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SUMMARY 

An extended form of the Ackeret iteration method, 
applicable to arbitrary profiles, is utilized to calcu-
late the compressible flow at hi1 subsonic velocities 
past an elllptic cylinder. The . anie of attack to the 
direction of the undisturbed stream is small and the 
circulation is fixed by the Kutta condition at the 
trailing end of the major axis. The expression for the 
lifting force on the elliptic cylinder is derived and 
shows a first-step improvement of the Prandtl-Glauert 
rule. It is further shown that tl-ie expression for the 
lifting force, although derivad specifically for an 
elliptic cylinder, may be extended to arbitrary siietricaJ 
profiles.

INTRODTICT ION 

Two methods of approximation, complementary in 
nature, have been used for the solution of problems of 
flow past bodies in the subsonic-velocity range. They 
are the Janzen-Rayieigh method (reference 1), in which 
the velocity potential or the stream function is developed 
in a power series of the stream Mach number, and the 
Ackeret iteration method (reference 2), in which the 
velocity potential or tiie stream function is developed 
in a power series of a geometrical parameter character-
istic of the body. The complementary nature of these 
two methods lies in the fact that the Janzen-Rayie:Lgh 
procedure yields accurate results in the case of thick 
bodies, for which the critical stream Mach numbers are 
low; whereas the Ackeret iteration process yields accu-
rate results in the case of slender shapes, for which 
the critical stream rach numbers are in the neighborhood 
of unity.
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In the ckeret iteration process the assumption is 
made that, if	 is a parameter that rereaents the 
departure of the profile shape from a straight-line seg-
ment at zero angle of attack (that is, ? may be the 
thickness, the camber, or the angle of attack), the 
stream function ii, say, may be developed in a power 
series of in which the coefficients are functions of 
the plane coordinates x and y and of the stream Mach 
number lvi,. That is 

= -Uy + f 1 (x,y;M1)? ^	 + ...	 (1) 

where U is the velocity of the undisturbed flow. By 
inserting this expression into the fundamental nonlinear 
differential equation for 4i and by equating the coef-
ficients of the various powers of X to zero, a system 
of linear differential equations for the functions 

is obtained. The integration of this system 

of differential equations ca be performed for as many 
steps as desired, the first step f i (x,Y;Mj ) being 

equivalent to the Prandtl-Glauert arproximatlon. There 
is, however, a fundamental difficulty with the form of 
the development, equation (1),. which does not appear in 
the Janzen-Rayle.igh method. In the Janzen-Ray-leigh 
metnoa the expansion of the stream function in powers of 
the stream Mach number, namely, 

'V =	 +	
+ i 2M1 + ...	 (a) 

can always be obtained whereas the possibility of the 
expansion, equation (l, cannot be guaranteed beforehand. 
This difficulty in the Ackeret process was avoided in 
references	 and )4 by choosing as solid boundaries pro-
files having no stagnation points. In such cases, a 
development of the form of equation (1) is always possbie. 
ivhen, however, shapes are chosen that possess stagnation 
points, terms of the type X lo X ultimately appear on 
the right-hand side of equation tl) and tile explicit 
development in powers of X is strictly no longer pos-
sible. This diffIculty may be avoided by assuming a 
somewhat more general form for the development of
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the stream function; namely, 

'11	 -Uy + fr1 (x,y) + i2 (x,y) + ...	 (3) 

where the shape parameter ?'. is contained implicitly in 
the various functions	 In equation (3)	 corre-

sponds to the Prandtl-Glauerb approximation and 'J is 
made to satisfy the exact boundary conditions at the 
solid and at infinity. For the purpose of defining and 
controlling the iteration procedure, the function 

is regarded as small compared with the preceding func-
tion	 and the derivatives have a similar relationship. 
It can be stated now that the aforementioned difficulty is 
mo'e apparent than real, for in carrying out the iterative 
steps according to equation (1) 7 behaves like a dummy 
parameter, which serves only to regulate the iteration 
process in exactly the arne manner as equation (3). 

For slender bodies the firs.t few steps of the Ackeret 
iteration method may be expected to yield a good result 
with the exception of a small region in the neighborhood 
of a stagnation po:Lnt. Hantzsche, in reference 5, treated 
the case of an elliptic cylinder at zero incidence in a 
uniform stream according to Ackeret's process as repre-
sented by equation (1), with the exact boundary condi-
tions at the solid and at infinit y being satisfied. 

These calcu1atioxs were carried through the ?-terms 
and included a term	 log X. A comp arison, made in 
reference 5, of this result with that obtained by the 
present author according to the Janzen-Rayleigh method 
showed agreement in the terms common to the two develop-
merits. A similar comp arison made for the 'bump in 
reference 3 also showed complete agreement in the terms 
common to the two methods. These coiicarisons illustrate 
the fact that solutions obtained by the Janzen-Rayleigh 
and the Ackeret methods are simply different representa-
tioris of a single unique solution. In particular, it is 
evident that the Jarizen-Rayleigh method, which is valid 
at stagnation points, inc]udes parts of the Aciceret 
development and, conversely, the Ackeret development 
includes parts of the Janzen-Rayleigh result. Although 
the first few terms of equation (3) do not yield very 
accurate results at stagnation points, these terms
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nevertheless reiresent correctly, to some extent, the 
effect of compressibility at such points. The accuracy 
of the calculations obviously depends on the number of 
terms	 derived, each nçw term reducing the extent of 

the region of inaccuracy in the neighborhood of a stag-
nation point. 

The question of the convergence of the sequence of 
functions, equation (3), is a. difficult one and should 
be thoroughl y investigated. Schmieden and Kawalki 
(reference 6' state that both the Janzen-ayleih and 
the Ackeret developments diverge when the local velocity 
of soiind is fIrst exceeded in the region of flow, that 
is, at the critical value of the stream Mach number. 
This statement is. contradicted, however, by results 
obtained by means of hodograph or velocity variables. 
In general, as shown in re'erence 7, the limit of steady 
potential flow of a compressible fluid is determined by 
the vsnishin of the Jacobian of the transformation from 
physical x,y-variabJ.es to hodograph O,q-variables. The 
vanishing of this functional determinant does not neces-
sarily occur when the local Mach number first reaches 
unity arid, consequently, there exist continuous solutions 
of the general. differential equation governing the flow 
of a compressible fluid for which a part of the region 
o flow is supersonic. It is reasonable to concluo.e, 
therefore, that the series solutions given by equa-
tions (2) and (3) diverge at the value of the stream Mach 
number that marks the limit of otontial flow rather 
than at t;he value for which the local velocity of sound 
is first exceeded in the flow. 

rillie ckeret process in the form of equation (1), hut 
for the velocity potential, was used to calculate the flow 
nast a bump and past a circular arc profile in refer-
ences 3 and L, respectively. This calculation was 
possible because bhe profiles, considered did, not ossess 
stagnation points. As a consequence, the problem could 
he treated completely in the physical plans and, more-
over, the boundary conditions on the velocity potential 
were tractable. In general, however, when shapes with 
stagnation points are treated, the Ackeret process in the 
form of equation (3) instead of in the form of equation (1) 
should be utilized. In such cases the problem is most 
conveniently treated in a new plane rolated to the plane 
of flow by an affine transformation. In this plane, 
however, the boundary conditions for the velocity poten-
tial become very complicated, On the other hand, the
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boundary condition for the stream function, \fr = 0 at 
the so1id is invariant for affine transformations and 
it is therefore suggested that the stream function be 
utilized. The transference of the problem to an affinely 
connected plane unfortunately introduces a distortion in 
the actual profiie that varies with the stream Mach num-
ber. In the case of an elliptic profile, however, this 
distortion does riot matter, for the affine distortion of 
an ellipse leads to another ellipse. This property of 
the ellipse makes it a prefcrred profile for the Ackeret 
iteration process in the form of equation () and is also 
the reason it is chosen as the solid boundary for the 
problem treated in the present paper. Specifically, the 
problem treated herein is the determination of the flow 
of a compressible fluid past an elliptic cylinder set at 
a small angle of incidence in a uniform stream, with 
circulation determined by the Kutta condition at the 
trailing end of the major axis. The main purpose of this 
calculation is to obtain some information with regard to 
the effect of compressibility at high subsonic stream 
Mach numbers on the lifting force acting on an elliptic 
cylinder. A calculation is now in progress in the 
Physical Research Division of the Langley Memorial Aero-
nautical Laboratory to find the effect of compressibility 
at high subsonic stream Mach ni.thihers on the moment and 
on the location of the center of pressure of an elliptic 
cylinder. 

CALCULATION OF THE FIRST AND SECOND APPROXIMATIONS 

The equation of continuity can he written as 

(a+J-a)=o	 (t.) 
and the condition for irrotational flow as

(5) 
ax a
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where 

X, Y rectangular Cartesian coordinates in physical flow 
plane 

u, v components of velocity along X-axis and Y-axis, 
respectively 

p	 variable density of fluid 

p 1	 constant density of undisturbed fluid at infinity 

Equation (5) defines a velocity potential 0, where

(6) 

v= 
/	 ày.

-i 

and equation (L1 ) defines a mass flow 01' stream func-
tion 4i, whore

u==; I (7) 

v-
ày 	 p ax

I 

From equations ()4) and (5), with the use of equations (6) 
and (7), respectively, the following alternate forms of 
the basic differential equation are obtained: 

\^L/a)o	
(8) 

ax p 1 ax) ày	 ày 

and

(9 
ax p ax) à \ p ày)
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For reasons stated in the hh lntroduction, II equation (9) 
for the stream function will be treated in the present 
paper. The difficulty of obtaining a solution lies in 
the fact that the density of the fluid p is related 
to u and v because of the dependence of p on the 
local pressure. If it is postulated that the fluid is 
nonviscou and if the fluid is assumed to flow from 
infinity with a constant velocity U, the total energy 
of the fluid will then have the same value at every point 
in the region of flow. If p and q denote the pres-
sure and the velocity of the fluid, respectively, 
Bernoulli's equation becomes 

i+<q2u2)o	 (10) 

where the lower limit of integration refers to the 
starting conditions at infinity. Moreover, p and p 
are connected by some known adiabatic equation of state 
such as

=	 = Constant	 (11) 
1y 

where, in the case of a perfect gas, . denotes the 
ratio of specific heats at constant pressure and at 
constant volume. 

By means of the definition of the velocity of sound, 

=	 =
	

(12) 
c.p	 p 

the following relations are obtained from equation (10): 

-	 2	 1	
)j	

(13) 

r -	 - 1 N
12	 - 

l_jT	 (lL) 
2
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P	 - 
11	

(15) 

where M = -	 is the Mach number of the undisturbed 
1 

stream at thfinity and q2 = u2 ^ v2, 

By means of equat•ns (7), equation (1L) can be 
rewritten in the form 

Py;i	
(16) 

where	 and	 denote àr/à	 and àj/ày, respec-

tive ly. If, for the moment, P i/P and	 - 1 

are considered to be dependent and independent variables, 
respectively, a Maclaurin expansion in the neighborhood 

\! 2 + 

of the undisturbed stream, where X	 -i = 0 and 

1 - = 1, yields 

	

= 1 ^	 2 -
	 +2:)

(17) 

2 

	

2	 1	 2'	 ___ where	 -	 and p, - 1 ---	 . The form
-M
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of this development has been chosei to be consistent 
with the Ackeret iteration process, which is essentially 
an iteration around. an undisturbed stream of zero inci-
dence. Corresponding to equation (), 

=	
+ ''l +	 + S S •	 ( 18) 

where	 is regarded as small compared with 	 and

the derivatives have a similar relationship. When this 
expression for J is substituted into equation (17) and 

2	 2 is noted to be of the same order as V	 or V 

	

lÀ	 1Y 
then inclusive of the second power in the derivatives, 

P1	 (2	
)	

(2 

P	 U 2U 

	

- ) 2 [() ( 2 )1V 	 + ... ( 19) 

Then this expression for P1/P is substituted into the 

basic differential equation (9) and terms of equal order 
of uagnitude in the derivatives of 	 •are equated, the 

following differential equations for 	 and	 are 
obtained:

+	 = 0	 (20) 

and

-
U ixy

I
(21) + 23 + ( + 1)t	

) u
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These differential equations are most easily solved by 
first applying the aTine transformation 

y:y=J1Ml2y. }

	

(22) 

Equation (20) then becomes a Laplace equation 

	

1xx + 1yy 0	 (2) 

and equation (21) becomes a Poisson equation 

2xx + 2yy (2 - i)	 + 2 
lxx	 xy 

.0 1YYJ 

For purposes of calculation a new stream function \1I* 

may be conveniently introduced, where 

= pTS1t
	

(25) 

From equations (22) it can be seen that 

= fx = LLU4I 

and

' JY	 =
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so that the undisturbed flows, at zero angles of inci-
dence, in the physical and affinely distorted planes are 

identical; that is,	 = (u'*). With the intro-

duction of the stream function	 equations (2) 
and (2L) become 

1 lxx +	 lyy = (26) 

and

+ ''2yy = (2 - i) ly	 lD + 

+ [	
+ (y + l)( 2 - 

or, with the use of equation (26), 

- 1)_[2 + (y + l)(2 1)l*iyixx 

+ 2 lxlxy} (27)

Equations (26) and (27) show that, in order to cal-
culate the various approximations, the incompressible 
flow past the distorted profile in the xy-plane must be 
known. Thus, if a profile is given in the physical 
XY-plane, it will be necessary to find the coniormal 
transformation to a circle of the distorted profile in 
the xj-plane for each value of the stream Mach number, 
since the ai'fine distortion of a profile depends on the 
stream Mach number, as shown by equation (22). In 
general, then, the problem to be solved is the flow past 
an arbitrary profile in the affinely distorted xy-plane.. 
This procedure in general involves the laborious calcu-
lations of the coefficients of conformal transformations 
to a circle for a number of values of the stream Mach 
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number in such a way that the distorted profiles in the 
xy-plane correspond to the given profile in the physical 
XY-plane. In the case of an ellipse, however, the dis-
torted profile is again an ellipse, and it is therefore 
a simple matter to transfer the results obtained in the 
xy-plane to the XY-pl ane of the original elliptic 
profile. In the present paper the elli p tic profile is 
so oriented that its major axis lies along the X-axis. 
The relation between the profiles in the two planes is 
then given by 

a=a 

b

= e2 
+ 2	

1b'2
(28) 

R = Rt +	 bt 
2i 

tan a =	 tan at (or, to the first order,
k 

where 

R	 (a ^ b) 

a	 semimajor axis of ellipse in affinely distorted. 
plane 

b	 semiminor axis of ellipse in affinely distorted 
plane 

c	 semifocal distance of ellipse in eifine1y distorted 
p1 ane 

a	 angle of incidence of ellipse in affinely distorted 
plane 

arid the prime indicates corresponding values in the 
physical plane.
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The solution of equation (26) is in general the 
imaginary part of an analytic function w 1 (z) where 
z x + iy. (The asterisk has been dropped.) It is 
easy then to verify that 

Lx = -_(w	 - 

'ly = .(w1 + 

ixy - (w1zz + 

lxx = 'lyy =	 (w17 •
 

where a bar indicates conjugate-complex quantities. 
Therefore, 

\V	 = i.P.(w1zwiz + w11 ) = (w1 + ly lxx 

and 

ixxy=V1zzWlz _ w1zzWi) = _ i (w1	 l)R.P.W1ZZ 

Equation (27) can then be written as 

2
2 = l 2	 l)I.P.[(w2) +	 + )(wiz 1 )I (29) 

àzà	 -	 - Zj 

where a = (y + l)(2 - 1). 

Consider now a circle of radius R, with its 
center at the origin of the z?-plane, into which the 
distorted profile in the z-plane is mapped by means of 
a coni'ormal transformation. Any point on the circle
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can be expressed in the form 

x l + iy'	 R(cos	 - I sin ,)	 Re 

so that the point describes the circle in the clockwise 
sense and leaves the region outside the circle on the 
left. If now	 = + i, the transformation 

= Re
	

(30) 

yields a circle of radius R when	 = 0 and the 
infinite region of the z t_plane when y = +. Equa-
tion (30) can be looked upon as the transformation from 

Cartesian coordinates x',y'	 to polar coordinates Rel, -. 
The conformal transformation of an arbitrary profile in 
the z-plane into a circle of radius H in the z'-plane, 
with center at the origin, can therefore be written 

z = f(e)	 (31) 

where	 0 yields the parametric equations of the 
profile in the z-plane. 

When	 and £ are introduced as independent 
variables, equation (29) becomes 

2 
a	 2) _++wiWid (32) 

The general solution of equation (32) or of equation (29')' 
is obtained directly and is

f (o+)4)iwi + F()1	 (33) 

where F() is an arbitrary function to be determined 
according to the boundary conditions at the solid surface 
and at infinity.
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Consider now an ellipse in the affine z-plane with 
semimajor axis a and semiminor axis b. The undis-
turbed stream at infinity makes a small angle a with 
the negative direction of the x-axis, and the circulation 
is determined according to the Kutta condition that the 
downstream end of the major axis is a stagnation point. 
In accordance with the Ackeret process,

(3) 

so that the stream function is expanded around an undis-
turbed stream at zero incidence. Since the angle of 
attack has been assumed small, powers of a higher than 
the first are neglected. The boundary conditions are 
thei at the surface of the ellipse, r = 0, 

l=y }

	

(35a) 
0 

and, at infinity,	 =

—=0 
ày 

and
àji
	 (35b) 

= 0 
ax

0 

Now, the transformation 

z = z i + -	 (36)
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maps the region external to the ellipse in the z-plane 

into the regiort external to a circle of radius R=.(a+b) 

with center at the origin of the z'-plane. The complex 
potential for the flow considered is given by 

-z'e	 +	 2iRsina1og!	 (37) w	 ( Ia R2e_) - 
zt	 H 

When the variable	 is introduced by means of 0 qua-
tion (30), equation (36) becomes 

z = c cos ( + IX)	 (38a)

and equation (37) becomes 

w = -2R cos	 - a) - 2R sin a	 (38b) 

where a = c cosh X and b = c sinh X. This expression 
f or w includes the uniform undisturbed stream -z which 
must be extracted in order to obtain	 Thus, f or a 
small -igle of attack a, 

w1	 c cos ( ^ iX) - 2H cos	 - 2R (sin	 + ja (39)
and

= I.P.w1 

= -c sinh (y)+X) sin +2R sinh 'r sin 

- 2R sirth r cos + 

It can be easily verified that this expression for 

satisfies the boundary conditions stated in equations (35) 
and also that the downstream end of the major axis is a 
stagnation point. 

Similarly, the most direct way to determine 	 is

to consider it to be the imaginary part of a nonanalytic
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function w2 of	 and	 . Thus, from equations (33),

(38), and (39), 

w2 _1(2 _i){c cos ( - iX)wi2 + (+)c [cos ( -ix) 

B - 2— cos 
C	 C 

In order to satisfy the boundary condition ''2 = 0 at 
the surface, ri = 0, it is a simple matter to supply 
the functions of 	 needed to make the coefficients 
of w1 and w1 2 vanish for	 = 0. For example, 

cos ( - iX) = cos ( - iX) for	 0. Thus, 

= _ 2 _i)i.p. IGc[cos ( - iX) 	 cos ( - iX)]wiz2 

+ (a+)c[cos ( - X)2a Cos	 - 2a (sin	 + ) 

- cos ( - iX) +	 cos	 + 2aa (sin	 ]W1z	 (° 

In order to satisfy the boundary condition at infinity 
and the condition that the downstream end of the major 
axis be a stagnation point, the procedure, according to 
equations (7), (22), and (25), is as follows: 

(u2	 V2) = 2i-- a = a - (w2 - W2)	 (141) 
dz	 dzà 

From equations (39) to (14) it then follows that at 
infinity
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.a(	 __V2)	 _1(2.1)(a+) a±b p 1Tj2	 L 

Hence, in order to satisfy the boundary conditions at 

infinity, U = - = 0 and V2 =	 = 0, a term 
2	 ày	 ax 

_b( 2 -	 + ) ) a sin , the iiaginary part of which 

vanishes for	 = 0, must be added to the expression 
for w2 , This addition to w2 introduces a velocity at 
the downstream end of the major axis, given by 

(u -	 = _(2 -	 + )ia 

Again, in order to render ( = ir, 	 = 0) a stagnation 

point, a term _b( 2 - 1)(a +L)a	 satisfying the

boundary conditions at the solid and at infinity must be 
added to the expression for w 2 . Finally then 

= I.P.W2	 _(2_i).p. I c[os (iX) 

- cos ( _iX)IWiz2 + (a+L.)c[cos ( -)-2 . cos 

- 2aa (sin +) - cos ( - iX) +2a 
c 

+ 2a (sin +)]wiz+2b(+)(sin +)aJ	 (!2) 

The complete expression for '.i , obtained from ëqua 
tions (), (9), and (L.2), is then given by
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= -I.P. 2R cos +2Ra (sine +) 

+	 - l){oc	 ( - iX) - cos (	 IX)] 

+(+L)c[cos (iX)2a cos	 -2a (sin+) 

-cos (	 iX)+2 cos +2a (sin 

+2b( + )a (sin 

where	 is obtained from equation (9) and 

wlz - - - 
d dz 

CALCULATION OF THE VELOCITY COMPONENTS u AND v 

The components u and v of the velocity of the
compressible fluid past the actual profile in the physical 
XY-plane can be put into the following convenient form by 
means of equations (7), (22), and (25): 

_2(u_v) =i.+i± 
ày 

= 2ii	 = -- —(w -	 ( t14) 
dzô	 dzà 

where w is the expression on the right-hand side of 
equation	 with l.P. omitted. It follows that.

19 
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Equation (L5) will now be utilized to calculate the 
lift on an elliptic cylinder in compressible flow. For 
this calculation a control contour, which eventually is 
taken as infinitely large, will be applied in the usual 
rianner. The elimination of the variable 	 in equa-
tion (L5) and in the equations needed for the calculation 
of the lift is in general impossible and in the present 
example undesirable. Since the regions at infinity corre-
spond in the z- and zT-planes, it is convenient to 
choose a large circle in the z t -plane as the control 
contour and to effect all the calculations with	 and
as independent variables. The advantage gained by this 
procedure is a great reduction in labor, in that on a 
circle	 is constant and hence only functions of the 

(	 -i'\ single variable Z t	 e	 ,) apear. The first step is
to obtain developments for pu/p 1U and pv/p 1u in the 

neighborhood of infInity and then to form the combina-

tion -2---(u - iv). This calculation, according to equa-
p1U 

tion (L5), yields the following result:

b i 
a+ b 1 p1U	 -j 

-

	

	 fLlJ )z T - (1+ 

+ (_b 2(2) ][	 )z,2^ 
La + b/ 

+ ia[ a
	 b 2(2 

La +b a+bJ 

-Ia 
b 

( 2l) 2++(t a+b	
I	

ztj 

1'I - (1 +	 + S • I	 (L6)
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where z t = e 

it follows from 

1 -	 - 
P	 e

. Since	 =	 and	
= 1 

	

p 1U U Y	 p1LT 

equations (17) and (146) that 

)	
+ 1 (2 -	

( ^ Li)_b /	 r 
a+bt 

1	 a --	 \2(2	 (2	 l	 +	 b 

[a+b	 &+bJ	 Z2/'	 [a+b 

	

i)	 14) [(z 2	 iaL2(zT2 

- Ia b
	 - i) ( t 14 -	 + • • •	 (147) 

a+b	 zT'4/1 

CALCULATION OF THE LIFT 

In a compressible flow as in an incompressible flow, 
the lift is riven by (reference 8) 

L0 = p1UP	
(148) 

where F0 is the circulation round the profile and 

where, by definition, 

dX + v dY) = R.P.	 - iv)dZ	 (i9) 

Now, from equation (22),

x = 

Y	 jL
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Hence

= 1	 + 1 - 

2	 2 

Since z = c cos ( + 

dZ =	 sin ( + A)d -	 c sin ( - iX)d 

For the evaluation of the line integral for	 the 

control contour is a large circle in the z'-plane. 

Therefore,	 is a constant and d 	 d	 ia'.; hence, 

Ce	 1(1 + dZ = -
L\zte22 

+ (1 -	
z, 

- e22X)j	
(50) 

where z t	 e 1 . The desired expression for u - iv, 
obtained from equations (1.i.6) and	 7), is 

1 (u iv)	
ia	 ___ 

U	 e[1+ 1)+ 
- -

a + bJ [ 

-	 + . . .	 (51) 

Equations (L9) to (51), with only terms containing the 
factor dz t /z t contri.butin to the line integral fdr 
then yield the following result:
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i 2 

	

= L RU 2al +	 - i)o 
+	

(52) 

If a, b, B, and a are replaced by at, bt, RI, and a? 
according to the correspondence equations (28), then for the 
actual elliptic cylinder in the physical flow plane Z, 

LrR'Ua' + 2iiva ? b t [ci	 ) 
+ (2 - l)(a + 

Since the circulation in the incompressible case, 
M1 0 or p1, is

LLITR'IJcLI 

the ratio	 is given by 

=	 +	 (l -	
+ 1(2 - l)(a'+ 

I	 2RtL 

With B' = !(a' + b') and a = (., + 1)(2	
) 2 

Lc rc	 t	 -	 (i)2] 
(53) +	 L(L	 1) ^	 + 1) 

where t	 is the thickness coefficient b T /a' of the 
elliptic cylinder in the physical flow plane. This e qua-
tion represents a first-step improvement of the Prandtl-
Glauert approximation and reduces to that result when 
t ? .--> 0. 

Although equation (53) has been derived specifically 
for an elliptic cylinder, it will be shown that the result 
ca be extended to a slender arbitrary symmetrical profile. 
Flantzsche and Wendt (reference 9) derived a similar 
relation for the case of a symmetrical Joukowski profile 
with a sharp trailing edge. The result of Hantzsche :nd
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Wendt may be written as 

L	 -	 ____ 
€	 1)+(y+1)(p_l)1	 (5k) 

Note that t1e function of p. contained between the 
brackets is the same in equations (5) and (5Lj. This 
coincidence suggests a correspondence between the 

factors	 and 
1 + t'	 1 + € 

A correspondence is obtained in the following 
manner: It is well-known that by means of the mapping 
function

z = zi + 

the circle of radius c 2/L , with its center at the 
origin of the Z'-piane, is mapped into the line segment 
extending from z = -c to z = c, and the circle of 

radius	 (l + €), with Its center at Zt = £2., is 

mapped into a sirnnetrical Joukowski profile with sharp 
trailing edge in the Z'-plane. Now 

R 

	

t i - -	 (55) 
l+t'	 2R 

or, with R = -(l +

l+c-
t t __ ________ 

	

l+t'	 2(l+€)

2 
-	 €	 ..". € 
_1+€	 2l+€
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Thus, to the first pov;er in C,	 =	
and 

l+t t	 1+C. 

the correspondeice between e quations (53) and (51 j.) is 
established. 

In the case of an arbitrary symmetrical profile, 
the Theodorsen method (see reference 10) is particularly 
well suited to obtain an expression corresponding to 

• An essential. feature of the potential theory 
1+tt 
of arbitrary wing profiles developed by Theodorsen is a 
rapidly convergent procedure for obtaining the conformal 
transformation of the profile to a circle, also the 
radius R of the circle. The coefficient of the 

-term of this conformal, transformation, denoted by 

c2/1, and the radius R of the conformal circle define 
an ellipse

Z = c cos (, + IX) 

with

cX R—e 

Then, from equation (55), 

_____- =
	 - e') 

l+t	 2 

and, therefore, for an arbitrary symmetrical profile, 
the formula that corresponds to equation (53) may be 
written

(56) 

Table I shows values of'1e ratio L/L1 , calcu-

lated by means of equation (53), for various values of 
the thickness coefficient t 	 and the stream Mach
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number 1v11 (with ..	 i.t1. for air) and figure 1 shows 

the corresponding graphs with	 as abscissa and 

as ordinate. 

Langley Memorial Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va., May 16, 19)6
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