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APPLICABILITY OF SIIviILARITY P~INCIPLES TO STRUCTURAL lViODELS 

By J. N. Goo die r a nOd W. T. Th o m son 

I. SI MILAR ITY PRINCIPLES FOR STRUCTURAL AND DYNAMICAL MODELS 

SUMMARY 

A systematic account is given in part I of the use 
of dimensional analysis in constructing similarity con­
ditions for models and structures. The analysis cover~ 
large deflections, buckling, plastic behavior, and ma­
terials with nonlinear stress-strain ch a racteristics, as 
well as the simpler structural problems • 

1. INTRODUCTION 

Similarity principles for guidance and interpreta­
tion of model tests in engineering frequently have been 
based on the differential equations of the problem or on 
more Or less intuitive conceptions of what similarity 
means, as, for example , in fluid mechanics when similarity 
is taken to mean that the ratios of inertia, viscous. and 
g r a vi t y for c e sat cor res p 0 n din gpo in t s are the s am e. 0 r 
that the streamline patterns are geometrically similar. 
It is now recognized. however, that it is much more satis­
factory to apply the general dimensional analysis of E. 
Buckingham (reference 1) and p. W. Bridgman (reference 2). 
This method has been thoroughli developed in general phys­
ics and flu id mechanics, out apparently not in structural 
mechanics. 

The question as to what is meant by structural sim­
ilarity frequently can be answered in a very simple manner, 
But the co mp lications implied by the use of several mate­
rials in a single structure , the use of models not made 
of the same material as the prototype, buckling and 
related behavior , plastic flow, thermal stress, and the 
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various combinations of these, besides the problems of 
fluid-structure combinations, as for instance in dams, 
wind vibrations in suspension bridges, and flutter, re­
quire an analysis more comprehensive than immediate in­
tuitive notions can well supply. Such an analysis can 
be as readily made, by the methods ~f Buckingham and 
Bridgman, in solid mechanics, or for solid plus fluid 
problems, as in fluid mechanics. Nonlinear problems, 
buckling criterions, plastic flow, all can be dealt with, 
although at first sight the lack of adequately defined 
physical constants to characterize the inelastic prop­
erties of materials seems to put obstacles in the way of 
dimensional analysis, with its primary requirement that 
a list of symbols concerned be drawn up. 

The author is indebt~d to Drs. Tuckerman, Ramberg, 
and Osgood for the sugges~ion that an investigation of 
similarity under affine stress~strain r e lations would be 
desirable. 

2. DIMENSIONAL ANALYSI~ AND SIMrLA~lTY PRINCIPLES -

NONDIMENSIONAL ~UANTITIES - DIMENSIONAL CONSTANTS 

Only a brief intro~uctory account of dimensional 
analysis is given here. For a full account the r~ader is 
referred to references 1 and 2. 

As Bridgman (reference 2) emphasizes, the first ob­
ject of dimensional analysis is to make sure that the 
formula for a re quired quantity, as the solution of a 
definite physical problem, will be valid no matter what 
system of units is used to give numerical values to the 
quantities conce~ned, just as the bending stress formula 

a = Mc/l yields the same physical stress in tons per 

s quare foot. if tons and feet are used as units for M. 
c, and I , as it does in pounds per square inch, if 
pounds and inches are used as units, 

This validity in all unit systems is, of course, 
. . . ., 1 , .. ,.1 .. 

equally well expressed by the statement that 
or 
Me 

is the 

s a me in all unit systems, and this is what is meant by 
IIdimensionless." 
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Let the list of symbols concerned in a problem be 
Xl. X~. X3 - - -, Xl being sought in ter~s of the others. 

There usually will be several dimensioiless groups (prod­
ucts of powers of the symbols) I say TIl' TI~~ and so 

forth, and it may be shown that the number of independent 
groups is equal to the number of original symbols less 
the number of fundamental units. Buckingham's rI-theorem 
states that, when there is only ~ relation between the 
symbols, it must, in order to be valid in all unit systems. 
take the form 

(:J. ) 

with f() as a constant if there is only one dimension­
less group rI l • When there is more than one relation be-

tween the symbols, the requirement of validity in all 
unit systems can be satisfied without dimensional homoge-

neity, as Br~dgman illustrates by adding v = gt to 

s = to obtain 
I ;a 

v + S :: gt + Z gt 

The problem contemplated SO far is the followingl 
Given a set of symbols, representing the numerical meas­
ures of the corresponding physical quantities {as soon as 
a unit system is selected), what restrictions on the 
functional relation between them are implied by the re­
quirement that it shall be valid in all unit systems? In 
contemplating a change of units, of course, only a single 
feature of a definite physical system is considered - for 
example, the stress of a given kind at a given point of a 
given structure with given loads. This. however, is to 
be obtained from a formula of the type of equation (1). 
In such a formula it is supposed that all quantities 
which may be represented by variable numbers, including 
physical variables and physical "constants" which may 
change in numerical value with change of unit system, and 
sO are not dimensionless, are represented by symbols, 
The functional relation then holds for variations of its 
arguments, no matter how prod~ced. The form (equation 
(1)> SO arranges the relation that in fact no variations 
in the Il's. and thus in the value of the function, 
occur when the numerical value of the original symbols 
changes oy change of unit system 1 

But the functiona+ relation (equation (1)) is valid 

-~-~--
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for all values of the symbols in the ranges permitted by 
physical considerations, just as aI/Mc = 1 is valid for 
all permitted values of a, I. M, c. Changes can thus be 
contemplated in the values of the symbols corresponding 
not to a change of units for a given physical aystem. say 
a structure with given loads, but to a passage from this 
to another structure with other loads, of course, within 
the class of structures an4 loads covered by the contem­
plated formula, as, for instance. the class of beams and 
loads covered by oI/Mc = 1. Then without knowing the 
functional form f in equation (1). it can be said that 
it the groups D;a, TI3 - - - in equation (1) have the 
same values in the two systems, then f( ) and therefore 
rIl will have the same value for the two systems. 1 The 

equality of the grqups in f( ) thus provides a set of 
»similarity conditions" governing the construction of a 
model, and equality of the Tll IS for model and structure 
then provides a similarity relation by which a measure­
ment on the model can be made to yield the corresponding 
quantity for the structure. This analysis is applied in 
what follows to various types of structural problem. 

In making such applications it is necessary. of 
course, to be able to assign "dimensions ll to all quanti­
ties concerned. An angle is commonly regarded as a di­
mensionless quantity. radian measure being obtained by 
dividing length by length. The significance of "dimen­
sionless" here is merely that radian measure does not 
change when the length unit is changed. But "angle" is 
not dimensionless · if changes to degrees or revolutions 
are contemplated, and such Changes should. of course, be 
considered if anything can be deduced therefrom. This is 
sometimes the case~ as appears later. However. if this 
is done. the equation relating angular measure 8 to arc 
s and radius r must be written 

8 = C .§.. (2 ) 
r 

where C has the value i when the radian is the angular 

unit, llQ when the degree is the unit, and sO on. 
TT 

4 ) , 

. IThis assumes that the function is single-valued in 
all its arguments. Stress is not a single-valued function 
of strain beyond the elastic range, where the curve of 
rising stress is not the same as the curve of falling 
stress. Thus, results based on such a relation are not 
necessarily subject to the present analysis. This is dis­
cussed further in sec. 8. 
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Otherwise any calculation involving such a relation is 
not valid in all unit systems. The "constant" C is a 
"dimensional constant" and has the dimension of an angle. 

Strain, as inches extension per inch of length, Or 
centimeters per centimeter, and sO on, is also commonly 
treated as dimensionless. It can, however, also be meas­
ured in centimeters per inch, or if the use of two length 
units is objectionable, in any arbitrary unit such as the 
II m i c r 0 s t r a i n II - 1 0- 6 C en tim e t e r per c en tim e t e r • I tis 
then necessary to write the strain e in terms of e x ­
tension 5 on a length ~ as 

e = C 

where C is a dimensional constant, having the same di­
mension as strain, with the value 1 when !train is meas­
ured i n the usual manner • 

Dimensional c ·onstants of this kind, as well as "phys­
ical constant s," must be included in the list of symbols 
for any problem the solution of which requires the equa­
tion in which they occur. For the final formula will not, 
in general, be valid in all unit systems unless the equa­
tions used in deriving it had this property. Of course, 
the C of equation (2) usually is not in cluded in dimen­
sional analyses. It usually is fixed as unity by the 
tacit decision not to consider any change of angle unit 
from the radian. As will appear in a later section, the 
omission of the C of equation (3) from an inela!tic 
structural problem, thus pr eventin g the c onside ratio n of 
any c h ange of strain unit, may result in the deduction of 
unnecessarily restricted similarity conditions. 

3. SI MILARITY OF STRUCTURES IN EQUILIBRIUM 

Consider first a structure made of homogeneous iso­
tropic material which obeys HOOke's law. Let it b e spec­
ified in size and shape by a necessary and sufficient set 
of linear dimensions a, b, c, ---, and let the loads on 
it be P a, a.P, SP, 'YP, and SO forth, where a., 13, 'Yare 
dimensionless numbers. Young's modulus and POisson's 
ratio will be denoted by E and ~. 

(ii) 
or 

2 Th e load s a re taken as forc es . If they a r e c oup l es 
o r pressu r es (p), it is me r e l y n e ce s s a r y to writ e N/ a 
paz i nstead o f P wh er ev er P occu r s . 
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These variables define the system. It will be 
r equ ired to determine certain features of its state, 
usually a force R, such as a redundant reaction, a 
force in a member, Or a stiffener, a stress cr, strain 
e, or displacement o. The lengths a, b, c, ---, will 
be supposed to contain those necessary to specify the 
point at which any of these are to be found. Then each 
of the quantities 

:1 v can be expr~ssed in terms of 

e I a, b, c --- , E, ~ 

P, a, ~, 'Y 

oj 
Let there be n ~uantitie3, counting one of the column 
On the left. There are only two fundamental measuring 
units involved, since each of the quantities in equation 
(4) can be measured when, for instance, units of force 
and length are given. Denoting these units by F and 
L, the dimensions of the quantities in equation . (4) may 
be written in terms of these units, in order, as' 

· r o 

F, 0, 0, ° 1, L, L (5 ) 

Since there are two fundamental units n-2 dimens i onless 
products from any of the four sets of variables in equa­
tion (4) can be formed, according to Buckingham' s theorem. 
It is easily seen by inspection that these may be taken as 3 

p 
a., 13. 'Y bla, cia -, 

Ea :3 

3The cons titution of the dimensionless groups is n ot 
unique . For instance, f/Ea 2 might be replaced by piPe r 

Pl:3 
or for a colum n problem. 
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There is one relation between anyone of the dimensionless 
groups in the column, and all the dimensionless groups in 
the row. Thus it is possiole to write 

R 
f1 (E: 2 ' 

l' , y b c ~) :; a, --- -p • a a 

aa2 
f (P 13 , y b c --- ~) = a, --- -P 2 Ea:a' a a 

(7) 

(E: 2 , 

b c ~) e" = f3 a. f3 • 'Y ---
a a 

0 = f4 (E:2 ' 
a. f3 • y b c ~\ --- -, - ---

a a a ) 

where f 1 ( ), f.a( ), f3( ). f 4 ( ). represent definite 
functional forms. These relations in fact stand for the 
solution of the problem in general form. covering, with 
invariable functional forms, all systems which can be got 
by giving particular values to the variables 
(4). and, of course, covering also all possible systems 
of measuring units. Thus in particular they cover a 
structure and its scale model. The conditions of similar­
ity are the conditions that the functions on the right of 
equations (7) shall have the same numerical value when cal­
culated for the structure as they have when calculated 
for the mod el. and the similarity relations are then ex­
pressed by the equality of the groups on the left of equa­
tions (7) calculated for structure and model,4 

The functions (supposed single-value~) will have 
identical values for structure and model if the arguments 
have identical values. The ratios a. 13. Y --- are the 
same if the several loads of the model bear the same 
ratios to one another as the several loads of the struc-

ture. The ratios ~ ~ --- are the same for a model 
a a 4 

which is to scale in every significant dimension. ----------------
4 It is often possible to relax these conditions by 

the use of knowledge of the problem beyond that afforded 
by dimensional ~nalysis. Examples are given later. 
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Poisson's ratio ~ must be the same (unless as in the 
case of trusses and rigid frames free of torsional action, 
it is known to be without influence on the behavior con­
sidered). Finally, it is necessary to make 

(8 ) 

where the subscript m stands for "model" and s for 
"structure." Thus when the model loads are scaled down 
according to 

(9 ) 

it will be true, by e~uating the left sides of e~uations 
(7). that 

= 
a ~ s 
a ;a 

m 
= 

Em 
(by equation (8»); 

Es 

(10) 

These results may be exptessed in an alternative way 
by observing that since, ,(the other similarity conditions 
being already fulfilled) if any given value of P/Ea~ 
is taken, the corresponding values of Rip, ~a2/P, e, S/a 
are then the same whether model or structure is considered, 
the curves of Rip, cra 2 /p, e, B/a plotted against P/Ea2 

from measurements on the model, at various loads Pm. 'are 
also valid for the structure. 

It is evidently permissible to make the model and 
the structure of different materials, sO long as the 
Poissonls ratios, if these are significant in the problem, 
are kept the same. 

The dimensionless number P/Ea2 ~~ays a part here 
which is analogous to that of Reynolds number (or the 
other characteristic numbers of fluid systems) in fluid 
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mechanics. It is proposed to call it, or any like quan­
tity, the "strain number." 

4. LIN~AR ANP NONLINEAR STRUCTURES 

9 

The foregoing results are not restricted, as most of 
the calculations of structural theory are, to small dis­
placements. They cover flexible structures, such as very 
thin rings, or very slender beams and columns, where the 
deflections are too large to have a linear relation to 
the loads, although the strain components themselves are 
small and the stress.strain relations are linear. The 
departure from linearity arises from the changing shape 
of the structure as it is loaded. There are also struc­
tures in which the di~placement8, though small. signifi­
cantly affect the action (e.g., the moment arms) of the 
loads, as in the beam under simultaneous lateral load and 
axial thrust - the "beam-column," or the elastic cable. 
initially just taut, under lateral load, which has a dis­
placement proportional to the cube root of the load at 
first. All such cases are grouped under the "nonlinear" 
designation. 

On the other hand, there is the extensive linear 
group. where the displacements are linear functions of 
the loads, and the m~thod of superposition is valid. 
This group, of course. includes the majority of stress 
problems. When this linearity can be assumed, it can be 
said that redundant reactions (unless the support is of 
a peculiar kind, such as a nonlinear spring), stresses. 
strains, and displacements will all be proportional to 
the load - that is, to p. 

Reconsidering equations (7) will lead then to the 
re~uirement that Rip is to be independent of p. and 
this requires that the function f1 should be independ­
ent of the group . PlEad I or 

Rip ~ f1 (a. ~, Y ---, !, : --- ~) (11) 

Since Young's modulus does not appear in any other g roup, 
it follows that R is independent of it; R may. however , 
still depend on Poisson's ratio. 

Usu a lly, in the linear type of structure, a, e and 
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6 will be proportional to P, so that instead of the 
last three of equations (7) the following e~uations may 
be written: 

:a 
f:a (a., b ~) aa = ~ , 'Y --- c -, ~--

P a a 

10 

p 
f3 (a., /3 , 'Y b c ~) (12) e = ---

Ea :a a a 

8 p 
f4 (a.. f3 t 'Y 

b c ~) = --- -
a Ea 2 a a 

The conditions of similarity are now merely the obvious 
ones of geometrical eimilarity and similar distribution 
of loads (a., ~,'Y the same for structure and model), and 
equal POisson's ratio if this is of significance in the 
problem. With these fulfilled, 

(13) 

where Kl Kz K3 K4 are constants, the same for both 
structure and model. Thus in linear structures one meas­
urement of each kind, at a single load. on the model is 
in principle all that is necessary for the complete anal­
ysis of the structure. 

Alternatively it may be said that if the curves of 
R/P, aaz/p, e, B/a against P/Eaz are plotted from 
measurements On the model. the first two will be straight 
lines parallel to the P/Ea2 axis and the last two will 
be straight lines through the origin, and the diagrams 
will be equally valid for the structure. 

When the load includes the weight of the structure 
itself, represented by a specific weight w, a further 

dimensionless group. for instance wa 
E' 

must be introduced. 

It is then convenient to replace the first two groups in 

which the column on the left of equation (6) by 
R (J 

gives, in gen~ralt 
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R (E:2 ' wa 
f3, 'Y ---

b c ---) f1 -, a, --- j..&., 
Ea2 E a a 

C1 
f2 ( ) E 

= (14) 

e f3 ( ) 
§... 

f4 ( ) a 

:But if the structure is a "solidI! one, such as a. da.m (ref­
erence 3), ha~ing small deformations which do not affect 
the action of the loads, it will be linear both as to P 
and W, and the problem divides itself into two, one to 
determine the effects of the gravity loading only, the 
other to determ~ne the effeots of surface loading only. 
In the dam problem the surface lOading would be water 
pressures, which can be described by a maximum pressure 
p. together with dimensionless ratiOS to describe the 
distribution of pressure. These may be omitted. Then 
instead of P/Ea2

, pIE may be used. Consider, in par­
ticular, the stress cr, which represents any chosen com­
ponent at any particular pOint. Since this is to be 
linear in both wand p, it is necessary that 

C1 wa 
= 

E E 

The E now cancels, and it follows that the 
stress is independent of E, but depends on j..&.. A model 
should have the same POisson's ratio, if it is signifi­
cant, and must be geometrically similar. The functions 
f2 and F2 then have the same value for both model and 
structure, and may be replaced by constants C1 and C2, 
SO that 

(16) 

The two parts may be determined hy separate tests, 
using model material of any convenient density, Or pro­
ducing w centrifugally, (or replacing the body force 
~roblem by a surface load problem (reference 4)). 
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Different models, of different materials may be used for 
the two t est s. solon gas ~ i s k e p t the s am e . The 0 b -
ject of the model tests may be regarded as the determina­
tion of 01 and C2' It is evidently not necessary to 

:put any restrictions on the manner by which the pressure 
p On the model is created, although at first sight, if 
the system is taken as a single fluid-solid system, it 
might appear that the specific weight of the fluid should 
be included in the list of variables, and then that a 
fluid of a suitably different density must be used. Of 
course, a change from the dimensionless relation (equa­
tion (15)) to the dimensional form (equation (16) im­
plies that the same measuring units will be used fOr both 
structure and mOdel. 

In many cases it will be obvious that the condition 
of strict geometrical similarity may be dispensed with 
without loss of eXactness. In simple trusses only the 
areas, not the individual dimensions, of cross sections 
are significa?t. When there is simple bending, the prop­
er moment of 1nertia, and for torsion, the proper tor­
sional rigidity., may be provided without regard to shape. 
Here, of course, knowledge obtained from detailed analyses 
of bars as structural elements is employed. Considera­
tions of this kind underlie Theodorsen I s discussion of 
similarity of propellers (reference 5) (as to vibrational 
frequencies) obtained by lengthening in one proportion 
and changing cross-sectional dimensions in another. For 
the differential equation of free flexural vibration of 
a bar may be written 

where p is the density, EI the flexural rigidity, and 
A the area of cross section, as functions of x. The 
process of solving this for the nonuniform bar to find 
the deflection y as a function of the axial coordinate 
x, aud determining the fundamental frequency, can be 
readily envisioned, even if not easily carried out, by 
anyone familiar with the process for the uniform bar. 

Let I be written as Aoko2fl (7) and A as 

Aofa (~) where Ao ' ko are the area and radius of gyra­

tiOn of the base section, and t the length, flfa 
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being given functions, involving only dimensionless -
that iS t invariable, parameters. Then the equation Can 
be written 

+ =: 0 

The frequency will then depend on the quantities 
P 

Ek a 
o 

and ~, and on no other quantities. There is only one 
dimensionless combinat!on of these quantities and the 
fr~quency f. It is the left member of 

13 

(or any power of it) and this equation must hold with C 
a constant (for a given mode) for all systems expressible 

by means of and Since 

and fa are invariable functional forms, the ratios of 
the Its and the ratios of the A's for corresponding 
sections (x/~ the sa~e) must be the same for all the 
systems. But there is nO restriction to any particular 
shape of cross section, as by the proportional enlarge­
ment of all dimensions of the cross section. 

Without the auxiliary information contained in the 
differential equation other dimensionless arguments, such 
as ~/ko would have a ·ppeared. and the conclusions would 

have been more restrictive. 

Dimensional analysis alone gives a basic form of 
similarity. Further knowledge may give more general forms. 
It is a matter of obtaining the most detailed formula pos­
sible - and there is at least that yielded by dimensional 
analysis - and considering what is the broadest class of 
systems to which it applies. The members of this class 
are then "similar" On the b~sis of the formula considered. 
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5. COHPOSITE STRUOTURE 

If the structure is not all of the same material, it 
will be necessary to include in the row of independent 
variables in equation (4) the several Youn g 's ~ oduli and 
Poisson1s ratios. Let these be E, El , E2 ---, and so 
forth, and ~, ~l' ~2 - - -. Then to the row of dimension­
less g rou ps in (6) must be added E1!E, E2/E ---, and so 
forth, and ~l' ~2' -- - . and the same additions must be 
made to t~e arguments of the functions in equations (7). 
The conditions of similarity now include the identity of 
EIIE, Ea/ E ---, ~l' ~~ --- for structure and model. The 
similarity relations \equation (10)) then remain valid for 
the nonlinear t y pe of structure, when the strain numbers 
P/Ea 2 are l1ade the same for model and structure. Corre­
s p ondinGl y , the treatment of the linear structure is modi­
fied mer ely by the addition of the re quirement of identity 
of EIIE, E2/E ---, ~l' ~2' - - -, in both model and struc­
tu re , to the set of similarity conditions. 

6 . PR]:SCRLBED DISPLAC:EllElIITS 

So far, the problem has been considered as one in 
which the loads are all given , and it is reqlired to find 
rea c t ion s, s t res s, s t r a in, an d dis pIa c en e n t • Con sid e r 
now ~ iven displacements, not necessarily small , the prob ­
lem bei ng to determine these same four q.uantities. In­
s tand of the variablos in (4) thoro are nOw 

depending on U, al. ~', ~I 

a , b, c --- E, ~ 

where the pres cribed displacements are V , a'U, a'U, ~fU, 
an ~ so forth. Aga in the number of dimensionless g roups 
must bo two less than the number of variables in (17), 
counting only ono of tho column on the left. It i s evident 
that they may be takon as 
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R/Ea :2 

olE 
U a' f3 ' , "(' , 

e a 

o/a 

and it is necessary to have 

R/Ea:2 = f1 (~, a l 
• 

13', "( I __ _ 

olE =Jz ( 

e =;; f3 ( 

o I a = f4 ( 

The similarity conditions now 
model and structure, if it i~ 

b 

a 

h.. ~ .. __ 
a a 

c 
a 

~, ---) 
') 
) 

) 
include identity of ~ 
significant, and also 

15 

(19) 

for 

Um Us 
- that is, the imposed displacements must be to -= -

am as 
s cal e. The similarity relations are then 

Rm Etna m 
2 om Em 

- = ::J: -
Rs Esa s 

2' 
Os Es 

, 

and, alternatively, curves of 
against U/a obtained from the 

also valid for the structure . 

em om am 
= 1 , = 

Os e s as 

R/Ea. 2
, o/E, e, u/a 

model by varying Um are 

It may be observed that ' E does not appear at all 
in the last two of equations (19). There is no other quan­
tity containing the force unit with which it can be com­
bined to give a dimensionless group. It follows then 
that the distributions of strain and displacement are in­
dependent of the Young1s modulus. This is evident from 
the well-known differential equations of Lame for the 
special Case of the linear structure, but perhaps not so 
evident for the nonlinear structure. 

In the Case of the linear structur~ R, a, e, and 
8 are proportional to U, Hence equatlons(19) must take 
the form 
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(a l
• 

( 

~ I, Y I ___ b c 
a a --- ~ ---) 

) 
(20 ) 

8/a 

or R == 

( 

( 
u 

cr == K2 E -, 
a 

U e == K -, 
3 a 

) 

) 
valid for 

both model and structure where Kl K., K3 and K4 are 

constants, the same for both model and structure. 

The additional argu~ents E1/E, E.,/E, and sO forth, 

and ~l' ~." and SO forth, will be reQuired in the func­

tions of equation R (20) when the structure is composite, 
and the additio,al similarity conditions a~e as before. 

7. MIXED CONDITIONS 

When t he re a rc prescribed lo ad s at some pO int s, pre­
s cr ibed displacements ( nonzer o) at others, the set of 
vari a bl es consists of (4) and (17) combined, and the gen­
eral relations c an be taken in the form 

R :;:: f1 (......L., a, ~, Y --- U a t ~', Y t --- .£. .£. ~ ---) l' 
, 

Ea2 a a a 

(J a Z 

= f2( ) P 

e == f3 ( ) 
§... 

== f4 ( ) a 

(21) 
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The similarity conditions are now geometrical similarity 
(b/a, c/a4 etc., the same for structure and model), sim­
ilar distribution of loads and prescribed displacements 
(a, ~, 'Y --- a', /3', yl --- the same), j.<,lentity of the 
POisson's ratios if significant. and also 

= (zz) 

These being fulfilled, the similarity relations (e~uation s 
(10)) will again hold. The surfaces of R/~, aaa/ p, e, 
o/a plotted against P/Ea2 and U/a, determined from 
the model t are also valid for the structure. 

8 . CURVED STRESS-S~RAI N RELA~IONS 

LOADING BEYOND THE pnOPOR TIONAL 

AND ELASTIC LI MITS 

If the ord inary tensi le or co mp r es sive stress-strain 
diagram of the material of the structure is curved, it is 
customary to retain the ~erm "Youn g 1s Modulus ." for the 
slope of th e curve. ' It is nO longer a c onstant but a 
function of the str ess or the strain. The s trai n number 
P/Ea 2 now ceases to have any defin i te value characteristic 
of the whole structure an d its load. 3uckingham's theorem 
cannot be applied unless definite nume ric a l valuos can, at 
least in princ i ple , be given to a ll the variables involved, 
and it dOes not ne c essar il y h ol d unl e ss there is just ~ 
relation between these variab les. ( See refer en ce 2 .) In 
the set (4), with a on the left, there would be a rela­
tion betwecn a and E as well as the re l ation between 
all the symbols whi ch i s the r e~uir.od formula for 0. 

In order to over co me these difficulties, it is ap ­
propriat e to re c onsider the who le process of determining 
stregs-str~in relations exp erimentally , putting them in a 
form valid in all unit systems, and combining them with 
the equations of compatibil ity and equilibrium. and the 
boundary conditions. ne ce ssary for the solution of the 
problem. I~ is the stress-strain r elat i ons which re~uir~ 
particular attention , no special measur e s being re qu ired 
to put the other e~uations in a form vali d for all unit 
systems. I n an experimental determinat io n the stress and 
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strain will be recorded in definite units, and the six 
components of stress all a 2 , and so forth, will be found 
as functions of the si x components of strain (not neces­
sarily small) el' ea, and so forth, sayS 

These relations involve only specific numbers q besides 
the a and e symbols, and they are, of course, true 
only in the units selected. 

Consider now the relations 

---)et c • . 

where El , Ea ---, and the ('S are as yet mer el y arbi-

t r a r y par am e t e r s • Wh en the y ar e g i v e nth e val u e 1, the 
relations (equations( 24») become identical with equations 
(23). They ~re now assigned the value 1 in the experimen­
tal unit system. Let El , E2 be assigned the dimensions 
of stress (i.e,t their values in new unit systems are de­
fined to be those obtained by applying the conversion 
factors appropriate to stress) and let the ('S be as­
sig~ed the dimensions of strain (as discussed in sec, 2). 
Th en equations (24) are stress-strain relations of the ma­
terial valid in all unit systems. For they are true in 
t he original unit system, In a changed unit system the 
E's c h ange by the same factor as the a's and the e's 
by the same factor as the ('S, sO that the ratios olE 
and e/( remain the same, and the equations remain valid. 
The n u mbers q involved in the functional forms q> are, 
of course, not changed when the unit system is c hanged. 
That is. t h ey are dimensionless numbers. 

The problem of determining a stress component a in 
a structure with loads P, aPt ~p. and sO forth, and lin­
ear dimen sions a, b, c --- now involves (as dimensional 
constants) the E's and (IS, the list being 

Symbols E i , (ij' i = 1, --- 6, j = 
and one additional fundamental unit 

i 

1, - - - 6 he.v e b e en ['.clted 

(that of stra i n) is <'1.c1mit t eCi. . 

sCreep, effects of rate of stra in, etc. are not taken 
into account. 
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There are consequently three fewer arguments than symbols, 
and they may be taken as those appearing in the functional 
relation 

b c 
I a - a 

E,(! 

E • 1 

(12 

'E: ' 1 1 

EO 22 ___ ) ( 26) 
( 1 1 

This is the form the stress formula must take to be valid 
in all unit systems, wh en the material has the st ress­
strain relations (23) in the origina l unit system and the 
E's an d E'S are defined as above. 

It is necessary now to redefine the Els and E'S, 
allowing them to assume any values in t he ori g inal unit 
system. Then equations (24) define a famil y of stress­
strain laws. The Ets and (IS may ch ange on account 
of a change of unit system, or on account of a ch a n g e to 
another material. The general problem is now to find a 
stress f ormula to cover a ll systems obtai nab l e by varying 
the s y mbols in (25) (omittin g a a s the dependent variable). 
The dimensional analysis of this problem results in equa­
tion (26) agai n . Let there be a s t r u cture ~ith definite 
values (in the ori g i nal units ) of all the symbols, includ­
ing the E's and EtS, whi ch are, of course, deter min ed 
by the materia l u sed. A model then may be constructed of a 
different mat eri a l belonging to the fa mily (equations (24». 
To be able to interpret its behavior i n th e abs ence of 
further knowledge , it will be necess a ry to make all the 
arguments on the right of e qua tio n (2 6 ) the same as for 
the prototype. This again , of course, leads t o geometrical 
simil a rity . similarity of lo a d distribution, equality of 
the strain numbers P/E 1 a 2

t but also 

That is, the Ers of the mOdel material must be those of 
the structure material multiplied by some n umb er ~, and 
the (IS si milarly with an independent factor ~ ~ Thus 
if the stress-strain relations of the struc tu re mat erial 
are 

(28) 

6 Not POisson ' s r a tio . 
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in a definite unit system, those of the model material 
must be 

e2 ° 2 e 2 °1 (e l ---) . ¢2 (elJ.l . ---) . = ¢ -, --, = --I etc. (2 9 ) 1 IJ. A A IJ. IJ. 

These may be described as obtained by an affine transforma­
tion from the former. In a two-dimensional problem where 
the variables are limited to those explicitly shown in 
equations (29) (except for a third relation, such as that 
of incompressibility, yielding a third strain component 
in terms of ell e 2 ), 0"1 in equat ions (28 ) could be re p ­
resentod as a surface over an e l , e 2 plane. Then the 
0"1 surface in equation (29) is obtained by deforming 
this surface by uniform extension in the J 01 direction 

by the proportion A, and uniform extension in the e 1 e 2 
directions by the proportion IJ.. The scales of 01' e 1 , 

e 2 remain undeformed. The 0"2 surface is treated sim­

ilarly. In one dimension the stress-strain curve (eQua­
ti on (29)) may be imagined obtained by drawing that of 
the structure material (equation (28)) on a rubber sheet, 
on which is placed a rigid axis frame bearing the rigid 
scales, then stretching the rubber sheet under the frame 
to IJ. times its original length parallel to the strain 
axes, A times its original length parallel to the stre9S 
axis. The factors A and IJ. may. of course, be arbi­
trarily chosen. There is thus no necessity to ma~e a 
model of the same material as the ~tructure, even when 
curved stress-strain relations, elastic or plastic, are 
involved. But, in the plastic case, the functions ¢ in 
equations (28 ) are not, in general, single-valued, and', as 
pOinted out in section 2, the dimensional analysis does 
not then necessarily hold. However, the functions become 
single-valued if a definite mode of loading and unloading 
is prescribed. Thus the values of P/E 1 a 2 for t he model 

must go th rough the same values in the same order as the 
values of P/E 1 a 2 for the structure, for the above simi-

larity rules to apply, 

When the same material is used in both model and 
structure, the-ratios E 2 /E 1l and so forth, t 1 2/ £11' 

and so fo rth, in equation (26) are all unity. 
then requires, besides geometric similari ty 

S imilarit y 
(b / a, c I a - --) 

" 
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and s i mi l a r distribution of lo a d ( a , ~ --- ), equality of 
the strain numbers P/E 1 a 2 • Si n c e th e use of the sam e 

units for bot h model and stru c ture is now co n temp l a ted, 
this means equality of P/a 2 , I t t hen follo ws fro m equa­
tion ( 2S ) that aa 2 /p is the sam e fo r both - for example , 
stresses at correspo n di ng points are eroual. 

The a r gume nts of t ~ is s 0ction may e as il y be e x tendod 
to cover prob l ems other than t h ose o f prescribed loads, 
s u ch as those of prescribed displacement s , or "mi xed " 
problems, which hav e been dis cu s sed in preceding sections 
for tho i deal el as tic material only. The modific at ions 
of tho pre cedi ng tr oatments a rc me rel y that El r e places 
E, in str a in Dum-bers P/Ea 2 , or R/Ea 2 a nd the a ffi n e 
connection must hold b etween the stress-strai n rel at ions 
of mode l and structure material . 

It wil l be observed that t h e n um eric a l value of El 
i n equations (2 4 ) can be c hosen at will in a g iven uni t 
system . Different c h oices will res Qlt i n co mpensating 
d iff e r en ce s in the numeri c a l coeffici ents . Once El has 
been c hos e n in the select ed system , howeve r, its value i s 
fixed i n a l l o the r unit systems since it has the dimen­
sion a lity of stress, It will sone ti ~e s be c onv e nient to 
c hoose El as t h e e lust i c Youn g 's modu lus of , the r:1aterial , 
for the sake of c on t inuity with the c l a s t ic r ane e in p lot­
ting. 

An exa~p le of a pr oolem of nonline ar st res s - strain 
rel at io ns i s providei by rubber s p ri ng s , the rubber be-
in g a tt a c he d t o stee l mou ntin g s wh ich ma y be regarded as 
undeformable . This, a s a problem of g iven lO ad , is one 
involving two ma terials, steel and rubber , but n O symbo l s 
need be i nt roduced for t he propertie s of t he steel, si n ce 
it i s rigid . The pre cedi ng the ory sh ows that a simp l e 
similarity re l at ion can exist when the s ame materials are 
used for t wo such Gprings whi c h a r e ge ometrically simi l a r. 
In particular , the n the s ame rubber i s used i n t wo ge omet­
rically simi l a r sp rin g s the c u rve of u / u against P/a 2 

i s the sa~e for both , the Same u nits being used . Curves 
of this t ype have b ecn pub li she d. ( See re fe r e nce 6 . ) The 
present dis cussion ShO\"I5 t h at they co nta i n no "size effe c t . II 

An examp le of si mi l a rity i n the ~ l as tic rAnge i s af­
f o rded by the simp l e t ens il e test , Tho simi l a rity of the 
deformed shapos and t ho ide n tity of the stress-strain 
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curves , for specimens geometrically similar but of differ­
ent sizes, has been experimentally confirmed, and is known 
as Barba's law. (See, for instance, reference 7.) The 
dimensional analysis made shows that such similarity ex­
ists generally (the stress depending only on the strain). 

It is of interest to compare the deformed shapes of 
two test pieces, or other structures, of the same size 
but of two different materials with affinely related 
stress-strain laws (equations (28) and (29)). A dfsplace­
men t for m u lam us teo r res po n d tOe qua t ion ( 26 ) wit hoi a 
on the left instead of cra~/p. Then the values of cia 
for the two pieces are the same - that is, their deformed 
shapes are the sam e - when their values of P/Ela~ are 
the same. If the ,pieces are of different sizes and geo­
metrically similar in the undeform~d state, they are also 
geometrically similar in the deformed state at equal val­
ues of P./~la2. 

Nadai (reference 8) quotes as an example of similar­
ity in elastic-plastic systems, which, of cour~e, are in­
cluded in the theory of this section as well as fully 
plastic systems, the case of a series of balls indenting 
blocks. If the material is the same for all the balls 
and for all the blocks, and if the loads are as the 
squares of the ball diameters, the stresses will be the 
same at corresponding points and the depths of the inden­
tations and the diameters of the plastic zonas on the 
block surface will be as the diameters of the ball~t pro­
vided the effects of time of loading are negligible. A ' 
time variable could be included in the dimensional anal­
ysis and the similarity conditions correspondingly extended. 

9. BUCKLrNG 

Returning to the problem of prescribed loads of sec­
tions 2 and 7, in order to cQnsider questions of stability, 
it is appropriate to review the several types of buckling 
which are now recognized. There is the idealized buckling 
of geometrically perfect strut s. , illustrated by the load 
deflection curve of figure 'l(a), where no deflection at 
all occurs until the critical load is reached at A; and 
above the critical load there is an unstable straight 
form E and a stable doflected form O. Secondly, there is 
actual buckling of a geometrically imperfect strut; of a 
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:B 
c 

A I----~ 

Deflection Deflection 
(a) (b) . 

Figure 1. 

Deflection 
(c) 

/ 

I '" ,- --

Deflection 
(d) 

slenderness su ch that there is n O f ai lur e of proportion ­
ality until well b eyond buckling ~ This behavior i~ illus­
trated by fi gure l(b). There is a unique deflection at 
each load , and n o instability in t h e sense of fieure 1( a ). 
The sens e of "buckling ll h ere' is, of cour se , the inordinate­
ly rapid incr e ase of deflection when the lo a d is i n the 
nei ghb orh ood of the Euler critic a l v al ue. 

Thi rdly, there is buckling after the proportional 
limit has been exceeded (see, for instance, reference 9 ), 
characterized by the type of load deflection curve ehown 
in figure l(c). Here there is true mechanical instability 
at and beyond the maximum load point, and this maximum 
load is t he critical load. 

Fina lly, there is buckling of the snap-over, or "oi1-
canning," typ e of which the kinds of curve shown in fig­
ure l(d) are characteristic. The sketeh in figure led) 
of a sl ightly curved bar or plate with rigid or stiff end 
or edge constraints and a transverse load illustrates one 
way of realizing such a curve, (See reference 10 ; ) It 
appears that the buckling of shells may belong to this 
type rather than to that of figure lea) or l(b). Points 
on the rising part of the curve OA represent stable 
forms, but there are alternative forms at larger deflec­
tions, to which the system may jump when assist e d over 
the peak by a suitable impulse. (See reference 11, ) 

Instead of lOad-defl e ctio n curves (p against 8) 
p 

Ea:a 
may be plotted against 

amples of the 
I) 

against 
a 

8 ;:, re g arding them as ex-

curve discussed in se ction 
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3 . These curves are then valid for both a model and its 
prototype. However the critical load in figures l(a), 
l(b), l(c), and 1(<t) may be defined, it will be done by 
singling out a particular point of this curve, and this 
point will characterize the buckling for both model and 
structure. Thus buckling will be characterized by a de­
finite strain number P/Ea 2 whether the displacements 

24 

concerned can be regarded as small or not. This is evi­
dently analogous to the characterization of turbulence by 
a definite Reynolds number. The critical loads Pmcr 

and P of model and structure are related by 
scr 

~here curved stress-strain relations, elastic or in­
elastic, must be ponsidered, the discussion in section 8 
permits making the same statement about the strain number 

P/Ela2~ If model and structure are of the same material 

Pscr 
== 

(the same units bei~g used for both) and the critical 
stress es are the same whether the buckling is within the 
elastic range or not. 

II. TESTS ON BUCKLED THIN S~UARE PLATES I N 

SHEAR, WITH AND WITHOUT HOLES 

SUMMARY 

In order to test the validity of similarity principles 
for structures involving buckling and plastic flOW, meas­
urements of strains and displacements were made, at 
Cornell University. on square thin sheets in shear, with 
and without holes. With certain exceptions, the measure 
ments follow closely the indications of the similarity 
princ!ples. The results are shown in figures 5 to 12, 

J 
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which are dimensionless plots of the meas~rements. For 
similarity the points in each figure should fallon a 
single curve. 

10. THE TEST PROGRAM 

It appears from the engineering literature that the 
possibility of drawing such conclusions as those of part 

25 

I is frequently Qverlooked, and that unnecessarily elab­
orate and expensive model testing has been carried out in 
recent years~ Similarity in the plastic range is well 
known to some, but .others have denied the possibility of 
it on the grounds that the physical constants required for 
the specification of plastic behavior in metals are not 
defined. Barba's investigation of similarity in the ten­
sile test has been referred to in section 8. No record 
has been found of investigations of similarity in plastic 
bending or torsion, but in view of the dimensional analy­
sis of section 8 there can be little do~bt that it would 
be found to exist. No tests of this kind were therefore 
included in the program. 

The aircraft problems of chief interest are those of 
thin-walled structures. The difficulty of making satis­
factory thin-walled models ha~ been emphasized by Saunders 
and Windenburg (reference 12), and others, The wall 
thicknesses in the prototype being already small, those 
of a small model will be very small, and lack of flatness 
of the sheets b~comes poportionately more important, 

11. TEST SPECIME! AND ~UANTITIES TO BE MEASURED 

The structure chosen for the tests was the square 
panel of thin sheet 24S-T aluminum alloy confined in a 
hinged frame of "rigid" bars (heavy angle irons were em­
ployed) and subjected to shear, as indicated diagrammat­
ically by figure~. Specimens with and without central 
lightening boles were tested. Three sizes of frame (de­
signed as nearly as possible to be geometrically similar 
~ see fig. 3, table I), two sizes of hole t and f i ye 
thicknesses of sheet were used, ~his structure p resents 
certain of the fundamental problems of the thin web beam -
the strength of the panel and its mode of wrinkling, 
which are important in themselves - and affords a 
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convenient trial of the possibility of making reliable 
small scale tests when thin flat sheets are involved. As 
treated here, it is essentially a problem of large dis­
placements going beyond the elastic limit. 

Taking the bars of the hinged frame as rigid, the 
problem involves deflections (5), stresses (cr), and strains 
(e), in a plate defined by the following quantities: 

The s ide of the s quare (a) 
angle frame) 

(inside dimension of 

The thickness of the sheet (t ) 

The diam~ter of the central hole (D ) 

under a "shearing load" P (fig ~ Z ). 

The dimensional analysis then indicates relations 
the form 

! (_f;. t D ~) ::: f1 • -, 
a '-Ea a a 

a (2-. t D ~) = f2 - , -, 
E Ea 2 a a 

(;;2' t D ~) e ::: f;3 -, -, 
a a 

of 

where E is a dimensional constant as defined in section 
8 if there is plas~ic deformation, or a curved stress­
strain relation, or merely Young's modulus below the elas­
tic limit. In any case, when the model is of the same ma-

' terial the prototype. the curves of 0 against 
p 

as - -, a a 2 

of cr against p and of e against p are the same -, 
,. a 2 a 2 

for all panels in which t p the For this in--, are same r a a 
vestigatlon, loung's modulus of ~O.5 X 10 6 w~s used for 
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E. and all curves were plotted against 
p 

Ea. 2 • 

27 

Since the 

strain, not the stress, can be measured directly, the test 

curves are of ~ and 
a 

e. 

The measurements of the panels proposed for the tests 
are snown in table II. The entries connected by broken 
lines are groups with the same values ~ 6f both t/a and 
~/a. out represent panels of different size. The choice 
of these was governed by the available thicknesses of 
sheet. Similarity is established if pOints of all mem- · 
bers of each group fallon the same dimensionless curve, 

b 

c 

d 

e 

t 

g 4 X 

TABLE t (See fig. 3) 

FRAME DIMENSIONS 

31.5" 19.58" 

36.0" 22.4" 

Ii'· 3/4 11 

. 
111 3/8 11 
2" 

3i'f '3.0" 

31;3 X l 
:3 2i x 2 x 5/16 

Small frame 

8.75" 

9.81 11 

11.25" 

3/8 1f 

3/16 If 

3j. 1I 1 16 

12. EXPERIMENTAL PROCEDURE ANP APPARATUS 

The hin ged frame holding the plate was supp or t ed lat­
erally and loaded by means of a hydraulic jack. (S e e fig. 
2. ) The deflection c was measured across the long . 
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~iagonal by means of a dial gage, this measurement being 
independent of any rotation of the supporting wall. 

The strain measurements were made with the SR-4 type 
A-l Baldwin Southwark electrical strain gages. The gages 
were connected in the d~mmy-gage temperature compensated 
bridge circuit shown in figures 4 and 25. The bridge 
sensitivity was 0,000026 inch per inch per millimeter on 
a graduated slide wire for null balance of the bridge. 

In plates without holes, the electric strain gages 
were placed along the center line of the diagonal tension 
fold, which appeared at approximately 42 0 with the hori­
zontal sides. Two of the gages were placed in a direc­
tion perpendicular to this line, one on each side of the 
sheet, so as to measure the bending and direct compression. 
In plates with holes, the gages were placed at the edge of 
the ho~e at the positions of maximum bending and maximum 
tension. These positions can be seen in the photographs 
of the test specimens (figs. 26 to 40). 

In addition to the preceding measurements, the maxi­
mum amount of lateral buckling y was measured from the 
initial plane of the plate. Thi s appeared at the middle 
of the center diagonal tension fold for specimen without 
holes, and at the edge of the hole along a line approxi­
mately 42 0 with the horizontal sides for specimen with 
holes. 

13. TEST RESULTS 

Measurements of the specimens tested are given in 
table Ill. Eecause of the variation in actual sheet 
t h i c k n e s s fro m va fu esc 0 n t em p 1 ate d, ~ twa s not a 1 way s 
possible to obtain exact duplication of numbers given in 
table II. 

Four sets of curves we re drawn for each simila rity 
group. (See figures 5 to 12. ) They are: 

Curve (a ) Tensile strain at against P/Ea2 

Curv e (b ) Bending f3 trai n eb against P!FJa2 

Curve (c ) piagonal displacement ala a gainst p/r,a 2 

Curve Cd ) La t eral displacement y/a against P/Ea2 
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The direct compressive strain in each case was found to 
be quite small and was therefore not plotted, The follow­
ing symbols were used in drawing the curves. 

b values for small frame 

X values for medium size frame 

o values for large frame 

Figures 13 to 24 represent a summary of the average 
curves grouped in such a way t~ show the variations due 
to different values of t/a and D/a. 

Photographs of the specimens are shown in figures 
25 to 42. Tabulated data for the curves are given in 
the appendix. 

r ---------
Similarity 

group 

I 

II 

III 

TABLE 11.- PROPOSED TEST SPECIMENS 

--~-T-~-- ~~~~~~~~: 2t;~:~::~~~~:5~~;7~~n;' 
a .!. X 10 5 ! X 10 5 I .!. X 10 5 1 

o 
o 
o 
o 
o 

0,428 
,428 
• 428 
. 4 28 
.428 

a I a a 
--- - -----------r---------t---------
0.06 4: 228 -- _ 3 5 8 , ..... 1 

.051 182 __ 1---- ........ 
• 040 -- --- 230_ .......... 
.032 114- _ 1. ---184 ----1_,'36 6 
.020 - - 115 -- 229 

-- --------t----------~--------
0.06 4 

,051 
.040 
.032 
,020 

228 -- '_ I 368 _I 
182 +- _ "' ~ 

-- -- -- _ -- 230 _ .......... 
I --184 --- J ...... 36 6 

---I I -- 229 
____ _ _ _ _ • _ _ -.... . ________ 0 ______ ------

0.643 0,064 
. 6 43 ,040 
.643 .020 

228 - _ 1 

I - 230 - -1 
_______ L ___________ L ____ ~~ __ 

J 
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(Key to Curves, Figs. 5 t o 24 ) 

----- ------,---- -------- -------l Diag_ 
Ten s i 1 e Bend - anal Latera l ~ Group D t X 10 5 
strain ing dis place-- - displace-a a strain ment ment 

----- ------ ----------- --_._- ---- ----- ------
I 0 364 Fig . 5 (a ) (b ) (c ) (d ) I 

0 238 Fig . 6 (a ) (b ) (c) (d) 
0 183 Fig . 7 (a) (b ) --------- (d) 
0 117 Fig . 8 (a) (b ) (c ) (d ) 

--- --- ----------- ----- -------- -------
II 0 .. 428 36 4 Fig . 9 (a ) (b ) (c ) (d ) 

.428 229 Fig~ : 10 (a ) (b ) (c ) (d ) 

.428 182 Fig . 11 (a) (b ) (c) 1 (d) 
---- --------- -------------- ------

III 0.643 228 Fi g . 12 (a) -__ ~~~--I __ ~~~ _____ (~ __ ------ --------.---

SUMMARY CURVES 

Group D Figure Ordinate Abscissa Parame t er -

I 

II 

r
---------------
I II III 

L-------

o 
o 
o 
o 

a 

0.428 
. 4 28 
. 4 28 
.428 

13 P/a2 E eT 
14 P/a2~ eb 
15 P/a 2 E o/ a 
1 6 P/a 2 E y/a 

17 P/a2 E eT 
18 P/a2 E e b 
19 P/ a 2 E o/a 
20 P/a2 E y!a 

t/a 
t/a 
t/a 
t/a 

t/a 
t/a 
t. / a. 
+ ' ,,' a 
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Simi­
larity 
group 

1------
I I o 

o 
o 
o 

' 0 

II 0.428 
.428 
.428 
.428 
.428 

III 0.643 
.643 
.643 

/ 

TABLE 111.- SPECIMENS TESTED 

------ --------r-----------r- -- -------
36" frame 22.4n framelll.25rt frame 

t ~ ~-~~~~L-~-=:.-=-~~~~~-~-==--~~~~~-
nom ina 1 t 5 Itt 

_ X 10 _ X 10 5 I - X 10 5 

------ --<:..-------I---a-------1----<:..-----
0.064 228_ l 368, 

.051 182 - _ .......... 1 

.040 - -1 __ -- 230 , ............ 

.032 114_ --184---1._ .... '360 

.020 -,- - -121 I -- 240 

-~~~;; ----;;8----I----;~-8----r '-------

.051 182:-,--__ ............. 1 

.040 -- -- 230 ..... "-

.032 1--181----1- __ '360 

.020 I - 229 
----------------~----------------------
0.064 228- -f- I 

• 040 J I ~ - 230 - - _I -
.020 I' - - 228 

_______ __________ L _______ , __ _ L ________ - __ 

14. EXPECTED ERRORS 

31 

Similarity measurements must be made over geometri­
cally similar regions. ' This requires that the strains be 
measured over geometrically similar gage lengths as well 
as geo metrically similar positions. Since the size of 
the electrical strain ga g es used fo~ strain measurements 
was invariable, the strain areas covered by these gag es 
were proportionately larger for the small specimen com­
pared t o the large specimen. In regions where the varia­
tion in strain is large - that is, r.ear the edge of the 
central lightening hole - this deviation from similarity 
may be expected to introduce large variations in the 
strains measured. To investigate the magnitude of such 
variations, the following analysis was made. 

stresses in the radial and e directions near the 
edg e of the hole, due to shear, are first obtained by 
superimposing uniform tension and compression, equations 
for which are given by Timoshenko, (See reference 13, 
p. 7'7 .) 
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Uniform tension 
S ( 0 2) S ( 3

04
) G

6 
= - 1 + - - - 1 + - cos 2 8 

2 r 2 2 . r4 

(~ 
/ 

S s 
(j r = ~ (1 _ 02

) + ~ (1 + 30: _ 4~2) cos 2 e 
F " 43. 2 rZ 2 r r l.g. 

Uniform compression 

S ~ -f (1 b
2) S 

( 3
b4

) G& + z -- 1 + r 4 COG 2 e 
r 2 

r -" I 

_ b 2) + §. ~ 3b
4 

4b
2
) = - ~ (1 28 (j; o r 1 + - - ~ co s 

r2 2 r 4 r2 

Fig. 44. 

Superimposed 

s 

s ( 
304) 

(j 6 == - S 1 + 7 co s 2 6 

( 
30 4 402~ 

45. (Jr = S 1 + r 4 - r2 ) cos 2 e 
stresses at A due to shear. 

s1'(3 S 

,~ __ A_'~ (J == _ S (1 + ~ _ 40
2

) 
S Fig. 46. r r r2 

Strain in the e direction at A due to shear. 

e6=~ (ere - \> err) 

E;G _ (1 + \» (1 + ~b:) _ 4 ~ :: ~ strai n concentrat i on 
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The strain co n centration as a functio n of the radial 
distance is plotted nondimensionally i n fi gure 47. The 
p osition and dimensions of the strain gages are shown i n 
figure 48 . For each case, t h e center line of the tensile 
gag e was 0.34 inch from the edge of the hole. Th e strain 
concentra tion for the various panels and the calculated 
variations are given in table IV. Th e analysis ind icates 
a possib le strai n v a riation of 39 percent. Variations of 
thi s magn itude were found only in one test. However, it 
should be remembered that in all tests the load was c a r­
ried well beyond the proportional li mit; while the analysis 
holds on ly below the proportional limit. 

TABLE 1V.- STRAIN CONCENTRATIO N FACTOR FROE FIGURE 47 

1t. b r = b + 0.3 4 12.. Ee e 
Ratio Variation 

a 
(in. ) 

r S 
(percent) 

0.428 1.88 2.22 0.846 2.43 1. 00 ---------

.428 3 .73 4.07 . 916 3.04 1.25 25 

.428 6.00 6.34 . 947 3.37 1.39 39 

.643 2 .81 3.15 . 891 2.81 1.00 ---------

.643 5.60 5. 94 .942 3.31 1.18 18 

.643 9 .00 9 . 34 . 963 3.56 1 . 27 27 

15. DISCUSSION OF TEST RESULTS 

In the test curves (fi gs . 5 to 1 2) , similarity in 
the behavior of the specimens of different sizes is dem­
onstrated if the test points for the different s pe cimens 
fallon a single curve. In sever al c ases this occurs 
very accurately. In several others there is considerable 
scatter, raising the question whether this is due to in­
correc t expectations of similarity, to c auses which 
prevent satisfactions of similarity, or to errors of 
measurements. 
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The answer to this . question cannot be made with any 
assurance. No reason can be found for the alinemont of 
test points for one group of specimens and the scatter of 
points for the same measurements of another group , How­
ever, some possible causes for this lack of uniformity 
can be listed as follows: 

1. Possible variation in the properties of the dif­
ferent sheets 

2. Variation of sheet thicknesses 

3 ~ Sheets were cut and used without reference to the 
direction of rolling 

4. Olearance in the bolt holes, both in the sheets 
and the frames, is approximately the same for 
the three sizes of specimen, thereby being 
proporti onately lar ge r for small specimens 
compared to the large specimens. 

5. Exact duplication of similar positions for the 
electrical strain gages was difficult to obtain. 

6. Size effect of electrical strain gag es (discussed 
under errors) 

7. Because of large differences in range of loads 
between large and small specimens, it was neC­
essary to use two different sizes of hydraulic 
jacks for loading. The release load at the 
end of each stroke is different for different 
jacks . 

8. The method of measuring lateral deflection of 
sheets Was not entirely satisfactory. A heavy 
bar Was placed across the frame and the dis­
tance between it and the sheet was measured. 
This method wa~ found to be somewhat unreliable 
in that the frame edges were not always free 
from rotation. 

9. Yielding of test jig is greater for larger speci­
mens and although the diagonal displacement 
should be independent of any small rotation of 
the supporting wal l, if such rotation produces 
bending of the frame, it could result in errors 
of the diagonal measurement, 
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The average curves of figures 5 to 12 were re p lotted 
in figures 13 to 24 to show the variations resulti ng from 
c hanges i n t/a and D/a. The results appear reaso nab le 
in that none of the curves crossed out of order from 
their proper domain. 

The results as a whole indicate a Teasonable de g ree 
of similarity attained in most speci mens. An aver age of 
the probable error of the various measurements was esti­
mated from the curves to be as follows: 

(percent) 

~ - 10 
a 

y 

a 
- 15 

Variations of at leas t twice the averag e errors may be 
expected in individual measurements . Improvement in the 
tec hn i que of testing and measu rement should re sult in 
greater accuracy. 

16 . CO NCLUDI NG REMARKS 

Th e test program Was carried out with the de g ree of 
accuracy usuall y met by aircraft industries, and nO ef­
fort was made to g o beyoLd this in refinem ents. Con­
sidering th e difficulty of satisfy ing accurately to every 
detail the similarity conditions for thin-walled sectio n , 
the test results indic a te a fair degree of si milarity 
established. It is t h e aut h ors! opinion t h a t g reater aC ­
cura c y Can be obtained with furt h er refinement s . 
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APPENDIX TO PART II 

SYHB 01S 

t thickness of sheets 

a inside dimensions of sheet (See fi g . 3. ) 

D diameter of h ole (See fi g . 3 . ) 

P load pounds (See fig . 2. ) 

8 displacement along diagona l (See fi g. 

eT strain parallel to tension fold 

bending strc:.in ~ to tension fold 

co mpressiv e str'=tin to tendo n fold. 

y lateral displac3m~nt of sheet 

Colle g e of ~ngj. n6eyi ng , 

Corn El~ U~lv6 r c i ~ y , 

I tha~~, N. Y. , January 26, 1944. 

2. ) 

36 
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* 10-3 10-3 10.3 1C1"'3 inch 

0 0 0 0 0 0 
720 13 .516 - 1.15 .445 

1350 25 .910 .. 1.89 .~3 .091 
1890 41 1.49 - 2.72 1.112 .110 
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D/a = 0 

Figure 27. 
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Figure 26. 
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a -= 17.4" a == 28.0" 
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D = 0 D = 0 
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D/a :: 0 D/a = 0 

Figure 30. Figure 29. 

I 

L~~- _ 

Laboratory set-up 

28.0" frame , 

Figure 28. 

~ a » 
~ 
~ 

~ 

«) 
eN 
VI 

'1j 
~ 

oq 
m . 
l\J 
0) .. 
l\J 
eD .. 
~ 
0 



• 

a = 8.75- a = 28.0" 
t I: .021" t = .064" 
n = 0 D c 0 
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Figure 33. figure 32. 
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Figure 36. Figure 35. 
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a == 8.75" 
t = .020" 
D = 5.62" 

t/a = 228 x 10-5 
D/a = .643 

Figure 39. 
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Figure 38. 
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Figure 37 . 
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Figure 40.- Tested panels. 

Figure 41.- Tested panels. 

Figure 42.- Relative sizes of frames. 



l~.ACA TN No. 933 

r 

4.0 

~ 
" 

3 . 0 
r 

2.0 

1.0 

I 

sl ~ 
'\ 

'" -
"\ 
~H ~ 

:"'-. 

~ 
~ 

I 

+-
I 

! , 
I 

Eee 
( l+.~J (1 + 3 = S 

I , 

0.90 

-
s ! 
~ 

Q fS 

... 
S 

I 

~ 
~ 

I "'"" i--
I I ~ 

I 
b4 b OO 
-) -41) -
r 4 roo 

I 

b 
r 

---+-----
! 
I 

, 

Figure 47.- Strain concentration factor. 
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