sheet area)
and T, 1s the critical buckling stress, so

that 7/T, 1is the factor by which the buckling

strese is exceeded The exponent n 1s deter-
mined from tests, With =»n = 1, the Wagner- '
Ballerstedt assumption is obtalined, On the ’
basis of the Wagner-Lahde tests (reference 5),
it appears safe to set

=3 = = - (29)

where Oy 1is the compressive strege in the up-

right. It will be permissible, as far as pres-
ent knowledge indicates, to use n =3 i :

o SOy 7 -
U < 1 ana n-= 2 1 2> i.l Equation (29)
T 2 T 2 '

is based on the assumption that the stress in
the longitudinals caused by diagonal tension

ig small, This assumption is valid for most
practical cages; in the tests reported in ref-
"erence 5, thisg consideraticn was taken into ac-
‘count by making the 1ong1tu&1nals extremely '
‘heavy. : . .
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The physical meaning of equation (28) i1s that the
gshear stress continues to increase after buckling
if n> 1, This agsumption is the main difference
between the proposed new theory and the older the-
ories, which assumed =n = 1, that is, the shear
gstress to remain egual to the buckling stress.

The theory expressed by formulas (28) and (29) at
present rests chiefly on tests made of plane di-
agonal-tengion fields., It is possible that, for
curved fields, a more complicated relation should
be uged., The experimental evidence for curved
fields, admittedly very scanty, does not appear
to indicate the immediate necegsity of introduc-
ing further complications.

Application of Proposed New Theory to Shells

On the basie of the proposed theory of the incomplete
diagonal-tensgion field, the procedures of gstress analysing
a shell would be as follows:

For each panel, the total nominal shear stress 1s cal-
culated by means of formulas (2) and (3),

The angle of folds ¢ 1is determined from figure 10,

The critical shear stress ig calculated, From avail-
able data on structures simulating aircraft construction
(references 3 and 6), it appears that the formula

T, =O.1E§-+5E<§>a [1+o.s (g—)j (30)

may be expected to give good average valuesg for the crit-
ical shear stress,. If the values given by formula (30)

are maltiplied by 0.75, reasonable agsurance may be had
that the resulting value is conservative, In formula (30),
the notation of figure 10 is used, and it is assumed that
d >(h.) If h>d, these two letters mugst be interchanged
in (30), ' ' '

The portion of the total shear stregss T that

v
: DT .
ig carried as diagonal tension is calculated with the help
of formula (28), In the first analysis, the exponent n

m
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must be assumed., In the final analysis, n 1is calculated
by using formula (29), rU“'being replaced by the value ob-

tained from the first analysis.

With the angle ¢ ﬁnd the gstrese DT known, the

forces and the moments on the ring-can e calculated by us-
ing the previously dlscussed theory of the ‘pure diagonal—
tension field

Experimental Checks =~
Angle of folds.- The tests by Limpert (reference 7)
give an excellent check for the curve of flgure 10. In
these tests, the angle o was meagired at various stages
of loading, and the experiments clearly showed the increase
of o wlth increasing shear stress predicted by the theory,

In the torsion tests made by Schapitz on complete '
shells (reference 3), the strain meagurements were made at
two load stages, the lowest one being well beyond the buck-
ling load, The calculated angles ¢ for thege two load
stages closely bracket the observed angle.

In the tests made by Thorn (reference 6), the average
observed angle is 26,8° and the observed maximum is 34
The average angle calculated from figure 10 is 26. 2° if
the load acting on the specimens is assumed to be the trit-
lcal load, The average calculated angle ig about 38°, if
the load is assumed to be the load used in the lagt stage
of the strain-gage test, The test report does not state
at what loads the angles were measured, so .that no direct
comparison can be made, It 1s improbable that the actunal
changes in angles were as large as predicted by theory;
congequently, the calculated angles are probadly too large
for these tests and the resulting calculated frame stresses
are high, that is, conservative,

Stresses in frameg.- Strain measurements on frames are

described in references 3 and 6, For the tests described
in reference 6, the propossd method of analysis gave con-
servative results, the observed siresses being as low as
50 percent of the calculated stresses, For the tests re-
ported in referencs 3, the method was not conservative,
The cylinders used in these tests had bpsen used previously
for bending tests, leaving permanent deformations, For
this reason, and possibly others, the observed critical
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stress was low,.in:one.case as low ag 57 percent of that
.calculated by formula (30), The worst disagreement in the
frame stresses occurs in the cylinder with the gmallesgt
ratio R/t (= 740). In this cylinder it was necessary to
multiply the buckling stress from formula (30) by 0.6 to
reach agreeament between the calculated and the observed
frame stresses, In the cylinder with a value of R/t of
-about 1,000, a factor of 0,75 had to be used, In the tests
reported in reference 6 where R/T was between 2,000 and
3,000, no correction factor was needed for applying formu-
la (30), The effect of previous loading is apparently im-
portant if R/t is low, '

Concluding Remarks on Diagonal—Tenéion Theory

The proposed new dilagonal-tension theory will probably
be gensrally conservative for the design of intermediate
frames 1f the conservative values of the angle o from
figure 10 and conservative valuss of T, &re used, Legs

conservative values for a and T, may give better

agreement with the facts in some cases, but it 1s impossible
to predict such cases with the present knowledge, Unlike
the theory of the plate girder presented in the first part
of this paper, the theory of diagonal-tension action may

be expected to undergo continual changes and refinements

for gome timse, The stress analyst should constantly en-
deavor to ksep abreast of such developements,

Langley Meomorial Aeronautical Laboratory,
National Advisory Committee for asronautics,
Langley Field, Va., January 10, 1939,
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APPENDIZX

Example 1

Find the loads acting on the intermediate ring A-4A
of the fuselage shown in figure 11, Assume the rings %o
be riveted to the skin,

Compute first the propertie’s of thé cross section,
agsuming the sheet to be fully effective in taking bending
stresgses. . . . . .

It

Total stringer area 16 X 0,120 1.92 gq. in,

Total skin area Dt = 2.01 sg. im.
Total area 3,93 sqg. in,
Effective thickness t, = 8.98 _ 0.03125 in,
D
I =mR%, = 785 in, %
Q = 2R®%t, sinB (See fig. 12,)
‘L = TR o
Q 2 sin €

The bending moment at ring A-A isg

M = 1,000 X 144 = 144,000 in,-1b,

>

The maximum fiber stres# is;thérefore

o = KR — 144000 X 20 = 3,870 ]_'b./sq. in,
I cos & 785

(The angdle & Tbotween the stringer and the axis is so
smell that cos & =1.).

Estimating the buckling stress of the sheet ag 20 percent
higher than the theoretical compressive buckling stress,

Oopit = 1.2 X 0,363 E % = 3,500 1b,/sq. in,

and the maximum gtress is close enough to the critical
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stress to justify the assumption that the sheet ig fully
effective.

The shear atress in the panels next to the neutral

™ N
axi = =) isg
8 (e z)

PQ 1000 x 2
T = = = 995 1b,/sq. in.
2tI 2 X 0,018 X m x 20

The critical shear stregs is, by formula (30),

| 7.85
T o= 0.1 x 107 x 2:228 | 5 x 107 x (2028 016> ﬁ 0.8 ( J
20 \7.85

800 + 279 = 1,079 1b./sq. in.

whicih is above the shear gtress actually existing, so that
there will be no diagonal~tension effects,

The shear forces applied by the skin to the ring,

which are the differences between the skin shear forces
in the adjacent pznels, are next found by formula (12)

_ PQ Bpy - Bog

ATh
2I hg
_ 1000 sin 6 26,3 - 20.8
TR 40
ATt = 2,19 sin 6
where the values of h,, hpy, and hpy were obtained

from figure 13, which 1s drawn to .an exaggerated vertical
scalse,

The shear force trausmitted in each panel to the ring
igs obtained by multiplying the shear intengity Tt by the
developed width of the panel - : "
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D
I—: 7-85 ino
16
so that
Sg = 2,19 X 7.85 %X sin 11,258° = 3,35 1b,
Sp = 17.2 X sein 33,75° = 9.57 1b,
S¢ = 17.2 x sin 56.25° = 14,31 1b,
Sq = 17.2 x sin 78,75° = 17,00 1b,
Next, the vertical forces exerted Py the longituwdi-
nals on the ring are computed by formula (13), Table I
gives all the data and is self explanatory.

In & gimilar manner, the horizontal forces acting on
the ring are obtained by using formala (l14)., The factors
(tan 6H2 -~ tan 5Hl> can be obtained from the factors

(tan Syg ~ tan 6v1) by 4tnspection in the case of a circu-

lar ring, Table II gives the details of calculating the
horizontal forces, Tigure 1l4 ghowsg the two systems of
forces graphically.
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I

687

Calculation of Vertical Loads on Ring

22

Stringer 'y) M% E-EIZA tan sz tan 8Vl (tan 5V2 - ta.anVl) AV
(in,
(1b./sq.in.)|(1b.) (1v.)
(a) (b) (e)
1 20.0 3,670 903 |[0.0667 |0.04TE 0.0191 17.25
2 18.48 3,390 835 | 0616 | .OWuO .0176 14,70
3 14,14 2,590 637 | «OUTL | 0337 L0134 8.53
L 7.55  1,L04 345 | 0255 | .O182 .0073 2.52
5 0 0 olo0 0 0 0
8 =~ area of stringer + area of effective skin
= 0.120 + 0.126 = 0.246
b v _ y
tan Syo= — 2 Ctan 8;q = ——te
V2" 55X 12 ARV T 35 18
TARLE II
Galculation of Horizontal Loads on Ring
E.iy
Stringer ~— A (1k.) (tan 8gp - tan Sg1) ATy (1b.)
I
1 903 0 0
2 836 .0073 6,08
3 637 .0134 8.54
4 345 .0176 6.08
o 5 0 .0l91 0
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Example 2

Figure 15(a) shows the cross section of a wing beam
at the first bulkhead from the root, The bulkhead gpac-
ing d ieg 50 1In.; the bending moment M at the dbulkhead
ig 1,500,000 in,-~1b, ¥Find the forces on the bulkhead
caused by beam curvature.

The flange forces are

p = 4 = 1800000 _ 155 000 1v.
h 10
Thé compresgsive stress is
o, = & = 189900 _ 55 900 1b./sq. im.
. A, 4,2

The forces V eacting on the compression side are, by
formula (19),

for each flange

0.8 o '
Vv = 35,700% X x —22_ _ 885 1b.
107 4,32
and for each stringer
a 0.5 50
Vv = 35,700° x = = 738 1b.
1 4,32

This load is uniformly distributed along each stringer,
The resulting maximum bending moment on each stringer is

va _ 738 X 50

M=13 7 12

= 3,080 in.-1b.

occurring at the bulkhead.

The tensile gstress is

E _ 180000 ' 46,900 1b./sq. in.
At 3.2

O-t=
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The foreces V acting on the. tonslon side are, by formula
(19), for each flange

8 x B0 = 1,160 1b.

"V = 46,9002 x O
! 1 5.68

and for each stringer

V = 46,900° x Qa8 x -20- - 966 1.
10”7 5.68

Thig load is uniformly distributed along each stringer.
It causes at the bulkhead & bending moment

M = L& _ 9686 X B0 _ 4 030 in.-1b.
12 12

The total area of each stringer is 0.5 =q. in. Assuming
the depth of the stringer to be 1 in,, the sectinn modulus
will probably be less than 0.2 in.?; the bending stress
wlll therefore be more than

c = igﬁg = 20,150 1b./sq. in.

It is obvious that the bulkhead spacing of 50 in. should
be reduced. For actual design, it should be borne in
mind that the vertical loads on the flanges are actually
distributed aldng the shear webd over a distance d of
50 in.

Figure 15(b) shows the forces acting on the bulkhead.

Example 3

Figure 16 shows the dimensions of a gmall sport-plane
fuselage at the cockpit. The fin-and-rudder load stregses
the longerons to o0 = 30,000 1b./sq. in. TFind the size of
open ring required at section C - C %o prevent caving in
of the cockpit. Disregard stresses carried in the gkin,

According to formuls (19), the forces V arising
from tending curvature are

= 2 Q.1 17 2 b. -
vV = 30,0007 x "y X 10 N;?,S 1



N.A.C.A. Technical Note HS. 687 ' .25

The maximum bending moment in the ring will be
M =15,3 x 37 + 15,3 X 7 = 673 in.-1b.

Since prevention of caving in of the cock»it is an essen-
tial condition for safety, the allowable stress will be
kept fairly low, say 30,000 1b./sq. in. The required sec-—
tion modulus will then be

Z = M = 673 = 0,0224 in.:"

If standard angles arec used, a 1 X 1 X 3 angle will dbe
. . 32
Just sufficient.

Example 4

The fusselage of exanple 1 is subjected to a transverse
load of P = 5,000 1b. and a torque of T = 40,000 in.-1b.
acting simultaneously. Find the maximum effects caused by
diagonal tension 0f the ring. :

Obviously the maximum effects will occur where the
shear stress reaches its maximum, in the panels adjacent
to the neutral axis.

The load being higher than in Exampls 1, the sheel
willl no longer be fully effective in carrying normal
stresses, so that Q and I change. The ratio I/Q
does not change, however, if the same simplifying assump-
tlions are made on the distribution of the material. Under
the assumption used for Example 1,

I 7 R® %e _ __ TR

-_— =

Q@ 2R %, sin 6 2 sin 8

or, for the neutral axils,

1 R

3 = = 31,42

The nominal shear stress in panel 4-5 is therefore

S . .
L 5000 = 4,970 1b./sq. in.

2%1 2 X 0,016 x 31,42
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The nominal shear stress due to the torgue is

T .
T o= - £0000 = 995 1b./sq. in.
24t 2 x 1256,6 X 0.016 0 |

The total nominal shear stress is therefore
T = 4,970 + 995 = 5,965 1b./sq. in.

To find the angle of folds «, <calculate

n /E _ 7.8 /_10" _ 1s.07
RY T 20 5965

From figure 10, a = 26,4°

The critical shear gtress is

T, = 1,079 1b./sq. in. (See Example 1.

This value is the criticsl stress that may be exvect-
ed as average for a number of panels. TFor any given pansel,
it may be lower, and the desligner may wlsh to add some fac-
tor of safety beyond that already provided in the design
requirements. For the present example, the computed value

of T, will be used. The portion of the total shear

stress carried as dlagonal tension isg, dy formula (28),

1079\*
- 5 (1~ 2278
TDT 5,96 5965

Egtimating n = 2,
Tpp = 5,965 x 0.819% = 4,000 1b./sq. in.
The compressive force on the ring is then, by Fformula (22),

Vy = 4,000 x 0,016 x 12 X 0.496 = 381 1b.

and the stress 1is

SR 1:)
U~ 0.100

[ea]

= 3,810 1b./sq. in.
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The ratio . L L : A .
o g
_U _ 3810 _ .64
T- 5965 . . :

éiving

n

B ~.0.64 = 2.36

which glves, in secdnd approximation,

Typ = 5,965 % 0,8192*3% = 3,725 1b./sq. in.
giving |

oy = 3,560 1b./sq. in., n = 2.40

Tpp = 5,965 x 0.819%°%° = 3,690 1b./sq. in.

which may be taken as the final valus. The compressive
force in the ring becomes

Vg = 3,690.x 0,016 X 12 X 0486 = 351 1b.
and the stress

351
[o) =
U "~ o.100

= 3,510 1b./sq. in.

In Example 1, the skin was assumed to be riveted to the
rings .Under this crndition, there will be no bending
moments in the ring due to diagonal tension except eccen-~
tricity moments. For the sake of illustration, however,
the Pending moments that would exist if the skin did not
touch the rings will be computed. According to formula
(23), these moments would be

2 2 ,
M= Vg Igﬁ = 351 x EELEQEB = 90.1 in.-1b.

which is somewhat-conservétive-because’ h and R were
measured on the skin contour, lacking detail data.

Assuming the riné to be 1 in. deep, the éection modu~
lus 2 would be less than O, 05 since A = 0.100. - There-

fore the bénding stress
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. 90.1

0. 08 or 0Oy ~> 1,802 1b./sq. in.

%3

Before the eccentricity moments acting at longitudinal 4
can be calculated,

the diagonal-~tonsion load in panel 3-~4
must be calculated.

The ratio
_1:_ = 'ﬂ'R = 51.4..‘2 - 3’3-82
Q 2 gin 56,25° 1 x 0,831

Thereforc the shear stress due to the transverse load

T = 5000 = 4,130 lb./sq. in,
2 X 0.018 x 37.82
and the total shear stressg

T = 4,130 + 995 = 5,125 1b./sq. in.
Then

g lay
< |

= 17.33 a = 25,7°
v

The part of the shear stress carried by diagonal tension 1is

1079 2.40
Tpp = 5,125 <1 -~ =3I

= l lb. " in
S 2,910 /se.
where

n was taken from the last step of the calculation
"for panel 4~5 ag a first approximation. This computation
gives

Vg = 2,910 x 0,016 x 12 x 0,481 = 269 1b.
Assuming the eccentricity between skin and ring to be 0,5
in., the eccentricity moment acting on longitudinal 4 will
be, by formula (25),

M = 0.5 (351 -« 269) = 41 in.-~lb,

In order to evaluate completely the ring stresses at
longitudinal 5,

it would be necessary to calculate also
the eccentricity moments at longitudinals 2 and 3 and to

add their effect at longitudinal 5 by using formula (26a).
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Figure 1.- Plate girder with parallel flange@!
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Flgure 2.~ Free-body sketch of plate girder with curved flanges.
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(a)

(b)

Figure 3.~ Free-body sketch of plate girder with kinked flanges.
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Figure 5.- Forces on fuselage ring.
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Figure 10.-~ Angle of folds in curved diagonal-teansion fields.
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