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NATIONAL ADVISORY COMMITTEE FOR AFRONAUTICS

TECHENICAL NOTE NO. 855 ' ’ ST .

A METHOD FOR DETERMINING THE CAMBER AND TWIST OF A
SURFACE TO SUPPORT A GIVEN DISTRIBUTION OF LIFT

By Doris Cohen
SUMMARY T e -

4 graphical method is described for finding the shape
(camber and twist) of an airfoil having an arbitrary dis-
tribution of 1ift. The method consists in replacing the
1ifting surface and ites wake with an equivalent arrangement
of vortices and in finding the associated vertical velociw
ties.

By a divislion of the vortex pattern into circular
strips concentric sbout the downwash point instead of Inté
the usual rectangular strips, the 1lifting surface is re-
duced for each downwash point to an equivalent loaded line
for which the induced velocity is readily computed. The
ratio of the vertical velocity to the stream velocity ie
the slope of the surface in the fres-stream direction.

As an illustration. the shape of the wing consistent
with the pressure distribution derived from the two- o
dimensional theories is found for two wings? a straight
elliptical wing and one wlth 20° sweepback.

Application of the method te solve %the reverse'prob-
lem —~ finding the 1lift distribution over a givan surface —"

"1s briefly discussed.

: INTRODUCTION B

Bacause of the effect that the pressure gradients e
over the ‘surface of a wing have on the drag,-it would be L
of considerable advantage to be able to specify the can-
ber and the twist of a wing that would produce a desired LT
distribution of 1ift. ‘Present methods of alrfoil design ~ e
depend on twordimensional-flow theories, which treat the -
spanwise and chordwise components of the flow independsntly.

e e e
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Although & theorotical troatment of three-dimenslional flow
1s givon by Prandtl (roference 1) and calculations havo
boen made for speclal cases (referoncos 2 and 3), no prac-
tical procedurec for the arbitrary lifting surface 1ls indi-
cated.

In the present paper, a mothod 1s described wheredy
the camber and the twist of a surface of ardlirary plan
form may be determined so as to support a specified dis-
tribution of 1ift, TFor thilis method, the lifting surface
and 1its wake are replaced by a distribution of vortices in
a plane. The vertical velocity induced at any point on
the surface by the vortex system defines the slope of the
surface at that point. Thus, the problem beoomes the de-
termination of the induced velocities. L& method 1s pre-
sented for determining these velocities which, by employ-
ing chiefly graphionl means, eliminates the difficult inte-
grations that have limited previous work.

The substitution of a plane vortex sheet for the 1ift-
ing surface is analogous to the standard procedure of the
two-dimensional thin wing-section theory (see, for example,
reference 4, p. 87), in which the flow about a thin, cam-
bered section is approximated by an arrangement of vortices
along the chord line, Inasmuch as the induced normal velocc-
ities are assumed to be sudbstgntially the same at the chord
line and at the alrfoil, the ratio of these veloclitles to
the free-stream velocity gives the slope of the camber line.
In three-dimonsional flow a reference plane is assumed, 6o
situated that the airfoil may bse considered to be a slight
devigtion from it. Upon this plane the plan form and the
pressure distribution of the surface are projected. A4s in
two-dimensional treatments, the slope is calculated in the
free-stream direction,

The substitution of a vortex sheet for a 1lifting sur-
face is dimcussed at some length by von K4rmén (references
5, p. 15). In the application of the method, however, the
vortices are generally assumed to have a rectlllnear dils-
tribution. EBven with this limitation, the ovaluation of
the integrals inveolved in finding the induced veloclties
presents considerable diffieulty. (Sec eh. IV, sec. 15,
of reference B, where the formulas are doveloped for =a
rectangular wing.) The integration is greatly simpliflod
by the introduction of polar coordinates so chosen that _
the elemonts of integration are circular stripe concontric
about the point at which the downwash 1s to bo found. Ap-
plication of this mothod is not restricted to any particu-
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lar arrangement of vortices or to any specific form of the
surface. R

Although the procedure described is for the detormina-
tion of the surface that will fit & required pressure dis-
tribution, it may slsoc be adapted to effect the reverse
analysis, that 1s, to find the pressure distribution over
an arbltrary surface. When the surfeces that fit several
assumed pressure dlstributlons have been found, the re-
quired surface can be built up by a linear combination of
these solutions. If a reasonably close distribution can
be assumed as & first approximabtion, finding the surface
to fit the assumed distribution wlll indicate the manner
in which that distribution must be corrected to fit the
glven surface.

DETERMINATION OF THE VORTEX PATTERN

FROM THE PRESSURE DISTRIBUTION

The vortex pattern 1s obtained by integrating bthe
chordwise pressure distribution back from the leadlang edge
at several statlons elong the span, The circulation of
vortex strength I' will be shown %to be proportional to
this integral; the lines connecting the points where thé
values of the integral are equal therefore define the vor-
tex lines. '

In figure 1, a distribution of 1ift 1s arbiirarily
specified for a tapered wing in straight flight. The cor-
responding vortex lines are drawn on the plan form of the
wing and in the wake in figure 2 to show a typlcal vortex

pattern, . N

The demonstration of the relation between the pres-
sure diestribution aAnd the vortex pattern is given in the
following paragraphs.

In the replacement of a lifting surface by a vorﬁe£"
sheet, the assumption is made that the pressure increments

due to the presence of the airfoil in the stream are equal

and opposite on the upper and lower surfaces, as would be
true 1n the case of a thin plate at a small angle of at-
tack. The substlitution is still admissible in ths calcu-
~lation of 1lift when the thickness.ls not negligible, be-
cause the difference between the velocities on the upper
and lower surfaces at any position and not the magnitude
of each increment determines the 1lift at that polint. '
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Thus, let Alu and AY; vrepresent for any polnt the

local velocity increments on the upper and the lower sur-
faces due to the plate or to the vortices that are equiva- -
lent to it; let v, and uy be the magnitude of thelr

.
components in the direction of the free-stream veloclty Y
let v, and vy  be the components normal to Y in the
plans of the wing; and let w,; and w; Dbe the compononts ’
normal %o the wing. Then, the pressure on the surfacos
would bdbe _ . : S L. -
1 2 -
Pu = —é- p , 1 + AI’Q
2 - -]
= % P [(V + U)o vy oWy ]
= % p (V2 4 oVa, + uy,® + vy® + w®)
= -121- p (Va + 2Vuu) i
noglecting second-crder effects; and, simlilarly, .
3
P =-32-p(v + 2Vuy) .
The resulting 1ift per unit area is then the difference 1in i
pressure, or ’ ’ ’ ’
bp = -15 p2V (uu - u;) (1)
The derivation of the equivalent vortex pattern fol-
lows directly from eguation ?l). If dg' represents the
element of circulation around a small length ds, paral-
lel to Y, over which the velocities wu,; and wuy may
be considered constant, the following relation holds:
dgl' = (uy - uy) ds (2)
from which equation (1) may be rewritten

as
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Thus, the 1ift at every point is'pfoportionéiﬁ%o_f%% ,' or
the cross-stream component of the vorticity. Consider now
a narrow strip of varying width Just behind the leading

edge of the vortex sheet, such that [ Ap ds is constant

along the sirip. Such a strip would represent a vortex
element of strength [ Ap ds. A sécond vortex element
could be defined in the same way to lie Jjust behind the
first. From equation (3), however,

. ) _
FffAPdS—I’ - (4

Equation (4) defines the function T for any point on
the 1lifting surface as the total circulation ahead of the
point.* Thus, the boundaries of the vortex element are
lines of equal TI'.

It the vortex slements are reduced in size and in-
creased in number to form a continuous vortex sheét, their
Pattern is indicated, as in figure 1, by the contour lines
of the functlion I'. In order to satisfy the Kutta condi-
tion that there be no pressure difference across the trail-
ing edge, these lines must leave the wing parallel to %the
stream veloclty, as shown by eguation (3). They then fol-
low the streamlines down the wake. The drawing of these
contour lines from the integral of the pressure distridu-
tion is the first step of the procedure for finding the
camber and the twist of the 1ifting surface. _ -

DETERMINATION OF THE INDUCED VERTICAL VELOCITIES

The induced vertical velocity at any point of the
Plane ls obtained by intograting the Biot-Savart equation

*The function I is numorically equal to the diffesrcnce
in velocity potentlal botween the surfaces, for, at any

point, u, = 6¢u/as and uy = 3f;/3s, where @y and f

faces of the airfoil, respectively. From equabion (2),
ar _ ap, %, -

ds s a8 ) s

or
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over the entire vortex pattern Jjust desecribed. The result-
ing double integration is reduced to a single integral dy

a relatively slmple graphical procedure 1f a system of
polar coordinates having its origin at the point is em-

rloyed.

Let it be required to find the downwash w at a polnt
P of the vortex pattern just described. OConsider a small
sector of the plane included between two radil from P,
the angle between the radil being a4y (fig. 3)}). At any
distance r from P, +the radii will cut off a small
length Ad! of & certain vortex element. If the width of
the element 1n the radial direction is dr, the strength

of the vortex element is -~ %% dr. Then, by Biot-Savart's

ruls, the downwash at P due to the small length of wvor-
tex will be

aw = - 4L-4%-§£ dr di sin B (6)

47 r° Or

where B 1is the angle between the vortex element and the
radiuvs. The length dl ein B 18 the projection of di
on the circumference of the circle of radius r around P,

so that
dl 8in B = TadVy

and
1 or

4nr or dr 4y . €6)

dw = -

The total downwash at P would be obgained by integrafing
(6) over 0 S r—sow and through.360 of V. Thus,

-1 ar ( )'
w o= ’ ) . 37 ay dar 7

In order to evaluate the double integral of equatlion
(?), the relation (Liebniz's rule)

2717 317

ol a
Q/n 37 4V = .37 L/p T ay (8)
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is used to reduce the first integration to a graphical
procsdure. -

The first step in evaluating w 1is %o draw on the
vortex pattern circles of various radii about P. Around
any one circle (sce fig. 4) tho fumotion I' will take on
valuos indicated by the intorscctions of ths circle with
the conbtour lines of I'. If those values of I' are plot-
tcd against the angle V¥ ~ measured, let us say, from
the free—~streanm direction -~ graphlcal integration will

2T
give % I' a¢y for each eircle. It is somowhat more con-

venient to plot I' against WY/2rm. Then the integral will
be the average value of I' around the circle, deslignated

in the usual way by
f 5o v _(9)

o}

?h§n I' is a function of r. (See fig. 5.) TFrom equation
8), . ‘

27
ar ar T
L/P " vy = on i (10)
_ o - : .
so that :  ®
"1 ab S
w o= -=' —2_1’- ar dr . _(ll)‘
o

For the evaluation of equation (11}, first plot T
sgainst v, as in figure 5. The curve will approach an
asymptote, which is readily found from the expressior for
the load curve acroes the wake. Thus, when r is large,

ay = %g and equation (9) reduces to

T - —i—f I'(y) 4y _ (12)
~-b/f2 . R

where b/2 is the semlspan of the wing., If the area un-
der the -load curve across the wakée 1s A, then for very
large values of r ' ’

T = & ' (13)
21T .
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The plot of I'(r) should be carried out to a value of r
such that the curve approaches this asympbtote within the
accuracy of the work,

The load curve of figure 5 1s a typical one. The fol-
lowlng method has been found particularly sulted to the
detsrmination of the downwash at the origin of such a
curve, The first section of the curve (designated by I},
sbarting with zero slope, 31s approximated up to the inflec-
tion point, or to a point =y somewhat shead of 1t, by
an oxpression of the form I = a, - agr> - a,r%. Addition-
al terms might be uged but are generally not necessary.

The downwash due to a curve of the general form
T =8y -~ apr?, (n > 1), at r = 0 is given by

- %& E_%—T (an‘l - rAn-1>’ where r; and rg are the

end values of 7T for the interval over which the curve ex-
tends. The downwash contributed by the first sectlon of

the load I = a, - a,r° - a,r* 1is therefore

i

w

w(I) =-% <aagro + % a‘r°3> (14)

The part of the curve immediately followlng =r = rg4
has a eritical effect on the value of the downwash, at the
same time being usually too irregular to be approximated
for any distance by s simple algebraic expresesion. It 1s
therefore advisable to proceed as in numerical integration,
dividing the curve into a finite number of small sections
and considering each sectlion of the curve to have a simple
mathematical expression. Because the sffectiveness of the
varigtion of load depends on ite closeness to the downwash
point, the intervals are taken in geometric rather than
arithmetic progression., Thus, the absciesas are .r,, kry,
k®ry, . . . ®tc., where the ratioc k is a number, usual-
ly between 1 and 2, determined by the size of the inter-
vals required for accurate representation of the curve
immediately following ro. The usual procedure now would
be to assume the curve to be a straight line over each
small interval but when the curvature is largely in one
direction, as it is in these curves, this assumption in-
troduces a small but cumulative error, which may amount
to 10 percent or more in the total. The following method,
which fits the curve with a succession of parabolas, 1is
found to give very good accuracy with no lncrease 1in com-
putation. The method is best-presented in tabular form:
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10
In the following table are given the constants K,, X,,
and ET%—ET for several convenlent values of k, Since

the choice of k

is not ecritical,

should serve without interpolation.

the valuss included

1

K Ko K2 k(k - 1)
1.02 0.01000 0.01000 49,02
1,05 .02582 .02420 19.04
1,07 .0366% .03340 13 .35
1.10 .05325 .04690 9,091
1,15 .08222 .06827 5.797
1.20 .1127 .08840 4,167
1,25 L1446 .1074 3.200
1.30 .1780 .1255 2.564
1.50 .3246 .1891 1.333

The value of the ratio
smgll incroements of r

larger.
downwash w(II)
cnlculated. Then,

starting point and a larger valus of

same way the downwash

k

that will give sufficlently

where the slope is large will prob-

w{III)

Tow

ably be found to be emaller than necessary after the ourve
has become more regular and the distance from the origin
The computations may be interrupted here and the
contributed by the second section may be
using the last abscissa

k,

a8 & new

compute in the
due $o the remasinder of the
curve to a point wheres the difference between the curve
and its asymptote 1s negligibdle.

For the portion of the curve extending to infinity
(section IV of fig., 5), thoe previously determined ‘asymp-

tote 1s used and the downwash found anslytically.
from a large valuse

from equation (10},

(13},

R

w(

or r

and if dl'/éar

I7) =

out to infinity,

o -

ar

1 /1 ar 5
2,/ r' dr *

R

A

Bsz

Thus,

is found from equation

(15)
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The downwash at P . 1§ then the sum ..
w(l) + W(II) + w(ITII) + w(IV).

It is interesting to note that the three-~dimensional
problem has been reduced %o oans of two-dimensional : flow,
as may be seen by replacing I' with its original expres-
sion (9) in equation (11), which may then be written

o [an |
w(o) =b/n 4m (r - 0) - (18)

o

Bquation (16) is recognized as the ordinary formula for
the induced normal velocity with the load expressed in the
form of a definite integral and suggests that the flrst
integration (except that the factor 1/2m was introduced)
was equivalent to concentrating all the vorticity eround
each circle at a single point at the distance r along

a line of infinite extonsion from P, The loaded line of
figure 5 may be considered, except for the factor  1/2m,
to be the equivalent of tue originsl lifting surface.

EXAMPLE

The method will be applied to check the slliptical
distribution of 11ft conventionally assumed for an uncam-
bered elliptical wing. This distribution, arrived at by
combining the two-dimensional theories, doss not take ac-
count of sweepback or stagger of the 1lifting elemements.

In the apnlication of the present method, two cases of ol~
liptical chord distribution wlll dbe investigatod ono with
a straight 50-percent-chord line, and & 8ne with the 50~
percent-chord line swept back about 30, the sections re-
maining parallel to the plane of syiictry. The calcula-
tion of the vertical velocitles over the swept-back wing
will be carricd out herein in some detail in order $o 11-
lustrate the mothod. The downwash will be found at sev-
eral points along the threc-quarter-ckhord line. The down-
wash at the three~quarter-chord point of a section is of
particular intcerest because, from the thin wing section
theory (reference 6, p. 82), the effective angle of attack
of the section is given by the slope of the camber line _
in the nelghborhoad of that point, if the camber 1s approxi-
mately circular. T
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For the chordwise lift distridbution, the two-dimoneion-
al flow around a flat plate as givon by the thin wing sec-
tlon thoeory is assumed. This 1ift distribution and ths
circulation function obtalned by integrating it arc shown
in figure 6. In this oase the mathematlical expression for
the pressure difference 1s known and I' ¢an e found ana-
lytically. - For convenience, the univs have been so choson
that the maximum valus of I is 1,0. If, further, all
longths arc expressed in terms of the somispan (measured
poerpendlcular to the plane of symmetry) as the unit of °
length, the total circulation (I’ at tho trailing edgo) is

simply + 1 - y®, whore y 1s the distance spanwiso from

the center line. The rosulting contour lines of I' ap-
poar, for the swept-back wing, as in figure 7. The pointe
At which the downwash will Be found are also shown.

In order to find the downwash at point 3B, clrclos
spaced as shown in filgure 8 are Arawn about thils point
and the values of ' I' indicated by the contour linos inter-
coptod by each circle are plotted against the angular lo-
cation of the points of intersection. Of the curves
for TI'(V¥) corrosponding to the circles of figurc 8, fivao
typlcal ones are shown in figuro 9. The curves deslgnatod
for r = 0,067 and 1r = 0.20 are characteristic of cir-
cles clase to the downwash point; the curve for r = 0.216
includes a point (¥/27 = 0.883) at which the circle is
tangent to the leading edgc of the wing; tho circle of
radius 0,733 lies partly ahead of the wing where I' = O,
pPartly in the wing, and pasees through the wake; the clr-
cle of radius 1.60 traverses the vortex pattorn Across
the wake only,

The resulbts of integrating these curves are plotted
against r 1in £fi ure 10. Since the circulgﬁion across
the wake 1s « 1 - y2, the integral A s w/2 and the
asymptote for the curve of I'(r) 1s, from equation (13).

= 1/4r, The downwash 1s now calculated as follows:

It 18 found that the poelynomial

T = 0.8335 - 2.70r® - 6.57r*

fits the curve of I through r = 0.20. Then the down-
wash contributed by the section from O to 0.2 is, from

egquation (14)
w(I) = 0,575
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Bection II, with Xk small, is taken to include both
inflection points (there is a third inflection point at
1.78, but its effect is negligible). Table I shows the
calculations for this section and for the succeedlng oné.
Section III oxtends to »r = 2,433, whers ‘I’ = 0,108 and
1/4r = 0,103, The downwash induced by the asymgtoto from

r ='2.,433 out to infinity is only 1/32(2.433)° = 0,011,

about 1 poercent of the total due to the curve of 'f} and
the S~percent error in the ordlinate may therefore be nog-
lected. The total downwash at B ig then ’

-

w(I) + w(II) + w(III) + w(IV) = 1.156

The downwash at points A, C, and D is_found iIn the
same way. Figure 11 shows the curves of I' for these
points. The asymptote I' = 1/4r 18, of course, comimén to
all the curves for this wing. _ T T

The downwash 1s plotted against the spanwisc location
of the points in figure 12, The guantities TI'p,x and
b/2, heretofore assumed to be unity, are included to make
the result nondimensional. This curve of the downwash or
vertlical velocity at the three-quarter-chord line, since the
glope of the surface is w/V, . is a measure of the amount
of twlist the wing must have to sustaln the assumed dlstri-
bution of 1ift, If the wing were actually flat, which was
the premise in deriving the distribution from the two-
dimensional theories, w would be equal to 1.0 all over
the surface, so that the deviation of the ocurve from the
line w =1 indicates the amount by which the two-dlimen-
siongl theories are in error when applied to three-
dimensional flow. The discontinuity in vorticity at tho
center line gives rise to a discontinuity in the downwash,
which goos to infinity esverywhere along the center sec-
tion. This result indlicates that the assumed condltion,
in which the vortex lines bend to form an angle, cannot
exist in practice. The vortex lines asctually would de
rounded off and the load at the center reduced below that
of the midjoining sections.

The corresponding curve for the stralght elliptical
wing i1s shown in figure 13, In this case, the downwash
was computed also at points along the quarter-chord line.
The slope of the surface was found %o be less than the
slope at the corresponding three-~quarter-chord points.
The posltive camber thus indicated is very small at the
center but increases sharply near the tips.
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CONCLUDING REMARKS

It is expocted that the method outlined herein will
be especlally useful in investigating the nature of the
flow near the wing tip, where two-dimensional approxima-
tions no longer can be applicd. The more accurate threc-
dimensional treatments available are alsoc uneuitable for
this purposs because the caleculations fall to converge at
the tips. The method of caleculation described 1in this pa-
ver pregsents no particular difficulty in these regions.
4ds a test of the accuracy obtainable, the induced down-
vash was computed a% a point near the edge of a clrcular
plate in nonlifting potential flow and was found to check
almost exactly with the known solution.

Nevertheless, results obtalned for the tips have
quallitative rather than gquantitative value (except for low
angles of attack). The validity of the theory is actually
limlted by the existence of strong tip vortices, which nay
caugse the vortex sheet to curl up out of the plane in
which 1t 1g assumed .to lie. On the other hend, the high
concentration of vorticity assoclated with this sffect
adds appreciasbly to the drag of the wing, so that even =a
general indication of such a concentration of load at the
tips 18 of ~value. It should be possible to deslgn, dy
the use of the present method, a wing tip that would avold
this effect by providing a fairly gradual taperiang off of
the load spanwise., 4t the same time, a favorablec chord-
wise gradlent could be specifled. Thus, it appears likely
that an optimum tip for low drag could be deduced.

Langley Momorial Aeronautical Laboratory, )
National Advisory Committee for Aeronautics,
Langley Field, Va., May 16, 1942.
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TABLE I
DOWNWASE COMPUTATIONS
r r AT Alap Alansy
- Tan Tan
Section II: k& = 1,07
0.200 0.715 ~0.025 -0.125
.2l4 <690
-,033 ~-0.165
<229 .658%7
-.021 -.082
. 245 -636 ~.0L6 -.070
262 .620 *
-.014 -.0583
+280 .6086
".013 -.050
. 300 .593 .
-.011 -.033
.321 .b82
-.,013 -,043
044 .569
-.009 -,026
.368 .560 2 010 -.029
393 .550 ¢ *
Totals: -.329 -.357
w(II) = 0.320
) Sectlon III: k= 1,20 .
0.398 0.550 -0.026 ~0.086
472 524
-.027%7 -0,069
« D66 497
".044 —.078
«679 «453
"'0074 "0131
815 .379
-,062 -.076
.978 317 -
-,049 -.060
1,173 .268
-,049 -a,042
1.408 «21l9
-,066 -~ o056
1,790 .153
-,022 ~,012
3.028 .131 023 -. 013
2.433 .108 T *
TOtalB: "‘-274 -0329
w(III) = 0,250
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Figure 1l.- An arbitrary distribution of 1ift assumed for & tapered wing in . )
straight flight, from which the vortex lines of figure 2 were o
derived. ’

Figure 3.- Qontour lines of oiroculation funotion, or vortex pattern, obtained by integrating
. the pressure distribution of figure 1.
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Figure 3.- Diagram for derivation o
downwash formula: dwm= grz -8-";- dray.
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Figure 4.- Variation of I' around circle, plotted nst ¥ from intersections

of the circle with the oontour lines. ditional points at¥= o
and at ¥V = /8 are computed.
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Pigure E.~ Typical curve for F(r)}. (Curve for point P of Tigure 4). ’
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Figure €.- Chordwise pressure distribution and cirou-
lation function assumed for figure 7 from
the two-dimsnsional Ilow theory for a flat plate.
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e -—— Db/2 = 1.0 >

Figure 7.- Qontour lines of elliptically distributed load ove
A= 8.,
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the curves of f. gure 8 are identified.
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r sweptback wing and wake.
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Figs. 7,8
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rawn on vortex pattern. The circles corresponding to
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Figs. 9,10

L

ngu:e 9.~ Typloal curves for the vu-ia.tion of T around a circle. The ourves

circles identified in figure 8.
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Curve of ?(r) for point B of figure 7.
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Figure ll.- Equivalent loaded lines for points 4, O, and D of tho sweptback wing of Figure 8.
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Figure 123.- Vertical velocity w at the three-quarter chord line of the swept-
back wing with distribution of load oalculated by two-dimensional-

flow theories.
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Figure 13.- Vertical velccity w at points on straight elliptical wing,

A = 8, with distribution of load calc
dimensgional-flow theories.

ated by two-



