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APPLICABILITY OF SIMILARITY PRINCIPLES TO STRUCTURAL MODELS

By J, N, Goodier and W, T, Thomson
SIMILARITY PRINCIPLES FOR STRUCTURAL AND DYNAMICAL MODELS
SUMMARY

A systematic account is given in part I of the use
of dimensional analysis in constructing similarity con-
ditions for models and structures. The analysis covers
large deflections, dbuckling, plastic behavior, and ma-
terials with nonlinear stress-strain characteristics, as
well as the simpler structural problems.

1. INTRODUCTION

Similerity principles for guidance and interpreta-
tion of model tests in engineering frequently have been
based on the differential equations of the problem or on
more or less intuitive conceptions of what similarity
means, as, for example, in fluid mechanics when similarity
is taken to mean that the ratios of inertia, viscous, and
gravity forces at corresponding points are the same, Or
that the streamline patterns are geometrically similar,

It is now recognized, however, that it is much more satis-
factory to apply the general dimensional analysis of .
Buckingham (reference 1) and P, W, Bridgman (reference 2).
This method has been thoroughly developed in general phys-
ics and fluid mechanics, but apparently not in structural
mechanics.

The question as to what is meant by structural sim-
ilarity fregquently can be answered in a very simple manner,
But the complications implied by the use of several mate-
rials in a single structure, the use of models not made
of the same material as the profotype, buckling and
related behavior, plastic flow, thermal stress, and the
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various combingtions of these, besides the problems of
fluid~structure combinagtions, as for instance in dams,
wind vibrations in suspension bridges, and flutter, re-
quire an analysis more comprehensive than immediate in-
tuitive notions can well supply. Such an analysis can
be as readily made, by the methods of Buckingham and
Bridgman, in solid mechanics, or for solid plus fluiad
problems, as in fluid mechanics., Nonlinear problems,
buckling eriterions, plastic flow, all can be dealt with,
although at first sight the lack of adequately defined
physical constants to characterize the inelastic prop-
erties of materials seems to put obstacles in the way of
dimensional analysis, with its primary requirement that
a list of symbols concerned be drawn up.

The author is indebted to Drs. Tuckerman, Ramberg,
and Osgood for the suggestion that an investigation of
similarity under affine stress-strain relations would be
desirable.

2. DIMENSIONAL ANALYSIS AND SIMILARITY PRINCIPLES -

NONDIMENSIONAL QUANTITIES -~ DIMENSIONAL CONSTANTS

Only a brief introductory account of dimensional
analysis is given here, For a full account the reader is
referred to references 1 and 2.

As Bridgman (reference 2) emphasizes, the first ob-
ject of dimensional analysis is to make sure that the
formula for a required quantity, as the solution of a
definite physical problem, will be valid no matter what
system of units is used to give numerical values to the
quantities concerned, just as the bending stress formula

0 = Mc/I yields the same physical stress in tons per

square foot, if tons and feet are used as units for N,
¢, and I, as it does in pounds per square inch, if
pounds and inches are used as units,

This validity in all unit systems is, of ceurse,

s ; v (37 i OI ;
equally well expressed by the statement that ﬁ: is the

same in all unit systems, and this is what is meant by
"dimensionless.,"
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Let the list of symbols concerned in a problem be

X,, Xz, X5 - -~ -, X, being sought in terms of the others.

There usually will be several dimensionless groups (prod-
ucts of powers of the symbols), say II,, IIz, and so

forth, and it may be shown that the number of independent
groups is equal to the number of original symbols less

the number of fundamental units., Buckingham's Il-theorem
states that, when there is only one relation between the
symbols, it must, in order to be valid in all unit systems,

take the form

Ih, & & (s, Tlgs = = =) (1)

with f( ) as a constant if there is only one dimension-
less group II,. When there is more than one relation be-

tween the symbols, the requirement of validity in all
unit systems can be satigfied without dimensional homoge-

neity, as Bridgman illustrates by adding v = gt to

s = 2gt® to obtain v + s = gt * Lgt®,

The problem contemplated so far is the following?
Given a set of symbols, representing the numerical meas-
ures of the corresponding physical quantities {as soon as
a unit system is selected), what restrictions on the
functional relation between them are implied dy the re-
quirement that it shall be valid in all unit systems? In
contemplating a change of units, of course, only a single
feature of a definite physical system is considered - for
example, the stress of a given kind at a given point of a
given structure with given loads. This, however, is to
be obtained from a formula of the type of equation (1),
In such a formula it is supposed that all quantities
which may be represented by variable numbers, including
physical variables and physical "constants" which may
change in numerical value with change of unit system, and
so are not dimensionless, are represented by symbols,

The functional relation then holds for variations of its
arguments, no matter how produced. The form (equation
(1)) so arranges the relation that in fact no variations
in the TII's, and thus in the value of the function,
occur when the numerical value of the original symbols
changes by change of unit system,

But the functional relation (equation (1)) is valid
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for all values of the symbols in the ranges permitted by
physical considerations, just as oI/Mc = 1 is valid for
all permitted values of o, I, M, ¢y Changes can thus be
contemplated in the values of the symbols cerresponding
not to a change of units for a given physical system, say
a structure with given loads, dbut to a passage from this
to another structure with other lo0ads, of course, within
the class of structures and loads covered by the contem-
plated formula, as, for instance, the class of beams and
loads covered by oI/Mc = 1. Then without knowing the
functional form f in equation (1), it can be said that
if the groups Il,, Ily - - - in equation (1) have the
same values in the two systems, then f( ) and therefore
IT, will have the same value for the two systems.? The

equality of the grqups in f( ) thus provides a set of
"similarity conditions" governing the construction of a
model, and equality of the II,'s for model and structure
then provides a similarity relation by which a measure-
ment on the model can be made to yield the corresponding
quantity for the structure, This analysis is applied in
what follows to various types of structural problem.

In making such applications it is necessary, of
course, t0 be able to assign "dimensions" to all gquanti-
ties concerned. An angle is commonly regarded as a di-
mensionless gquantity, radian measure being obtained by
dividing length by length, The significance of "dimen-
sionless” here is merely that radian measure does not
change when the length unit is chamged, But "angle" is
not dimensionless if changes to degrees or revolutions
are contemplated, and such changes should, of course, de
considered if anything can be deduced therefrom. This is
sometimes the case, as appears later. However, if this
is done, the equation relating angular measure 6 t0 arc
8 and radius r must be written

e =02 (2)

where ¢ has the value 1 when the radian is the angular

nniit, 180 when the degree is the unit, and so on,
i 4

" 1This assumes that the function is single-valued in
all 1its arguments. Stress is not a single-valued function
of strain beyond the elastic range, where the curve of
rising stress is not the same as the curve of falling
stress, Thus, results based on such a relation are not
necessarily subject to the present analysis. This is dis-
cussed further in sec, 8,
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Otherwise any calculation involving such a relation is
not waldd in all unit systems, The "constent"” C is a
"dimensional constant" and has the dimension of an angle.

Strain, as inches extension per inch of length, or
centimeters per centimeter, and so on, is also commonly
treated as dimensionless. It can, however, also be meas-
ured in centimeters per inch, or if the use of two length

units is objectionable, in any arbitrary unit such as the
"microstrain® -~ 1076 centimeter per centimeter, It is

then necessary to write the strain e in terms of ex-
tension & on a length 1 as

8
e = O i (3)

where € 1is a dimensional constant, having the same di-
mension as strain, with the value 1 when strain is meas-
ured in the usual manner,

Dimensional constants of this kind, as well as "phys-
ical constants," must be included in the list of symbols
for any problem the solution of which requires the equa-
tion in which they occur, For the final formula will not,
in general, be valid in all unit systems unless the equa-
tions used in deriving it had this property. Of course,
the € of equation (2) usually is not included in dimen-
sional analyses. It usually is fixed as unity by the
tacit decision not to consider any change of angle unit
from the radian, As will appear in a later section, the
omission of the C of equation (3) from an inelastic
structural problem, thus preventing the consideration of
any change of strain unit, may result in the deduction of
unnecessarily restricted similarity conditions,

3. SIMILARITY OF STRUCTURES IN EQUILIBRIUM

Consider first a structure made of homogeneous iso-
tropic material which obeys Hooke's law, Let it be spec-
ified in size and shape by a necessary and sufficient set
of linear dimensions a, b, ¢, ---, and let the loads oOn
it be P2 aP, BP, YP, and so forth, where o, P, Y are
dimensionless numbers, Young's modulus and Poisson's
ratio will be denoted by E and wu,

2The loads are taken as forces, If they are couples
N ; . . 0 .
(i) or pressures (p), it is merely necessary to write n/a
or pa? instead of P vwherever P occurs,
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These variables define the system. It will De
regquired to determine certain features of its state,
usually a force R, such as a redundant reaction, a
force in a member, Oor a stiffener, a stress o, strain
e, oOr displacement &. The lengths a, », ¢, ---, will
be supposed to contain those necessary to specify the
point at which any of these are to be found. Then each
of the quantities

=)

o can be expressed in terms of P, &, B, ¥ =~-=-,

?

€ | =y b loosss, B (4)

&)

Let there be n quantities, counting one of the column
on the left. There are only two fundamental measuring
units involved, since each of the quantities in eguation
(4) can bPe measured when, for instance, units of force
and length are given, Denoting these units by F and
L, the dimensions of the quantities in equation (4) may
be written in terms of these units, in order, as’

F» Os 0) 0 RO Lu L’ L R FL‘E; 0 (5)
0
-
Since there are two fundamental units n-2 dimensionless
products from any of the four sets of variables in equa-

tion (4) can be formed, according to Buckingham's theorem,
It is easily seen by inspection that these may be taken as

Bie )
caa/P
" > .EZ, «, B, Y ===, b/a, c¢/a ===, B (6)
Ea
8§/a
=,

3The constitution of the dimensionless groups is not
unique, For instance, FP/Ea?® might be replaced by FiE ain
P12

m2EI

or for a column problem,

3
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There is one relation between any one of the dimensionless
groups in the column, and all the dimensionless groups in
the row, Thus it is possible to write

R P b e
- f —!-——' a,' ﬁ 'Y - -—-. - oy = - u
12 . <£a2 ’ a a >

2 B €
- — A e et
1% . <Ea3' 8 a a )

~

> (7)

i=4, I TREONE NR PUOL NG e, %
a Ea® Ll ) 3

where $.0 ), &40 ), 22l ). £.{ ), veprénsnt dafinite
functional forms. These relations in fact stand for the
solution of the problem in general form, covering, with
invariable functional forms, all systems which can be got
by giving partic¢ular values to the variables

(43, and, of course, covering also all possible systems
of measuring units. Thus in particular they cover a
structure and its scale model., The conditions of similar-
ity are the conditions that the functions on the right of
equations (7) shall have the same numerical value when cal-
culated for the structure as they have when calculated

for the model, and the similarity relations are then ex-
pressed by the equality of the groups on the left of equa-
tions (7) calculated for structure and model,

The funections (supposed single-~valued) will have
identical values for structure and model if the arguments
have identical values. The ratios a, B, Y ~--- are the
game if the several loads of the model bear the same
ratios to one another as the several loads of the struc-
thare. the raties hn € -+, are the same for a model

a a a
which is to scale in every significant dimension.

%It is often possible to relax these conditions by
the use of knowledge of the problem beyond that afforded
by dimensional analysis. Examples are given later,
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Foisson's ratio p must be the same (unless as in the
case of trusses and rigid frames free of torsional action,
it is known to be without influence on the behavior con-
sidered). Finally, it is necessary to make

Ea® & Ba® .

where the subscript m stands for "model" and & for

“structure." Thus when the model loads are scaled down
according to

2

8 (9)

Pg Eg a®g

it will be true, by equating the left sides of equations
(7), that

R P o P i B

—P— - —_E, -—2— = —E— Sa = --E (by equation (8));

RS Ps Gg PS Ry By
_eﬂ = b EE. = _a_'..IE. (10)
eg GS ag

These results may be expressed in an alternative way
by observing that since, (the other similarity conditions
being already fulfilled) if any given value of P/Ea®
is taken, the corresponding values of R/P, 0a®/P, e, 8/a

are then the same whether model or structure is considered,

the curves of R/P, ga®/P, e, 6/a plotted against P/Ea?
from measurements on the model, at various loads Pp, are

also valid for the structure.

It is evidently permissible to make the model and
the structure of different materials, so long as the
Poisson's ratios, if thece are significant in the problem,
are kept the same,

The dimensionless number P/Ba® vplays a part here
which is analogous to that of Reynolds number (or the
other characteristic numbers of fluid systems) in fluid
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mechanics, It is proposed to call it, or any like quan-
tity, the "strain number."

4, LINEAR AND NONLINEAR STRUCTURES

The foregoing results are not restricted, as most of
the calculations of structural theory are, to small dis-
placements. They cover flexible structures, such as very
thin rings, or very slender beams and columns, where the
deflections are too large to have a linear relation to
the loads, although the strain components themselves are
small and the stress~strain relations are linear. The
departure from linearity arises from the changing shape
of the structure as it is loaded, There are also struc-
tures in which the displacements, though small, signifi-
cantly affect the action (e,g., the moment arms) of the
loads, as in the beam under simultaneous lateral load and
axial thrust - the "beam-column," or the elastic cabdle,
initially just taut, under lateral load, which has a dis-
placement proportional to the cube root of the load at
first, All such cases are grouped under the "nonlinear"
designation,

On the other hand, there is the extensive linear
group, where the displacements are linear functions of
the loads, and the method of superposition is valid.
This group, of course, includes the majority of stress
problems, When this linearity can be assumed, it can be
said that redundant reactions (unless the support is of
a peculiar kind, such as a nonlinear spring), stresses,
strains, and displacements will all be proportional to
the load -« that is, to P,

Reconsidering equations (7) will lead then to the
requirement that R/P 1is to be independent of P, and
this requires that the function f, should be independ-
ent of the group . P/2a®, or

" b
R/P = f, <§, By W wh, B0 % ~~= u) (11)

Since Young's modulus does not appear in any other group,
it follows that R 1is independent of it; R may, however,
still depend on Poisson's ratio.

Usually, in the linear type of structure, o, e and
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8§ will be proportional to P, ' so that ingtead of the
last three of equations (7) the following equations may

be written:
3
2
= i (m, B, ¥ === 2 & .o )
P a a

e = P fs (al' s. ‘Y T ;0-1 g i > > (12)
Ea® B

p jo
i

P Do
RN N )
Ba® a @ )

The conditions of similarity are now merely the obvious
ones of geometrical similarity and similar distribution
of loads (a, B, Y the same for structure and model), and
equal Poisson's ratio if this is of significance in the
problem, With these fulfilled,

P P P
Bow &P, d=FK; = e = Ky ey 8 = K4 3= (13)

where K, X, K3 K, are constants, the same for both
structure and model, Thus in linear structures one meas-
urement of each kind, at a single load, on the model is
in principle all that is necessary for the complete anal-
ysis of the structure.

Alternatively it may be said that if the curves of
R/P, ca?/P, e, 6/a against P/Ea® are plotted from
measurements on the model, the first two will be straight
lines parallel to the P/Ea® axis and the last two will
be straight lines through the origin, and the diagrams
will be equally valid for the structure,

When the load includes the weight of the structure
itself, represented by a specific weight w, a further

dimensionless group, for instance Ya must be introduced,

E 3
It is then convenient to replace the first two groups in

R o
the column on the left of equation (6) by =5 3 which
a

givesg, in general,
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R % wa b ¢
20 T GEER By By Y R S e, waR
Ea® ' \Ba® E : a a )

(14)

®
H
(&
D iy
N Nl | Nl

But if the structure is a "solid" one, such as a dam (ref-
erence 3), having small deformations which do not affect
the actlion of ‘the loads, 1t will be Iinear bdoth as to F
and w, and the problem divides itself into two, one to
determine the effects of the gravity loading only, the
other to determine the effects of surface loading only.
In the dam preblem the surface loading would be water
pressures, which can be described by a maximum pressure
P, together with dimensionless ratios to descride the
distribution of pressure, These may be omitted, Then
instead of P/Ea®, p/E may be used. Consider, in par-
ticular, the stress o, which represents any chosen com-
ponent at any particular point, Since this is to be

linear in both w and p, it is necessary that
o wa b 6 ho) 0. §e
-~ 2 e I —_ = == + =~ F o RRC s (15)
E £ " (a a u) e (a a >

The E now cancels, and it follows that the
stress is independent of E, bdut depends on W, A model
should have the same Poisson's ratio, if it is signifi-
cant, and must be geometrically similar. The functions
fo and F, then have the same value for both model and
structure, and may be replaced by constants ¢, and ¢y,
so that

g = ¢, Wa + 2D (16)

The two parts may be determined hy separate tests,
using model material of any convenient density, or pro-
ducing w centrifugally, (or replacing the body force
problem by a surface load problem (reference 4)).
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Different models, of different materials may be used for
the two tests, so long as N 1is kept the same, The ob-
ject of the model tests may be regarded as the determina-
tion of ¢y and e3;. It is evidently not necessary to

Put any restrictions on the manner by which the pressure
P ©on the model is created, although at first sight, if
the system is taken as a single fluid-solid system, it
might appear that the specific weight of the fluid should
be included in the list of variables, and then that a
fluid of a suitably different density must be used, Of
course, a change from the dimensionless relation (equa-
tion (15)) to the dimensional form (equation (16)) im-
plies that the same measuring units will be used for both
structure and model.

In many cases it will be obvious that the condition
of strict geometrical similarity may be dispensed with
without loss of exactness., In simple trusses only the
areas, not the individual dimensions, of c¢cross sections
are significant. When there is simple bending, the prop-
er moment of inertia, and for torsion, the proper tor-
sional rigidity, may be provided without regard to shape.
Here, of course, knowledge obtained from detailed analyses
of bars as structural elements is employed. Considera-
tions of this kind underlie Theodorsen's discussion of
similarity of propellers (reference 5) (as to vidrational
frequencies) obtained by lengthening in one proportion
and changing cross-sectional dimensions in another, For
the differential equation of free flexural vidbration of
a bar may be written

2 2 2
9 EIay +pA-a..-l=O
dx? dx* dt°

wBere p ds the density, Bl the flezural rigidity, and
A the area of cross section, as functions of =x. The
process of solving this for the nonuniform bar to find
the deflection y as a function of the axial coordinate
x, and determining the fundamental frequency, can be
readily envisioned, even if not easily carried out, by
anyone familiar with the process for the uniform bdar,

Let I Ybe written as Aokozfl <5> and & as
[

A,f; (%) where A,, k, are the area and radius of gyra-

1 gis Hp
tion of the base section, and | the length, f,f,
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being given functions, involving only dimensionless -
that is, invariable, parameters. Then the equation can
be written

& o @ 22 .
0 | N ax® Ekg>

1
-

at2

P

2
(o]

and 1, and on no other quantities, There is only one
dimensionless combination of these quantities and the
frequency f., It is the left member of

The frequency will then depend on the quantities

2
fi B
E

ko

(or any power of it) and this equation must hold with C
a constant (for a given mode) for all systems expressible

by means of 1, kg, p, E, f1<f>. and f2<T/. Since f,

and f; are invariabdle functional forms, the ratios of

the I's and the ratios of the A's for corresponding
sections (x/1 the same) must be the same for all the
systems. But there is no restriction to any particular
shape of cross section, as by the proportional enlarge-
ment of all dimensions of the cross section,

Without the auxiliary information contained in the
differential equation other dimensionless arguments, such
as l/k, would have appeared, and the conclusions would

have been more restrictive,

Dimensional analysis alone gives a basic form of
similarity. Further knowledge may give more general forms.
It is a matter of obtaining the most detailed formula pos-
sible = and there is at least that yielded by dimensional
analysis - and considering what is the broadest clasgs of
systems to which it applies. The members of this class
are then "similar" on the basis of the formula considered.
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5., COMPOSITE STRUCTURE

If the structure is not all of the same materialy it
will be necessary to include in the row of independent
variables in equation (4) the several Young's moduli and
Poisson's ratios, Let these be BE, Ey, B; -=~, and so
forth, and wu, p,, Ms ---. Then to the row of dimension-
less groups in (6) must be added E,/E, E,/E ---, and so
forth, and W,, Hy, ==~~, and the same additions must be
made to the arguments of the functions in equations (7).
The conditions of similarity now include the identity of
H,/8, B5/B =~=, B,, ps ==~ £For structure and model, The
similarity relations ?equation (10)) then remain valid for
the nonlinear type of structure, when the strain numbers
P/Eae are nmade the same for model and structure. OCorre-
spondingly, the treatment of the linear structure is modi-
fied merely by the addition of the requirement of identity
of Z,/B, E,/E ===, 11y, Wz, -==~, in both model and struc-
ture, to the set of similarity conditions.

6., PRESCRIBED DISPLACEIIENTS

So far, the problem has been considered as one in
which the loads are all given, and it is required to find
reactions, stress, strain, and displacement, Consider
now ziven displacements, not necessarily small, the prob-
lem being to determinec thesc same four quantities. In-
stead of the variables in (4) therec are now

R

a depending on U, at', B, Y' -w=s,

cP a, b, ¢ --=- E, p -=< (17)
64’

where the prescribed displacements are U, a'U, B!'U, Y!'U,
ancé so forth., Again the number of dimcnsionless groups
must be two less than the number of variables in (17),
counting only onc of the column on the left, It is evident
that they may be taken as
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R/Eaex
o/E
> U ar, gl WP e B Buis < B (18)
e a B 9
6/a
/ =

and it is necessary to have

R/Eae = fl <g, G,'. B" YV! cuw B’ _C_ ——— u' ......)

:/E ::z (( 3 ? (19)
ble = Wy ( )J

The similarity conditions now include identity of L for
model and structure, if it is significant, and also

Upn Ug
— = — = that is, the imposed displacements must be to
a a

m s

scale. The similarity relations are then

2
Bn _ Bpap® Op _ En ep _ " bm _ am
b - === -2=1, ===,
Rs ESaS GS ES es 63 a.s

and, alternatively, curves of R/Ba®, o/E, e, u/a
against U/a obtained from the model by varying U, are

gl so walld for the structiure,.

I¢t may be observed that E does not appear at all
in the last two of equations (19)., There is no other quan-
tity containing the force unit with which it ¢an be com=-
bined to give a dimensionless group. It follows then
that the distributions of strain and displacement are in-
dependent of the Young's modulus, This is evident from
the well-known differential equations of Lamé for the
special case of the linear structure, but perhaps not so
evident for the nonlinear structure,

In the case of the linear structure R, ¢, e, and
8§ are proportional to U, Hence equations(1l9) must take
the form
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\
e B ' t B s AR o B s
R/Ea 7 fy <§ B, 9 s n >
U
g/ = = £
wata ( )
> (20)
U
-U¢
e E < >
U
§/a = 4 b ( >
-
p U U
of B = KU, & =K, B> e =Kz b =KJU, wvelld for

both model and structure where X, K; K, and K, are

congstants, the same for both model and structure,

The additional arguments E;/E, E,/E, and so forth,
and Wy, Mz, and so forth, will be required in the func-

tions of equations(ZO) when the structure is composite,
and the additiogal similarity conditions are as before.

7. MIXED CONDITIONS

When there are prescribed loads at some points, pre-
secribed displacements (nonzero) at others, the set of
variables consists of (4) and (17) combined, and the gen-
eral relationsg can be taken in the fornm

N
il 2 —'P_—’ @, By ¥ weg g" Cl"o 5‘ T - Ls £ -ea bl Fems
¥ Ea® a g a

&(21)

it B A N
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The similarity conditions are now geometrical similarity
(v/a, c/a, etc., the same for structure and model), sim-
ilar distridbution of loads and prescribed displacements
(a, B, Y === a', B', Y! ~-~ the same), identity of the
Poisson's ratios if significant, and also

E P

<
]

z :--_L-.'.-@-::.-_s. (22)
BT et B T

These being.fulfilled. the similarity relations (equations
(10)) will again hold. The surfaces of R/P, 0a2/P, e,

§/a plotted against P/Ea® and U/a, determined from
the model, are also valid for the structure.

8. CURVED STRESS-STRAIN RELATIONS
LOADING BEYOND THE PROPORTIONAL

AND ELASTIC LIMITS

If the ordinary tensile or compressive stress-strain
diagram of the material of the structure is curved, it is
customary to retain the term "Young'!s Modulus," for the
slope of the curve, : It is no longer a constant but a
function of the stress or the strain, The strain number
P/Ea® now ceases t0 have any definite value characteristic
of the whole structure and its load, 3uckingham's theorem
cannot be applied unless definite numerical valucs can, at
leaat in principle, be given to0 all the variables involved,
and it does not necessarily hold unless there is Jjust one
relation between these variables. (See reference 2,) In
the set (4), with o on the left, there would be a rela-
tion between © and B as well as the relation between
all the symbols which is the required formula for o.

In order to overcome these difficulties, it is ap-
propriate to reconsider the whole process of determining
stress-strain relations experimentally, putting them in a
form valid in all unit systems, and combining them with
the equations of compatibility and equilibrium, and the
boundary conditions, necessary for the solution of the
problem, It is the stress-strain relations which require
particular attention, no special measures being required
te put the other equations in a form valid for all unit
systems, In an experimental determination the stress and
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strain will be recorded in definite units, and the six
components of stress o0,, O,, and so forth, will be found
as functions of the six components of strain (not neces-
sarily small) e,, ey, and so forth, say®

cl = ¢l(e1’ € —""')’ gy = ¢2(eli (<) "’"‘) etc, (23)
These relations involve only specific numbers q Dbesides

the © and e symbols, and they are, of course, true
only in the units selected,

Consider now the relations

o e e o e e
& = ¢1< Y —-->, L ¥ 5 T —-¢>etc.- (24)
By €11 12

€ P €21 €22

where ZE,, E; ---, and the ¢'s are as yet merely arbi-

trary parameters, When they are given the value 1, the
relations (equations (24)) become identical with equations
(23)., They are now assigned the value 1 in the experimen-
tal unit system, Let E,, E; be assigned the dimensions
of stress (i.e,, their values in new unit systems are de-
fined to be those obtained by applying the conversion
factors appropriate to stress) and let the €'s be as=-
sigred the dimensions of strain (as discussed in sec, 2).
Then equations (24) are stress—-strain relations of the ma~
terial valid in all unit systems. For they are true in
the origingl unit system, In a changed unit system the
Bls change by the same factor as the o's and the e's
by the same factor as the ¢'s, so that the ratios o/E
and e/¢ remain the same, and the equations remain valid.
The numbers q involved in the functional forms ¢ are,
of course, not changed when the unit system is changed.
That is, they are dimensionless numbers.

The problem of determining a stress component o in
a structure with loads P, aP, BP, and so forth, and lin-
ear dimensions b, ¢ --- now involves (as dimensional

a"
constants) the E's and ¢'s,  the list being
% P, @ B-=-, 2, b, ¢ == By, By, By, =, €11, €12, €22~ (25)
Symbols Ey, Eggr L = b, wee B - 1, === 86 have been added
and one additional fundamental unit (that of strain) is admitted.

SCreep, effects of rate of strain, etc. are not taken
into account,
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There are consequently three fewer arguments than symbols,
and they may be taken as those appearing in the functional
relation

oga® P h & 3, @ € €
BE. - f< _, a, Boeem, D, S 2, 2o 22, ?ii--{>(26)
¥ E,a R B, By - 33

This is the form the stress formula must take to be valid
in all unit systems, when the material has the stress-
strain relations (23) in the original unit system and the
E's and ¢€'s are defined as above,

It is necessary now to redefine the E's and gy
allowing them to assume any values in the original unit
system, Then equations (24) define a family of stress-
strain laws, The E's and €'s may change on account
of a change of unit system, or on account of a change to
another material., The general problem is now 10 find a
stress formula to cover all systems obtainable by varying
the symbols in (25) (omitting © as the dependent variable).
The dimensional analysis of this problem results in equa~
tion (26) again. Let there be a structure with definite
values (in the original units) of all the symbols, includ-
ing the Z's and ¢€'s, which are, of course, determined
by the material used. 4 model then may be constructed af &
different material belonging to the family (equations (24)).
To be able to interpret its behavior in the absence of
further knowledge, it will be necessary %o make all the
arguments on the right of equation (26) the same as for
the prototype. This again, of course, leads to geometrical
similarity, similarity of load distribution, equality of
the strain numbers P/E,a?, dut also

B E E E € € € €
<§2‘)‘<§> %), :g><_13. : _j_%),(_fﬁ):(ii),ctc. (27)
%9 R 3 By A iy €1/, \€11/, €11/

That is, the E's of the model material must be those of
the structure material multiplied by some number A, and
the ¢'s similarly with an independent factor T Y

if the stress-strain relations of the structure material
are

g, = &, (e;, €3, -=-), 0Tz = &3 (ey, €2 --~), etc. (28)

®Not Poisson's ratio.
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in a definite unit system, those of the model material
must be

o e, e€p (oY Y. 85
a5 ) 2 (BB e e
% S A B B

These may be described as obtained by an affine transforma-
tion from the former, In a two-dimensional problem where
the variables are limited to those explicitly shown in
equations (29 ) (except for a third relation, such as that

of incompressibility, yielding a third strain component

in terms of e,, €p), 0y in equations (28) could be rep-
rescntod as a surface over an e,, e, plane, Then the

o, surface in equation (29) is obtained by deforming

this surface by uniform extension in the .o, direction

by the proportion A, and uniform extension in the e, e,
directions by the proportion u, The scales of o,, e,,

e, remain undeformed, The o, surface is treated sim-

ilarly. In one dimension the stress-strain curve (equa-
tion (29)) may be imagined obtained by drawing that of
the structure material (equation (28 )) on a rubber sheet,
on which is placed a rigid axis frame bearing the rigid
scales, then stretching the rubber sheet under the frame
to | times its original length parallel to the strain
axes, A times its original length parallel to the stress
axis. The factors A and u may, of course, be arbi-
trarily chosen, There is thus no necessity to make a
model of the same material as the structure, even when
curved stress-strain relations, elastic or plastic, are
involved, But, in the plastic case, the functions ¢ in
equations (28 ) are not, in general, single-valued, and, as
pointed out in section 2, the dimensional analysis does
not then necessarily hold, However, the functions become
single-valued if a definite mode of loading and unloading
is prescribed, Thus the values of P/E1a2 for the model

must go through the same values in the same order as the
values of P/E,a® for the structure, for the above simi-

larity rules to apply,
When the same material is used in both model and
structure, the ratios Ez/El, and so forth, 612/611,

and so forth, in equation (28 ) are all unity, Similarity
then requires, besides geometric similarity (b/a, cla -9
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and sinilar distribution of load (a, B --~ ), equality of
the strain numbers P/E,a®., Since the use of the same

units for both model and structure is now contemplated,
this means equality of P/a®, It then follows from equa-
tion (26) that ©a®/P is the same for both - for example,
stresses at corresponding points are equal,

The arguments of this section may easily be extended
to cover problems other than those of prescribed loads,
such as those of prescribed displacements, or "mixed"
problems, which have bgen discussed in preceding sections
for the ideal elastic material only. The modifications
of the preceding trcatments are merely that E, recplaces
E, in strain numbers P/Ea®, or R/Ba® and the affine
connection must hold between the stress-strain relations
of model and structure material,

It will be observed that the numerical value of E,
in equations (24) can be chosen at will in a given unit
system, Different choices will result in compensating
differences in the numerical coefficients, Once E; has
been chosen in the selected system, however, its value is
fixed in all other unit systems since it has the dimen-
sionality of stress. It will sometimes be convenient to
choose E; as the elastic Young's modulus of the material,
for the sake of continuity with the clastic range in plot-
ting.

An example of a problem of nonlinear stress-strain
relations is provided by rudbber springs, the rubber be-
ing attached to steel mountings which may be regarded as
undeformable, This, as a problem of given load, is one
involving two materials, steel and rubber, but no symbols
need be introduced for the properties of the steel, since
it is rigid. The preceding theory shows that a simple
similarity relation can exist when the same materials are
used for two such springs which are geometrically similar,
In particular, when the same rubber is used in two geomet-
rically similar springs the curve of U/a against Pla®
is the same for both, thc same units being used., Curves
of this type have been pudblished, (Seec rcference 6, ) he
present discussion shows that they contain no "size effect.”

An cxample of similarity in the plastic range is af-
forded by the simple tensile test, The similaprity of the
deformed shapes and the identity of the stress~strain
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curves, for specimens geometrically similar but of differ-
ent sizes, has been experimentally confirmed, and is known
as Barba's law, (See, for instance, reference 7. ) The
dimensional analysis made shows that such similarity ex-
igsts generally (the stress depending only on the strain).

It is of interest to compare the deformed shapes of
two test pieces, or other structures, of the same size
but of two different materials with affinely related
stress-strain laws (equations (28 ) and (29))., A displace-
ment formula must correspond to equation (26 ) with 5/a
on the left instead of o0a?/P, Then the values of &/a
for the two pieces are the same - that is, their deformed
shapes are the same - when their values of P/¥,a2 are
the same; If the ‘pieces are of different sizes and geo-
metrically similar in the wundeformed state, they are also
geometrically similar in the deformed state at equal val-
ues of P/E az,

Nadai (reference 8 ) quotes as an example of similar-
ity in elastic-plastic systems, which, of course, are in-
cluded in the theory of this gection as well as fully
plastic systems, the case of a series of balls indenting
blocks, If the material is the same for all the balls
and for all the blocks, and if the loads are as the
squares of the ball diameters, the stresses will be the
same at corresponding points and the depths of the inden-
tations and the diameters of the plastic zones on the
block surface will be ags the diameters of the balls, pro-
vided the effects of time of loading are negligible, A
time variable could be included in the dimensional anal-

ysis and the similarity conditions correspondingly extended,

9. BUCKLING

Returning to the problem of prescribed loads of sec-
tions 2 and 7, in order to consider questions of stability,
it is appropriate to review the several types of dbuckling
which are now recognized, There is the idealized buckling
of geometrically perfect struts, illustrated by the load
deflection curve of figure l(a ), where no deflection at
all occurs until the critical load is reached at A, and
above the critical load there is an unstable sﬁraight
form B and a stable deflected form G, Secondly, there is
actual dbuckling of a geometrically imperfect strut, of a
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slenderness such that there is no failure of proportion-
ality until well beyond buckling, This behavior is illus-~
trated by figure by, THere 1s & unique deflection at
each load, and no instahility in the sense of figure 1%al,
The sense of "buckling" here is, of course, the inordinate-
ly rapid increase of deflection when the load is in the
neighborhood of the Euler critical value,

Thirdly, there is buckling after the proportional
limit has been exceeded (see, for instance, reference 9),
characterized by the type of load deflection curve shown
in figure 1(c ), Here there is true mechanical instability
at and beyond the maximum load point, and this maximum

load ig- the

critical load.

Finally, there is buckling of the snap-over, or "oil-
canning," type of which the kinds of curve shown in fig-
ure 1(d) are characteristic, The sketch in figure 1(d)
of a slightly curved bar or plate with rigid or stiff end
or edge constraints and a transverse load illustrates one
way of realizing such a curve, (See reference 10, ) It
appears that the buckling of shells may belong to this
type rather than to that of figure 1(a) or 1(b). Points
on the rising part of the curve OA represent stable
forms, but there are alternative forms at larger deflec-
tiong, to which the system may jump when assisted over

the peak by

a suitable impulse, (See reference 11, )

Instead of load-deflection curves (P against 8)

—2— may be
Ba®

anmples of the L4 against
a

plotted against %3 regarding them as ex-

curve discussed in section

Ba®
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3. These curves are then valid for both a model and its
prototype., However the critical load in figures 1l(a),

1(b), 1(c), and 1(d) may be defined, it will be done by
singling out a particular point of this curve, and this
point will characterize the buckling for both model and
structure, Thus buckling will be characterized by a de-
finite strain number P/Ea® whether the displacements

concerned can be regarded as small or not, This is evi-
dently analogous to the characterization of turbulence by

a definite Reynolds number, The critical loads St

and Pscr of model and structure are related by

2
3 E _a
mer _ nom
2‘
Esas

Pscr

There curved stress-strain relations, elastic or in-
elastic, must be considered, the discussion in section 8
permits making the same statement about the strain number

P/Elaz. If model and structure are of the same material

(the same units beixng used for both) and the critical
stresses are the same whether the buckling is within the
elastic range or naot,

II, TESTS ON BUCKLED THIN SQUARE PLATES IN

SHEAR, WITH AND WITHOUT HOLES

SUMMARY

In order to test the validity of similarity principles
for structures involving buckling and plastic flow, meas-
urements of strains and displacements were made, at
Cornell University, on square thin sheets in shear, with
and without holes, With certain exceptions, the measure
ments follow closely the indications of the similarity
principles, The results are shown in figures 6 to 12,
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which are dimensionless plots of the measurements, TFor
similarity the points in each figure should fall on a
single curve,

10, THE TEST PROGRAM

It appears from the engineering literature that the
possibility of drawing such conclusions as those of part
I is frequently overlooked, and that unnecessarily elab-
orate and expensive model testing has been carried out in
recent years, Similarity in the plastic range is well
known to some, but others have denied the possibility of
it on the grounds that the physical constants required for
the specification of plastic behavior in metals are mot
defined, Barbals investigation of similarity in the ten-
sile test has been referred to in section 8, ©No record
has been found of investigations of similarity in plastic
bending or torsion, but in view of the dimensional analy-
sis of section B8 there can be little doubt that it would
be found to exist, No tests of this kind were therefore
included in the program,

The aircraft problems of chief interest are those of
thin-walled structures, The difficulty of making satis-
factory thin-walled models has been emphasized by Saunders
and Windenburg (reference 12 ), and others, The wall
thicknesses in the prototype being already small, those
of a small model will be very small, and lack of flatness
of the sheets becomes poportionately more important,

11, TEST SPECIMEN AND QUANTITIES TO BE MEASURED

The structure chosen for the tests was the sqguare
panel of thin sheet 24S-T aluminum alloy confined in a
hinged frame of "rigid" bars (heavy angle irons were em-
ployed ) and subjected to shear, as indicated diagrammat-
ically by figure 2, Specimens with and without central
lightening holes were tested, Three sizes of frame (de-
signed as nearly as possible to be geometrically similar
- sege fig, 3, table I), two sizes of hole, and five
thicknesses of sheet were used, This structure presents
certain of the fundamental problems of the thin web beam -
the strength of the panel and its mode of wrinkling,
which are important in themselves - and affords a
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convenient trial of the possibility of making reliable
small scale tests when thin flat sheets are involved, As
treated here, it is essentially a problem of large dis-
placements going beyond the elastic limit,

Taking the bars of the hinged frame as rigid, the
problem involves deflections (8 ), stresses (o), and strains
(e ), in a plate defined by the following quantities:

The side of the square (a) (inside dimension of
angle frame )

The thickness of the sheet (t)
The diameter of the central hole (D)
under a "shearing load" P (fig. 2).

The dimensional analysis then indicates relations of
the form

R

= |Q
i
(o)
N
s i
& |
o i
v
o
o g
el

where E is a dimensional congstant as defined in section
8 if there is plastic deformation, or a curved stress-
strain relation, or merely Young's modulus below the elas-
tic limit, In any case, when the model is of the same ma-

"terial as the prototype, the curves of g against .j%,
a
of o against j%, and of e against 3% are the same

for all panels in which i, are the same, For thig in-
a

0w

vestigation, Young's modulus of 10,5 X 10° was used for
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P
B and all curves were plotted against » Since the
. . ¢ T2

strain, not the stress, can De measured directly, the test

curves are of _O and e
a

The measurements of the panels proposed for the tests
are shown in table II, The entries connected by broken
lines are groups with the same values-of both t/a and
D/a, but represent panels of different size. The choice
of these was governed by the available thicknesses of
sheet, Similarity is established if points of all mem-.
bers of each group fall on the same dimensionless curve,

TABLE I (See fig. 3)

FRAME DIMENS IONS

Dimensions | Large frame Medium frame Small frame
-"i; asiE S 281 - 17:47 8.75"

b 31.5" 19.,58" g8

c 36,0" 22,.,4" 11,856"

d 14 B[40 3/t

e 1 3/8" z/16"

t 3LH 2,0" 1 %"

z 4 x 3% x3% |23 x 3 x 5/16 |13 x 1% x 3/16

12, EXPERIMENTAL PROCEDURE AND APPARATUS

The hinged frame holding the plate was supported lat-
erally and loaded by meansg of a hydraulic jack, ($ce fig,
2, ) The deflection & was measured across the long
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diagonal by means of a dial gage, this measurement being
independent of any rotation of the supporting wall,

The strain measurements were made with the SR-4 type
A-1 Baldwin Southwark electrical strain gages, The gages
were connected in the dummy-gage temperature compensated
bridge circuit shown in figures 4 and 25, The bridge
sensitivity was 0,000026 inch pPer inch per millimeter on
a graduated slide wire for null balance of the bridge,

In plates without holes, the electric strain gages
were placed along the center line of the diagonal tension
fold, which appeared at approximately 42° with the hori-
zontal sides., Two of the gages were placed in a direc-
tion perpendicular to this line, one on each side of the

sheet, so as to measure the bending and direct compression,

In plates with holes, the gages were placed at the edge of
the hole at the positions of maximum bending and maximum
tension, These positions can be seen in the photographs
of the test specimens (figs. 26 to 40),

In addition to the preceding measurements, the maxi-
mum amount of lateral buckling y was measured from the
initial plane of the plate, This appeared at the middle
of the center diagonal tension fold for specimen without
holes, and at the edge of the hole along a line approxi-

mately 42° with the horizontal sides for specimen with
holes,

13, TEST RESULTS

Measurements of the specimens tested are given in
table III. Because of the variation in actual sheet
thickness from values contemplated, it was not always

possible to obtain exact duplication of numbers given in
table II,

Four sets of curves were drawn for each similarity
group. (See figures 5 to 12.) They are:

Curve (a) Tensile strain e, against P/®Ba?
Curve (b ) Bending strain 8, @against P/wa’
Curve (c) Diagonal displacement 6&/a against P/ga®

Curve (d) Lateral displacement y/a against P/ma?
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The direct compressive strain in each case was found to
be guite small and was therefore not plotted, The follow-
ing symbols were used in drawing the curves,
A values for small frame
X values for medium size frame
o0 values for large frame
Figures 13 to 24 represent a summary of the average
curves grouped in such a way to show the variations due
to different values of t/a and D/a,
Photographs of the specimens are shown in figures

25 to 42, Tabulated data for the curves are given in
the appendix,

TABLE II,- PROPOSED TEST SPECIMENS

7 3" frameT22.4" framerll.25“ frame
= =5 ! — n
Similarity| D N Tt oAl Sl ool B Rt
R e LR = %18
ity v W g e e S
I 0 0,064 228 _ 368
0 R e TR
0 .040 e, .
0 SR s ] TCISG T Caes
0 .020 el 0 ~ed
SR, AR ok P ot}
.428] ,051 T S e 4
.428| ,040 Pe R (s
.428] .032 18 T+ TEEE
.428] ,020 | | TiEee
b 0,643 0,064 228‘,L_
.643| ,040 P TR o b
.643| ,020 ! | aas :
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(Key to Curves, Figs, 5 to 24)

7
Diag-
& " g FunEs Lo Bend- olfagl Lateral
Group = = X 10 strain ing. displace- displace-
; strain i ment
—_‘._-—1 ————— —1 —————— ﬂ—.—-_._..»—..-—_.——a ~~~~~~ A e — o - ——
¥ 0 364 WMo 5 ila ) (b) (c) (5]
0 238 Tig. 6 (n) (v) (c) (a)
0 185 |Pig. 7 (a) OB ) | s (a)
0 117 (Tigs 8 )] &) (e) (d)
II |0.428 364 | Fig. 9 (a) (b) (¢) (a)
LAa8l 289 (Tig. 10 (a) ) (c¢) (d)
«428| 183 |Pig. 11 (a)| (v) (c) (a)
IIT |0,643] 2238 |Pig. 12 (a) (v) (c) (a)
SUMMARY CURVES
Group D Figure | Ordinate | Abscissa | Parameter
a
S =TS S et s S o S A e ey o P S
I 0 13 P/a®® en t/a
0 14 P/a2® ey t/a
0 15 P/a?E 5/a t/a
0 16 P/a2® yv/a t/a
[T gy = — A T e ool caifes
b 0.428 1% P/a”E er t/a
.428 18 P/a?® et t/a
,428 19 P/a?E® 8/a t/a
.428 20 P/a?® y/a t/a
e e e ::::::;FZ::::::I::::::‘:::I:;::“.‘,": S R R O R
EEe 2| tla 21 P/ac¥ | o D/ a
820 22 Plafn | ey I'/ &
2H0 23 P/a*¥ 8/a U/a
230 24 P/az® v/a D/a
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TABLE III.- SPECIMENS TESTED

: 36" framel22,4" frame|11,25" frame
oo ' = 28,0" &5 LA 5 f
sias- | o |, a= 380" o'= 1740 a'- a7et |
AL & [noninel | :
group s @R T L ” 4 o8
a a a
B == —_— e ————— RS SIS
B 0.064 328 | 368,
0 .051 o "k . "l
0 .032 .0 UL T4, Y
10 .020 T | T =Ee0
II |0.428| 0.064 g | @
.428| ,051 182\“r~\\ >
.428| .040 b PR TR
JAlal 038 s e
.428| ,020 ] L e
III |0.643| 0,064 328~ _|_ l
643 »040 | TR o g
.643| ,020 "“-228
Lie gt G, s b

14, EXPECTED ERRORS

Similarity measurements must be made over geometri-
cally similar regions, This requires that the strains be
measured over geometrically similar gage lengths as well
as geometrically similar positions, Since the size of
the electrical strain gages used for strain measurements
was invariable, the strain areas covered by these gages
were proportionately larger for the small specimen com-
pared to the large specimen, In regions where the varia-
tion 1in strain is large — that is, rear the edge of the
central lightening hole - this deviation from similarity
may be expected to introduce large variations in the
strains measured, To investigate the magnitude of such
variations, the following analysis was made.

Stresses in the radial and © directions near the
edge of the hole, due to shear, are first obtained by
superimposing uniform tension and compression, equations
for wh%ch are given by Timoshenko, (See reference 13,
0% ik
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The strain concentration as a function of the radial
distance is plotted nondimensionally in figure 47. The
position and dimensions of the strain gages are shown in
figure 48. For each case, the center line of the tensile
gage was 0,34 inch from the edge of the hole. The strain
concentration for the various panels and the calculated
variations are given in table IV, The analysis indicates
a possible strain variation of 39 percent, Variations of
this magnitude were found only in one test. However, it
should be remembered that in all tests the load was car-

ried well beyond the proportional limit; while the analysis

holds only below the proportional limit,

TABLE IV,- STRAIN CONCENTRATION FACTOR FRO! FIGURE 47

) b r =1 + 0,34 J:B Eee Ratio | Variation
o fin, ) 9 . (percent)
0.228 | 1.88 2,82 6886 8.2 | 1,007 <woninan
428 | 3.73 4,07 ,916| 3,04 | 1.25 25
J428 | 6,00 6.34 .947 | 3.37 | 1.39 39
648l 2.8 ik BT 2adl | 100 et
J645 ] B.60 5.94 Jeglt s.er | 108 18
.643| 9,00 9,34 965] Babb | 1% 27

15, DISCUSSION OF TEST RESULTS

In the test curves (figs. 5 to 12), similarity in
the behavior of the specimens of different sizes is dem-
onstrated if the test points for the different specimens
fall on a single curve. In several cases this occurs
very accurately. In several others there is considerable
scatter, raising the question whether this is due to in-
correct expectations of similarity, to causes which
prevent satisfactions of similarity, or to errors of
measurements.
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The answer to this.question cannot be made with any
assurance. No reason can be found for the alinement of
test points for one group of specimens and the scatter of
points for the same measurements of another group, How-
ever, some poséible causes for this lack of uniformity
can be listed as followss:

l. Possible variation in the properties of the dif-
ferent sheets

2+ Variation of sheet thicknesses

3, Sheets were cut and used without reference to the
direction of rolling

4, Clearance in the bolt holes, both in the sheets
and the frames, is approximately the same for
the three sizes of gpecimen, thereby being i
proportionately larger for small specimens
compared to the large specimens.

9. Hxaet duplication of similar positions for the

electrical strain gages was difficult to obtain.

6., Size effect of electrical strain gages (discussed
under errors)

7. Because of large differences in range of loads
between large and small specimens, it was nec-
essary to use two different sizes of hydraulic
jJacks for loading. The release load at the
end of each stroke is different for different
Jacks.

8. The method of measuring lateral deflection of
sheets was not entirely satisfactory. A heavy
bar was placed across the frame and the dis-
tance between it and the sheet was measured,
This method was found to be somewhat unreliable
in that the frame edges were not always free
from rotation,

9. Yielding of test jig is greater for larger speci-
mens and although the diagonal displacement
should be independent of any small rotation of
the supporting wall, if such rotation produces
bending of the frame, it could result in errors
of the diagonal measurement,
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The average curves of figures 5 to 12 were replotted
in figures 13 to 24 to show the variations resulting from
changes in t/a and D/a. The results appear reasonable
in that none of the curves crossed out of order from
their proper domain,

The results as a whole indicate a reasonable degree
of similarity attained in most specimens, An average of
the probable error of the various measurements was esti-
mated from the curves to be as follows:

(percent)
ST" 8

By = 150

- ST
a
£ < 38
a

Variations of at least twice the average errors may be
expected in individual measurements. Improvement in the
technique of testing and measurement should result in
grieater aceuracy.

16. CONCLUDING REMARKS

The test program was carried out with the degree of
accuracy usually met by aircraft industries, and no ef-
fort was made to go beyond this in refinements. Con-
sidering the difficulty of satisfying accurately to every
detail the similarity conditions for thin-walled section,
the test results indicate a fair degree of similarity
established, It is the authors' opinion that greater ac-
curacy can be obtained with further refinements.
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APPENDIX TO PART II
SYMBOLS

thickness of sheets

ingide dimensions of sheet (See fig. 3,)
diameter of hole (See fig. 3.)

load pounds (See fig. 2.)

displacement along diagonal (See fig. 2.)
€ e, e, strains

gbtrain parallel 16 tension fola

Bl h B
bending strain L to tension fold g““—z-€>
\

~

8, w B
compressive strain L %o tension fola '«i—§~—-

lateral displacsment of sheet

\ithaes, W. Y.5 Jaauasy 26, L9444
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Figs. 40,41,42

Figure 40.— Tested panels.
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Figure 42.—.Relative gizes of frames.
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