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NATIO TAL ADVISORY Cm~MITTEE :?OR AERONAUTICS 

TECHNICAL NOTE NO . 1063 

cm,~PAnISON OF MEASURED AN ChLCULATED 

STRESSES IN BUILT- UP B:r;;nl\'~ S 

By L . Ross L6vin and David 11 . Nelson 

SlJlY~MAHY 

~eb stresses and flunge ~tresses were measured 
in three built - up beems : one of constant - depth 
~ith flan~e s of constant cross section, one l~nearly 
tapered .in depth with flanges)f cO~lstant cross section, 
and one linearly tapered in depth with tapered flanges . 
The measured stresses were cO~1Pared vi tll the culculL:.ted 
streoses obtained by the m6t~lorls outl lned in order to 
deterrr,ine the degree of accuracy thflt may be expected 
fro:n the stress-analysis formulas . 'r.he se comparisons 
incli ca te d that the '1 ver8.ge measured st r e" so s for a ll 
points in the central section of the bewns did not exceed 
the averaee calculateG stresses by more than 5 percent. 
Jt was also indicated that the difference between average 
mea~ured rlan~e stresse3 Lnd average calcula ted flange 
stresses b~sed on the net urea and a fully effective web 
did not exceed G.l percent . 

INTRODUCTION 

In an effort to improve the accuracy and consistency 
of strength predictions of aircraft struc~ures, ~n 
increasing tendency has been evident in structural 
engineerins to supplement static t e sts with str in 
readings. 'rhe advent of the electrical strain gage has 
accelerated this tendency . Because tie aircraft struc ­
ture is quite corr,plicated end the l ocation of the 
failure in a well - designed structure cannot be eusily 
determined, even 8. reLlti v61y lu.rge number of bages 
(several hundred) may be just sufficient to place a few 
gages on obch spot wlere failure is likely to occur . 
'1'he situat·ion is further comnlicated because structur es 
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Quilt t'O fron) shest are not so 'lnifClrm nor so ~onsistent 
in t'1eir behavior £'s, for exemole , beaT!1s of Dolld cross 
flection . ~'be Sil:1 Ie f'or:r:ulas for be 3lTIs of solid crClSS 
sect~ on conse ~ uently dre no applicable to bullt -~p 
structure s . The suc '~orsful ince:!:'pret s. tion of strei n 
re ad~nf s o~ air0lane structures requires , therefore , 
bas i c i ni'Clrm& ti on on the 00119 i s terc y of the beha'li or of 
built - 'L:.p structures . 'Ihis info::Tmc ti ':m may be obtained 
by ·mult:1.gage tests of structural ele'r..er!ts sir'!ple enough 
to ,)crmit very com"?le~e cover·&se . The test dat a thus 
obtain ed may be compared with the res u lts obtained by 
stress - analysis for~ul&s , such ,RB those presented in 
references 1, 2 , and 3 , to ~ctermine t:te accuracy with 
hich these formulas ~ay D~edict the str83S of built ­

up structures . 

The nresent paper gives basic data on the stresses 
obtalned for '!J1til t- · ~CJ be91ns and these measured stresses 
are con~ared with t'1ose ?redicted by stress - analysis 
formulas . ~his J. nfoY":';18tlon was obtai ned from strain 
JTIeasure(rent s on tt.ree thi.n - 1,'eb bean's: ona of cons tant ­
depth with flang es of constant crass section, one 
ljna~rly tarered in depth w i t~ flan~es of constant 
cross f',ectlon , an 0 one lin'3arly t 81Jered in depth wi th 
flano es of whi.:;h the cross sect ion varied at the SB:le 
r a te 3 s t ~le ee 'o th of the be a:n . 

cross - sectiona l area of flan;e (two angles) normal 
to csnter I i ne of bean , sq l.lare inches 

effective cro s s - secti.onal area of fl ang es normal 
to center line of bea~ (fla~ge a~ea plus one 
sixth of web area) , squar inches 

Young ' s modulus of elns ti ci ty , ks i 

F vertical component of flan€:e f n rce in beam ta'Jered 
in depth, kips 

G shear modulus , ks i 

T rr o~ent of inertia , inches4 
moment of inertia of total effective pross section 

of beam about neutral axis , inchesL' 
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L 

N 

p 

s 

h 

moment of inertia o f e ffe:ctive cross section
L 

of 
f langes about n eutr a l axis of beam, inches !. 

t o t a l leng th of beam , inches 

bending moment, kip - inch'es 

ratio of are a o f two fl anges to area of web (2AP/ht) 

l oad on ti p o f beam , kip s 

moment, about neutral axis , of area between extreme 
fiter and fiber a distance y from neutral axis, 
inches 3 

external shear force , kips 

effective depth of beam betwee n centroids of fl a n ges , 
inches 

t thickness of shear web, inches 

x dis tance from ti p of beam, inches 

y distance of g iven fiber from neutral axis of beam , ' 
inches 

a t ape r ang le, ang le between cen t e r l ine of beam and 
line defi~ed by c entroid of fl a nge 

€ tensile o r comp ressive strain 

a norma l stres s in flan ge a t the angle a, ksi 

average normal stress in f lange at angle a, 
ksi 

T shear stress in web at distance y , ksi 

Tav average shear stress in we b at any station, ksi 
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DISC1JSSION Of THEORIES FO_ ;:PILT-· TP BEAMS 

'fe b S tres ses 

The shear stresse3 in the web of a bea~ of constant 
depth at anv distance y from the neutral axis are 
usu~lly calculated by the standard for~ula 

T = S ~ 
It 

The average shear stresses in the web are usually 
calculated by 

S 
Tav = ht 

( 1 ) 

(2 ) 

For~ul as (1 ) and (2 ) are not app l icable to beams 
t ~ered in depth because he flanges carry one shear 
force that should not be ne g lected . In reference 1 
a .nethod of comDuting shear stresses in beams tape r ed in 
depth is out l!ned. The meth~d is based on the equili ­
bri u..rn equa tion 

h+dh h - -

J2~yt J 
2 

Tyt dx I'Ii + dlvl 
( 3) = yt dy - dy 

I + dI 
Y "IT 

" 

'Thjs method is mere l y an extension of the "engi neerl n g " 
method ' used in deriving formula (1) . 

The formul a for she:3.I' s tres sat a di s tancs y from 
the neutral ayis of a beam line arly tapered in depth 
with flanges of constant cross section can be obtained 
by integrating equation (3 ) as 
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M tan a -+--+ - - ---1 t; 

T = 
lAF 1 (y)2l 

S ht + 4" - \h J [ 
t 2AF2 2 Ap _ ~)2(}-1AF' __ )~ 

12 h~t 3 h h 
---~----------- (L_) 2 \ . 

( A + ht) 
1: 6 

where S and ["I. are Dosi ti ve in the directions indi~ated 
on fi.gure 1. 

The for~ul a - for averag e shear stress in the web at 
any station , derived by integrating formula (h) frow zero 
to h/2 and div'ding by h/2, is 

T av = 
S 

ht ht 
At' + 6" 

This formula is frequently used to ca l cu l ate shear 
stresses but is usually de r i~ed in a different way . 
The total shear force in the web at any section is 
usua lly assumed to be the t otal externa l shear at that 
section n!inus the vertical components of the flange 
forces at the same section , and the web is assumed­
capable of resisting bending. The vertical for()e in 
each flange i~ then 

T 

F 
M tan a .l.F 

h 
( 6 ) 

where IF/IT i~ the r atio of the moment of inertia of 
both flanges about the neutral axis of the beam to the 
total mom-ent of inert ia of the same section of the beam 
about the neutra l axis. If the moment of inertia of the 
flanges about their own centroid i s negl ect'3d , the 

AF, 
ratio II~/IT reduces to - and formula (6) be c omes 

ht 
AF + 6" 
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F = M tan a 
h 
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(6a) 

Thls equation is the form in hich the expression for the 
vertical comDonent of the flange force occurs in 
formula (5). ,. 

A formula for the shear stress at a distance y 
from the neutral axis of a beam linearly tapered in 
depth with flanges of which the cross section varied at 
the sa~e rate as the depth may a l so be derived from 
equation (3) . The shear stress in this tyPe of beam is 

T -

s [n + ~ - 2 (t) 2J 

ht ( + k) 
2M tan a [N + ~ - 6(t)2] 

h
2

t (N + }) 

where IT is . the ratio of the cro s s - sec ti onsl area of 
both fla n r.es , normal to the neutral axis of the beam, 
to the cross - se~tional area of the veb at the same 
section . The for-nula for the. average shear stress Tav 
is the same for all types of beams. 

In reference 2 ~ethods of calculating shear stresses 
are presented tha t are based on the sarr'e equi Ii bri u m 
equatjon as the methods in reference 1. The Drocedures, 
hO'.lTeve r , are slightly diffe rent and in a particular case 
one method Tray have some advantag:.es over the other . 'Jlhe 
final result will be the same with either method. 

The "enginee r ingll methods of references 1 and 2 are 
a ;)'plicab1e only to beams wi th small taoer angles because 
they do not consider co~~ ati bility 9f displacements 
althou.gh they do ensure equi1j.brium . These methods 
also aSSUri'B that the bending stress 1.S proportional to 
the distance from the neutral axis of the beam and this 
assumption is not satisfactory for large taper angles. 
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A ll c lassical" IT'sthod of' com.Duting stresses in beans 
tapered in depth is presented in reference 3. The 
engineering methods and this classical method agree for 
small taper angles , and the class!cal method is applicable 
to large as ~'ell as to small t~ ~ er an[le8. Tn r eference 3 
are presented solutions for l :nearly ta oe r e d bea~s with a 
rectangular cross section , for a thin web with concen­
trated flanges of const~nt cross section , and for 8 thin 
web 1.1ith concentrated flanges with the cross section 
varied 8t the same r8te as the depth of the beam . 'rhese 
so lutions, however , are usually much more difficult than 
the engineerlng solutior.s to the problem . The solution 
for a thin, eb with concentrated flanges of constant 
cross section is very laborious for small ta pe r angles. 

Flange stresses 

The axial stresses in the flanges of a built - up 
beam ~f constant depth are usually calculated by the 
standard formula 

( :3 ) 

'rhe averaiSe axi 81 stresses iTl the f l anges (the stresses 
at the flange centroid) are usually calculated by 

(J 
av 

The effec ti ve flange area Ap can have a maximun, value 
e 

equal to the -gro s area of the flange plus one - sixth of 
the web area . In sorre cases it 'may be necessar y to use 
a s:.l!aller effec ti ve area to talre into account the rl vet 
holes in the flange and the possible i neffectiveness of 
the web in bending . 

For~ulas (8) and (9) are a lso used to calculate the 
stresses in the flanges of tapered beams ; however, the 
stresses obtained from these formulas will not be axial 
stresses in the flanges. In order to obtain axial 
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stresses , the stresses c&lcul8.ted by formulas (8) and (9) 
should be multiplied by 1 The formula for axia l 

cos2 a 
stresses at any distance y from the neutral axis is 
then 

(J - MY 
T 

1 
( IG) 

and the formula for axial stress at the centroid of the 
flang e 1s 

1 
( 11) 

where the area of the. flange AF is measured nonnal to 
the center line of the bea~. 

TESTS 

Speci'1'Jens 

Three stiffened bU~. lt- p cantilever beams of 2L1s-T 
alwninum alloy y. l ere built and tested. One was a constant ­
depth beam with flanr:;es of constant cross section, one 
a beam linearly tapered in death with flanges of constant 
cross section , and one a beam linearly tapered in depth 
ith flanges having a cross section that varied at the 

sa'11e rate as the depth of the beam. 'T'he webs were 
s iffened with angles placed back-to-back on ooposite 
sides of the Jeb . For si'1']t)licity of construction the we b 
was fastened to the outside of the l egs o~ the flang e 
angles rathe r than to the ins ~de . Further details of the 
construction and the actual d.lmenslons of the beams a r e 
shown on figure 2. 

procedure 

The root of each beRm was bolted into a stee l 
fixture and the com"?ression flange was suppo rted agains t 
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late ral motlon at the tip and at the midpoint of the span 
as shown i n figu:re 3 . A ti p load was appli e d on the 
lo~!e r si de of the bean' by 3 hydr aulic j ac k r e s ting on a 
p l atform scale , which las accurate to ±0.5 percent . 
Strains were measured in rna s t of the even mnnbered bays 
0n the l ongi tudinal center l ine of the beam , and also at 
di stance s equa l to one - qua r ter and three - ei.~~hths af the 
effe c tive deeth on each side of the center line except 
on the t ane red bearr with f l anges 01 constant cross 
section ~ere ~easurements were ta~ en on l y bt the center 
line and at a distance equa l to one - quarter o f the 
effective deeth on each side of the cente r line . At 
each point , 2 - inch Tucke r man op tic a l s train gages were 
mounted in pairs on each side of the ~eb at angles 
of 45 0 nnd 135 0 'lli th the loni'.:;i tudinal center line of 
the beam . Fi gu r e 3 shows a few gages !r.ounted at 45° 
on the taoered beam with tanered f l ange s . 

A_ ,ial strains in the flange~ 'A'ere measured ,,'i t h 
2 - 1nc11 lrucl,~: e rTI'.an o?tical stral n gages :-ilounted on the l e [.; s 
of the angl e s attached to the web and on the outst~nding 
l ees of t he ang l es . Strains were not measured on b0 t h 
sides of the attached legs ~f the f l e n g e angles be c ause 
the web c o vered one side . 

The load was app l ied to each befu~ in t~ree equal 
increments . Jf a strai ght 11.ne thr o'..lgh the points on the 
108d- strain ~ l ot fo r each c~6e dId not pass throu8h zero , 
the curve was shifted to oass through zer0.i.6however , if 
t his shift in strain was mo re than 20 x 10 " the 
measur ements at this po int were r epeated. Any measure ­
ments that did n o t sati'dfy these conditio n s after bei ng 
r e'gea ted and thorough l y checked were not used . 

strains measured by ?airs of gages on oppos ite 
s ide s of the sheet were averaged and the average strains 
for hSo and 135 0 were used to compute the sbee,r stresses 
at 0° 8nd 900 by , 

In all calculaticns 

and G was assumed 

----- - --,------- - ,-, --

E was assumed to be 10 . 6 x 103 KS'1, 

to be L.8 x 103 ksi . 
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PE~:ULTS AND DISCTJ~~IO.N 

V:eb stresses 

Th~ shear stress distribution over the depth of the 
t}")ree beams is ShOV1l1 in figures IJ., 5, and 6 for a ti .t-} 
load of () ki "C) s 0:1 the constant - d eath beam and G 1{1 0 S on 
e~c)~1 of the t8Dered beams . The she a r stresses at these 
lORGS were slightly less than the calculated buckling 
stresses . The differ"ences between measured and calcnlated 
shear stresses are shown as ~ercent of the calculated 
shear stresses in figure 7 and a sU .1'J1ary of these d l f 
ferences f o r the central section of the beams is ~tven 
in table I . The calculated shear stresses T and T v 
sh0wn on these figures were calculateC'. by formulas (1)-
and (2) for the cons tan t - deo th be a'.., , by formulas (l.l.) 
and (5) for the tapered bea~ with constant - flange area , 
and by forrr.ulas (5) ar.d (7) for the tapered beam with 
tal.Jered flan ges . 

~entral section .- From a brief study·of fi gures ~ , 
5, and 6 it 1s aD~are~t that a t olst&nCes greater than 
one -half the root dep th from either end of the bemps 
(bays 5 to 16) the measured shear stresses in the web 
were sli ghtly greater on the com~ression side of e a ch 
beam than on the tension side. On the constant - de·)th 
be ?_m the in:.'Ii v:'dual measured shear stresses on the tension 
side of the beam ~ere frequently less than the calculated 
stresses, but the measured streElses on the ' comDression 
side were usually greater than the calculated stresses . 
On the other bean~ s tLe 1 ndi vidua l measured stresses were 
almost alwajs g reater than the calculated shear stre sses. 

Table I shows that the average measured stress for 
all voints in the central section of any of · the three 
beams djd not exceed the average of the calculated 
values of Tav by ~ore than 5. 5 percent ~nd did not 
exceed the average of the calculated va l ues of T by 
more than L,. 7 percent. The indi viclua l measur ed stresses 
varled from 5.6 percent less than T to 23.3 percent 
1'Ylore than T . In the central section of al l three beams, 
however , there were only two :)o i nts where the measured 
stresses exceeded T by more than 15 Der ent. These 
points were in bay 16 , about one - half the roo~ depth 
away from the r oot of the beam . 



:turther study r;f f i tur' 7 3.!.1')':'f' t hc,t t~e rr.aximt'-~ 
cFffererlCGS betvreon t he c91c').leted T a nd the J·'llc1..: -

11 

l ate'J T 8 t 8l:~,- n~i::J.t on ':l-J c ')ns t ?O~1 t - (~e)1:h b33!'1 W;",):'G 

8.):"recjd~Ye (8QOut 7 pe r ceI1t; but ')TI .!·!e ta :")e red be8Iil 
the "l.ax~.nq)Y'" ';·:iffe r ences ~et" /ee~ t he c 9. 1~ u l ated v::, l ue s 
)"C T 'Jnd To..v we:'e 8':':::'.1 18r (abOllt 1.5 oe r cent). Fe~ll" 

the root, ~~~re t~e pro~or t jons of t~e bea~s ~ere very 
n>lr l y tl: 8 s ~·r · · e , t~e ,~ a l cu l s.teC: .3~le8. y· - stress V9.riatlon 
f)\·'er t~· 5 r",e;> tt: '"'If t~e t.8Dered 1.::e8.m,s was r!;uch l ess t;"ari 
t~~c)t ,)V8I' the cecth of the. ~ on8t9.nt. - oe::-, t~~ be art . It 
\nTo'L'ld ,)8 'Jos'"'ib l e , hO\f1eve r , to have t 3De red be·~ms :):f.' 

v~ ~ ch Lte ~ronor t io~s ~ere s ch th~ t the differen~ef 
b:3tv'ea n tlJe '~alcul~ted values rf T and Tav would 
be lt1'..J.Ch 6 r eB.t'? r thar.. j n tLe creS':.;i! t be8:1:s . 

F~ot section .- It ts obv5.ous f ra~ a study of fiE ­
ures 4':-~·-;--8.nd 6 t~s. t for bRj" I S ic £11 beams t e sted, 
stresses calcu l E ts~ by the 9roper e4uations for T 
or Tav on tb"3 lJs.~-· i.s of the 8. ss 1':":"'T~) tio ~-; th&t the flunge 
f orce ~cted slons the centroid were not s-t i sf8cto r y . 

The outst a nd i n g l egs of the fl ~ n~e s were cut lff 
a)Droxim~tely 2 in~hes nearer the r OJ than the c ente r 
l~ne of bay IG and s stee l Dlate was a' t& h0d t o OilS 

3i~e of the flange angles fr om bay 17 t o the r oo t to 
r eLnfor::.e this section . 'The bolt s tt.st 8. tt :J~hGd tj-:e 
flan;~es to the :r- oo t". fi yt~H'f.: were b.3tv:eer~ the cenVn' 
I lDe a f tho f l ~~~e ~~d th e or~finGl l o e a ion of t~e 
f l an2:e centroid . ,t ~;c8 ;:s~~..l.r:·le6. , i"l-:eref:::re , that tr,€) 
f I ance F~),'ce ·:;.·~t2d. al')n::. r .. l i:'lC; 8xtendlng fro:'.! t be 
i.nterE:ect :on of tl:e ori;';.n3.1 r lc,nj''3 centroid wi th t he 
center l ine of bay I t t ; t~~ ce~t~r o f the r not R tt ~ ch ­
rrJent bo lts. ~Jlhi8 1.6f0Ur;',;t"l.on ~8\'e a tan er an.· l e of 1 c.; 
instead of 7')12 ' anj 7 °111' onL·t ' .,e t ::J)e r e d be~"(j s a nd of 
_ 1,0 I "'<'to·«l (1f!j' 0'" t·},<=> ·-' o"''''t- :=! ·''1 t - ,''lo--.t1.-: -DealT T~' 11:,T 1 :-' .... r _. l 'u',,_·. . ... l .. '- ...... J ..... J. ___ -..I ........ l.... I . .. " .... ,'I ......... 

the cCIICH1<::- t e.d shear str'3SS S3 ':'llsAd (1 n this assumptJon 
were more sBti~ qctory thRn the ca lculaterl shear stresses 
bas~d sn tte a~sum'tio n thctt t he f18n~e fa rc e acted alon~ 
the o r"l ,"inD 1 ~pntr0 tc o f the L'lar!:,,'G (Jizs . h, 5 , 6 , and 7). 
The ~&xi~l~ measur<=>d stress in bQJ 1 5 af ihp tR ~e r ed 
beems is <.-.bout 1. to'C: f.lcrcc:,r"t >!: re s. ter t hall the s~l.ear 
stresses ca lcu l ated on the basis o f a change in the taper 
a :ng l e a t tha t sectior.. , but the rne8sured she a r stresse s 
in bay 18 cf the c')ns tant - dsDth be8m fall abou t ha l f way 
between t he t wo ca l culated curves . 
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Tip section.- If a col~~n has a load applied only 
~ . 

a t one end and 8 shear web attached to it along one side, 
the maximum di sr,llacement occurs at the l oaded end . The 
shear straiD and shear stre!"s i11 the web 8ttached to I t, 
therefore , are highest a t the loaded ~md of the column. 
'i'his condi t ion is the one that occurred at the end uprIghts 
of the beams te s ted for the present :l.nves t~. ga ti on . Ll s­
urss h, 5, and 6 show that the shear stresses in cay 2 
were hie-hes t at the I OBeled end of the uprigh t . The '(13.yirtU!1' 
meesured stress was never rr,ore than ] percent greate r 
than the .r.19.x i mu!p c 81cu18 ted s tre ss • 'T.'he dis tri "J"LJ.ti on of 
shear s t r e s s es in the vy'e b near the 10 9.de~ - end u)rJ.gh tis 
iJro bab l y one 8 f the J.~-:190r tant fac to rs affec tins the 
s tren;~tb of the 10 2ded - end. upri~;h t . 

F l ange Stre fses 

The distribl.ltion of mp.as'.lred 8nd ~8. 1 cul"'ted a~la l 
flange str8sses for the three bea'·,s t":st.ed are sbnv:1 on 
figureJ €, 9 , and 10 . stre sses were c&lculsted by 
fOJ'Yrlulas (G ) and (C',) for the corlst8.nt-depth ')eam anc'1. ·by 
frn-mulas (Ie) ~md (11) for te· e taGered ::::e 8'r'S • Th 0S e . 
stresses we re C81culated for a ful ly effective we~ for 
botl: the Ylet &r8:;\ f"nd the Gro ss area . Tn order to obtain 
an average velue of ~sasu r9d stress st 8~ch sect~on , a 
strs.J.cjht Itne r8S G.r8.'.rn throuzh the test points and the 
s tre s s at the in tersec tior;. 01' t~·j.i s li ne "I,'i th the centroid 
of the f l ange was taken as the a~erage rreasured stress 
in the f'ls.nce . Ts.ole I e::.ives the 8.verc,e;e difference 
between the meas~red and calculated stresses at the 
centroid and the r sngo of variation be twe en measured and 
calcul ated stresses in the extreme fiber for all DOlnts 
in the centra l section of eacD (jearn . 

Central section .- At a few sections in the constant ­
depth bea.'1l the rn'3asured axia l flange stresses were nearly 
const~nt over the de~th of the fl&pge , ~ut at other 
sections of this bearr 2nd in the tapered bea~s the 
stresses were not constalt ~ver the depth of the f l ange . 
Fle,ure 10 sllov's that the measured stresses in the tapered 
bea~ with taoered flGn~es Bvera~9d less than the calcu-
19.ted stresses for the net nrea cu~ i:1 fu lly effective 
Net , but the everage ~easured stresses !n the othar 
beams (figs . 8 end 9) a[.l pear to ~""\ave l~een sllghtly greate r 
than the ca l cu l ated stresses for the net area and a fu lly 
effectIve web . ~1he average difference bet 'een measured 
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S' l r;nge strecses ane" calcul atel~ f'l~1.Yl;' e st r esses dld not 
exceed 6.1 oercent ~hell the Galcula~ions were b ased on 
the net <1 re8. F'nd a fully effective v'.'eb (table I). 'The 
measured stresses in the extreme fiber varied fro~ 

15 

8 .3 oercent less than the calculated extreme fiber 
stresse8 to S. 8 ~ercent mor1 than the ca l culated extreme 
fiber stre~ses . 

?!gures 8 , 9 , and 10 show also the a verage calcu­
l ated stresses based on the gros s area and a fully 
effective web . For all section3 on the constant - depth 
be EU"l1 ano. t:::te taper ed beam w~ th f l an.'?,es of constant 
aross section , the ca lcu l a ted stresses ~ased on the 
gross a rea \' ere about 5 pe rc ent les s than those based 
Oll the ne t ar ea . In the t apered beam wi t h tapered 
flan ,ze s the st r esses based on the ",ross a r ea 'vver~ 
from-5 to 9 percent l ess t han those based on t~e net 
area . On the compressior. f l ange of the constant - dej,Jth 
beam , calculated stresses based on the assumpti on tlJat 
the web was effe~tive only on the tension side of the 
bea~ would have ~een about 10 De rc ent grea ter than the 
calculated stresses based on the assumption th_t the lNeb 
was fully effec t ~ ve ; On the tension flange the dlfference 
would have been onl y 1 pe r cent . 

Root' a,'1d tiD sect i ons . - The measured, flange stresses 
in bays 2 and !..J.. of the taoered bea:rs varied from less 
than one - }:lalf the ca l cu12,ted fla~lge stresses to more 
then two tirres the calculated f laDGe stresses (fl g s, 9 
and 1:J). The measured stress at one point in bay 5 of 
the constant-oe;Jth beayp was about 25 pe rcent greater 
than the c/?,lculated stress . These l arge ' vari atlons , 
however , are of Ii ttle practical i,mpor t anc e because 
thB stresses at these sections were smal l as comQared 
wi th those at oth~r, poi n ts in the beam . In ,bay 1 0 of 
both t ape r ed beams the variation of measured stresses 
across the depth of t he flange was much greate r than 
in the cent r al section of the beam . Tl1e measured 
extreme - fiber stresses were from 15 to 30 ~ercent 
greater than the calculated stresses . It is very 
difficult to calculate flange stresses near the ro o t 
of any beam because these stresses depend to a l arf,e 
extent upon the details of the connections . 
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CONCLUSIONS 

Three thin-v'6b built - up beams, one of constant de~th 
wi th f18Eges of corlstant crl)ss section , one wi th slight 
li near tnper in depth with f l enges of con~tant cross 
section, and one wi t b slight linear taner in de9th wi th 
flB.nges of which the cross sectlon varied at the same 
rate as t he deoth of the beam were te~ted a t such l oeds 
th a t the web shear stresses 'Nere slight l y l ess than the 
c alcu l ated buckling stresses. Comparisons of measured 
shear s tresses wi th calculated sheer stresses indica ted 
t hat the ave rage meas ured shear stresseS for all points 
in the central section of the beam cUd not exceed the 
averag e calculated shear stresses by more than about 
5 pe r cent . The individual measured shear stresses varied 
from about 6 pe r cen t l es s than the calculated shear 
s tresses to about 23 pe r cen t more the n the calcul ated 
shear str esses , but t he r e were onl y two 90ints jn all 
t hree be.:;tl".s where the measured stresses exceeded the 
calculated stresses by more than 15 Dercent . 'These 
points were a t a sta t ion about one - half the ro o t ~eoth 
away from the root of t he beat'!). 

Somparison of measured flang e st resses with calcu­
l ated f l ange stres ses basej on the - net are a and a fully 
effecti ve web showed that the diffe rence between average 
measured stress 8-:-:d aver8ge cRlculated st r ess ~n the 
central sec n on of aD\' of the beB-ms did not exceed 
6.1 ~)ercent . 'The ind lv:ldual '(l~e asured stresses in the 
extreme fiber varied from about G percent l es s than 
calculated t" about 9 ~')e rcent more than calculated. 

Langley Nemorial Aeronautica l Laboratory 
Na t iona l Adviso r y Committee for Aeronautics 

Langley ?ield , Va" J'anuary 21 , 19L.b 

-- .- ._. --------~~~ 
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TABLE I 

CO~P? API SO N OF 1"E ASURED wITH CALCULATED STRESSES TN THE 

CEl': '1FAL ~ECTIOt,? OF 'J1:HE B3A\S 

[
pe rc entat;es are 0 bt 2ined by t he formula l,;e~s~!.:..ed - C0 l cul a te~ x lool 

Ca l cu l &t ed -J 
I ---~~.fe~e nCe--frOJ) Tav,i Dlffe r en-c-e-f-r-o-.m-.--T-'-' Differel(ce) f r o;-n 0-

\ a 

! I ( ~: ~ ~:g~ ) I;'; ~~~:~~ )T~ ~£i~~~ )~y ~~~~ ;;,~) A ~:~ ~ ~~ i ~ t I ~ :~~:~! o~i ~! r 
L-_.__ I j' (::e r cent ) ( pe rcent) 

IICOi1stant-deothr~--- f-G~Z 1-------1 [- 5 .~- ------- [ -8 ~ 1 
,beam ! 2 ·3 I llS· u I 3 · 6 I l23 ;3 3 · 5 l 7': '5 

I Ta~)e red beam , r- [ - 3 . 8 I {-4 3 { I constant AFI 5· ) l13 .g I ~·7 13:5 I ·4 -§ :~ 

tlRJered beam , {I {I 
tap e r e d L! ·9 I 21. 7 L . 7 - . 5 L-~ 6 . 1 1. {7 . 9 flang e 1. 8 19·3 ' 7· 2 ___________ I ' ----_._---------- . -_.- -- ._--

aCalculated stresses based. on the ne t a r ea and a fully effec ti v e 'Neb . 
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Figure 10.- Distribution of measured and calculated axial flange stress in the 
tapered beam with tapered flanges. P=6 kips. 
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