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SUMMARY

As a first step toward the computation of the velocity
distribution along a2 wing profile of arbitrary shave in a
compressible fluid, the circulstion-free flow around a sym-
metrical profile is treated under the assumption of the sim-
plified density-sveed relation due to Tchaplygin, Kdrmdn, and
Tsien., The velocity distribution problem is reduced to a non-
lineer integral equation which is solved by a fairly rapidly
convergent iteration method., Numerical examples are given.

INTRODUCTION

The central problem in the two-dimensional theory of a
potential flow of a perfect fluid around an airfoil profile
is that of determining the pressure distribution on a profile
of given shape if the speed and direction of the flow at in-
finity (undisturbed flow) are known. A solution of this
problem should consist not merely of giving a mathematical
existence proof but of indicating a method for obtaining nu-
merical results of reasonable accuracy in a reasonable amount
of time,

The difficulty of the problem depends essentially upon
the prescribed speed at infinity. If this speed does not ex-
ceed a certain limiting value (depending upon the profile) the
flow will be everywhere subsonic, For higher values of the
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speed at infinity the flow becomes partly supersonic (mixed
or supercritical flow). Finally, it is prodable that for
too high values of the specd at infinity a potential flow
becomes either mathematically iwpossible or unstable. The
case of mixed flow is the more important one, both from the
practical and theoretical points of view, DNevertheless, it
seens that the complete solution of the problem of everywhere
subsonic flows is a necessary prerequisite for a successful
attack on the problem of transition through the speed of
sound. (In fact, at present the very existence of mixed
flows past a profile has not yet been proved.)

In view of the admitted difficulty of the problem it is
advisable to develop the mathematical apparatus by consider-
ing first the simplest possible cases. The most radical sim-
plification would be, of course, to neglect compressibility
altogether., Under these assumptions the pressure distribution
problem hac been solved completely. (See references 1 and 2,)
In the present report the following two simplifying assump-
tions are made:

A, Only circulation-free flows around symmetrical pro-
files are considered.

B. It is assumed that the velocity potential satisfies
the simplified differential equation resulting from the so-
called Chaplygin-Kdrmdn-Tsien eaquation of state. (Cf. ref-
erences 3, 4, and 5.)

Some remarks may be made concerning this second assump-
tion. In general, the velocity potential ®(x,y) satisfies
the partial differential equation

8; ax/ oy \p oy

where p is the density of the fluid. Since the density is
a given function of the speed ¢

= pla), q° = /aﬁ-\ ( Ry

equation (1) is nonlinear. The function p(q) is determined
by the pressure-density relation (equation of state). In an
isentropic flow the pressure 'p satisfies the relation
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p p~Y = constant (3)

where Y 1is the ratio of specific heats for constant pres-
sure and constant volume, (The standard value of Y is
1.405,) This implies the density-speed relation

ITchiesy Qs
p:po(l_z_:,i_qf_y (4)

2
\ 2 ao

where a, 1is the speed of sound at a stagnation point and

P the stagnation density. Chaplygin noticed that the
equation satisfied by the potential becomes simpler if the
density-speed relation is taken in the form

e
P = p, <l + (12> (5)
Ro
This relation may be obtained formally from (4) by setting
Y = -1, Though this value of Y violates fundamental phys-

ical laws, it should be observed that only the density-speed
relation and not the pressure-density relation enters in the
equation for the potential,

As a matter of fact, the function (5) behaves qualita-
tively in the same way as does the function (4) within the

subsonic range; that is, for O S q2 5 2a,?/(1 + Y¥), and
for small values of q/a, the function (5) gives a good
numerical approximation to (4),

Von Kdrmidn and Tsien justify the use of the value Y = -1
by the remark that it is possible to determine such values
of the constants A and B that the pressure-density rela-
tion '

p=4A/p+ B

will give a good approximation to the relation (3) for val-
ues of p and p close to some preassigned values, say to
the values of p and p for the undisturbed flow, This
remark is of interest as far as computations of the pressure
distribution are concerned. It in no way affects the velocity
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distribution for, as it was already noticed, the differential
equation for the potential function depends only upon the
density-speed relation, and the preceding pressure-density
relation leads to the same equation (5) no matter what values
are assigned to A and B,

It should be emphasized, however, that the primary pur-
pose of this report is not to facilitate the use of the ap-
plication of the approximate relation (5) but rather to de-
velop methods which could be extended to the case of the ac-
tual density-speed relation,

In the following, use will be wade of certain results
contained in a previous report. (See reference 6.)

This investigation, conducted at Brown University, was
sponsored by and conducted with the financial assistance of
the National Advisory Committee for Aeronautics.

The author largely profited from several instructive
discussions he had with Professor S, B, Warschawski. He
also is indebted to Mr, Charles Sfaltzer for competent assist-
ance,

SYMBOLS
A(w) auxiliary function defined by eaquation (35)
a local speed of sound
ag speed of sound at a stagnation point

B(w) auxiliary function defined by equation (25)

G Cj positive constants

as® non-Buclidean length element defined by equation (22)
Z(P) domain exterior to the profile P

F integral transformation defined in section 5

f(w) function defining the mapping of the circle into the
profile P ”

fn(w) nth approximation to the function f(w)
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g(o)

g1k
h(w)

Im( )

complex potential of a compressible flow
function inverse to f(w)

coefficients of the metric (22)
function defined by equation (44)
imsginary part of ( )

profile surrounded by a compressible flow
Pressure

local speed

speed of the undisturbed flow

valve of q at a boundary point
distorted speed

distorted speed of the undisturbed flow
value of q* at a boundary point

local Mach number

stream Mach number

radius of the circle in the {-plane
real part of ( )

arc length measured along P

length of the curve P

Parameter occurring in section 8
components of the velocity

distorted velocity

Cartesian coordinate in the z-plane

complex variable
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coordinate of the profile as a function of the arc
length
leading edge
trailing edge
sngle at the trailing end
exponent in the adiabatic relation
thickness paraneter of a symmetrical Joukowski profile
constants occurring in section 8
slope of the profile P
angle between the velocity vector and the x-axis
value of © on the boundary
auxiliary complex variable
square of the distorted speed of the undisturbed flow
function defined by equation (54)
Cartesian coordinates in the {-plane
density
stagnation density
dimensionless length parameter along the profile P
velocity potential
value of ¢ at the boundary
auxiliary analytic function defined by equation (34)
stream function

argument of a point on the circle [{| =R
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ANALYSIS

1, The Boundary Value Problem

Consider a symmetrical profile P in the plane of the
complex variable 2z = x + iy. It will be assumed that P
is a smooth curve, except, perhaps, for a sharp angle at the
trailing edge =zp, that the x-~axis is parallel to the axis
of symmetry of the profile and that the profile is given by
an equation of the form

z = 2(s), 0< g €5 (6)

where s 1is the arc length on the curve P measured in the
counterclockwise direction from the point zp., Then § is
the total length of the profile and

27, = 2(s/2)
is the leading edge. It will be convenient to introduce the
dimensionless parameter
o = 2ns/S (7)
The function
®(g) = arg 2'(0S/2m) (8)

where

Z'(g) = d%/ds

depends only upon the shape but not upon the size or posi-
tion of P. Note that by virtue of the foregoing assumptions

@(0) = m - af2, B{n)ue 3/ 2y @(2m) = 2m + af2

where o 1is the angle at the trailing edge, 0Sats ™,
and

8(gn - o) = 37 - O(0), 0< o < (9)

The equation of the curve P may be written in the form
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o

z = Z(eS/2n) = §L‘j/‘ei®<°) dg + Zq (10)
; ™,

0

Now let aop(x,y) be the potential of a circulation-

free flow of a compressible fluid past the profile P; that
is, a function such that

o/
o/
-6

u = ag *—» sl e

ox oy

are the components of the velocity in the x- and y-directions,
respectively, a, being the speed of sound at a stagnation

point. The function @(r,y) is defined and one-valued in
the domain E(P) exterior to P and satisfies the boundary
condition

A2 w8 om 7 (11)
An

as well as the condition

foX\o) . 0P
= At -_ —> 0 as 2 — ©® (12)
ox ag oy

Here 3/dn denotes differentiation in the direction normal
to P, and q. is the speed of the flow far away from the

profile (undisturbed flow),

The conjugate complex velocity is given by

w=u=-iv = qe-ie (13)

where q 1is the speed and 6 the angle between the velocity
vector and the x-axis. The function 6 satisfies the condi-
tion

D
1]

©-m on the upper bank of P
(14)
= @@~ 2m on the lower bank of P

and
8 — O as g sy ©
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Under the assumption of the approximate density-speed
relation (cf. Introduction)

Po

~/l » qa/a'o2

p:

the equation of continuity

o Q.
3% (pu) + - (pv)

takes the form

{l+<a } _gamBCpato {l"‘( >}.—C€=O (15)
o) dx Oy 0Oxdy 3y ®

This is the classical equation of a minimal surface.

The determination of the flow around a given profile P
requires the integration of the differential equation (15)
under the boundary conditions (11) and (12). In the case of
an incompressible flow the corresponding boundary value prob-
lem can be reduced to the problem of mapping the domain E(P)
conformally into a domain exterior to a circle, A similar
mapping will be defined presently for the flow considered
here,

2, Mapping of the Profile into a Circle

The stream function of the flow (x,y) 1is defined by
the equations

0p Py 30
°x  p dy
b _ _ PoidW
Ay P 0Ox

This function is constant along any streamline and can be
normalized so that
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\]J:O on P

The complex potential G(z) 1is defined by
¢6(z) = oo(x,y) + 1¥(x,y) (16)

Let the potential ¢ be normalized so that

where @7 denotes the value of ¢ at 2z = zp; and @p the

value of ® at 2 = zp, This can always be achieved by add-~
ing a constant %o ®., The function

¢ = a(z) (17)

maps the domain E(P) into the domain in the G-plane ex-
terior to the slit
&
\U-'-'O, —CPT- =

® = Qp (18)

This_latter domain is now mapped conformally into the domain
Il € R in the plane of the complex variable ( = ¢ + in
by means of the relation

. 32
G = o <§ + / (19)

]

e

Equations (17) and (19) define a transformation

= Blx,¥), n=n(x,y) (20)

of the domain E(P) into the dcmain |{] = R, The points

2=ZL’ Z=ZT’ 7z = o

are taken into the points

respectively, If R 18 chosen as
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the mapping (20) satisfies the conditions

gé —> 0, Qé —> 1 as 2z —> o (22)
n

By virtue of the foregoing mapping there exists a one-
to-one correspondence between the points of the profile P
and those of the circle [t| =R, This correspondence can be
described by means of a function

g = flw)

such that the point 2 [f(w)S/2w] corresvonds to the point

Ret'™: Plainly f(w) 4is an increasing function satisfying
the conditions

£(0) = 0, fln) = =, f(2n) = 2m (23)
as wecll as the symmetry condition

f(2n-w) = 2n - f(w), o< w< m (24)
In the following sections it will be shown that the knowledge

of the function f(w) implies the knowledge of the velocity
distribution along P,

Remark: In the case of an incompressible flow the mapping

Just constructed is exactly the standard conformal mapping of
the profile into a circle. In the case considered here the
mapping (20) is conformal with respect to the Riemann metric
(dS) defined in Z(P) by means of the formulas

as° = g;,dx% + 2g,,dx Ay + gaady” (25)

where

8" + qg® coe®é

e i i
a, + q
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q® sin 6 cos 6

232 =
2 2
aq *.q
aoa + g7 3in®#
aa = L o
85 a

The proof of this assertion follows immediately from the re-
gults of a previous report. (See reference 6.)

%, Velocity Distribution Expressed in Terms

of the Function f(w)
iw
At a point { = Re equation (19) takes the form
® = Pp coOs W

or, by (21)

q

® = 2R — cos W (26)
&o

Now let q(0) denote the value of q at a point Z[cS/Zn]
and (o) the value of ® at this point. Furthermore let

w= gla) (27)

be the function inverse to f(w). By (26)
Q

plo) = 2R —= cos glo) (28)
8o

On the other hand, on the profile P

~

- |dm(c) 2ra, | .

lo) = |mer—{ w =08l (29)
so that

q(o) = é%E a [sin g(O)I g' (o) (80)
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This formula shows that the function g(o), and therefore
also the function f(w) determines the velocity distribution
along P Dbut for a constant factor,

A formuls permitting a complete determination of the

velocity distribution can be derived by introducing the so-
called distorted velocity w#* defined by

w* = q*e—ie (31)

where q* 1s the distorted speed given by

it

(32)

ol +/1 4+ q°%/a

q* = L
a

Note that q* always satisfies the inequality 0 < g*< 1,
It has been shown (see, for instance, reference 6) that the
comp.aX potential G is an analytic function of the variable
w*, Therefore Ww* 1is an analytic function of G and hence
also of the complex variable ¢{. The function w* does not

vanish, except at the points { = -R and ¢ = R, The imag-
inary part of the logarithm of w* is -0, Along the circle
(| = R the function -8 may be regarded as a function of
the real variable w, { = RelW, This function possesses
Jumps of the magnitude o and ™ at w=0 and w = m,
respectively, It follows from known theorems of function
theory that at { = -R the function w®* wvanishes as ({ + R)

and at { =R as (! - R)a/ﬂ, respectively. Furthermore

L P
w*(e) = q2}> 0 (33)
Hence the function

=AM 1 O

x(t) = w*(t + R)™" (¢ - R) S (34)

is regular for |{|] > R, continuous for |f{| = R, and no-
where equal to either zero or infinity.

Therefore log X({) is a one-valued analytic function
which 1s continuous on the circle |{|] = R and regular at
{ = =, Set
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log x(Reiw) = Alw) + iB(w) (35)

Aw) may be expressed in terms of B(w) by means of the
well-ktnown formula

)

T
b
A(w) = - i {B@u+t) - B{w - t)j cot % at + A, (36)
ST,
o]

g X at infinity. (8es, for

where A, 1is the value of lo
43.,) VNow by (33) and (34)

instance, reference 7, p. 2

A, = lo0g a2 (37)
g
= { L A0 di)
A(w) = log q* [f(W)] - log Il + e | i1 - e | (38)
and
B(w) = -8le(W 1= arg(1+ o' )= L arg(e*- 1)+ (14 5)0  (39)

Here 6(c) and E’(U) denote the values of 6 and plgits
respectively, at the point Z(oS/2m/;, of ¥, Noting that

ll * elwl = Zicos &1, Il - eiw‘ = Blsin gl
2 2
and that
L flop O< W<y
1w 2

arg(l + ¢ ) =

% + Lor #m < W< 2w
iw L P 4
arg(e - 1) = B + .

as well as that by (14)

(40)

Y eff(w)] - = for O0< w<m
8lf(w)] = {

@[f(w)] - 21 for w < W< 20
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equations (38) and (39) can be written in the form

3-8

d|iQ
dl'g

cos W sin Y
2 2

} (41)

Sty v Ll [f(w)J P BTy (v D) (42)

From (41), (42), and (36), it follows that

log q* {f(w)} = Alw) + log-{z

(0]

T

1+ &

'q*[f(w)J = q* 8 i

co

w

sin % eh(w) (43)

4]
coOs o

where

T
h(w)=2—ln—f {@[f(uH- t)]-@ [f(w- t)]-%’l t} cot -;— at (44)
~o

Since by (32)

as 1 (
part A R T G N 45)
q 2 < A >
it follows from (43) that
SRS L s
84
[f(w)] q: 22+%l " w li _(1_).1_1—
T 2| 1" 2
2qQ
2(1+ Q) ™
0 cose'% sin % eh(w)}- (46)
where
2
2 q
A= (g) = == Uit (a7)
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; This is ths desirad ezpression of @q(g) in terms of the
function f(w). The varameter A may be used instead of
q,/2, to determine the conditions at infinity. Tbls param-
| eter can be easily expressed in terms of the stream Mach num-
ber (cf., reference 6):

u

= (48)

A = =
[1 + J1 = M;Je

The fact that the velocity distribution can be expressed
in terms of the function f(w) 4n two different ways permits
the derivation of an integral equation for the function f(w),

i

4, The Integral Fquation for the Function f(w)

Bgquations (28) and (29) may be written in the form

(o]
o

& [f(w)}-—- 2R S"d- os W

&9

e .

s | aw £ (w)

ol 2re. | dp [£ (W) 1
qu@u)] @ - \ ! ]

Combining these two equations yields the relation

|sin w| (49)

Now substitute in (49) the value of ay/q given by (46).

Then
1-2 2a
1 T 2(1+2) " )
£'(w)=C|sin 2 e'h(w)~K2 ¥ looe W g1e & eh(w)l- (50)
L 2 2 2 g
where
-7 1R a,
C = 2 —_— z
S 20a

} and h(w) and A are given by (44) and (47), respectively.
Integrating
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w
flw) 1-% 2(1+%) : %% "
( r A
. 2 L 2 2
0
Setting w = 2m here it follows from (24) that
o e
a‘rr 1 -2 m—
i 2(1+2 ) |2 | l
i b/n i %Tl {;ﬂh(w')“xz i os %%‘ sin %% b (w {}dwl
k J
0
so that finally
f(w)
(142 20
p1-=2 2(1+ )| Al
Ry 54 T PUSLICES ™ fia 1| h(w')\
'-:211 ol (51)
| Q 2q
am 0 R 2(1+z2 2 e ¢
J ;Sin%§~ mfo-nlwr)_ 2 " s%& ’ inl m hlwt),
9 ] I 7 j

Sinces h(w) 1is given by formula (44) this is a nonlinear
integral equation for the unknown function f(w),
5, Solution of the Integral Equation

The integral equation (51) can be written in the form
t(w) = 7 {w,f(w')}

where F{@.f(uﬁ)}» denotes the right-hand side of (51). The oper-

ation F is a functional transformation which takes a con-
tinuously differentiable function f(w') satisfying the con-
ditions

£(0) = 0 f(2n) = 2nm

into a function satisfying the same end-point conditions.
Therefore the solution of (51) can be attempted by the iter-
ation method. Choose some function fo(w) eatisfying the

preceding conditions and compute successively




18 NACA TN No, 1006

ey
-
-
&
~r
]

[

F{w. £, (w) }

F{?, fn(w')}

Fj;, fo(m‘)}

Lo
[ V]
—
£
~
i

g
it

If the sequence

fo(w), e ladi endelaghB)y d.s

converges toward a function f£(W) and lim P(f,) = F(£f), this
functicen f satisfies the integral equation.

Prom the purely mathematical point of view it would be
necerzary to supplement the preccding consideration by prov-
ipg that under suitable assumption: (1) the integral equa-
tion possesses a soluticn, {(ii) this solution can be obtained
by iterations, and (iii) this solution is an increasing
funciion. It is hoped that such proofs will bde presented at
some later date. At present it may suffice to state that
the statements (i) to (iii) seem to be verified in the cases
for which the computations have been carried out, The ex-
istence of an increasing function satiefying the integral
equation seems quite obvious from physical reasons, A4s for
the convergence ¢f the method, reference is made to the fact
that the method described here is rather similar to
Theodorsen's method of conformal mapping (references 1 and 2)
for which a rigorous convergence proof has been found (ref-
erence 8),

It might be noted that the desired solution f(w) must
gatisfy the symmetry condition

f(2n - w) = 2n - f(w), f1(2m - w) = £ (w) (52)

If the function f (w) satisfies this condition, so will
all successive approximations fn(w)° It will therefore dba
sufficient to compute £ (W) only in the interval Ogw<m,
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The only nontrivial step in computing the functions
fn(w) consists in evaluating the integral

TT ".
hn+1(w) = é;(/n‘{An+1(w4-t) - Aﬁ+1(w-t)} cot % at (53)
-0
Yhere
k o+ T
Ay, W) =0 [fn(w)] Yirs i (54)

(Cf. equations (51) and (44).) It should be noted that this
is a propar Riemann integral, In fact, the value of the in-
tegrand at @ ti="0s i3

A (w+ t) - A (w = )
1im { n+: 0 g <2t cot‘%>:}

t>0 2%

f 4Aﬁ+1(w) = 4 {@l [fn(w)] fé(w) = Qg;ﬂ}>

By using this information, the integral (53) can be evaluated
numerically, say by the trapezoidal rule.

After f(w) has been computed with sufficient accuracy,
the velocity distribution is computed by means of formula
(46), <

6. Choice of the Function £ (w)

The rapidity of convergence of the iteration method for
solving equation (51) will depend upon the choice of the
function f,(w), +the Oth approximation. In order to reduce

the computational work, this function should always satlsfy
condition (52),

A few methods of choosing the function fy(w) are
listed, in the order of preference:
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(@) Choose for f,(w) the solution of equation (81)

for a value A' as close as possible to the value of A for
which the equation is to be solved,

(B) Choose for fo(w) the solution of equation (51) for

the desired value of A or for a value A' close to the de-
gired value, and for a profile P! different from but close
IO SRS E

(Y) Choose for f,(w) the function resulting from the

conformal mapping of the profile P onto a circle; that is,
the solution of (51) for A = O,

() Choose for fo(w) e function approximating the

function resulting from the conformal mapping of the profile
P onto a circle., For thin profiles such a function is given
by

m
folw) = = (1 -~ cosw), O<gLwsmw
(66)
fol2m - w) = 2n - £ (w)
Note that (Y) is a special case of (a) (set A' = 0) and (s) d
s special case of (B) (set A' = 0 and choose P' as a

straight segment ).

7. Velocity Distribution at Points Not onmn the Profile

It remains to show how the knowledge of the function
£(w) permits the computation of the velocity distribution
at points not on the profile, This is done by means of the
following theorem which also shows that gsolution of the in-
tegral equation (51) actually yields a solution of the bound-
ary value problem stated in section 1.

Note first that from the way the integral equation has

been set up it follows that there exists an analytic function |
w*({) regular for |{|>1 and such that

wr(el?) = g [f(w] o-18 (7 ()] (56)
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where q* is given by (43) and (44) and 6 by (40)., If
f(e*™) is xnown, w*({) can be computed, say by Cauchy's
formula?

2T

: jwy iw

v«*(e. )e. duu+ g (57)
1W " g co

W'(g)‘:-—-él—-/
UEvA &

Now the following theorem holds:

Let f(w) be an increasing function satisfying (51).

¢ g4
z=x+ iy = Cl{ n_}_](_}_ <l~:2>d§:j//\v*(§)<l_—§g>d C} (58)
1 1

where C; is a real constant and the bar denotes the con-
Jugate complex quantity. The transformation

x = 2(F %), y = y(b, n) (59)

of the z-plame into the [-plane defined by (58) (for |(|>1)
is one-to-one. It takes the domain |{|>1 into the domain
E(P) exterior to the profile P. The function

® = 2C,Re <C + % (60)

considered as a function of x and y is the desired poten-
tial of the compressible flow around P; that is, 1% satles-
fies the differential equation (15), the boundary condition
(11) and the condition (12),

The proof of this theorem will be found in the appendix,

After ¢ 1is found, the velocity components u and v
can be determined by differentiation. But it is also true
that w* considered as a function of 2z ig the distorted
velocity (cf. sec., 3) and therefore
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2 |w* w*

1 - [we2 |we

The procof of this last statement is left to the reader,

8. Examples

As an illustration of the method, velocity distributions
have besn computed for a circle and for a symmetrical Joukowski
profile with ¢ = 0,15 (¢ Dbeing the usual parameter determin-
ing the thickness), The following values of A have been used

AN = 0,045 for the circle

A

0,157 for the Joukowski profile

These correspond to the following values of the stream Mach
number

M

o

M

o

]

0,406 for the circle

0.685 for the Joukowski profile

These values of M_ are known to be close to the critical
values, (The eritical stream Mach number is the stream Mach
number for which the maximum local Mach number is egqual to
unity.)

In the case of the circle
@(c)=a+%, ®'(g) =1, a = m

It is natural to set
folw) = w
This corresponds to case (Y) of section 6. The first approx-

imation is easily computed in closed form and is equal to

A
folw) = w + ———— gin 2w
s D <50k 084

In the case of the Joukowski profile
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o= 0

The function ©(s) and ©'(s) are given by the parametric
formulas :

B¢, (14 ¢)
€

s=1

{eatanh“l(escoe t) =~ e tanh™ (e cos t)}

¥ 2 1 + 2¢
4cottL(cot t) +_'3"_

<
2 + 2
[(cot $) et 25} - a(cot t)

€

@=1 + t « tan™?

€2

® _cset [1-e)1+3e) . $$T % gtata €1 e _g_ef_}
ds 8e, L €2 (1+ ¢)®

where the parameter t ranges from t = 0 to ¢t = and

e

€ys €55 and €, are constants determined by

tre

€ =
1
2(1+ 6)[63 tanh™! ¢; ~ ¢,tanh™? sa]

™
]

-
1

€

,__«/(1+ e) (1 + 3¢)

e 1 + 2¢

The proof of these formulas will be found in reference 9,

The function s, ©, d8/ds are tabulated in table I. The ap-
proximation of order O has again been chosen according to
case (7v) of section 6. In the case of a circle the func-
tion f(w) must satisfy the symmetry relation

f(m «w) =n - f(w)
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It i therefore sufficient to consider this function in the
interval 0 < w < mn/2, Ageordingly the functions fn(w)
have been computed for w = 0° 10° ,,., 90° 1In the case
of the Joukowsgki profile, the functions f,(w) have been

computed for w= 0°9, 109, ..., 180°, The convergence Of
the successive approzimstions is seen from tables II.

The resulting velocity dlstributions are given in tables
I1I and plotted in figures 1 and 2, The argument 5 is the
argument of a point on the circle into which the profile is
mapped conformally, The resulis obitained have been compared
with those arising from the Karman-Tsien velocity correction
formula

a4 . <ﬂ;\ __l_:_ﬁ_; (61)
%, B g (1 }\(ag_>i

where <E-\ 1s the valug of the ratio at local velocity to

by}

[oe}
velocity at infinity for an incompressible fluid, To use

thig formula amounts to replacing the function £(w) .by the
function arising in conformal mapping of the profile into
the circle., In the case of the Joukowski profile Kaplan's
results (reference 10) obtained by a modified Poggi method
are alsgso given for the sake of comparison,

It will be noticed that the present method (which con-
sists of an actual solution of the boundary value prodblem
for the case <Y = -1) gives a greater compreseibility effect
than the one predicted by the approximate methods mentioned.
(To evaluate this remark correctly, note that Von Kdrman ex-
pressed the opinion that in the case when the assumption
Y = =1 1is applied to air and formula (61) is used, the error
committed in using this formuls seems to counteract the error
committed in using the incorrect pressure-density relation,)

CONCLUDING REMARKS

It has been shown that under the' assumption of the lin-
earized pressure~volume relation and of a symmetrical flow
the velocity distribution of the compressible flow past a
wing section of arbitrary given shape can be determined rig-
orously by a method which requires not considerably more
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computational labor than the case of an incompressible flow.
This is, of course, only the first step toward the complete
solution of the velocity distribution problem. The next
step should consist of extending the present method (a) to
the case of the actual adiabatic pressure-density relation,
(b) to the case of a circulatory flow around a not necessar-
ily symmetrical obstacle.

Remark: After this paper was completed the author
learned about a paper by Slioskin (reference 11), in which
the same problem is reduced to an integro-differential equa-
tion, different from the one derived in this paper.

Brown University,
Providence, R. I.,, May 1945,
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AFPENDIX

This appendix contains the proof of the theorem stated
in section 7,

The mappirg properties of the function (58) follow im=-
mediately from the following three statcments.

(a) The funztion (58) takes the point { = = into the
point 2z = o,

(b) The function (58) maps the circle 'Q! =1 in a one-
to-one manner into the profile P,

(¢) The Jacobian

_o(x,y)
d(¢,n)

is positive for all values of ¢ and n, ﬁz *

To verify (3%3observe that as (-, w* approaches
the value q* = =0

To verify (b),note that the integrals in (58) are inde-
pendent of the path since the integrands are analytic func-
tions of (. 1In order to obtain the image of |{| = 1 the
integration may be performed along the circle. But for

§=eiw
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1 -LYat = - 2etn w auw
LB

whereas w*(el%) 1is given by (56). Hence the equation of

the curve into which |{| = 1 41is taken may be written in
the form
r ;
i ~ i fm+B8[f(w
zZ = 20 {}—‘*—‘——'” Q*[f(w)]} sin we™ " [z ( )J} dw
a*[f(w)]

Set o = f(w) and note that the integral equation (51) im-
plies that f(2m) = 2m, By virtue of (40), (45), and (49)
the preceding equation may be written in the following forms:

~W

z = CQJ/ £ (w)

~0

16 f(w
& . )] aw, 0<w< 2n (A1)

o)
& REICIIN

2 =2 0 3 0S o < 2n (A2)

e

where Cp; 1s a new positive constant. Equation (Al) shows
that 1] =1 1is taken into P (cf. equation (10) and note
that P is determined bdut for a scale factor). XEquation
(A2) shows that the mapping of the circle into P is one-
to-one, for by hypothesis,

f'(w) >0 (43)
To verify (c), observe that it follows from (A3), (43)

and (50) that |w*(eiw)| < 1l, Since the maximum of the mod-
ulus of an analytic function is attalned on the boundary,

lw*(€) [ <1 for [t| 21 (a4)

Now the Jacobian is equal to
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so that by (A4)

J >0 for |t]>1

Next, equations (68) and (80) may be rewritten in the

form
x = Reyy(L), y = Reya(l), z = Rexs(ﬁ) (a5)
where
/ﬁ 1 ey | < 1 >
w0 =0, [ 2= wnn] (3 - §5) at
{é w*(¢t) J
e
walt) = 10y | {s e O} (1 - 75t
X, (1) = 20, (L + )
Since
X;a by X;a L X;2 S

(A5) is a Welerstrassian parametric representation of a mini-
mal surface, In other words, ¢ considered as a function of
x and y satisfies equation (1EY,
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A simple computation shows that a line element normal
to the circle |{l=1 1is taken by the mapping (58) into a
line-element normal to the profile P. Since the normal
\ derivative of ¢ in the {-plane vanishes so does the normal
derivative of ¢ in the z-plane., Thus ¢ considered as a
function of x and y satisfies the boundary condition
. Since
| dz ox dy dz oz
—_— = — 4+ § — = — %
GiE 3 pe ra g g
gis Lg% 4o 7 £ dz dz >
dn  dn on 3t ol
pud  wh(o) = q* 1t followe from (58) that as "=
dx 1 -« g*2 d
g_ » C, '%ii , _i 0
4 at o
EEG AR R Rt o
L on 2 Qs
3 oo
so that
9L 1 1%
— 5 — i — —0
ax cll"q‘ ay v
o
on on 1 q %
e 0 SHe A
dx oy Uy 1+ g¥e
| Now, as ( = O
3 o)
ot on
and therefore
: O o Ok pLagE o Bt 1 ke
d 0f .dx an 9dx 15~ jg%e 8,
20
§£2=§25E'+§_L26n_>0
| g5 i
r d ot oy dn dy
as > o, Thus condition (12) is also verified.
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Table I.

NACA TN No.

1006

Functions entering into the computation of the velocity
distribution along a symmetrical Joukowski profile with

%y.Lb
¢ 2 @ d<gg/d£ g & e ® | a®/as
0.00 | 0.0000 | Z.1416 0.80 | 3.0287 | 3.8755
L0082 .0667 | 3.0834 | -.4076 .82 | 3.0720 | 3.8980
.04 .2548 | 3.0353 | -.1731 .84 | 3.0371 | 3.9204 |
.06 .5191 | 3.0034 | -.0804 .86 | 3.0419 | 3.9428
.08 .8148 | 2,9888 | -.0220 .88 | 3.0485 | 3.9650
10| 1.1062 | 2.9892 | +.0238 .90 {3.0510 | 3.9873
Jd2 | 1.3723 | 3.0009 | +.0647 .92 | 5.0551 | 4.0094 |
.14 | 1.6068 | 3.0206 | +.1040 .94 | 3.0591 | 4.0315 :
16 | 1.8071 | 3.0453 | +.1437 .96 |3.0629 | 4.0535| +5.8608
18 | 1.9766 | 3.0730 | +.1850 .98 | 3.0688 | 4.0755| +6.0844
.20 | 2.1193 | 3.1024 | +.2287 {|1.00 |3.0701 | 4.0975| +6.3066 h
22 | 2.2395 | 3.13268 | +.2757 |l1.02 |3.0735 | 4.1194| +6.5277 .
24 | 2.3407 | 3.1620 | +.3264 {|j1.04 |3.0768 | 4.1412 | +8.7464 |
.26 | 2.4265 | 3.1933 | +.3813 {i1.06 |3.0800 | 4.1630| +6.9630 |
.28 | 2.4995 | 3.2232 | +.4408 (|1.08 |3.0831 | 4.1848 |
.20 | 2.5620 | 3.2586 | +.5052 |[f1.10 |3.0861 | 4.2065
.22 | 2.6158 | 3.2816 | +.5750 |j1.12 |3.0890 | 4.2282
.34 | 2.6623 | 3.3101 1.14 |3.0918 | 4.2499
.36 | 2.7029 | 3.3381 1.16 | 3.0945 | 4.2715
.38 | 2.7385 | 3.3655 | +.8185 |[{1.18 |3.0972 | 4.2932
40 | 2.7697 | 3.3926 | +.9119 (§1.20 |3.0998 | 4.3148
A2 | 2.7975 | 3.4192 1.22 13,1024 | 4.3363
44 | 2.8221 | 3.4454 1.24 |[3.1049 | 4.3579
.46 | 2.8442 | 3.4712 1.26 |3.1073 | 4.3794
.48 | 2.8640 | 3.4968 |+1.3500 |j1.28 |3.1097 | 4.4009
.50 | 2.8818 | 3.5220 |+1.4761 [[§1.30 |3.1121 | 4.4224
.52 | 2.8080 | %.5469 |+1.6089 {{§1.32 |3.1144 | 4,4439
.54 | 2,9127 | 3.5715 1.3¢ |3.1167 | 4.4653
.56 | 2.9261 | 3.5959 1.36 {3.1190 | 4.4868
.58 1 2.9384 | 3.6201 1.28 |3.1212 | 4.5082 i
.60 | 2.9497 | 3.8441 1.40 |3.1234 | 4.5297
.62 | 2.9600 | 3.6679 1.42 |3.1256 | 4.5511
.84 | 2.9697 | 3.8915 |+2.5419 ||{1.44 |3.1277 | 4.5725
66 | 2.9786 | 3.7149 |+2.7190 |{§1.46 |3.1299 | 4.5939
68 | 2.9869 | 3.7382 |+2.9014 ||j1.48 |[3.1320 | 4.6153
.70 | 2.0946 | 3.7614 |[+3.0895 |[[f1.50 |[3.1341 | 4.6367
72 | %.0019 | 3.7844 |+3.2823 [j1.52 |3.1363 | 4.6581
.74 | 3.0087 | 3.8073 1.54 |3.1384 | 4.6794
.76 | 3.0150 | 3.8302 1.56 |3.1405 | 4.7008
.78 | 3.0210 | 3.8529 1.5708|3.1416 | 4.7124 [+10.177
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Table Ila.
Successive approximations to the function f(w) in the
case of a circle (M, = .406, A = .045)
= “’raa___ﬁj @) 1@ | fpw) | fzW) | £4w) | f5W)
o[ .O0000 | .00000 .00000 .00000 .00000 .00000 .00000 |
10| .17453 .17453 .13144 .18171 .18611 .184720 .18558
20| ,34907 . 54907 . 38086 36239 . 37082 . 36808 . 36976
30| .52360 .52360 . 56643 .54122 +S5287 .54900 .55135
40| .69813 .69813 .74683 71769 73138 72673 72951
50| .87266 .87266 .92136 .891782 .90587 .90095 90388
60(1.04720 [1.04720 | 1.09003 | 1.06355 | 1.07635 |1.07183 |1.07450
70{1.28173 [(1.22173 | 1.25352 | 1.23362 | 1.24333 | 1.23985 |1.24191
80]/1.39626 [1.39626 | 1.41317 | 1.40250 | 1.40768 |1.40586 |1.40698
90|1.57080 |1.57080 | 1,57080 | 1.57080 | 1.57079 |1.57080 |1.57080
Table IIb.

Successive approximations to the function f@d) in the

case of a symmetrical Joukowski profile (€ = ,15,
M,= .685, A= .469)
M foe) | W) | @) | fpW) | fa@)
des! rad.
.0000 .0000 . 0000 .0000 .0000 .0000
10| .1745 .0437 0324 0323 .0324 .0324
20| .3490 1278 L 1274 %t 5 8 1278
30| .BR36 .2570 .2786 2785 2779 2787
40| .6981 .4470 4762 4755 »4750 .4760
50| .8726 .6645 .7090 7070 .7068 .7078
60 |1.0472 .9078 . 9649 . 9609 .92615 .962C
70 11.2217 f 1.1682 1.2320 1.2257 1.2270 1.2272
80 [1.3962 1.4332 1.4996 1.4909 1.4931 1.4928
90 {1.5708 1.6956 1.7586 1.7484 1.7514 1.7508
100 |1.7453 1.9502 2.0022 |1.9914 1.9951 |1.9943
110 11.9198 | 2.1857 2.R253 2.2156 2.2193 2.2162
120 [2.0944 | 2.4016 2.4P48 | 2.4174 2.4208 |2.4199
130 [2,.2689 2.59e2 £.5092 | 2.5956 2.5982 2.5872
140 2.4434 2.7555 2.7481 2.7494 | 2.7501 2.7495
150 [2.6180 2.8902 2.8728 2.8787 2.8776 2.0778
160 [2.7925 2.9964 2.9764 2.9850 2.9821 2.9831
170 [2.8670 3.0773 3.0639 3.0702 3.0875 3.0686
180 [3.1416 | 3.1416 | 3.1416 | 3.1416 | 3,1416 | 3.1416
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Velocity distribution about a circle (Mw=.406)

‘\qigf Present Karman-Tsien Incompressible
o Method Method

0 0.000 0.000C 0.000 5
10 .335 . 333 . 347

20 875 .667 .684

30 1.014 1.000 1.000 .
40 1.350 1.326 1.286

50 1,671 1.636 1.5862

60 1.952 LRl o 1784
70 2,185 2.134 1.8%9
80 2.336 2.9 1.970
20 2.389 2.329 2.000

Table IIID

Velocity distribution about a Joukowski Profile (¢=.15, M‘,:.eas)

/q | Present K4rmin-Tsien ! Kaplan Incompressible

& \”| Method Method

0 .849 .839 B0

10 .835 .854 .852 .874 :
20 . 847 .869 867 .887 :
30 873 .894 892 . 909

40 .912 .928 927 .938

50 « 957 .970 970 974

60 .01l 1.019 1,021 1.016

70 1.073 1.073 1.078 1.081

80 1.142 1.152 1.139 1.109

90 1.215 Js 19 1,203 e -
100 1.289 1.250 1.265 1.203
110 1.360 1.508 1.322 1.244
120 1.417 1.347 1.368 1.278
130 1.446 1.373 1.394 1.29%
140 1.427 1.369 1.385 1.294
150 1.325 1.308 1.312 1.247
160 1.088 1.128 1.110 1:106
170 .645 .704 .674 168
180 0.000 0.000 0.000 0.000
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Figure 1.- Velocity distribution along & circle (Mg, =.406).
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Figure 2.- Velooity distribution along & Joukowski profile (¢=,15, My, =.685).
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