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SUMMARY 

The loads imposed on intermediate frames by the cur- 
vature of the longitudinals and by the diagonal-tension 
effects are treated. A new empfrical method is proposed 
for analyzing diagonal-tension effects. The basic formu- 
las of the pure diagonal-tension theory-are used, and the 
part of the total shear S carried by diagonal tension 
is assumed to be given by the expression 
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.Where PO is the critical shear stress, T the total 
(nominal) shear stress, and a = 3 - D./T where u is 
the stress in the intermediate frame. Numerical examples 
illustrate all cases treated. 

INTRODUCTION 

The structural elements of stiffened shells may be 
divided into two main classes: strength elements and 
form elements. The strength elements primarily develop 
the stresses necessary to hold the external loads in 
equilfbrfum; the form elements primarily sarve to give 
the desired shape to the structure and to maintain this 
shape as long as possible when the loads increase. The 
longitudinal stiffeners and the skin of a fuselage, for 
example, are strength elements and the intermediate frames 
are form elements. 

No sharp lfno of demarcation, of course, exists be- 
tween the two kinds of elements. If the strength members 
have any tendency to change their shape under load, then 
the form members will develop stresses resisting further 
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dGfOrmatiOn of the strength members. Consequently, the 
form members might also be Cal-led secondary strength mem- 
bers. The loads imposed by the strength members on the 
form members are the subject of the present paper. An 
appondix gives numerical examples for the app1icatio.n of 
tha principles developed in thspaper. 

GENERAL ASSUXPTIONS 

The stiffened shell, on the stressed-skin structure, 
employs two distinct types of strength element: the rel- 
atively compact longitudinal stiffener and.the relaOively 
thin sheet. The same two components are characteristic 
of the plate girder, which has been extensively employed 
for a long'time in civil engineering. The plate girder 

' may be considered as a two-dimensional form and the stif- 
fened Bhell, as a three-dimensional form of stressed-skin 
structure. 

Civil engineers have established the custon of assum- 
ine: that the flanges of plate girders take most or all of 
the normal ,stresses due to bending'and that the web takes 
all the shear. Measurements have shown that the actual 
stresses are sometimes distributed in a quite irregular 
manner and that, therefore, the maximum stresses do not 
agree very well with the calculated stresses. The assump- 
tions mentioned have nevertheless been accepted as a sat- 
isfactory basis for design in civil engineering and they 
have been adopted for aeronautical design. Refinements 
have been made, however, in establishing formulas for the 
effective width of sheet that may be considered to work 
in conjunction with the stiffener in carrying normal 
stresses. 

If the normal stresses due to bending are known, the 
snearing stresses in the sheet can be calculated. It is 
custpmary to assume that the ordinary engineering theory 
of bending appli,es, which gives fo.r the normal stress and 
the shear: stress, respectively, :. 
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This theory negl8.cts.:$hear.ddfkr:~~.tio~'Bnd.:is' tiufficiently, 
accurate.for engineering work th;?z':iip$l.ied to beans of 
solid cross section, '#hen the theory $s ap$,lisd to 'stifi 
fened shells of round or elliptical-cross section, such as 
fuselages, the errors in normal stresses may amount to 5 
or 10 percent. 'ripen the th,eory:ts applied to wide shallow 
box bearlls, such as'Swihgs,, the'error.s.may be'as much as 30 
percent. The des$gn.of the Tntermediate frames rests, how- 
ever, on the average rath.er than the peak values of the 

.n'ormal stresses.. For most..practical purpose's, the'us'e of 
-the.enginesring theory of.,bendfng is believed to be sufff- 

eiently accurate for the primary analysis of the shell that 
must be made to obtain the de'sign loads fn the yintermediate 
frames. 'In order to obtain r'eliabie design loads'.on the'.' 

,shell itsel‘f,..'however,‘ it will often‘be necessary to refine 
the calculation by taking into account the shear deforma- 
tion of. the: skin. 

'I 
The shear-stresses due to tors,ion may be calculated 

by-*the. fqrmula, 

. 
T 7 'Z - 

2At ,* 

This formula applies strictly; only to a shell,bf constant 
cross sedt,ion loaded by shear stresses at the‘ends. It 
is probably sufficiently accurate for design purposes at 
all cross sections where intermediate frames are located. 

It is impossible to overemphasize that all theories 
of stress analysis are of limited applicability. It can- 
not be urged too often that the stress analyst study the 
basic assumptions underlying the theories in order to be- 
come acquainted with their limitations. 

PLATE-GIRDER TXEORY 

For convenfence of reference, the term "plate girder" 
will be used to denote:p girder with a plate web designed 
so that the veb will not.buckle under shear loads until the 
design load is reached;, As already pointed out, such a 
girder may be considered as a special,case of stressed-skin 
structure, the $n,$ermediate frames; of,:.the shell‘being rep-. 
resented'by uprights;oi web stiffener~s':i.n.,t.he"hlate girder, 
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The girder recommends itself by its simplicity as a basis 
for discussing the'necessary principles; the application, 
of these princip,les to shell structures ~$11 thenfollow 
as a natural*ertension.. : 

. '. 
.' ,, * 

The Plate 'Girder with Parallel Flanges 
.' 

In a platen.girder .with parallel flanges (fig. 1) , no 
intermediate Hfraaes" drluprights are,required. Uprights 
iday be used, if-desired, to increase the.critical buckling 
stress of the web,-but they will not be subjected to loads 
until the web buokles, By tha definition.,of the term 
"plate girder!' used in the present paper,:this buckling 
does not occur until the design load is reached or passed. 

The Plate Girder with Curved (or Inclined) Flanges 

The plate girder with curved flanges (fig, 2) is the 
general case of the girder with inclined flanges. In all 
the following discussions, the girders will be assumed to 
be symmetrical about the longitudinal axis, at least as 
far as inclination of the flanges is concerned, . 

In a girder with inclined flanges, the flange forces 
carry part of the shear load. The vertical component v of 
each flange force is given by the formula 

V = 5 tan 6 
0 

(4) 

The horizontal component H. is given by 

H M =- 
h0 

The shear force SIT in the web is given by 

(5) 

. hP Sw=P - 2v = PC (5) 

Uprights are not indispensable in practice because the' 
plate web is capable of takingsome transverse normal 

. 
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stresses, although these stresses are neglected in the de- 
sign. If. uprights are used, they may be analyzed by as- 
suming the curved flanges,to :be rep1aced.b~. straight 
flanges kinked at each upright, as willibe. shown presently. 

The Plate Girder aith.Kinked Flan.g,es 

In a girder w1t.h ,kinked fla'ng.es, it is necessary to 
use uprights at each.kink if the'web is to carry only shear 
(fig- 3 (a)). The horizontal. components .Hl .and- Ha of 
tne.flange forces just to the left and to the'right of the 
kink.will be equal. The vertical components -VI and v2 9 
however, will differ by an amount APL. Application of 
formula (4) gives . . 

(7) 

The force AVL must be absorbed by an upright to be con- 
verted into change of shear force in the web (fig. 3(b)). 
One force AVL‘ acts on the top and one on the bottom of 
the upright. The total force exerted on the upright must 
be held in equilibrium by the difference betTeen the web 
shears SW1 and 8w2: 

2AVL = 571 - SW2 (8) 

By formula (6) . 

hPl 
sip1 = p h 

and bP2 
s;y2= P 77 ,, 

0 ,: ..O 

Therefore . 

h 
2GV, = siql - ST2 L p 'Pl 

?h' 
P2 (9) 

ho" 

It can easily be shown that the values of AVL obtained 
from equation (7) and from equation (9) are numerically 
equal. 
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Application of Plate-Girder Theory to Shells 

Figure 4 .shows,the c,ross section of a fuselage, as 
well as the side view and the plan view of a short section 
of the fuselage at either side of an intermediate frame. 
The curved outlines of the actual fuselago have been re- 
placed by straight lines between frames. 

As indicated in the figure, the stringer direction 
lines.at any one cr.098 section are assumed to meet in a 
common apex on the axis of the fuselage, The angle of in- 
clination betwoen.a stringer and the fuselage anis is de- 
noted by '6, when seen in the projection on the vertical 
plane and by 6, when seen in the projection on the hori- 
zontal plane, * 

Any two corresponding stringers, for instance, the 
upper longeron U and the lower longeron L of figure 4, 

'together with the intervening skin may be considered as a 
two-flange girder; the entire shell may be considered as a 
superposition of several such individual girders. The 
shear carried in the web of each individuai girder is given 
by formula (6), if P is undorstood,temporarily to refer 
to the share of -the total load carried by each individual 
girder. Now, the factor hP/ho is the same forall stringers 
at any one section. The shear carried by the skin (or web) 
at any cross section of the fuselage is therefore 

hP Spv=Ph'- 
0 

(10) 

mhere P is again the total load, and the factor hp/ho 

may be determined from any one stringer, provided only 
that tho proper plane of proj.ection is used, namely, the 
plano parallel to the load. 

The horizontal load in any stringer is assumed to be 
given by formula (1). The shear load per inch perimeter 
of tho shell skin is therefore obtained by applying for- 
mulas (2) and (10) as 

+Tt=PCGhg 

21 ho 

(It should be noted that, in the application of formula 
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(2), the width b is t&en as 'tlrice the actual skin thick- 
ness measured normal to the skin. The use of the "slant 
thickness" is incorrect because the shear must be tangen- 
tial to .the*median line.) At the frame (fi.g:4):, the dif- 
ference between the ,shear forces just to &the left and just 
to the right of the frame 

aots as a distributed shear load on the‘frame (fig. 5(a)). 
This distributed load is held in equilibrium by,the ,dif- 

'ferences between the vertical components .of the stringer, 
forces 

AVI, =' "y A (tan 6,, - tan Svl) . 

.: 
mher 8 A' is the cross-sectional area of the -stringer under 
consideration; y, its distanc,e from the neutral axis; 
and I, the moment of inertia of'the shell cross section. 
These forces AVL are,also shown in figure 5(a) I 

; 

In the hori,zontal projection,, the stringers are also 
kinked and therefore exert transverse forces on the frame 

APL = 7 A (tan 6~2 - tan 6x1) 

The resulting system of horizontal loads acting on the 
frame is shown in figure 5(b), The analysis of the frame 
for these load systems may be made by any desired method. . 

The skin was assumed to be directly connected to the 
bulkhead frame. If the frame is connected only to the 
,stringers and not to the skin, the formulas will still 
give the average forces correctly, but there will be force 
concentrations resulting in higher maximum stresses. This 
fact would influence; for instance, the design of the skin; 
the design of the frame, however, will not be materially 
influenced because it depends on the integrated effects of 
the applied forces. . 
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; THE .EEFECTP.S .OFp BEAM,.. CURVbTURE .’ 
r. .., 

. ,. . 
Beams may be curved for two reasons: . They may be. 

built with ‘initial curvature, or they mey. be bent into a 
curved shape by the applied load.s., It will be assumed 
that the curvature is small. 

Curvatu~.e,,ma.y.~.e. thought. of as a succession of many 
small kinks, and it has been previou’sly shown that there 
is a vertical component of the flange force at each kink, 
as giv.en by ‘formula (7). If the curvat,ure of, the two ’ 
flanges, is of opposite sign, as in t,he cases previously 
treated, the vertfcal compon.ents of the two flange forces 
act in the same direction and must be balanced by shear 
forces. If tho curvature of the two flanges is of the 
saue sign (fig. 6)) .however, the vertical components will 
oppose each other and will give rise”to transverse loads. 
These distributed transverse loads will cause compression ,’ in the, shear webs and bending in the stringers between 
frames. The frases act as supports ,to the stringers and 
f.urnish ,the bconcontratcd reactions to the transveree loads 
on the stringers, The frames are therefore in compression, 
as indicated in figure 6(b). 

If the radius of curvature R of the beam is assumed 
‘to be large compared with the depth of the beam, the dis- 
tributed transverse force per unit run of span acting on 
any stringer i.s 

V F m=- 
,' Ax R . ' (15) 

where F ‘i’s the axial force on the stringer. If Ax is 
made equal to. the frame spacing. d, 
sion . 

the resulting expres- ., 

v’ = $a 
. 

” :(l? 
. R ‘. ‘:_,I 

. , - 
‘gives the concehtratod force ‘,exer’ted by ‘any given steinger 
on the’ frame ,, , ,: ” , . 

,’ 
According to the theory of bending,‘the bonding cur- 

vature is given by 

1 M 
R -=iE 

(17) 
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The stringer force F is given by 

. 

I I 

F = E A ',' " (18) 
I 

mhere A is the cross-sectional area of the stringer, 
Substituting from equations (17) and (18) into equation 
(16) and using the fundamental relation ‘(1) gives 

Ad =(JJ -- 
EC 09) 

This 1oad.i~ normally very small; but it may become of 
some importance in very shallow flexible b,eams, being in- 
versely proportional to the beam depth,, It should be 
noted that the effect is proportional to t'he square of 
the applfed'bending moment, a fact which may be important, 
f‘or instance; in connection with strain-gage tests at low 
loads. 

. . The loads V may becolne 'quite important when the in- 
ter;aediate frame is open; thislcase occurs, for example, ! 
at a cockpit cut-out when the fuselage is subjected to the 
fin-and-rudder load. . 

It might be noted in passing that, whenever the forces 
V become important for bulkhead design, the distributed 
transverse loads from which they arise become important on 
account of the local bending which they cause in the ' 
stringers. . . ,: 

DIAGONAL-TEXSION THEORY 

The Plane Beam in Pure Diagonal Tension . 
. 

The diagonal-tension beati is so well-known to aero- 
nautical deiiigners that no long discussion will be given. 
It will be'sufficient to recall that the web of the beam 
(fig. 7) deveiops a series of parallel folds incli,ned at 
an angle CI to the axis of t,he beam. The stress in, the 
web sheet 'is assumed to be pure tension along the lines 
of the folds. Uprights are necessary,.aB in a truss with 
tension diagonals, to keep the flanges separated against 
the tendency of the diagonals to pull the f.la,nges together. 



10 N.A,;C.,A,, Technical Note. No. ,887 

with 

The angle of folds a is determined by the formula 

sin' a=fiT+Z-a (20) 

ht 
1 + Zn, 

a = --- 
dt ht - ,- cm 
AU OAF. 

(21) 

where AZ is the cross-se'ctional area of the flange and 

Au is that of the upright, For the practical range of 
construction, the calculated'value of a is around. 42O. 
On the assumption of rigid flanges and uprights, the the- 
ory gives cx = 45O, which is a convenient value for prac- 
tical use and is slightly conservative for the design of 
the uprights with which this paper is concerned. For up- 
rights inclined to the flanges at an angle 8, 
tion of rigid edge members gives a = f312, 

the assump- 
which is prob- 

ably always used in design work, 

The load on the upright is given by the formula 

vu = P d 
ii tan a 

= 'Ttd tan cc 
- 

for tho case of figure 7. The derivation of the equations 
given may be found in reference 1. The application of 
these formula6 to shells with plane walls is well enough 
known to obviate a detailed discussion, 

The Shell with Curved Kalls in Pure Diagonal Tension 

In curved diagonal-tension fields, such as side walls 
of fusalages, the calculation of the angle of folds a 
becomes more complex, The formulas are given in reference 
2 but, unfortunately, it is. impossible to give a single 
formula comparable with equation (20) that is-applicable 
to a curved field, T?le assumption of rigid flanges and 
uprights made for plaae field6 may also be made for curved 
fields, the longitudinals and the'rings being assumed rigid 
in order to obtain a practical approximation to the angle a. 
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l 

The calculation of.the loads imposed by the skin on 
-.the ring of a curqed.diagonal-tension field is also more 

co.mplex than the calculation of the load imposed on the 
upright of'a,.plane beam; .Por.simplicity, the case of.uni- 
form diagonal tension around the circumference will be 
first considered. This case occurs in a shell in torsion, 

L I . . 

. .First of all, ,the circumferential component of the. 
tension in.the skin must be counterbalanced by hoop com- 
pression in the ring. -This relation is exactly analogous 
to the relation between skin tension and upright force in 
the plane beam, and formula (22) again applies. 

The circumferential tension is transmitted to the 
ring by radial pressure. If the ring touches the skin, 
this transfer is continuous and there are no additional 
effects. If the ring does not touch the skin and receives 
its load through the longitudinals, then the radial pres- 
sure inward is concentrated at the longitudinals (fig. 
8(a)). By application of formula (15), it will be found 
that this curved beam is statically equivalent to the 
straight beam shown in figure 8(b). Under the assumed con- 
ditions of uniformity, the part of the ring between longi- 
tudinals is therefore kn"the condition of a.beam built in 
at both ends and loaded by a uniformly distributed load'. 
If Pr is the radial load exerted by one longitudinal.on 
the ring, the maximum bending moment M on the ring will 
be 

Pr h 
M =--- 

12 

occurring where,the ring is loaded by the longitudinal. 
Now the load P, is given by elementary statics as 

h h 
Pr = Vu - = ,Ttd tan a g 

R 

Therefore 
8 

;d = 'h T td tan a - (23) 
12 R 

where h and R are measured on the circle of contact 
between longitudinals and ring. 
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These equations hold strictly only'when there is an 
infinite number of longitudinals. ,Thoy are, however, suf- 
ficiently accurate for practical purposes if the number of 
longitudinals n distributed around the circle is greater 
than 6. 

Formula (22) applies to any shape of cross section, 
as long as the assumptioh of uniform tension along the cir- 
cumforcncc is fulfillad, Formula (23),, of course, applias' 
strictly only if the radius R is con,stant between longi- 
tudinals. . . 

If the ring is oien, the case is analogous to that of 
a plane diagonal-tension beam with stiffeners on only one 
side of the web. The pull of the sheet causes an eccen=-. 
tricity moment act'ing throughout the length of the ring, 
or upright, 

fd = VU e = T td tan 01 e (24) 

where e is the distance between the centroid of the ring, 
or upright, and the line of action of the sheet tension. 
In a plane web, e will be constant along the length of 
the upright. In a curved web, however, the folds in the 
sheet will leave the original plane of the sheet and will 
finally lie along the chords from longitudinal to longitu- 
dinal, and e will be variable, 

Eccentricity moments ~111 also arise,if the sheet 
tension and with it the force VU varies along the cir- 
cumference of the ring, or along the length of the upright. 
Consider, for.instance, a shell,as indicated schematically 
in figure 9; assume that the skin has buckled ihto diag- 
onal-tension fields in the panels next to the neutral axis 
but not in the panels next to the sxtromo fibers. Under 
this condition, eccentricity moments as shown in the figure 
will act on the ring (assuming the load to act downward), 
each moment being again expressed by formula (24). In the 
general case, however, Then there is diagonal tension in 
each panel, the moment is caused only by the difference be- 
tween successive forces Vu, or 

(25) 

starting the count at the extreme fiber. If symmetry ex- 
ists about'both axes, the moment at A is 
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and the moment'at B' is' . . . . ‘* 

..., . '. i . . - 

(26a) 

(26b) 
* : 

The tot&i moments at A and B are obtained by summing 
up the individual contributions from each.panel po*int, or 
for each longitudinal. . 

The theory of the preceding paragraph is based on the 
assumption that the circumforontial'componont~ of the'diag- 
onal tension in a given panel,does not affect the circum- 
ferential tension in the psnels adjacen,t to it on the cii-- 
cumference.' Actually, these circumferential tensions in 
the skin can directly equalizs themselves to some extent 
around the circumference. At the limit, when theyequalize 
themselves completely, the hoop compression Vu in the 
frame will be uniform around the circumference and the ec- 
centricity moments given by equation (25) will disappear. 

The Incomplete Diagonal-Te.nsion Field 

Practical experience has proved that the design for'& 
mulas based on the assumption of pure diagonal tension 
are too conservative in many cases. It was found that the 
critfcal.buckling stress of the sheet has to be exceeded 
many times before the state of stress in the sheet ap; 
proaches reasonably closely to the assumed condition of- 
pure tension. In relatively heavy sheets, and particularly 
in curved sheets, the critical buckling stress'is.often 
exceeded only a few times at the de,sign load, so that the 
assumptions of the theory are not very well fulfilled, 

The main reason for"the discrep'ancy is obviously the 
fact that the sheet,continues to carry part 'of the load 
in shear .after it- has .buckled. Borrowing an assumption 
sometimes made in'-structures.with compression members, 
imagner and Ballerstedt,(referepcp 2). aqd.othbrstherefore 
proposed to assume that the' shee,t carries the critical 
shear stress as shear' even after buo.kling and that only 
the excess over the critical stress is converted into di- 
agonal tension.. 

. 
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A more detailed study.led Schapitz (referepces 3 and 
4) to propose a theory of the tlincomplete diagonal-tension 
field." He considers a skin-stringer panel loaded by nor- 
mal forces along one axis and by shear forcss. In sections 
parallel to the normal forces, the stress conditions are 
assumod to be uniform. In transverse sections, however, 
tho normal stress is assumod to vary continuously from ten- 
sion along the center,line through zero to compression in 
the longitudinal stiffeners. The second principal stress 
is assumed to be a compression equal to tho critical shear 
stress. 

c 

The law of stress variation is assumed only qualita- 
tivo1y. A characteristic value dotermining the quantita- 
tive variation is then chosen so that the results of the 
analysis give the best possible agreement with tests. A 
second characte.ristic value enters into the picture for 
curved diagonal-tension fields, so that there is ample pos- 
sibility of adjusting the theory to fit the facts, 

Proposed Weor Theory of Incomplete Diagonal-Tension Field 
J 

The present paper is concerned with only one single 
item of the diagonal-tension theory, namely, the loads im- 
posed on the uprights or tile transverse stiffeners. A de- 
tailed discussion of diagonal-tension theories would there- 
fore be out of place. Although the theory of Schapitz has 
much to recommend it on tho basis of wide applicability, 
it is thought that a somswhat simpler theory built up on 
different assumptions will bo suitable for the present re- 
stricted purpose and porhdps for a wider field of applica- 
tion. 

Tho assumptions underlying the proposed theory arelthe 
following: . i 

’ 1. The angle of folds is given by the curve'in figure 
10, obtained as follows: In reference 2 are 

. 
given curves of ,.c[ against 

,a 7. 
E calculated 

R J- 
first for,closel$ spaced longitudinala, then for 
closely spaced rings. The .longitudinals and,the 
rings being assumed rigid (a =.O in referonce 
2) 9 twg curves &re obtainad for cd. These two 
curves intersect, and:thd"'singlo curveof figuro 
10 was obtained by using the branches of the two 

c 
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. 
'-'curves that g'ive the ,h1-gher.values of 0~ and 

fairing over the break,near the tntersection. 
Experimental evidence to be,discussed later 
furnished the basis and justification for thfs 
procedure; 

. 
2. The shear force S is carried partly as shear 

sS and partly as diagonal. tension %T . 

S = ss + SD'P . '. (27) 
,.. 

," . . : 
The pa&t-‘barrfed as diagonal t-ension is gfven 
by the expressign.. ; . 

7 

%T = s(l.-p)n. (for -I-'-> TV) (28) 

. . 

where T 4s the actual .ao.minal shear stress 
(i.e., total shear force divided by sheet area) 
and 7. is the critical buckling stress, so 
that T/To .is,the factor by which the buckling 
stress is exceed'ed. The exponent n is deter- 
mined from tests. With n=l, the Wagner- * 
Ballerstedt assumption is obtained. On the '. 
basis of the Wagner-Lahde tests (reference 5), 
it appears safe to set y', 

.' 
77 

.'- 
n=3-- (29) 

7 . . 
. . ‘; ;’ . 

where OU is the compressive stress in the up- 
right. It wi.11 be permissfble, as far as pres- 
ent knowledge indicates, to use n .=,3 if , 
ou 1 CT '1 
-5 

and n = 2 if 'L'> Equatfon (29.) 
7 7 Z' 
is based on the assumption tha't the stress in 
the longitudinal8 caused by diagonal tension 
is small. This assumption is valid for most 
practical cases;, i.n the tests reported in ref- 

'er'dnce 5, this consideration was taken into ac- 
.count by making the longitudinals extremely 

. heavy. : . ,a 
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The physical meaning of equation (28) is that the 
shear stress continues to increase after buckling 
if n> 1. This assumption is the main difference 
between the proposed new theory and the older the- 
ories, which assumed n = 1, that is, the shear 
stress to remain equal to the buckling stress. 

The theory expressed by formulas (28) and (29) at 
present rests chiefly on tests made of plane di- 
agonal-tension fields, It is possible that, for 
curved fields, a moro complicated relation should 
be used. The experimental evidence for curved 
fields, admittedly very scanty, does not appear 
to indicate tho immediate necessity of introduc- 
ing further complications, 

Application of Proposed New Theory to Shells 

On the basis of the prcposod theory of the incomplete 
diagonal&tension field, the procedure of stress analyzing 
a shell would be as follows: 

For each panel, the total nominal shear stress is cal- 
culated by means of formulas (2) and (3). 

The angle of folds a is determined from figure 10. 

The crftical shear stress is calculated. From avail- 
able data on structures simulating aircraft construction 
(references 3 and 6). it appears that the formula 

T 
0 

= 0.1 E 4 + 5E 
R (;) a [l + 0.8 ($1 (30) 

may be expected to give good average values for the crit- 
ical shear stress. If the values given by formula (30) 
aro multiplied by 0.75, reasonable assurance may be had 
that the resulting value is conservative. In formula (30), 
the notation of figure 10 is used, and it is assumed that 
d > h. If h>d, these two letters must be interchanged 
in (30). 

The portion TDT of the total shear stress 7 that 
is carriod.as diagonal tension is calculated with the help 
of formula (28). In the first analysis, the exponent n 
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must be assumed; In thaif.inal.analysis, .n is calculated 
by using formula (29)., sU being replaced, by the value ob- ,' ., 
tained from the first analysis.. I 

..I ,... . . 
With the angle CI &.~d the stress TLT known, the 

forces and the moments ,on the ring.c'an 'be' calculated by us- 
,ing the previgusiy discussed theory'of the .pure diagonal- 
tension ffeld. . , 

_. 

Experimental Checks '* ' * 
.' 

Anale of foldg.- The tests by Limpert (reference 7) 
give an excellent check for the curve of figure IQ. In 
these tests, the angle .a was ,meastired. at various stages 
of loading, and the experiments clearly showed the increase 
of a with fncreasing shear*stress predicted by the theory, 

In the torsion tests made'by Schapita on complete 
shells (reference 3), the strain measurements were made at 
two load stages, the lowest one being well beyond the buck- 
ling load. The calculated angles 01 for these two load 
stages closely bracket the observed angle. 

In the tests made by Thorn (reference 6), the average 
observed angle is 26.8O and the .observod maximum -IB 34'. 
The average angle calculated from figure 10,is 26.2', if 
the load actllng on the specimens fs assumod to be thecrit- 
ical load. The average calculated angle is about 38'. if 
the load is assumed to be the load used in the last stage 
of the strain-gage test. The test report does not state 
at what loads the angles were measured, so .that no direct 
cOmpar.fBOn can be made. It tB improbable that the actual 
changes in angles were as large as predicted by theory; 
consequently, the calculated angles are probably too large 
for these tests and the resulting calculated frame stresses 
are high, that is, conservative. 

Stresses in frames.- Strain measurements on frames are 
described in references 3 and 6. For the tests described 
in reference 6, the proposed method of analysis gave con- 
servative roBUlt3, the observed StreBSeS being aB low as 
50 percent of the calculated stresses, For the tests re- 
ported in reference 3, the method was not conservative. 
The cylinders used in these tests had been used previously 
for bending teSt8, leaving permanent deformations. For 
this reason, and possibly others, the observed critical 
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strees was low,. in:one*case as low as 57 percent of that 
.calculated by formula (30). The worst disagreement in the 

frame stresses occurs in the cylinder with the smallest 
ratio II/t (= 740). In this cylinder it was necessary to 
multiply the buckling .stress from formula (30),by 0.6 to 
reach agreelsent betffeen the calculated and the observed 
frame stresses, In the'cylinder with a value of R/t of 

'about 1,000, a factor of 0.75 had to be used. In the tests 
reported in reference 6 where R/T was between 2,000 and 
3,000, no correction factor was needed for applying formu- 
la (30). The effect of previous loading is apparently im- 
portant if B/t is low. 

Concluding Remarks on Diagonal-Tension Theory 

The proposed new diagonal-tension theory will probably 
be generally conservative for the design of intermediate 
frames if the conservative values of the angle cd from 
figure 10 and conservative valuea of 7. are used. Less * . 
conservative values for a and 7. may give better 
agreement with the facts in some cases, but it is impossible 
to predict such cases with the present knowledge. Unlike . 
the theory of the plate girder presented in the first part 
of this paper, the theory of dcagonal-tension action may 
be expected to undergo continual changes and refinements 
for some time. The stress analyst should constantly en- 

deavor to keep abreast of such developomonts. 

Langley Manorial Aeronautical Laboratory, 
National Advisory Committoe for aeronautics, 

Langley Field, Va., January 10, 1939. 
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. APPENDIX . . : :. ,:. 

Example 1 
. . . . . . . 

Find the loads acting on the intermed.iate.ring A-A., 
of the fuselage shown in figure 11. Assume the rings to 
be riveted to the skin. 

-. 
Compute fir$t the propertie'; of' the'*cross section, 

assuming the sheet to be fully effective in taking bending 
stresses. 

Total stringer area 16 X 0.120 = 1.92 sq. in. 

Total skin area rrDt = 2.:%1 sq. in. 

Total area 3.93 sq. fn. 
3.93 Effective thickness t, = - = 0.03125 in. 

IlD 
I = rrR3te = 785 in.4 

Q = 2Rate sin8 (See fig. 12.) 
: ; 

TfR . 
2 sin e 

The bending moment at ring ,A-A is 

lvs = 1,000 X 144 = 144,000 in.-lb. 
. . 

The maximum fiber stress is':therefore 

O= 
MR = 144000 x-20 = 3,670 lb./sq. in. 

I COB 6 785 

(The angle 6 botmoen'the stringer and the axis is so 
small that co9 6 ml.) 

Estimating the buckling stress of tho sheet as 20 percent 
higher than the theoretical ,compressive buckling stress, 

ccrit = 1.2 X 0.363 E i = 3,500 ib,/sq. in. b 

and the maximum stress is close enough to the critical 
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stress to justify the assumption that the sheet is fully 
effective. 

The shear stress in the panels next to the neutral 

axis (0 = g) iS 

T =p&= 
1000 x 2 

-- = 995 in. 
2t1 2 x 0,016 20 

lb./sq. 
x I-'X 

The critical shear stress is, by formula (30), 

T 
0 = cl.1 x lo7 x "S + 5 x lo7 x( '*OL6 

17.85 

= 800 + 279 = 1,079 lb./sq. in. 

which is above the shear stress actually existing, so that 
there will be no diagonal-tension effects. 

The shear forces applied by the skin to the ring, 
which are the differences between tho skin shear forces 
in the adjacent ppnels, are next found by formula (12) 

ATt = FQ hF1 - h22 
z ho 

lcIOO sin 8 26.3 - 20.8 = 
rrz 40 

ATt = 2.19 sin 6 

There the values of ho, hFl, and hF2 were obtained 
from figure 13, which is drawn to .an exaggerated vertical 
scale. 

The shear force.transmitted in each panel to the ring 
is obtained by multiplying the shear intensity Tt by the 
developed width of the panel 
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TrD - = 7.85 in. 
16 

21 

so that 

Sa = 2.19 x 7.85 X sin 11.25' = 3.35 lb. 

sb = 17.2 X sin 33.75' = 9.57 lb. 

SC = 17.2 x sin 56.25' = 14.31 lb. 

Sd = 17.2 x sin 78.75' = 17.00 lb. 

Next, the vertical forces exerted by the longitudi- 
nals on the ring are computed by formula (13). Table I 
gives all the data and fa self explanatory. 

In a similar manner, the horizontal forces acting on 
the ring are obtained by using formula (14). The factors 
(tan 8,, - tan a,,) can be obtained from the factors 
(tan aV2 - tan ?jVl) by inspection in the case of a circu- 
lar sing. Table I1 gives the details of calculating the 
horizontal forces. Figure 14 shows the two systems of 
forces graphically. 
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Stringer 

1 

2 

3 

4 
. 

5 
I) 

TABLE I 

CQ1culation of Vertical Loads an Ring 

MY 
(L) -r F 

!lb./sq.in.)(lb.) 
(4 

20.0 3,670 903 

18.48 3,390 835 

14.14 2,590 637 

7.65 1,404 345 

0 0 0 

. 
tan Ov2 

(W 

0.0667 

.0616 

.0471 

-0255 

0 

Iian %l 

(4 
0.0476 

.04W 

l 0337 

.0182 

0 
i 

(tan s,, - tal.dvl 1 

0.0191 

.0176 

.0134 

-0073 

0 

Stringer 
I 

s A (1B.) 
I 

1 

2 

3 

4 

5 

903 

835 

637 

345 

0 

AvL 

(1%. > 

17.25 

14.70 

g.53 

2.52 

0 

&A = area of stringer + area of effective skin 
1 

= 0.120 + 0.126 = 0.246 

btan 6,,= y 
25 x 12 

Ctan 8,, = y 
35 x 12 

TABLE II 

Calculation of Horizontal Loads on Ring 

(tan 6,~ - tan 6Hl) ATL (lb,.) 

0 0 

l 0073 6.08 

.0134 8.54 

.0176 6.08 

.0191 0 
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Example 2 

Figure 15(a) shows the cross section of a wing beam 
at the first bulkhead from the root., The bulkhead spac- 
ing d is 50 in.; the bending moment M at the bulkhead 
is 1,500,OOO in.-lb. Find the forces on the bulkhead 
caused by beam curvature. 

The flange forces are 

F id .1500000 z-z = 150,000 lb. 
h 10 

The compressipe stress is 

% 
F 150000 z-z 

AC 4.2 
= 35,700 lb&q. in. 

The forces V acting on the compression side are, by 
formula (19), 

for each flange 

V 
0.6 

= 35*,700s x - x 
50‘ 

- = 885 lb. 
10' 4.32 

and for each stringer 

V = 35.,7002 x 0.5 50 
-X 
10' 

- = 738 lb. 
4.32 

This load is uniformly distributed along each stringer. 
Tho resulting maximum bending moment on each stringer is 

Vd 
M=12= 

736 x 50 
12 

= 3,080 in.-lb. 

occurring at the bulkhead. 

The tensile stress is 

150000 46,906 lb./sq:'in. 
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The forces V acting on the.'tonaPon sida are, by formula 
(19), for each flange 

V = 46,gO02 x f;$ x -5.0 = 1,160 lb. 
5.68 

. 

and for oath stringer 

V = 46,gO02 x s+ x -so = 966 lb. 
10 5.68 

This load is uniformly distributed along each stringer. 
It causes at tho bulkhoad a bending moment 

= 266X = 
12 

4,030 in.-lb. 

The total area of each stringer if 0.5 sq. in. Assuming 
the depth of the stringer to be I in., the sectinn modulus 
mill Drobably be less than 0.2 in.3; the bending stress 
mill therefore -be mere than ., 

0‘ 4m9 = 
0.2 

20,150 lb./sq. in. 

It is obvious that the bulkhead spacing of 50 in. should 
be reduced. For actual design, it should be borne in 
mind that the vertical loads on the flanges are actually 
distributed along the shear web over a distance d of 
50 in. 

Figure 15(b) shows the forces acting on the bulkhead. 

Example 3 

I Figure 16 shows the dimensions of a small sgort-plane 
fuselaTe at the cockpit. The fin-and-rudder load stresses 
the lonqerons to d = 30,000 lb./sq. in. Find the size of 
open ring required at section C,- C to prevent caving in 
of the cocksit. Disregard stresses carried in the skin. 

According to formula (19), the forces- V arising 
from bending curvature are 

v = 30,OOOe ,x; f$ x $5 =, 15,3 lb. ._,., 

. 

- I  

.  
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The maximum-bending moment in the ring will: be 

M = 15.3 x 37 + 15.3 x 7 = 673 in.-lb. 

Since prevention of caving in of the cockpit is an essen- 
tial condition for safety, the allowable stress mill be 
kept fairly low, s&y 30,000 lb./sq. in., The required set= 
tion modulus mill then..be 

z : 673 =-=--= 
30000 

0.0224 in.= 

If standard angles aro used, a ,l X 1 X & angle will be 
just sufficient. 

Example 4 

The fuselage of example 1 is subjected to a transverse 
load of P = 5,000 lb. and a torque of T = 40,000 in.-lb. 
acting simultaneously. Find the maximum effects caused by 
diagonal tension oiT the ring. 

Obviously the maximum effects will occur where the 
shear stress reaches its maximum, in the panels adjacent 
to the neutral axis. 

The load being higher than fn Example 1, the sheet 
mill no longer be fully-effective in carrying normal 
stresses, so that Q and I change. The ratio I/a: 
does not change, however, if the same simplifying assump- 
tions are made on the distribution of the material. Under 
the assumption used for Example 1, 

I 'IT R3 te ?7R 
.= 

-- 
2 Re t, sin 6 

= ---I- 
2 sin 9 

05 for the neutral axis, 

I TR 
a.=2 

= 31.42 

The nomi'nal shear stress in panel 4-5 is therefore 

7 SQ ‘5000 -=- 
= 2t1 

= 
2 x.0.016 x 31.42 

4,970 lb./sq. in. 
. . : . 
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The nominal shear stress due to the torque is 

. 
7 

T = --- = ----- 40000 = 995 in. 
2At 2 X 1256..6 X 0.016 

lb./sq. 

The total nominal shear stress .io..therefore 

7 = 4,970 + 995 = 5,965. Ib./sq. in. 

To find the angle of foI'ds a, calculate 

From figure 10, a = 26.4O 

The critical shear stress is . 

To = 1,079 lb./sq. in. (See Example 1.) 

This value is the critical stress that may be expect- 
ed as average for a number of panels. For any given panel, 
it may be lower, and the designer may wish to add some fac- 
tor of sa.fety beyond.that already provided in the design 
requirements. For‘the present example, the computed value 
of To will be used. The portion of the total shear 
stress carried as diagonal tensian is, by formula (281, 

n 
'DT 

Estimating n = 2, 

'DT = 6,965 x 0.81ga = 4,000 lb./sq.in. 

The compressive force on the ring is then, by formula (221, 

VU = 4,000 x 0.016 x 12 x 0.496 = 381 lb. 

and the stress is : 
381 --= 

au - 0,100 3,810 lb./sq. in. 
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The ratio : .. ,: :,, . I .* , 

“u 
f 

3810 = - = 0.64 T- 5965 ,. 0, .I " . 
: L 0’ 

.’ 
. ..-.’ ., ,. . . . . . . , > .’ 

girhg . ., .’ 

n = 3 -CO.64 = 2.36 :* 

which gives, in seccnd'apprcximatiion, 

'DT 'i' 5:965 x 0.819a'i9 ='3,725'1b./sq. in. 

giving " * " . 
, 

?J = 3,560 lb./sq. in., n= 2.40 

'DT = 5,965 x 0.819a'40 = 3,690 lb./aq. in. 

which may be taken a8 the final value. 
force in the ring becomes 

The compressive 

vu = 3,690.-x 0.016 x 12 x 0.496 = 351 lb. 

and the stress 
.' . ; ' 

au = 351 -- - = 
0.100 

3,510 lb./sq. in. 
s . 

In Example 1, the skin was assumed to be riveted to the 
rings. , Under this condition,. there will be no bendfng 
moments in the ring due to diagonal tension except ecc'en- 
tricity moments. For the sake of illustration, however, 
the bending moments that would exist if the skin did not 
touch the rings will be computed. 
(231, the&e moments would be 

According to formula 

Id = vu ;~ = 351 x 7.85" --- = 96.1 &.-lb. ,f" 
12 x 20 .: ! 

which is somewhat conservative~because~ h and R mere 
measured on the skin contour, lacking detail data. 

. , 
Assumi.ng the ring tc be 1 %nti.deep;the section modu- 

lus Z would be less 'than 0.05, since A G 0,100. ,There- 
fore the bending stress 
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aB > 1,802 lb./sq. in. 

Before the eccentrtcfty moments actPng at longitudinal 4 
can be calculated, the diagonal-tension load in panel 3-4 
must be calculated. The ratio 

-r= -----nR --- = - 3lc.42 = 33.82 
Q 2 sin 56.25' 1 X 0.831 

Therefore the shear stress duo to the transverse load 

7 = -me-- 5000 --- = 
2 X 0.016 x 37.82 

4,130 lb./sq. in. 

and the total shear stress 

7 = 4,130 + 995 = 5,125 lb./sq. in. 

Then 

h i- 
RJJ = 17.33 a= 25.7' 

The part of the shear stress carried by diagonal tension is 

> 
a.40 

= 2,910 lb./sq, in. 

where n was taken from the last step'of the calculation 
'for panel 4-5 as a first approximation. This computation 

gives 

I vu = 2,910 x 0;016 x I.2 x 0,481 = 269 lb. 

Assuming the eccentricity betveen skin and ring to be 0.5 
. In., the eccentricity moment acting on longitudinal 4 will 
be, by formula (25), 

M = 0.5 (351 -. 269) = 41 in.-lb. 

In order to evaluate completely .the ring stresses at 
longitudinal 5, it tvould be necessary to calculate also 
the eccentricity moments at longitudinals 2 and'3 and to 
add their effect at longitudinal 5 by using formula (26a).. 
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.- Plate girder with parallel flan+&\! 

Figure 2.- Free-body sketch of plate girder with curved flanges. 
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(a) 
v 
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Figure 3.- Free-body sketch of plate girder with kinked flanges. 
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Fig. 4 
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Figure 5.- Forces on fuselage ring. 
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Figure 8.- Ring under raZia1 load. 
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Figure lO.- Angle of folds in curved diagonal-temion fields. 
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Each stringer A = 0.120 sq. in. 
Ring A = 0.100 sq. in. I 

12 x 12 =14+" . . . . . . . . 

Figure 11. 
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Figure 12, 

Fig. 12 
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Figure 14. 
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