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SUMMARY

The well-known methods of thin-airfoil theory have
been extended to obligque or swept-back airfolls of finite
aspect ratio moving at supersonic speeds. The cases con-
sidered thus far are symmetrical airfoils at zero 1lift
having plan forms bounded by straight lines. Because of
the conical form of the elementary flow fields the results
are comparable in simplicity to the results of the two-
dimensional thin-airfoil theory for subsonic speeds.

In the case of untapered airfoils swept back behind
the Mach cone the pressure distribution at the center
section is similar to that given by the Ackeret theory
for a straight airfoil. With increasing distance from
the center section the distribution approaches the form
given by the subsonic-flow theory. The pressure drag is
concentrated chiefly at the center section and for long
wings a slight negative drag may appear on outboard sec-
tions.,

INTRODUCTION

In reference 1 it was pointed out that the wave drag
of an infinite cylindrical airfoll disappears when the
airfoil is yawed to an angle greater than the Mach angle.
This observation led to the conclusion that the drag of
a finite airfoil could be greatly reduced by the use of
sufficient sweepback. With such a swept-back wing the
wave drag would be associated with departures from the
ideal two-dimensional flow at the root or tip sections
and would thus be a-function of the aspect ratio. The
present report extends the theory of reference 1 to take
aceount of these effectis.
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The treatmeént is based on the theory of small dis-
turbances in a frictionless compressible fluid. The
idealized fluld and its equations of motion are identical
with those employed in acoustics in the theory of sound
waves of smell amplitude. The application of the theory
is thus limited to bodies having thin cross sections so
that the velocity of motion imparted to the fluid is small
relative to the v=loclty of sound and so that the pres-
sure disturbances produced srs small relative to the
ambient oressure.

The adaptation of the sound-wave theory to the aero-
dynamics of moving bodies was suggested meny years ago
by Prendtl. The theory was aopvplied by Ackeret (refer-
ence 2) to thin airfoils moving &t supersonic speed.,
Ackeret's treatment is limited, however, to infinitely
long cylindrical airfoills moving transversely. The
present theory may be considered an extension Ackeret's
theory tc take into account wings of finite spun and wings
having tapered or swept-back plan forms. In the casec of
swept-back plan forms the results are markedly different
from those oh+ nﬁd by the Ackerst thecory and approach
the v:ilues dicated in references 1 and 3%,

In reference BuQﬂmgnn desceribes 2 method for cal-

culating the suwarsonic Tlow over bodies which produce a

conical pressure field. Busemann chows that the £low
around cones of circular cross sections as well as the
flow around the tip of rectangular 1lifting surface
satisfies this condition. The fact that a great variety
of three-dimensional flows can be constructed by the
superposition of conical cond fllﬁdﬁlch* flow fields
leads to an sssential simplification of the airfoil
theory at supersonic speeds.

4

)

present treatment differs from Busemann's in
that it is further limited to flat bodies, that is,

beodies which ars thin in both longi :uxlﬂml and transverse
sgctions. This additional restriction 1“1&3 to a much
simpler mathematical treatment and one which is apnlicable
to a wide variety of airfoil shepes. In a paper presented
before the Institute of Aeronautlcal oblencosl Allen E.
Puckett also treats symmetrical non-1lifting bo, ies.
Puckett!s method makss use of intezral expressions corre-
sponding to the veloclty notential of plane-source distri-
bution.

:
“Uith Annual Mesting, Wew York, January 29, 1946.
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point on X~axis

limit of integration

disturbance-velocity potential

o+
0

disturbance-velocity components
value of u at x,
value of u for conjugate arrangement

local preszsure

1 el
dyneamic pressure (-;;pVL)
=

¢

density of ailr

Legendre functions

source-strength factor

differential operator

slope of line source (absolute value)

THE OBLICUE LINE SOULCE

x

velocity of sound throughout the fluid lead to the

e
=2

of small disturbances and a constant
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well-known linearized equation for the velocity poten-
tisl @ (see reference 5)

@ - M2)¢$x + Pyy + Py = 0 (1)

The snalysis is simplified by introducing the coordinates

%
Xl = X

v, = \/MB -1y > (2)
Zl :\jMa - 1 z J

Dropping the subscripts from the transformed coordinates
gives

Pex = ﬁyy - @y =0 (3)

According to the thin-airfoil theory the pressures
on the transformed ailrfoil are given by

Ap u _2¢¢g
0 A B T z—+0
ke L b (z=0) (L)
. ) dz
and the slope of the airfoil surface e e equal teo''the
slove of the streamlines near the chord plane; that is,
éz _w
dx v
10
5= 3 (z—30) (5)
V oz
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The elementary solution of equation (3) for a point
source is 1

1
Vx2 - 32 - z2

o =

This solution 1s directly related to the subsonic poten-
e ol

i
ﬁo s

3 sz + y2 + z<&

In the subsonic case the equipotential surfaces are, however,

ellipsoids, whereas in the supersonic case the equipo-
tential surfaces are hyperboloids limited by the Mach
cone. (See reference 5 for the derivation of these ele-
mentary solutions.)

Because of the linearity of equation (1) a solution
may be used to denote one of the velocity components
rather than the velocity potential. The specification
of one component in this manner actually describes the
whole flow field since the other components may be obtained
by integrating the given component to obtain the velocity
potential and then differentiating the results along the
desired directions to obtain the desired components.

This procedure is especially useful in the thin-airfoil
theory, where the complete velocity field may not be
pediire ¢

Adopting the foregoing procedure, one may write

Uy = 2

Vx2 - 32 - 22

Since u 1s proportional to the pressure, such a solution
corresponds to a point source in the pressure field. The
solution for an oblique line source may be obtained by
integrating for the effect of a row of point sources along
the line y = mx, It will be shown that such a line source
satisfies the boundary condition for a thin wedge-shape




body. This solution, as well as other expressions relating
to obligue airfolls, can be most conveniently expressed
by referring to the oblique coordinates

X' = x - ny
y!' =y - mx
z!' = Vl - me z

See fig., 1.) It may be shown that if any function
(

f(x, y, 2) 1is a solution of

Py = fop =0 =0

then f(x', y'. 2') 1s also a solution. 1In particular,
the point-source solution becomes

Hence the integration for the effect of an inclined line
of sources may be performed directly along the oblique
Xx'-axis; thus, for m< 1,0

Y&
=L aer
u =1

L0 V(X" £1)2 o 512 . 512

) S Bt .
= I cosh -~ l (6)
Vv'g + 712

o

-
'
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fhere g'l iz the Dt

e}
cone includes the point (xt, y', 2') and is given by

&t
-

i
5
1
<
n
-[-
N
N i

i

When m ansroaches 1.0 the source line apn»roaches

coincidence with the lMach cone, corresponding to a trans-

verse velocity component squal to the vzlocity of sound.

For values of m greater than 1.0 the integration

-c-r-< _L
1elaS

Tt will be seen that in this case I is imaginary.

The vertical velocity near 2z = 0, which determines
the shape of the boundary, may be l termined by inte-
grating u with respect to x and then differentiating
the resulting veloclty rotential with respect to z;
thus (see apﬁ'nulx),

l)

)
P
H

N
o
S

iIf z-=-)0 end y?'« O, JIf -yt 0, w =0, 1There 18
thus a discontinuity in the vertical velocity of the
streamlines when they cross the line source at y' = 0.
For small values of I/m this discontinuity in vertical
veclocity agrees with the boundary condition Po a simple
wedge shape kaving a small wedge angle. (See fig. 2.)

aition of the last source whose Mach
X
1)
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=

If the source strength T 1is held constant and m
is allowed to anproach zZero, the wedge angle ultimately .
becomes large. At m = 0 the line source actually
satisfies the bhoundary condition for the circular cone
(reference &), but it is found that the slope of the
conical boundary does not agree with the slope of the
streamlines near 2z = 0 and hence the theory no longer
holds. The condltion %'"%' thus represents the transi-
tion from an obligue airfoil to a body of revolution and
will be avoided in the present analysis by restricting
the formulas to flat begdies, that 1s, alrfoils Cthat are
thin in both longitudinal and transverse section.

ATRFOIL OF WEDGE SECTION

Over the wedge sectlon near the plane 2z = 0, -the
7
formula (6) becomes simply

o Xt
u = I cosh~! (9) :
Iy
where |y' denoteg the absolute magnitude of y' = y - mx. L
The pressure is thus constant along the radial lines
5
sk Constant (10)
Vi

and is conveniently represented by the variation along a
line parallel to the x-axlis. Figure < shows the oblique
wedge-shape figure corresponding to & line source with

m< 1.0, In this case the pressure filield is confined to
the interior of the Mach cone X% - y2 -z2=x'!'2.-yra~ z12=0
and the theory, unlike the Ackeret theory, indicates a
stagnation point along the leading edge. (actually, of
course, the thin-airfoil theory shows an infinite velocity
at such points, but this is to be interpreted as a velocity
of the order of magnitude of the flight velocity V. The
pressure to be expected along the leading edge 1s the
stagnation pressure corresponding to the transverse
velocity component.)

8
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Given =— = =, the wedge angle measured in down-

S am

ax V
sections, the source strength must vary with m

o

ceording ©o

V n dz-
I = e (11)
=~ ldx
l - m<
(from equation 7). Then
Ap 2 4z 1 - b
gl % ;oo e QBIRD oTies (12)
o a - '
dl - m2 e

I el

L

m exceeds 1.0, the leading edge of the airfoil

will 1ie outside the Mach cone. In this case

3
Lds

R m - x! ;
oous? S R sty = cos l (1‘3)
q w ax [ 4 ss - {
\ me = l VY L 4+ Z | s

region between the leading edge and the lMach cone
~ 1 >
lA‘i is constant and equal to 1; hence the pres-
7
n this region is constant, that is,
Ap Az m
= - (lll—)
a ax o
D
m= - 1
3 illustrates this result.
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If m—e a semi-infinite airfoil with its leading
edge at right angles to the direction of flight is
obtained; here

X - my B -y "

\/(y - mx)2 + (1 - m&)z2 sz - z¢

Ap:ZQ.Z_

and wherever y > x2 - z2, This value agrees

o)

with the Ackeret theory.
ATRFOILS BOUNDED BY PLANE SURFACES

The distribution of pressure over symmetrical air-
foils bounded by plane surfaces can be obtained by super-
imposing the pressure fields for several line sources and
sinks. This superposition is greatly simplified by the
conicalk form of the pressure field for each single line
source. Because of this form the whole distribution in
the plane 2z = 0 1is, in effect, represented by a single
curve. If the velocity field for a line source beginning
at the origin (equation (6)) is denoted by u and that

beginning at x = -1 1s denoted by wu_j, and so forth,
the sum

U._l . u+1

represents the veloclity over a plate of uniform thickness
having a beveled leading edge of constant width. - (See
fig. L.) Similarly

u_]_ - 2u + U.+l

represents the pressure field for an airfoill having
diamond-shape cross sections.

The superposition required for several sources or
sinks can be zccomplished by manipulation of & single
curve if it is remembered that wu is a function of the
ratio x/y. Figure L, illustrates this process for a
source and a sink. In terms of the ratio x/y the
separation of source and sink and hence the scale of the
chord length continually diminishes with increa31ng
distance from the root section.

10




e dlstances from the vertex (x!'—ow) +the
for. m& 1.0}

1+ %D L] 1 Wk

U_qy - Uy C cosh™ ————— - cosh” (16)
1 1 'y' - m| jy' + m|
is found to approach the value
y' - m o 7
————— = 2 e 7
8 v' +m QO<TH> I

where Qo 1s the Legendre function (see reference 6} s

"1 3

foll theory for subsonic speeds it

w e P.ix)

iR (19
ax
then
o Q
u € Qn(x) (19)

since Neumann's formula (reference 7, b. 116)

+1
Pn(&)
Qp = ; f e i dag (20)
2 -

may be interpreted as the integration for the velocity
distribution due to an array of sources of strength

wdg = Pp(g) dg

2k
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along the chord of the airfoil. The expression o (y!/m)
of eguation (17) thus represents the subsonic pressure
distribution over the beveled edge.-

At the root section (y = 0) only the forward source
reed be considered since the airfoil surface is ahead of
the Mach cone originating at the rear source. iere

X+ 1 - my
ly - m (x + 1)}

-l
‘ o @il
u 1 - 1.1‘3 oo eQEn

o1l
¢z cosh™d = (21)
m

and the pressure cvey the root section isg thus constant,

as gilven by the Ackeret theory, but is altercd in magnitude

by the obliguity.

ue wing lying behind the Mach lines thus

arat type of pressure gistribution over the

;ton and a progressive change along the soan

:3j1u+1or to the subsonic type of distri~
U

fie]

The obiil
shows the Ack
foremost se
from this di
bution. Since
ne pressure dara

the subsonlc type of distridbutiocn shows
there is a continuous falling off of

the pressure d with incre“sing distance from the root
section. Ths pressure drag of the cblique wing thus arises
ehiofly on the forenmost section, and it follows that the
drag coefficient of the wing as a whole diminishes with
increasing aspect ratio. Tt will be shown subsequently

i

@
G

&) d¢ is taken as the chordwise

ue P.(x)
w e Qn(x)

dz
O e
Az

The first of this series of airfoils is the cambor shape
curved to support & uniform load.

12
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that the effect of cutting the wing off along a line

y = Constant to oroduce a downstream tip causes a reduc-
tion of the pressure drag on the adjacent sectlions, and
if the aspect ratio is sufficiently high, the pressure
drag in the region of the downstream tip may actually be
negative.

If the wing lies ahead of the Mach lines (m > 1.0)
the Ackeret type of pressure distribution occurs and a
pressure drag arises over the whole length. In this case
both u &and w &are constant over the beveled part at a
distanece from the origin,

The treatment thus far applies to semi-infinite
cylindrical wings having root sections near the origin.
A complete swept-back wing may be obtained by the addi-
tion of a symmetrical or conjugate arrangement of source
lines below the x-axis, Values of u for this conjugate

arrangement may be denoted by u. Figures 2 and 3 show u
for a single inclined source and figure 5 shows calculated

pressure distributions at several sections along the span
for a complete swept-back alirfoil having beveled sections.
The addition of the conjugate source lines doubles the

pressure at the root sectiom, but this interference effect

ralls off rapidly along the spans It 1is noted thab, ‘as
in figure L., the most significant change in pressure
distribution occurs along the expansion wave originating
at the trailing edge of the root section. Figure 6 shows
the variation in pressure drag along the span for this
airfoil obtained by integrating the chordwise components
of preasure at the different seetions.,

The addition of & reversed source-sink distribution
having its origin displaced to a point 0o (see fig. 7)
will show the effect of cutting the wing off in a direc-
tion parallel to the direction of flight. It will be
evident that the effec¢t of such'a tip is characterized
by the subtraction of the curves u and is limited to
the ares lying within the Mach cone which originates at
the tip. It is interesting to note that pressure distri-
butions of the Ackeret type, execept reversed in slgn,
are added near the tip; hence, eunbtting the btip offivin
thls manner reduces the drag of adjacent sections,

Pigure 8 shows the pressure distributions over a
rectangular airfoil having a leading edge at right angles

13
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to the flow. In the triangular area ahead of the Mach
cones originating at the tips the pressure is constant,
as ziven by the Ackeret theory, whereas behind these lach
cones the pressure drops sharply.

ATRFOIL OF BICONVEX SECTIONS

Curved surfaces require a continuous distribution
of sources and sinks alined with the zenerators of the
surface. Each elementary source-line causes an infini-
tesimal change in direction of the surface and hence the
slope at any point may be obtained by adding up the
effects of all sources sahead of that point. Thus

X ——

d 1 - m2 dar .
_.Z__-—_-.TI """'_m"‘i]:'df, (22)
ax vV m de

lXo

O

62z V1 - m@ g
dXZ ) m g

For airfoils of constant chord, m will be a constant
and the Integrations can be performed without difficulty.
The simplest case is that of constant curvature, which
leads to profiles formed from circular arcs.

In order to obtain a biconvex proifile 1t 1s necessary
to Introduce finite sources of strength sufficient to form
the desired angle of intersection of the arcs at the
leading and trailing edges, together with a uniform dis-
tribution of sinks along the chord line between the two
sources. These profiles thus require a uniform distri-
bution of sources or sinks, which may be obtained by
Integrating the elementary solution for the line source

(equation (6)). The resulting solution may be denoted

by =u and is, for m < 1,

1
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nx <
- l-m 1 T
“u- T Cosh'lig-—g%: ds= I <y x y cosh™l == =y coshl— (23)
2 (o) m | m Iy' |
vivi ' '

Inasmuch as the elementary solution wu 1is of the
form f(;) the integrated solution appears in the form

|

o

[l

<«

X

(62]
i e ]
S

i

and will be conveniently represented by a curve typical
of all spanwise stations, namely,

L, < off)
yD g Ny
For a closed profile intersecting the X-axis at the

points 1 there 18 obtalned

2
e & . &
2.u SEa N, Ry —l - ;5u+€> (2l)
This superposition may be accomplished conveniently by
transposing and adding the tynical curves u and j;u,

yD
as shown in figure 9.

It will be found that 1f m 1is less than 1.0 the
velocity distribution approaches, with increasing distance

from the root section, the form given by the subsonic-flow
theory for an airfoll of biconvex section, that is,

-

w P (m.)
u «Q (y )

15

A%
—
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N
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At the root section, however the form is simply that
given by the Ackeret theo ry a straight airfoll,
although the values are re uceu in magnitude by ‘he
m ”
factor ‘,_mm.; cosh oy
Jl - M-

essurs distribution and the variation of drag

ﬂlovr D
in figures 10 and 11.

CONICAL SURFACES

For tapered airfoils both m and T will be
functions of &. (See equation (2).) It is easily seen
that closed surfacss céan be obtained only on the condi-
tion that the line sources have a common point of intere
section, as in figure 7. If this point is denoted by
Xgs Yo

Yo
m =
Xo = g
The surface cbtained is one generated by a line vassing
through the fixed pecint Xg, VYo and hence is a conical

surfeace

)%=y
= ur & ag
1E3) ¢S
16

n for the synmetrical biconvex wing are shovm
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vhere &3 1s the location of the vertex of the airfoil and

m dgz

dl - me Egz

In conclusion it ghould be noted that the pressures

al

A X

I
A<

have been derived for en airfoil transformed according
to equations (2). The pressures at corresponding points
of the original airfoill are to be obtained by dividing

by N~ - 1.

Langley Memorial Acercnautical Laboratory
National Advisory Committee for Aeronautics
Langley Fielid, Va., May 23, 1946
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APPENDIX
EVALUATION OF INTEGRAL OF EAUATION (8)

For m< 1.0 the disturbance
Mech cone and the range of integrat

‘.Ja !—la
o W
o

w
B
O

<
i
o
o
()]

@

b
ck
(]

5
jon]
o
L&

- D )
cnly from x; = {y< + z= to x, thet is,
1% Iz
| oy N
wide = cosh ax (A1)

-0

,
-
no

~_r

) 2d
S o
v
-
P
(o7
4
t
C
. —
bS]
O
%
o

Q
et
"3
N
+
N
n

since ths Integrand is zero at the lower limit.

o ;| x!
— ¢osh = (AZ%)
oz > . .o i
Es) -~ . » -~ ~
Br‘“" G o Z'“‘ (y!i 4 Rl -
and hence the integral
nx "'Z’\vl" EY
=L =X s ) =
w o= x (aAl)
i
/ 3 (5]
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.

irst it is noted that the integral vanishes
with 2z except in the neighborhood of the Mach cone

o

(V%vZ " y'2 = FEcs O) and in the neighborhood of the . |
line source (y' = 0). ©Near the Mach cone y!'2 + zZ!Ceagyule, |
gso that

=X 7 a3 =7 X

(y.2+212>'\X12_y12_ 212 bl VXa_y2-22

Since the latter integral approaches zero with 2z, there
is no contribution to equation (Au) in the region of the
Mach cone. On the other hand, near the line source y'=—0

and Vx'z - y'2 - z1e wwedx s  Hence , as  zt==p0,

g ! 4 | 1
~ Z_ v s : dx=§? tan™! -Z-’-+ Constant (AE)
(y|2+zv2) \/xve_y:2_2.2 y'2+z'2
U

The value of the integral changes from 0 to & in crossing
over the line source at y's0 and is positive or negative
depending on whether 2' aporoaches zero from the posi-

tive or negative side of the xy plane. Hence

If m 18 greater than 1.0

Hu= oo S

(A7)

Vyla + ze

19
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and the flow disturbance extends cutside the Mach cone

to a region bounded by plans waves extending from the line
source and tangent to the Mach cone. (See fig. 12.) The

equation orf th”° plan¢gs can bs eas shown to be

-

veis B ence for m > 1.0 the lower limit of
integration 1s Oivcn by

o

b

@
<4

yle 4+ zt< = 0O

or
ko Gl
- ¥ - \mc - 1 2 .
X = & A&
7 e (A8)
Then
e x
¢ 5 & 1 x!
o u dx = e cos” dx (A9)
7 oz | @ 2
G

D
U pAEEE

VX Z b Z

In this case wu does not go to ze at the lower l1limit
but is equal to w. In all sther tions, however,
the “uevnrl approaches Zero uniformiy with 2z as in the

cack
r“fvﬂd*gg case; hance

) 0y, 7\ >
EhE e = ¥nc - 1 (A10)

)
O
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u=cosh

'x+m!

u=cosh [ysmx]

Figure 2. — Pressure field for obllque
wedge where m«<i. Aq9= &Vg
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Figure 3.— Pressure field for oblique
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Figure 4.— Superposition of source and sink to obtain
plate with beveled edge.
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Figure 5— Variation of pressure distribution along span
of swept—back wing. m=tan 30°
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Figure 6.—Variation of drag coefficient with distance from
root section for swept-back wing. Wedge section.
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Sectio\n
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Figure 7. — Addition of reversed source-sink
distribution to produce tip.
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Figure 8. — Pressure distribution over airfoil of
rectangular plan form.
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Figure 10.— Pressure distribution at
dif ferent points along span. Biconvex wing. -
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