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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO, 1063

COMPARISON OF MEASURED AND CALCULATED

STRESSES IN RBUILT-UP BEAMS

\

By L. Ross Levin and David H. Nelson
SUMMARY

Web stresses and flange stresses were measured
in three built-up beams: one of constant-depth
with flanges of constant cross section, one linearly
tapered in depth with flanges of constant cross section,
and one linearly tapered in depth with tapered flanges.
The measured stresses were compared with the calculated
stresses obtained by the methods outlined in order to
determine the degree of accuracy that may be expected
from the stress-analysis formulas. These comparisons
indicated that the average measured stresses for all
points in the central section of the beams did not exceed
the average calculated stresses by more than 5 percent.
It was also indicated that the difference between average
measured {lange stresses and average calculated flange
stresses based on the net area and a fully effective web
did not exceed 6.1 percent.

INTRODUCTION

In an effort to improve the accuracy and consistency
of strength predictions of aircraft structures, an
increasing tendency has been evident in structural
engineering to supplement static tests with strain
readings. The advent of the electrical strain gage has
accelerated this tendency. Because the aircraft struc-
ture is quite complicated and the location of the
failure in a well-designed structure cannot be easily
determined, even a relatively large number of gages
(several hundred) may be just sufficient to place a few
gages on each spot where failure is likely to occur.
The situation is further complicated because structures
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built up from sheet are not so uniform nor so consistent
in their behavior a2s, for exeample, bsams of solid cross
section. The simple formulas for beams of solid cross
section consegquently are not applicable to built-up
structures. The sucgessful interpretation of strain
readings on alrplane structures requires, therefore,
basic information on the consistercy of the behavior of
built-up structures. This information may be obtained
by multigage tests of structural elements simple enough
to permit very comnlete coversge. The test data thus
obtained may be compared with the results obtained by
stress-analysis formulas, such as those presented in
references 1, 2, and 3%, to determine the accuracy with
which these formulas may predict the stress of built-
up structures.

The present paper gives basic data on the stresses
obtained for built-up beams and these measured stresses
are compared with those predicted by stress-analysis
formulas. This information was obtained from strain
measurements on three thin-web beams: one of constant-
depth with flanges of constant cross section, one
linearly tapered in depth with flanges cof constant
cross sechtion, and one linesarly tanered in depth wlith
flanges of which the cross section varied at the same
rate as the deoth of thée beam.

SYMBOLS
An cross-sectional area of flange (two angles) normal
to center line of beam, sqguare inches
Ap effective cross-sectional area of flanges normal
€ to center line of beam (flange area plus one
sixth of web area), square inches
B Young's modulus of elasticity, ksi

B vertical component of flange force in beam tapered
in depth, kips

G shear modulus, ksi
5 . )
s moment of inertis, inchest
Ip moment of inertia of total effective cross section

of beam about neutral axis, inches®
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55 moment of inertia of effective cross sectionLof

i flanges about neutral axis of beam, inches™

L total length of beam, inches

M bending moment, kip-inches

N ratio of area of two flanges to area of web (2A/ht)

P load on tip of beam, kips

Q moment, about neutral axis, of area between extreme
fiber and fiber a distance y from neutral axis,
inches?

S external shear force, kips

h effective depth of beam between centroids of flanges,
inchess :

(v thickness of shear web, inches

% distance from tip of beam, inches

Yy distance of given fiber from neutral axis of beam,:
inches

a taper angle, angle between center line of beam and
line defined by centroid of flange

€ tensile or compressive strain

o normal stress in flange at the angle a, ksi

o average normal stress in flange at angle a,
ksi

T shear stress in web at distance 7y, ksi

Tay average shear stress in web at any station, ksi
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DISCUSSION OF THEORIES FOR HRUILT-UP BEAMS
Web Stresses
The shear stresses in the web of a beam of constant

depth at any distance y from the neutral axis are
‘ usuelly calculated by the standard formula

._]

1
MI(/)
crldo

l,._l

The average shear stresses in the web are usually
calculated by

Formulas (1) and (2) are not applicable to beams
tapered in depth because the flanges carry some shear
force that should not be neglected. In reference 1
a method of computing sheéar stresses in beams tapered in
depth is outlined. The method is based on the equili-
brium equation

h+dh

2

—
2

M o+ Al ~
£ d = potl=eEA I a - - x
Tyt ax - yt dy Tyt dy (2

M _ Vi

This method is merely an extension of the "engineering"
method used in deriving formula (1).

The formula for shear stress at a distance y from
the neutral axis of a beam linearly tapered in depth
with flanges of constant cross section can be obtained
by integrating equation (3) as
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where S and M are positive in the directions indiczated
ol EiouTEeT b,

The formula for average shear stress in the web at
any station, derived by intvgrqt ng formula (L) from zero
to h/2 and dividing by h/2 is

s Ar
g A gi G s F e .. (5)
5 ). " 2 v 3§ g

This formula is frequently used to calculate shear
stresses. but is usually derived in a different way.

The total shear force in the web at any section 1is
usually assumed to be the total external shear at that
section minus the vertical componﬂnts of the flange
forces at the same section, and the web is assumed
capable of resisting bending. ' The vertical force in
each flange 1s then

i
' M Ttan a - RF
Lo

where Ip/Iqp 1s the ratio of the moment of inertia of

both flanges about the neutral axis of the beam to the
total moment  of inertia of the same section of the beam
about the neutral axis. If the moment of inertia of. .the
flanges about: their own centroid .is neglected, the

TI

ratio IF/IT reduces  to SR and formula (6) becomes
AF+'_6“




6 NACA TN No. 1063

F = ; (6a)

This equation is the form in which the expression for the
vertical component of the flange force occurs 1in
formula (5).

A formula for the shear stress at a distance 7y
from the neutral axis of a beam linearly tapered in
depth with flanges of which the cross section varied at
the same rate as the depth may also be derived from
equation (3). The shear stress in this type of beam is

S[ﬁ + % - 2<%>%] . 2V tan a [N 4 % L 6(%)2]

i 7 - 15 Sl s | X
ht <N "2 %t (n + §>

where N 1is. the ratio of the cross-sectional area of
both flanges, normal to the neutral axis of the beam,
to the cross-sectional area of the web at the same '
section.  The formula for the .average shear stress Tgy

is the same for all types of beams.

In reference 2 methods of calculating shear stresses
are presented that are based on the same equilibrium
equation as the methods in reference 1. The procedures,
however, are slightly different and in a particular case
one method may have some advantages over the other. The
final result will be the same with either method.

The "engineering" methods of references 1 and 2 are
applicable only to beams with small taper angles because
they do not consider compatibility of displacements
although they do ensure equilibrium. These methods
also assume that the bending stress is proportional to
the distance from the neutral axis of the beam and this
assumption is not satisfactory for large taper angles.
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A "classical"™ method of computing stresses in beams
tapered in depth 1s presented in reference %, The
engineering methods and this classical method agree for
small taper angles, and the classical method is applicable
to large as well as to small taper angles. In reference 3
are presented solutions for linearly tapered beams with a
rectangular cross section, for a thin web with concen-
trated flanges of constant cross section, and for a thin
web with concentrated flanges with the cross section
varied st the same rate as the depth of the beam. These
solutions, however, are usually much more difficult than
the engineering solutions to the problem. The solution
for a thin web with concentrated flanges of constant
cross section is very laborious for small taper angles.

Flange Stresses
The axial stresses in the flanges of a bullt-up

eam of constant depth are usually calculated by the
standard formula

O

c = =~ : (3)

The average axial stresses in the flanges (the stresses
at the flange centroid) are usually calculated by

O i i Ty o (9)

The effective flange area Ap can have a maximum value

equal to the gross area of thg'flange plus one=sixth of
the web area. ! In some cases it may be necessary to use
a smaller effective area to take into account the rivet
holes in the flange and the possible ineffectiveness of
the web in bending. '

Formulas (8) and (9) are also used to calculate the
stresses in the flanges of tapered beams; however, the
stresses obtained from these formulas will not be axial
stresses in the flanges. In order to obtain axial
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stresses, the stresses calculated by formulas (8) and (9)

should be multiplied by 3 : The formula for axial

cos“a
stresses at any distance y from the neutral axis is
then

M 1
6=t (10)

@)
00520,

and the formula for axial stress at the centroid of the
flange is

it 1

O’ —
By hAF cosaa
e

(183

where the area of the flange Ap 1s measured normal to
the center line of the beam.

TESTS

Specimens

Three stiffened built-up cantilever beams of 2L8-T
aluminum alloy were built and tested. One was a constant-
depth beam with flanges of constant cross section, one
a beam linearly tapered in deoth with flanges of constant
cross section, and one a beam linearly tapered in depth
with flanges having a cross section that varied at the
same rate as the depth of the beam. The webs were
stiffened with angles placed back-to-back on opposite
sides of the web. For simplicity of construction the web
was fastened to the outside of the legs of the flange
angles rather than to the inside. Further detalils of the
construction and the actual dimensions of the beams are
shown on figure 2.

Procedure

The root of each beam was bolted into a steel
fixture and the compnression flange was supported against
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lateral motion at the tip and at the midpoint of the span
as shown in figure 3. A tip load was applied on the
lower side of the bean by 2 hydraulic jack resting on a
platform scale, which was accurate to 0.5 percent.
Strains were measured in most of the even numbered bays
on the longitudinal center line of the beam, and also at
distances egqual toc one-quarter and three-eighths of the
effective depth on each side of the center line except
on the tapered beamr with flanges of constant cross
section where measurements were taken only at the center
line and at a distance equal to one-quarter of the
effective depth on each side of the center line. At
each point, 2-inch Tuckerman optical strain gages were
mounted in pairs on each side of the web at angles

of 159 and 1350 with the longitudinsal center line of

the beam. Tigure 3 shows a few gages mounted at li50°

on the tapered beam with tapered flanges.

Axial strains in the flanges were measured with
2-inch Tuckerman ontical strain gages mounted on the legs
of the angles attached to the weh and on the outstanding
legs of the angles. Strains were not measured on both
sides of the attached legs of the flenge angles because
the web covered one side.

The load was gpplied to each beam in three equal
increments. Tf a straight line through the points on the
load-strain plot for each gage did not pass through zero,
the curve was shifted toc pass through zeroiéhowever, 17
this shift in strain was more than 20 x 10 ~, the
measurements at this point were repeated. Any measure-
ments that did not satisfy these conditions after being
repeated and thoroughly checked were not used.

Strains measured by nairs of gages on opposite
sides of the sheet were averaged and the average strains
for Li5° and 135° were used to compute the shear stresses
at 0° and 90° by ‘

T = !'G(MS\O) = (6(1550)] ] (12)

In all calculaticns E was assumed to be 10,6 % lO5 ksi

Grd G was - ss suied (B0 e L0 102 kad
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PESULTS AND DISCUSEION

Web Stresses

The shear stress distribution over the depth of the
three beams i{s shown in figures l, 5, and 6 for a tip
load of 9 kiops on the constant-denth beam and 6 kips on
each of the tavered beams. The shear stresses at the
loads were slightly less than the calculated buckling
stresses. The differences between measured and calculated
shear stresses are shown as percent of the calculated
shear stresses in figure 7 and a sumwary of these dif-
fﬂrenceo for the central section of the beams 1s given
in table I. The calculated shear stresses T and
shown on these figures were calculatecd by formulas (l?
and (2) for the constant-depoth beam, by formulas (L)
and (5) for the tapered beam with constant-flange area,
and by formulas (5) and (7) for the tapered beam with
tavered flanges.

gentral section.- From a brisf study: of figures l,
5, and 6 it 1s aoparent that at distances greater than
one-half the root depth from either end of the beams
(bays .5 to 16) the measured shear stresses in the web
were slightly greater on the compression side of each
beam than on.the tension side. On the constant-depth
beam the individual measured shear stresses on the tension
side of the beam were freguently less- than the calculated
stresses, but the measured stresses on the compression
side were usually greater than the calculated stresses.
On the other beams the individual measured stresses were
almost always greater than the calculated shear stresses.

Table I shows that the average measured stress for
all points in. the central section of any of the three
beams did nct exceed the average of the calculated
values of Tgy by more than 5.5 percent and did not

exceed the average of the calculated values of T Dy
more than .7 percent. The individual measured stresses
varied from 5.6 percent less then T to 23.3 percent
more than T. In the central section of all three beams,
however, there were only two points where the measured
stresses exceeded T by more than 15 percent. These
points were in bay 16, about one- half the root depth
away from the root of the beam.
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Further study of figure 7 shows that the maximum

differenbe% Dctwaon the calculated T and the calcu-

lated at any point on the constant-depth bsam were

aphreci s Ye (about 7 percent] but on the tapered beam

the maxinum Aifferences betweeﬁ the calculated values

E . 1 ,8nd , Tue  wepe smaller (about L. r‘er'ent) Mear

p)
the root; where the proportions of . the Dbe were Very
nearly the sare, the calculated shear-stress variation
over tihe depth of the tapered Lkeams was much less than
that ever the depth of the constent-depth beam. 1t
would Pe - -possible, VOWQ"er, to have tapered beams o
which the provortions were such that the differences
between the calculated values of gnd N woul

i av
be much grester than in the present besams.

1 h

Koot section.- It is obvious from a study of fig-
ures li, 5, and 6 that for bay 15 in 211 beams tested,
stresses calculated by the proper equations for T
or Tgy On the basis of the assumption that the flange
force acted along the centroid were not satisfactory. ‘

The outstanding legs of the flanges were cut off

approximately 2 inches nearer the root than the center
1Ln@ of bay 106 and s steel plate was attached to one
ide of the flange angles from bay 17 to the root to
reinforce thigs gection. The bolts that attached ths
flangees to the root fixture were between the centsr
line of the flanze and the original location of the

flange centroid. 7Tt was essumed, therefore, that the
flange force acted along a line extending from the
intersection of the original flsnge centrold with the
center line of bay 1lC to the center of the rooft >tt“cb-
ment bolts. This assumntion gave a taper angle of |
instead of 7912' and 7°41! on f’o tepered beams and of
4% instead of 9° on the zonstant-depth beam, Tn bay 10
he cédlculated shear stresses wased.on this assumption
were more setisfactory than the calculated shear stresss
based on the assumpntion that the flange force acted along
the origzinal centroid of the ilange /Il;'. liy 15, 64 dnd 7).
The maximurm measured stress in bay 18 of the tapered
beams 1s about 1 to 2 percent greater than the shear
stresses calculated on the basis of a change in the taper
angle at that section, but the measured shesr stresses
in bay 18 cof the constant-depth beam fall about half way
between the two calculated curves.




12 NACA TN No. 1063

Tip section.~- If a colurn has a load applied only
at one end and a shsar web attached to it along one side,
the maximum displacement occurs at the loaded end. The
shear strain and shear stress in the web attached to it,
therefore, are highest at the loaded end of the column,
This condition is the one that occurred at the end uprights
of the beams tested for the present investigation. Fig-
ures li, 5, and 6 show that the shear stresses in bay 2
were highest at the loaeded end of the upright. The aximum
measured stress was never more than 1 percent greater
than the maximum calculated stress. The distridution of
shear stresses in the web near the loaded-end upright is
probably one cf the important factors affecting the
strength of the losded-end uprizght.

The distribution of mcaqured snd calculated axial
flange stresses for the three beams ,esLed are shown on
figures £, 9, and 10. °tra° es were calculsted by
formulas (S) and (9) for the constant -ﬂpnth heam and by
formulas (1C) and (1ll) for the tapered bears.  These
stresses were calculated for a fully effectLVO web for
both the net area snd the gross area. In order to obtain

an average velue of msasured stress at e h section, a
straight line was drawn through the test points and the
stress at the intersectlon of this line w1th the centroid
of the flange was taken as the average measured stress

in the flange. Table I gives the average difference
between the measured and calculated stresses at the
centroid and the raenge of variation between measured and
calculated stresses in the extreme fiber for all points
in the central section of each oeam.

O

.I(\ cy

Central section.- At a few sections in the constant-
depth beam the measured axial flange stresses were nearly
constant over the depth of the flange, but at other
sections of this beam and in the tapered beams the
stressses were not constant over the depth of the flange.
Figure 10 shows that the measured stresses in the tapered
beam with tapered flanges averaged less than the calcu-
lated stresses for -the net area and a fully effective
web, but the average weasured stresses in the othsr
beams (figs. 8 and 9) appear to have been slightly greater
than the calculated stressss for the net area and a fully
effective web., The aversgge difference between measured
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flenge stresses and calculated flange stresses did not
exceed 6.1 percent when the ”'lbllctlonu were based on
the net area end a fully effective web (table I). he
measured stresses in the extreme fiber varied from

8.3 percent less than the calculated extreme fiber
stresses to 8.8 oercent mor» than the calculated extreme
fiber stresses. ‘

Figures 8, 9, and 10 show also the average calcu-
lated stresses based on the gross area and a fully
effective web. TFor all spct ons on thé constant-depth
beam and the tapered beem with flanges of constant
cross section, the calculated stresses based on the
gross area were about ‘5 percent less than those based
on the net area. In the tapered bheam with tapered
flanges the stresses based on the gross area were
from 5 to 9 percent less than those based on the net
area. On the compression flange of the constant-depth
beam, calculated stresses based on the egssumption that
the web was effestive only on the tension side of the
beam would have been dbout 10 percent greater than the
calculated stresses based on the assumption that the web
was fully effective; on the tension flange the diffeérence
would have been only 1 percent.

Root and tin sections.- The measured flange stresses
in bays 2 and !y of the tapered beams varied from less
than one-half the calculated flange stresses to more
then two times the calculated flah@e stresses (figs. 9
and 10)., The measured stress at one point in bay 5 of
the constant-depth beam was about 25 percent greater
than the calculated stress. These large variations,
however, are of little practical 1mportance because
the stresses at these sections were small as compared
with those at other.points in the beam. In bay 1l¢ of
both tapered beams the variation of measured stresses
across the depth of the flange was much greater than
in the central section of the beam. The measured
extreme-fiber stresses were from 15 to 30 percent
greater than the calculated stresses. It 1s very
difficult to calculate flange stresses near the root
of any beam because these stresses depend to a large
extent upon the details of the connections.
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CONCLUSIONS

Three thin-web built-up beams, one of constant depth
with flanges of constant cross section, one with slight
linear taper in depth with flenges of constant cross
section, and one with slight linear taver in depth with
flanges of which the cross section varied at the same
rate as the deoth of the beam were tested at such losads
that the web shear stresses were slightly less than the
calculated buckling stresses. Comparisons of measured
shear stresses with calculated shear stresses indicated
that the average measured shear stresses for all points
in the central section of the beam did not exceed the
average calculated shear stresses by more than about
5 percent. The individual measured shear stresses varied
from about 6 vercent less than the calculated shear
stresses to about 23 percent more than the calculated
shear stresses, but there were only two points in all
three beams where the measured stresses exceeded the
calculated stresses by more than 15 percent. These
points were at a station about one-half the root depth
away from the root of the beam.

Comparison of measured flange stresses with calcu-
lated flange stresses based on the net area and a fully
effective web showed that the difference between average
measured stress and average calculated stress in the
central section of any of the beams did not exceed
6.1 percent. The individual measured stresses in the
extreme fiber varied from about & percent less than
calculated t~ about 9 vercent more than calculated.

Langley Memorial Aercnautical Laborsatory
National Advisory Committee for Aeronautics
Langley Field, Va., January 21, 1946
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TABLE T

COMPARISON OF MEASURED WITH CALCULATED STRESSES IN THE

‘BAL

—1

CEX

SECTION OF

THE

{%ercentages are obtained by the formula

= AN
BEANS

B

Calculated
Difference from T,y Difference from T Differe?2§ e =0
Specimen i TR YR e
Average |Variation| Average | Variation Aéziziglgt g;zigiéo?iggr
( - Ly RGN . - = .
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be am 2+3 L;s.% 5.6 233 2 L7-5
T d bea [~3.8 L3 1
apere gam, = -3¢0 o 18 - .g
constant Ap e 1139 b7 {;5.5 b e
Tapered beam, ~ .
3 l- "05 '7-9
tapered .9 { .7 { , -6.1
flange Zl.é 197 B

NATTONAT, ADVISORY
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‘aCalculated stresses based on the net area and & fully effective web.
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Figure 1 .- Positive direction of forces and moments
on +opered beams.
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Figure 2.- Test specimens.
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I% steel reinforcer?
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2498 | || 1 12 46
|
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Figure 4.- Measured and cdlculated shear-stress
distribution In the constant-depth beam.
P=3kips.
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Figure 5 .- Measured and cadlculated shear-stress distribution in
the tapered beam with flanges of constant cross

section. P=6 Kips.
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Figure 6.- Measured and calculated shear-stress distribution
in the tapered beam with topered® flanges. P-6Gkips.
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Figur‘e 7- Differences between measured and calculated shear stresses.
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Figure 9.- Distribution of measured and calculated axial flange stress in The
tapered beam with flanges of constant cross section. P=6kips.
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Figure 10.- Distribution of measured and calculated axial flange stress in the
Tapered beam with tapered flanges. P=6 kips.
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