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NAT'IONAL ADVI SORY COMMITTE3 FOR A2RONAUTICS 

TECHNICAL NOTE NO . 1059 

EFFECTS OF TIP DIHEDRAL ON LA'l'ERAL STABILI'!'Y AND 

CONTROL CHARhCTERISTICS AS DETER1UNED BY TESTS 

OF A DYNAMIC MODEL IN THE LA:0JGLEY FREE - FLIGHT TUNNEL 

By Herman O. Ankenbruck 

SUMMARY 

The effects of tip dihedral on lateral stability 
and control cb.arncteristics were investigated by flight 
tests of models in the Langley free - flight tunnel . The 
geometric dihedral angle was varied over a wide range 
with the dihedral breaks at the wing root and at 50 
and 75 percent of the semispan outboard of the wing root . 
The vertical - tail area was varied from 5 to 15 percent of 
the wing area. The model was flown wi th various combi 
nations of these variables at lift c oefficients from 0 . 4 
to 1.0. . 

At low lift coefficients and at simila r va lues of 
effective dihedral and directiona l stability no differ 
ences were not3d in the flying characteristics with full
span or tip dihedral . At high li ft co fficients, however , 
large angles of, tip dihedral caused lightly damped lateral 
oscillations (predominantly rolling) which were considered 
objecti0nable and possibly dangerous . This abnormal 
lateral oscillation was believed to be caused by a reduction 
of the damping in rol l due to early stalling at the dihedral 
juncture. 

I NTRODUCTIO N 

Pilots have reported poor l ateral - flight behavior 
at low speeds of airplanes which have tip dihedral. An 
investigation was therefore made in the Langley free-flight 
tunnel to determine the effects of tip dihedral on lateral
flight characteristics . 
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The investigation c()nsisted pri1.arily in f light 
tests of sim lar mcd~ls having dihedral breaks at 
various spanwise locations . Tests ',vere made over a 
range of dihedral an~le at full - span , half - span , and 
quarter - span dihe drals (tl1a t is, Ii th dihe dral oreaks 
at 0 , 50 , and 75 percen t o~ the semispan outboard of 
t he wing root) . In order that the investigation might 
be quite general, a range of vertical - tail size from 5 
to 15 percent of the wing area was used f0r each dihedral 
ce;·nfiguration . The results of the tests are presented in 
the form of qualitative ratings of the general flight 
b$havior of the models t o show the effects of tip dihedral 
as compared with a full-span dihedral . 

SYMBOLS 

m ma ss of model , slugs 

S wing area , square feet ( 2 . 67 sq ft) 

St vertical - tail area , square feet 

b wing span , feet 

V airspeed , feet per second 

q dynamic pressure , pnunds per square foot 

t time , seconds 

kX radius of gyration of model about longitudinal 
axis , feet 

radius of gyration of model about vertical axis , 
feet 

R Rou t h 's discriminan t 

E coefficient in stability quarti c equation , gi ven 
in reference 1 

r yawing angular velocity , radians per se cond 

p mass density of air , slugs per cubic foot 

~ angle of sideslip, degrees 
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~ anfle of y~w , degrees 

p rolling angular velocity , radians per second 

r geometric dihedral angle of mean thickness line , 
degrees 

¢ angle of bank , de gree s 

~ airplane relative - density factor (p~) 

C 1 · (Lift) L lft coefficient -qS-

C1 up 

o 
n[3 

rolling- moment coefficient 

lateral - force coefficient 

yawing-mrment coeffic!ent 

(RO lli~~b moment) 

(
Lateral force) 

qS 

(Yawing mom0nt\ 
\ qSb -; 

rate of change of rolling- moment coefflcient with 

angle of Sideslip , per degree (o~0 
rate of change of lateral - force coeff'tcient with 

(OOy) 
angle rf sideslip , per degree \ofj . 

rate of change of yawing- mom0nt coefficie nt with 

Co~~\ an~la 0f sideslip , per degr ee uJ) 

rate of ctange of rolling- moment ccefficient with 

(
. OOL \ 

rblling -an~ular-velocity factor . ~(pb72v)") 

rate of change of' yawing-moment cOefficient wi th 

C
' oen \ 

rolling- angular - velocity factor o (pb!2V)") 

rate of chat1ge of rolling- moment coefficient wIth 

yawing- angular - veloci ty factor (~(~~/2v0 
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C rate of chan~e of yaNing -mo~ent coeffic ent wi t h 
nr ('oC n"\ 

yawing - a'1g1.1.1ar - v elrJci ty factor \ 0 rb)' 

'-'·.2V 

APPAE~ATUS 

The investi gation was carried out in the Langley 
free -fli~ht tunnel , which is equipped for t~sting fr ee 
flying airplane models . A complete description of the 
tunnel and its operation is given in reference 2 . Force 
t~sts to determine the static late ra l stability derivatives 
were made on the Langley free - flight - tunnel six - compcnent 
balance , described i n reference 3 . This balance rotates 
with the model in yaw , so that all forc~s and m0men~s are 
m~asured with rdsDect to th~ stability axes . The stability 
axes are an ortho g onal system of axes havinf its or i gin 
at the center 0f gravity in which tha Z- axis is in the 
plane of symmetry and perpendicular tr the r e lative wind , 
the X- axis is i n the plane of symrne try and parpe 01 icular 
to the Z- aXiS , and the Y- axis is perp3ndicular to the plane 
0f symma try . 

The control used on free - fli ght - tunne l models is 
a IIflicker" (full - on or full - off) ' system . (See reference 2 .) 
During anyone fl-tght the contrcl deflections in t he full 
on positions ars constant a nd the amoun t of con t rol applied 
t o the m0de 1 is regula ted by the number of con tro l de fle c tions 
used and by the length of time the c ontro l is hald deflected . 

Two fr~e - flying models wers used f o r the i nvestigation . 
One model had a dihedral break at the r oot and at 50 percent 
nf th3 semis an . The o th~r had a dihe dral break at t h3 root 
and a t 75 percent Df the s~mispan . Although tha modals used 
in thA tests were not scale models of' any particular air -
plane , they appr0ximate l y represen ted ~-scale mod.els of . 10 
current conventional fighter airplanes . 'The models were of 
hi gh - midwing ces-i..gn with an angle of sMeepbac k of 0 0 of the 
50 - percent - chr rd line , taper rati0 of 0 . 5 , and span of 
4 feet . A three - view drawing and photC'[;r-aphs of the models 
are shown as figures I tc 4 . The medels used were similar 
in arrangement to the ~odel used for the tests of r eference 4 . 
F0 ur vertical tails ware us~d to vary the directional sta
bility of t he m0d~ls . (See fig . 2 .) 

4 
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The m~del re l ative - density fact0r and radii o f 
gyra tion were : 

tJ. • • • • . . . . . . . . 8 .10 

. . . . . . . . . . . . . . . . 0 . 161 

. . . . . . . . . . . 0 . 241 

T~STS 

Scope ('f Tests 

Fl i fh t tests r f the mode l were ma~e at a lif t 
coefficient of 1 . 0 for a r~nge of dihedral angle at t he 
various spanwise l ocations and f o r a range of vertical 
t a il area which are consi dered r epresentative of present 
day limi ts . The ~th3dral angle was varied frrm - 100 

to 200 for the full - span- dihedral tests , fr r m - 200 to 400 

for t he half - spa~ -dib9dral t 9 sts , and ~rom - 400 to 400 for 
the quar ter - s pa n - dihedral te s ts . FrJ' the half - span - dihedral 
and quarter - span - d ihedral t es ts the dihedral ang l-e of the 
inbo ar d section was maintained at 0 0 while the dihedral 
an~le was vari e d frrm the h u lf - s pan or quarter - s an positions . 
The ve rtical - tail area was var i ·3 d from 5 to 15 parc a nt of t ile 
wing aros .' FC'r t es t condi t ions a t wh ich the b eh3.vio r of t he 
models with tip dih3dral w~s abnormal at a lift coefficient 
of 1.0, a dditinna l fli gh t t ds ts we re made for a r a nge of l i ft 
coefficient from 0 . 4 tn 1 . 0 . The values of CL and Cn 

i3 i3 
corresponding to the va r ious test cC'nditions were de t ermined 
from force - test data and are presented in figure 5 . Stall 
s urve y s we re made with tufts in order to determine the wing
stall pa tt9 rns of the mode Is f0r various dihedral arrangements . 

Testing Procedure 

Tha m0d31 was flown at Gach t a st condi tion by m·aans 
of ailerons c0uplad with rudder . h t0tal aile r~n trave l 
of 300 wa s used fo r a l l the flight t 8s tS . The rudder 
trav3 1s us Gd W8 ra sa lac ted by visual obs .::i rva t1 on of 
fli[ht tests as the a;n(')unt n s cessary to e liminate tha 
adve rs e yawing in aileron rolls . 

5 
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The stability and central cha racteristics were 
dete r mined from the fr0 e -fl!ght - tun~el pilot ' s nbser 
vat i ons and motion- 9icture records of fli ~hts . The 
general fli ght - behavior ra+ing s were based cn t he p ilot's 
op inion rsc0rded f rr each test conditi 0n . Ea ch rating 
Was based on a number of separa te flights . i·il t n."ugh t he 
ac curacy of these rating s depende d upon t h8 pilot's 
ap ility to r e co gnize unsatisfac tory crnditions , it is 
brlieved t hat t he ratings g i ve a qua litat i ve indication 
OF the effa ct o f chane;e s of the va ri able s invelv;;:cl . 

C ALC UT..JA'l'I ONS 

Boundari e s for neutra l sp ira l stab ility (E ~ 0) 
and nd utra l nscill a tnry stabi l ity (R = 0) we r e ca lcula ted 
o ~e r t he t e st range by me ans of t he s tab ility e qua tions 
of r efe rence 1 and a r G shown in fi gure s 6 and 8 . 

'la lua s of t hE; l a t ..:: r a l stabili t y de riva tive Cy 
~ 

use d in the calcula tions W-3 r0 ob tc:.ine d from forc o t 8 sts 
of tb3 mode l . Th3 va lue o f t he yaw ing r"t 'l ry d~ riva tive C 

wa s obt a in3 d from fre ,a - nsc i ll a t ion t -;:) s t s nf t ha mnde 1 by 
t he m" t hod da sc r i b0 d in r c..: f .::l r en cc: 5 . Ths othe r !'ota ry 
d eri 'lativ.)s C

L 
' Cn , a nd C

L 
w . .:") r e es tima t..::d from the 

1_ P P r 

nr 

c harts of re fdr8 n~ e 6 nnd t hd f o rmulas nf r~f3 renc e 7 . Th0 
v~ luds nf t he m9SS cha r a ct 3r i s t ic s m, kX' a nd kZ 
-r'J r .", m-.:;) ·"' sure d f0 r t h '.3 n:0 de l . 

R8:SULTS l-i.~·l D DISCTJSSION 

Thd r Jsults ("f t hJ fl i ght t ws ts a t 9 lift cn 3f 
f ic i an t of 1 . 0 are pr s s a nt e d in fi gure 6 in the form of 
q\lalita ti.ve ratings of the ge ne ra l fli ght behavior of 
t he mC'de 1 . 'T r .. 8 f l i gh t - b e ha vier ratings and tha var ia tions 
of the ratings with C. and C , as s hown in fi gure 6(a) 

[, p np 
f0r t he mndels with full - s "8an di he dr al , arC) considered 
n~rmal ' inasmuch as t hey are quit e similar tC' t he ratings 
o~ taine d in previous fre e - f light - tunnel t e sts . The s e re s ults 
wi ll t her0fore ba us e d as a standard b y wh ich to compare t he 
r e sults of the t 3sts nf mode ls with half - span and quarte r 
span dihe dra l. 

6 
----~----' 
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The behavior of the model with half - span dihedral 
(fig . 6(b)) was similar to that of the models with full 
span dihedral for the same values of CL and, C 

f3 nf3 

Nith the quarter-span dihedral , however , the m del 
was more difficult to fly at a lift coefficient of 1 . 0 
than it was wi th full - snan d~_hedral as sh nwn b-y a com
pari son C"lf the r3. ti'ngs ~f figure s 6 (a) and 5 (c) for the 
same values of C 1 and C • This diff3renee in the 

vp nfj 

flying characteristics was most prrnC'unced at lower values 
~f Cn and higher V3.11~S of effective dihedral, particu

p 
larly Tor t~e model with 40° quarter - span 
vdrtical tail 5 p~rcent of tha wing arsa 

dihedral and 
(C ::: - 0 . 0020 

Lf3 
3.nd C ::: 0 . 00075) . The mndel , at a Ijft coefficient of 

nf3 
1.0 and with a quart3r - span dihedral 0f 40~ performed a 
lightly damped 13. teral ose ilIa tion w!1ich was predominantly 
rolling. As the directional stability was reduced for 
this dihedral arrangement, the rolling rscillation became 
more violent and at tne lowest value of directional sta -
bility tested (C ::: 0 . 00075) the motion became so violent 

n~, 
that the model was barely flyable . This oscillation dif 
fered from the tyne ("'If oscillation usually obta,ined wi th 
low directional stability and high effective dihedral in 
tnat the rol~ing was much more severe and of shorter 
period with smaller sidewise displacement . The model in 
these oscillations described a rapid \t falling - leaf ll maneu
V3r . The oscillat~.ons were started by normal control 
d.aflections and gustiness in the tunnel. The pilot found 
these oRcillations difficult to che c k and at timvs may 
have accidentally reinforced them with ailerons . Figure 7(a) 
p~~s3nts a time history of the modvl in controll~d flioht 
at a lift coefficient of 1 . 0 and a quarter - span dihedral 
of 400 . 

At the lower lift cefficients the model was easier 
to fly and the rolling oscillations were m("'lre heavily 
damped, as Shown in figure 7(b) (CL = 0 . 4) . These 
lateral flying characteristics at low lift coefficient 
were considered to be fairly good and figur8 7(b) is 
presented for comparison with the flight rec"'rd of the 
model wtth quarter-span dihedral of 400 at high lift 
coefficient (fig . 7(a ) ) . Figure 8 presents a comparison 

7 
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of the flight - behavior ratings for the model with full
span and quarter-span dihedral for lift coefficients 
of 0 . 4, 0 . 7 , and 1 . 0 . This figure shows that no ap 
preciable difference existed between the flying character 
istics of the quarter - span - and full - span - d i hedral models 
at lower lift coefficients . 

The objectionable rolling of the model encounte red 
at a lift coefficient C'f 1 . 0 and a quarter - span dihedral 
of 400 is believed to have been caused by lower damping 
in roll C.l, than tha t of the mode 1 wi th full - span 
dihedral . Rtall surveys of the models show that an early 
stall occurs at tha dihadral breal{: of the quarte r - span
dihedral m0del that dras not occur on the full-span
dihedral m0del . (See fig . 9.) In a roll the downgoing 
wing of the mC'del is at a h igh.;; r effe ctive angle of attack 
than that for whic h the me-del is trimmed and the upgoing 
wing is at a lower effective angle of attack. B.t high 
lift coefficients, then , the downgoing wing of the quarter
span- dihedral mC'del may be part ly stalled and the upgoing 
wing unstalled, whereas both wings of the full - span-dihedral 
model are unstalled . Because of this unsymme trical stalling 
the quarter - span-dihedral model would be expect.::d to have 
a lower value of the damping in roll parame t e r Cl, than 

p 

the full-span - dihedral model . This cC'nclusion has been 
substantiated by the results of full - scale fli ght tests in 
which !tfalling-leaf!! oscillations were encounterad whan 
early tip stall occurrad . 

The wing - tip stalling, and consequent reduction of 

of the quarter - span- dihedral model would probably be 
intensified by any adverse yawing which occurred . The 
discrepancy between the flight ratings for the full-span
dihedral and quarter - span - dihedral models was therefore 
greater for test conditions having low directional stability 
than for those having high directional stability . (See fig . 6.) 

The low scale at which tests we re made must be con
sidered when an analysis is made of the present data , because 
the stalling at the dihedral break of full - scale airplanes 
with tip dihedral will n0t necessarily be the same as for 
the models tested. It is believed , however, that large 
ang les of tip dihedral will t~nd to cause poor lateral 
stability at low speeds and sh0uld therefore be avoided. 

8 
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CONCLUSIO NS 

Free - fli gh t - tunnel t~sts of free - flying models 
have shown t hat at hi g h lift coefficient3 tip dihedral 
may cause a lightly damped l ateral oscillation ( p re 
dominantly rnlling ) , which does not occur with full 
span dihe dral at similar values of effective dihedra l 
and directio nal stability . This abnorma l lateral oscil 
lation is believed tn be caused by a reductinn of the 
damping in rol l due to early stalling at the dihedral 
break . No appar :~mt diff3rence 6x ist3d betwee n t he flying 
c haracteristi c s () f the m0dels with full - span and tip 
dihedral fo r the lowe r lift coefficie nts . 

In order to establish definitely t he r eas r-ns f or the 
poor lateral - s tab ility charac t er istics at high lift c o ~f
f icidnts with tip dih~dra~values of the damping in roll 
parameter CL should ba me::ls u red for tha v a rious 

p 
conditions t ~s t s d , and a n inde pe nde nt study o f t h~ effe ct 
of stall pa tterns on l a teral stability a t high lif t cosf
fici~nts s hould be mad~ . 

Langley Memoria l Ae ronautica l Labnratory 
Nat iona l Advisory Committee for Aerona utics 

Lang l~y Field , Va ., June 12, 1946 
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Figure 1.- Test section of Langley free-flight tunnel showing 
model with tip dihedral in flight. 
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NACA TN No. 1059 Fig. 3a, b 

-(a) Quarter-span-dihedral model. 

(b) Half-span-dihedral model. 

Figure 3.- Front view of models used in tip-dihedral 
investigation. 
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(al Quarter-span-dihedral model. 

(b) Half-span-dihedral model. 

Figure 4.- Three-quarter rear view of models used in 
tip-dihedral investigation. 
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