MANEUVER LGADS SRANCH wur

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

TECHNICAL NOTE

NO. 1118

EFFECT OF COMPRESSIBILITY AT HIGH SUBSONIC VELOCITIES
ON THE LIFTING FORCE ACTING ON AN ELLIPTIC CYLINDER
By Carl Kaplan

Langley Memorial Aeronautical Laboratory
Langley Field, Va.

W

Washington
July 1946




NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TPCHNICAL NOTE Ho, 1118

EFFECT OF COMPRESSIBILITY AT HIGH SUBSONIC VELOCITIES
ON THE LIFTING FORCE ACTING ON AN ELLIPTIC CYLINDER

By Carl Kaplan
SUMMARY

An extended form of the Ackeret iteration method,
applicable to arbitrary profiles, is utilized to calcu~
late the compressible flow at high subsonic velocities
past an elliptic cylinder. The angle of attack to the
direction of the undisturbed stream is small and the
circulation is fixed by the Kutta condition at the
trailing end of the major axis. The expression for the
1ifting force on the elliptic cylinder is derived and
shows a first-step improvement cof the Prandtl-Glauert
rule. It is further shown that the expression for the
1ifting force, although derived specifically for an
elliptic cylinder, may be extended to arbltrary symmetrical
profiles.

INTRODUCTION

Two methods of approximation, complementary in
nature, have been used for the solution of problems of
flow past bodies in the subsonic-velocity range. They
are the Janzen-Rayleigh method (reference 1), in which
the velocity potential or the stream function i1s developed
in a power series of the stream Mach number, and the
Ackeret iteration method (reference 2), in which the
velocity potential or the stream function is developed
in a power series of a geometrical parameter character-
istic of the body. The complementary nature of these
two methods lies in the fact that the - Janzen-Rayleigh
procedure yields accurate results in the case of thick
bodies, for which the critical stream Mach numbers are
low; whereas the Ackeret iteration process yields accu-
rate results in the case of slender shapes, for which
the critical stream Mach numbers are in the neighborhood
of unity.
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In the Ackeret iteration process the assumption is
made thkat, if )\ 1isg & parameter that represents the
departure of the profile shepe from a straignt-line seg-
rment at zeroc angls of atbtack (that is, AN may be the
thickness, ths camber, or the angle of attack), the
stream function VY, say, may be developed in a power
series of M in which the coefficients are functions of
the plane coordinates x and y sand of the siream Rkech

nunber M,. That is,

S

v = Uy + fl(x,y;ml)h + f2(x,y;Ml)K2 + eee (1)

where U 1s the velocity of the undisturbed flow. By
inserting this expression into the fundamental nonlinear
differsntial equation for ¥ and by equating the coef-
ficients of the various powers of A to zero, 2 system
of linear differsntial squations for the functions

fn{x,ygﬁﬁl is obtained. The integration of this system

of differential equations can ve¢ pergormed Jor as many
steps a3 desired, the first step flkx’y;ML} being
eguivalent to the Prandtl-CGleuert approximation. There
is, however, 2z fundamental difficulty with the form of
the development, equation (1), which does not appear in
the Jaznzen-Rayleigh method. In the Janzen-Rayleigh
method the ezpansion of the stream function in powers cof
the stream Mach number, namely,

2

b3 + \!}2Mlh‘ + e (2)

-\ !
Vo= vy

can always be obtalned, wnsreas the pussibility of the
expansion, cguation (13, cannot be guaranteed beforehand.
This difficulty in the Ackeret process was avoided in
references 3 and li by choosing as solid boundaries pro-
files having no stagnation points., In such cases, a
development of the form of equation (1) is always possible.
When, however, shapes are chossn that possess stagnation
points, terms of the type A™ log A ultimately appear on
the right-hand side of equation (1) and the explicit
development in powers of A  is strictly no longer pos-
sible, This difficulty may be avoided by assuming a
somewhat mors goneral form for the development of
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the stream function; namely,

QY]
~

Vo= =Uy + Yy (x,5) + U(x,y) + . | - (

where the shape parameter A 1is contained implicitly in
the various functions wn. In equation (%) Wl ‘corre-

sponds to the Prandtl-Glauert approximation and V¥ is
made to satisfy the exact boundary conditions at the
solid and at infinity. For the purpose of defining and
controlling the iteration procedure, the function Wn+l

is regarded as small compared with the preceding func-
tion Wn and the derivatives lLave a similar relationship.
It can be stated now that the aforementioned difficulty is
more apparent than real, for in carrying out the iterative
steps according to equation (1) A behaves like a dummy
parameter, which serves only to regulate the iteration
process in exactly the same manner as equation (3).

For slender bodies the first few steps of the Ackeret
iteration method may be expected to yield a good result
with the exception of a small region in the neighborhood
of a stagnation point. Hantzsche, in reference 5, treated
the case of an elliptic cylinder at zero incidence in a
uniform stream according to Ackeret'!s process as repre-
sented by equation (1), with the exact boundary condi-
tions at the solid and at infinity being satisfied.

These calculations were carried through the KB-terms

and included a term AT log M. A comparison, made in
reference 5, of this result with that obtained by the
present author according to the Janzen-Rayleigh method
showed agreement in the terms common to the two develop-
ments. A gimilar comparison made for the "bump" in
reference % also showed complete agreement in the terms
common to the two methods. These comparisons illustrate
the fact that solutions obtained by the Janzen-Rayleigh
and the Ackeret methods are simply different representa-
tions of a single unique solution. In particular, it is
evident that the Janzen-Rayleigh method, which is valid
at stagnation points, includes parts of the Ackeret
development and, conversely, the Ackeret development
includes parts of the Janzen-Rayleigh result. Although
the first few terms of equation (%) do not yileld very
accurate results at stagnation points, these terms
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nevertheless represent correctly, to some extent, the
effect of compressibility at such points. The saccuracy
of the calculations obviously depends on the number of
terms V, derived, each new term reducing the extent of

the region of inaccuracy in the neighborhood of a stag-
nation point.

The question of the convergence of the sequence of
functions, equation (3), is a difficult one and should
be thoroughly investigated. Schmieden and Kawalki
(reference 6) state that both the Janzen-Rayleigh and
the Ackeret developments diverge when the local velocity
of sound is first exceseded in the region of flow, that
is, at tne critical value of the stream Mach number.
This statemsnt is contradicted, however, by results
obtained by means of hodograph or velocity variables.

In general, as shown in reference 7, the limit of steady
potential flow of a compressible fluid is determined by
the vanishing of the Jacoblan of the transformation from
phiysical x,y-variables to hodograph 8,q-variables. The
vanishing of thig functional determinant does not neces-
sarily occur when the local Hach number first reaches
unity and, consequently, therc exist continuous solutions
of the general differentiel cquation governing the flow
of & compressible fluid for which a part of the region

of flow is supersonic. It is ressonable to conclude,
therefore, that the series solutions given by egua-

tions (2) and (3) diverge at the valus of the stresm Mach
nuraber that marks the 1imit ol potential flow rather

than at the value for which the local velocity of sound
ig I'irst exceeded in the flow.

The Acke
for the velocity potential, was used to calculats the flow
past a bump and nast a circular arc profile in refer-
snces 3 and li, respectively. This caleulation was
possible because the prof'iles considercd did not nossess
stagnation points. As a consequence, the problem could
e treated completely in the physical plane and, more-
over, the boundzry conditions on the velocity potential
were tractable., In genersl, howsver, wnen shapes with
stagnation points are treatcd, the Ackeret process in the
form of equation (%) instead of in the forw of equastion (1)
should be utilized., In such cases the problem is mosth
conveniently treated in a new plane rclated to the planc
of flow by an affine transformation. In this plane,
howsver, the boundary conditions for the velocity poten-
tizl become very complicated, On the other hand, the

ret process in the form of equeticn (1), but
i []
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boundary condition for the strcam function, ¥ =0 at

the solid, is invariant for affine transformations and

it is therefore suggested that the stream function be
utilized. Tke transference of the problem to an affinely
connected plane unfortunately introduces a distortion in
the actual profile that varies with the stream Mach num-
ber. In the case of an elliptic profile, however, this
distortion does not matter, for the affine distortion of
an ellipse leads to another ellipse. This property of
the ellipse makes it a preferred profile for the Ackeret
iteration process in the form of equation (3) and is also
the reason it is chosen as the solid boundary for the
problem treated in the present paper. Specifically, the
problem treated herein is the determination of the flow
of a compressible fluid past an elliptic cylinder set at
a small angle of incidence in a uniform stream, with
circulation determined by the Kutta condition at the
trailing end cf the major axis. The main purpose of this
calculation is to obtain some information with regard to
the effect of compressibility at hign subsonic stream
Mach numbers on the 1ifting force acting on an elliptic
cylinder. A calculation is now in progress in the
Physical Research Division of the Langley Memorial Aero-
nautical Laboratory to find the effect of compressibility
at high subsonic stream Mach numbers on the moment and

cn the location of the center of pressure of an elliptic
cylinder.

CALCULATION OF THE FIRST AND SECOND APPROXIMATIONS

The equation of continuity can be written as

§~ ng) + é~<:£Lv> = 0 (L)
X pl QY pl .
and the condition for irrotational flow as

T . M=o | (5)
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where

X, Y rectangular Cartesian coordlpates in phy31cal flow
plane

u, v components of velecity along X-axis and Y-axis,
respectively

P variable density of fluid

Py constant density of undisturbed fluid at infinity

Equation (5) defines & velocity potential §, where
BTN

~OX

of
, : : oY )

and equation (L) aeflnrs a mass flow or stream func-
tion V¥, where

-,

_of _ Py oy
ST T Y
e (7)
= - P1oy
oY o OX
J/

From equations (l}) and (5), with the use of equations (6)
and (7), respectively, the following alternate forms of
he basic differential equation are obtained:

(& 5) S EH)- |

Py Ox%,

(@)

and

é._ P.j:éi i.(pl _.."i\: (9\
X\ P ox/ oy Y) '
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For reasons stated in the "Introduction," equation (9)
for the stream function will be treated in the present
paper. The difficulty of obtaining a solution lies in
the fact that the density of the fluid p 1is related
to u and v Dbecause of the dependence of p on the
local pressure. If it is postulated that the fluid is
nonviscous and if the fluid is assumed to flow from
infinity with a constant velocity U, the total energy
of the fluid will then have the same value at every point
in the region of flow. If p and q denote the pres-
sure and the velocity of the fluid, respectively,
Bernoulli's equation becomes

where the lower limit of integration refers to the
starting conditions at infinity. Moreover, p and o
are connected by some known adiabatic equation of state
such as '

b b

o o

'._l

|

= Constant (11)

I._l
-2

where, in the case of a perfect gas, « denotes the
ratio of specific heats at constant pressure and at
constant volune.

By means of the definition of the velocity of sound,

Q

2 _ _wP a
ce = = =¥ 12)
o 'p (12

[on

the following relations are obtained from equation (10):

-1 P \ |
o® = 01 - Y—é“" uy ® <g"'>' - 1) (13)

. 1 '
- - 1 ' -1
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p = pl[l - < JY"l (15)

where Ml = U is the Mach number of the undisturbed

c
1
stream at ihfinity and q2 = u2 + v2.

By means of eguations (7), equation (14) can be
rewritten in the form

| ” ’ P l
| ' e 2 -1

' pl:4 S L1 2p1 W}x Y hl\.pl _ll(Yl (16)
| |

o | 2 pa ._ UZ / p2

where V, and V¥, denote Oy/0X and OY/dY, respec-
' Lo

NG

are considered to be dependent and independent variables,
respectively, a Maclaurin expansion in the ne?gbborhood

‘ 1/2 +
of the undisturbed stream, where J;--l 0 and
Py U
_6-: 1, yields

tively., If, for the moment, Py /P and -1

'/,2 2 -
Py 1 2 Vit Yy |
— =145 - P2yt - 1
P U2
2

/ 2
§<u ~l>2[ +1)+ Y+1)<u -1) Kﬁ{;w, +)

(17)

{l

-1l = — 5. The form

where u? = — 5 andA 0

1l - M1




NACA TV No, 1118

O

of this development has been chosen to be consistent
with the Ackeret iteration process, which is essentially
an iteration around an undisturbed stream of zero inci-
dence. Corresponding to equation (3),

v = -UY + AR P (18)

where V is regarded as small compared with ¢n and

n+l
the derivatives have a similar relationship. \When this
exprescion for V¥ 1s substituted into equation (17) and
2 2
- - i ﬂ ! !
Yoy is noted to be of the same order as Vie of Vi,
then inclusive of the second power in the derivatives,

2 2

A |

L1 (8- 1)Yll - (¥ - ) Yoy Vax *Vay
Y U 2U°

\/ v?
+§lﬁ-02ﬂ7+M+<Y+n(f—1]4¥—+.-. (19)

v° |

When this expression for Py /P is substituted into the

basic differential equation (9) and terms of equal order
of magnitude in the derivatives of wn -are equated, the
following differential equations for Wl and W2 are
obtaineds :

2 —
and
2 Iy Vi
! + A = - )-'___ + 2 =&y
Y oux “%"23{3{ boo- L \' = Vix U Yix
= ~
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These differential equations are most easily solved by
first applying the afline transformation

x =X
— (22)
y = %IY= V1-1m°2 v
Equation (20) then becomes a Laplace equation
! ¢ -
Vixx * V1yy = O (23)
and equation (21) becomes a Poisson equation
Vi o R
+ = (2 - 1) =¥ + 2 A%
Voxx W2yy H uU Wlxx i) wlxy
+ [5 # iy + (- qﬁ-w (2l
LU 1yy

For purposes of calculation a nsw stream functlon W
may be conveniently introduced, where

'

puv ' (

n
\n
g

From equations (22) it can be seen that
.\!}X:\le: HUW‘

and

\UY=%L\II :U‘qj*
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so that the undisturbed flows, at zero angles of inci-
dence, in the physical and affinely distorted planes are

identical; that is, (wi) = (Uw*y> . With the intro-
, 1 1

duction of the stream function V¥, equations (23)
and (2l;) become

LS A 0 (26)

lyy

and

2 % . 2 Ll e o kd
Vi TV 2yy = (“ - 1)' v 1y T1xx TV TV 1xy

+ [3 * (r + (4 - lﬂwlyq’*lyy}

or, with the use of equation (26),
NI ::Oﬁ_1> 12+ ( +l)O@_l>,* v
2XX 2yy Y v 1yY 1xx

2V (27)

Equations (26) and (27) show that, in order to cal-
culate the varicus approximations, the incompressible
flow past the distorted profile in the xy-plane must be
known, Thus, if a profile is given in the physical
XY~plans, it will be necessary to find the conformal
transformation to a circle of the distorted profile in
the xy-plane for each value of the stream Mach number,
since the affine distortion of a profile depends on the
stream Mach number, as shown by equation (22). 1In
general, then, the problem to be solved iz the flow past
an arbltrary profile in the affinely distorted xy-plane.
This procedure in general involves the laborious calcu-
lations of the coefficients of conformal transformations
to a circle for a number of values of the stream Mach
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number in such a way that the distorted proflles in the
xv-plane correspond to the given profile in the physical
XyY-plane. In the case of an ellipse, however, the dis-
torted profile is again an ellipse, and it is therefore
a simple matter to transfer the results obtained in the
xy-plane to the XY-plane of the original elliptic
profile. In the present paper the elliptic profile is
sc oriented that 1tu major axis lies along the X-axis.
The relation between the profiles in the two planes 1s
then given by

a = g! j
b = b
"
2
02:0!2+H.—_§--];b12 ‘ '
b - > (28)
R = Rt + =yt
2u .
tan a = X tan a! (or, to the first order, a=a')
U | b
J
where
1
R==(a+bDb
a semimajor axis of ellipse in afiinely distorted.
plane
b semiminor axis of ellipse in affinely dlstorted
plane
c mifocal distance of ellipse in affinely distorted
pla
o angle of incidence of ellipse in affinely distorted
plane

and the prime indicates corresponding values in the
physical plane.
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The solution of equation (26) is in general the
imaginary part of an analytic function wl( z) where

z =x + 1y. (The asterisk has been dropped ) It is
easy then to verify that

1
\!'LlXZZlWlZ-Wl>

= U w 7
\]fly = 2‘(“12 <+ w12_>

! = Lf, =
ley = 5\"1z2 * WlZE)

1 -
= = - VT ———
Wlxx vlyy_ 21 lzz.: lez)

where a bar indicates conjugate-complex quantities.
Therefore,

15

2 ! = i .——- = Ww. ) :
C\‘l[ly\'/lxx I'P‘<lezwlz * wlzzwlz> (le + W12>I‘P'lez

and

2‘1’13{ \u.ny =I.P. <lezwlz - lezwl'é') = -i(wlz - le->R. Powy,,

Equation (27) can then be written as

where O = (y + l)<pg - 1).

Consider now a circle of radius R, with its
center at the origin of the zt!'-plane, into which the

distorted profile in the z-plane is mapped by means of

a conformal transformation. Any point on the circle

2 ' :
ézgéié '% ° - l>I P. [%O< 1z2>% + (o + u)<ﬁlz W1z >—l (2

9)
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can be expressed in the form

-i&

zt = x! + iy! = R(cos & = 1 sin &) = Re

so that the point describes the circle in the clockwise
sense and leaves the region outside the circle on the
left., If now ¢ =& + in, the transformation

z1 = pe~ib . (30)

yields a circle of radius R when 7 = 0 ~and the
infinite region of the zt-plane when 1w = +», IEgua-
tion (%0) can be looked upon as the transformation from

Cartesian coordinates x!',y! to polar coordinates Ren,-§.
The conformal transformation of an arbitrary profile in
the z-plane into a circle of radius R 1in the zt'-plane,
~with center at the origin, can therefore be written

z2 = f(ei§> | (31)

where 1 = 0 yields the parametfio equations of the
profile in the z-plane.

When ¢ and { are introduced as independent
variables, equation (29) becomes

2 :
oY - -
2_ 1/ 2 1 /. 2\ a7 , . .

The general solution of equation (32) or of equatidn (29) 
is obtained directly and 1s

v, = -%(;@ -1)1.?.[}302 wy, & (0 L)W, F(Q)] (33)

where F({) ié an arbitrary function to be determined
according to the boundary conditions at the -solid surface
and at infinity.
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Consider now an ellipse in the affine z-plane with
semimajor axis a and semiminor axis b. The undis-
turbed stream at infinity makes .a small angle a with
the negative direction of the x-axis, and the circulation
is determined according to the Kutta condition that the
downstream end of the najor axis is a stagnation point.
In accordance with the Ackeret process,

\V':'Y+\lfl+‘l/2fo-- (311-)

so that the stream function is expanded around an undis-
turbed stream at zero incidence. Since the angle of
attack has been assumed small, powers of a higher than
the first are neglected. The boundary conditions are
then, at the surface of the ellipse, mn = 0,

Wl =y

(352)
¥y = 0

and, at infinity, n =,

§]

-

and | .? (35b)

1!
O

Now, the transformation

. ol ‘
z =zt + bt (36)
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maps the region external to the ellipse in the z-plane
into the region external to a circle of radius R==%(a+—b)

with center at the origin of the Z'-plane. The complex
potential for the flow considered is given by

2 _-ia |
w o= —(zleia + I_%__e__}____) - 2iR sin a log ‘zﬁt_ (37)
z

When the variable § 1is introduced by means of equa-
tion (30), equation (56)vbecomes

z = ¢ cos (§ + iN) (38a)

and equation (37) becomes

w = -2R cos (§{ = a) - 2Rl sin a (38b)

where a = c coshA and b = ¢ sinh A, This expression
for w includes the uniform undisturbed stream =z which
must be extracted in order to obtain V., Thus, for a

1
small angle of attack a,

wy = c cos (£ +iN) = 2R cos § - 2R (sin { + {)a (39)
and

v I.P.w

1 1

I

-c sinh (n+A) sin £+ 2R sinh m sin g
| =~ 2R (sinh 1 cos € + n)a

It can be easily verified that this expression for Wl

satisfies the boundary conditions stated in equations (35)
and also that the downstream end of the major axis is a
stagnation point.

Similarly, the most direct way to determine WV, is
to consider it to be the imaginary part of a nonanalytic
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-

function w2 of ¢ and (. Thus, from equations (33),

(38), and 59),

2

<p,2 l>{Loc cos (€ - i)\.)wlz2 + (o+ Ll,)c[c'os (f - i\N)
- 2-0- cos _ - 2Ea sinz + E)]le + F(f,)}

In order to satisfy the boundary condition V¥, = 0 at

the surface, m = 0, it is a simple matter to supply
the functions of _§ needed to make the coefficients
of wy, and wlz2 vanish for 71 = 0. For example,

cos (£ = iN) = cos (¢ = iN) for 'mn = 0, Thus,

Wz = -%( 2 i)I P. fi [}os (Z - iA) =~ cos (¢ - ik{]wlzz

0*‘&)0[008 (¢ - M) -2 cos € - 2R (sin ¢+ ¢)

~ cos (§ - ih) + 2% cos § + 2% sin §+ ¢ ] 1;}> (L4Lo)

In order to satisfy the boundary condition at infinity
and the condition that the downstream end of the major
axis be a stagnation point, the procpduré, according to
equations (7), (22), and (25), is as follows:

o) ' .
_E_uz-.i.a):zig‘.g._j}_a_:g_g.?— Wa—ﬁ2> (L1)

From equations (39) to (L1) it then follows that at
infinity
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25 (e - 1) _ = B0 - )
P, U\ 2 N
Hence, in order ’go satisfy the boundary conditions at
s o
infinity, u 2 = and v, = -—\-J'I-a-: » @ term
2 X

-—-b<p, - l) c + LL)a sin §, the imaginary part of which

vanlshes for m = 0, mnust be added to the expression
for Wye This addltlon to W, Introduces a velocity at

the downstream end of the major axis, given by
2 (u, - iv) = -L(12 2 1)(0 + b)1a
U A B é:n', n=0 }—!- .

Again, 1n order to render (& = m, = 0) a stagnation

point, a term -i—b U2 - l) o+ 1) § satisfying the

boundary conditions at the solid and at infinity must be
added to the expression IOP Woe Finally then

= =12 1) 1ol 7o
Vo = LiPew, = -~8-<u -l)I.P. {EO'C cos ({',-'1)\)

'- cos (¢ -i)»)—’wlzz + (o ;I-LL)crcos (Z - iN) -ZIC-}- cos E
-2%(1 (sin £+ ) -cos (£ =iN) +2% cos ¢
+ 2§a (sin §+§):,wlz+2b(0'+h)(sin §+§)a} (L2)

The complete expression for WV, obtained from equa-
tions (3L), (39), and (42), is then given by
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¥ = =I.P.{2R cos € +2Ra (sinl +¢)
+ ]§<p,2 - 1) %Oc [cos ('E- iN) =cos (¢ - 17\.)] lea
+ (o+h)c[cos (f - iN) -2% cos ¢ -284 (sin £ + )

-cos (¢ -i}\),+21—:‘- cos §+2§-a (sin §+£):l

Wiz
+2b(0 + li)a (sin ¢ +§)} (43)
where wy 1is obtained from equation (39) and
dws g
wp, o= el
dt az

CALCULATION OF THE VELOCITY COMPONENTS u AND v

The components uwu and v of the velocity of the
compressible fluid past the actual profile in the physical
XY-plane can be put into the following convenient form by
means of equations (7), (22), and (25):

i oy , oV
-E—-— - £ = -+ ot
P,V (- ) =5
oo db Oy _oate . =
=213 ¥ - 40 ]
‘%5t m ég(Vv w) (L)

where w 1s the expression on the right-hand side of
equation (43) with I.P. omitted. It follows that
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Equation (45) will now be utilized to calculate the
1lift on an elliptic cylinder in compressible flow. Tor
this calculation & control contour, which eventually is
taken as infinitely large, will be applied in the usual
manner. The elimination of the variable ¢ in equa-
tion (L5) and in the equations needed for the calculation
of the 1ift is in general impossible and in the present
example undesirable. Since the regions at infinity corre-
spond in the =2z~ and z'-planes, it is convenient to
choose a large circle in the 2t!'-plane as the control
contour and to effect all the calculations with & and m
as independent variables. The advantage gained by this
procedure is a great reduction in labor, in that on a
circle. 71 1is constant and hence only functions of the

-1
single variable z! /; e S appear., The first step is
- to obtain developmenbs for pu/gld and pv/plU in the

neighborhood of infinity and then to form the combina-

tion —Qa(u - iv). This calculation, according to equa-
P1
tion (L45), yields the following result:

—B—(Ll-lv)—-(1+ J.IWCL)'*‘-—— 1+I—<p~ -1) o+ 1)

pl aﬁ-hL

L Z?J =M 1\éﬂ'b

¥ ﬁ(;‘i“g)a@a— l}(cﬂ)} [<1~ WzEteE (1+ “)"%J

Izl— p)z!t - (1+-H)E;L%_l_ J[ L

*1a L+b <a+J <2 iﬁrl*uﬁ”a-ﬂ+w;%1
< 1> ( +“o‘\,+(l-u)2'}*'

z1< /
(l + [.1)_]-'5‘1? + . O (h—é)

(&

- ia




22 : NACA TN No., 1118

; 1 = 'ié. oo Ly and T .=y
where 2 e Since plU 5 \JY p—e—-—U 5’
it follows from equations (17) and (L45) that

N
) anl ‘ ‘L +b \u+b> <W
L (2 ) (12 - 1)o “i@ ( ; Z'}%)Jr im@(z,a i .%EM

<p - ><zt -;—E>£»+ . . . (L7)

a

+-
iy

CALCULATION OF THE LIFY
In a oonm’essible flow as in an incompressible flow,
the 1irt is given by (reference 3)

Le = p, Ul (48)

where Pc is the circulation round the profile and
where, by definition,

~n o~
=‘d}(u dX 4+ v 4Y) = R.P. ‘f}"‘(x - iv)adz (L9
U

v

Now, from equation (22),

<
i
&
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Hence

Z=l+~—}‘—iz+]f-£'z-
2 2

Since z = ¢ cos (£ + iN),

a7z = -l-guﬁc sin ({ + iN)af - L ; e sin (F - 2\)at

For the evaluation of the line integral for PC, the

control contour is a large circie in the zt'-plane.

) Pt . dz!
Therefore, 1 1is a constant and df = 4af = 1Q%~; hence,
A

i -n+>\. 1 :
ce

= - o+ L ey 1
% J.L (l lVL)(z !e2n+2}\' z>

(1 - pf & - 2 dz! (50)
21 ec_).’r‘]"*?Z}\- z!

where 2z' = e-lé. The desired expression for u =~ iv,
obtained from equations (L6) and (L7), is

PR 2
(u-lv)—~l~1ua+ [:l+—<p l) (o +1;) a+b}[l- w)z
- (]_+p,):}_.+<u2-1><zt-.];_)-! P (51)
Z.' A _l

Equations (L9) to (51), with only terms containing the
factor dz!'/z! contributing to the line integral for Pc’
then yield the following result:
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r, = LuTRUuza[l + -é-(uz - l)(0 + h-)%:‘ (52)

If a, b, R, and. a are replaced by at', b!, Rt, and at
according to the correspondence equations (28), then for the
actual elliptic cylinder in the physical flow plane Z,

T, = LrRtUaty + ZﬁUa!blgll.- )+ i(pz - 1)(0 + hﬂ

-

Since the circulation in the incompressible case,
M, =0 or p=1, Iis '

1
I'; = LnRtUar

the ratio F,/Ty 4is given by

T ! . .
.1.._70_: uo+ L2 [(l - W) +}"i-<p2 - l>(0+ )-.L)]

i 2R!?

With R! = %(ar +Db') and o= (y + 1)(p° - 1>,

Li T 1 + &

L P ' 2
L= S = b+ t (u(u-l)+ll:(y+l)<u2-l>} (53)

where t!' 1s the thickness coefficient Db'/a!' of the
elliptic cylinder in the physical flow plane. This equa-
tion represents a first-step improvement of the Prandtl-
Glauert approximaticn and reduces to that result when
tr--2>0,

Although equation (53) has been derived specifically
for an elliptic cylinder, it will be shown that the result
can be extended to a slender arbitrary symmetrical profile.
Hantzsche and Wendt (reference 9) derived a similar
~relation for the case of a symmetrical Joukowski rrofile
with a sharp trailing edge. The result of Hantzsche ~nd
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Wendt may be written as

L r
c
Li Pi 1l + €

[u-(p. - 1) + LlI‘Y + (42 - 1)2_11 (5L)

Note that the function of p contained between the
brackets is the same in equations (53) and (5L). This
coincidence suggests a correspondence between the
1 R >

factors —tl  and ——1,
1+ ¢ 1+ e

A correspondence 1is obtained in the following
manner: It is well-known that by means of the mapping
function

n n - ’) - o
the circle of radius ¢/l , with its center at the
origin of the Zt'-plane, is mapped into the line segment
extending from 2z = -c to z = c¢, and the circle of

radius %(1 + ¢), with its center at Z! = e%, is

mapped into a symmetrical Joukowski prbfile with sharp
trailing edge in the Z'-plane. Now

| 02
R -y
- IR (55)
1+ t° 2R
or, with R = %(1 +€),
1+ € o 2
bt 1+ €
1o+ g 2(1 + €)
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Thus, to the first pover in €, t' = S ana

1+ t 1 + € -
the correspondence between equations (53%) and (5l) is
established.

In the case of an arbitrary symmetrical profile,
the Theodorsen method (see reference 10) is particularly
well sulited to obtaln an expression corregponding to

1
1+ ¢t ,
of arbitrary wing profiles developed by Theodorsen 1is a
rapidly convergent procedure for obtalning the conformal

transformation of the profile to a circle, also the
radius R of the circle. The coefficient of the

e An essentlal feature of the potential theory

3L~Lerm of this conformal transformation, denoted by

2/&, and the radius R of the conformal circle define
an ellipse

7 = ¢ cos (& + iN)

with

roje
o

Then, from equation (55),

SERERES

and, therefore, for an arbitrary symmetrical profile,
the formula that corresponds to equation (5%) may be
written

I_J_Q:EC_,: p+%<1-e'2}‘>llt(u 1)+ v +t1) <p, -1>] (56)
X . L.

Table I shows values of the ratio Lo /Lis calcu=-

lated by means of equation (55), for various values of
the thickness coefficient t' and the stream Mach
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number My (with « = 1.l for air) and figure 1 shows
the corresponding graphs with My as abscissa and
L,/L; as ordinate.

Langley Memorial Aeronautical Laboratory
National Advisory committee for Aeronautics
Langley Field, Va., May 16, 1946
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