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VELOCITY DIS~RIBUTION O~ WING SECTIONS OF ARBITRARY SHAPE 

IN COMPRESSI~1E FOTENTIAL FLOW 

I - SY~~ETRIC FLOWS OBEYING THE 

SIMPLIFIED DENSITY-SPEED RELATION 

By Lipman Bers 

S Jiv MARY 

As a first step toward the co ~putation of the velocity 
distribution along a wing p ro~ile ~f arbitrary shanD in a 
compressible flUid, the circulqtion-free flow aroQnd a sym­
metrical profile is treat d unrer the assumption of the sim­
plified de n sity-sneed rel u tion due to Tchaplygin. Kirwin. and 
Tsien. The velocity iis ribution problem is reduced to a non­
lineer 5nte gral equation which is solved by a fairly rapidly 
convergent i t eratior- method. Numerical examples are given. 

INTRODUCTIon 

The central problem in the two-dimensional thpory of a 
potential flow of a per ect fluid around an airfoil profile 
is that of determini~ the pressure distribution on a profile 
of given shane if the spe~d and direction of the flow at in­
finity (undisturbed flow) are known. A solution of this 
problem should consist not merely of giving a mathematical 
existence proof but of indicuting a method for obtaining nu­
merical results of reasonable accuracy in a reasonable anount 
of time, 

The difficulty of the problem depends essentially upon 
the prescribed speed at infinity . If this speed does not ex-
ceed a certain limiting value (depending upon the profile) the 
flow will be everywhere subsonic. For higher values of the 
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speed at infinity the flo~ becomes pnrtly supersonic (mixed 
or supercritical flow). Fi.nall~T, it is probable that for 
too high values of tho speod at infinity a potential flow 
beco les either r.athematically ihl1'os8ible or unstable. The 
case of mixed flow is the more important one, both from the 
practical and t ~ eoretical points of view. Nevertheless, it 
seems that the compl ete solution of the problem of everywhere 
subsonic flows is a necessary prereqnisitR for a successful 
attack on the problem of transition through the speed of 
sound. (In fact, at present t he very existence of mixed 
flows past a ~rofile has not yet been proved. ) 

In view of the admitted difficulty of the problem it is 
advisable to develop the mathematical app a ratus by consider­
ing first the simplest possible cases . The most radical sim­
plification would be, of course, to neglect compreRsibility 
altogether. Under t h ese aBsumption~ the pressure distribution 
problem has been sol ved co mp le t ely. (Sec references 1 and 2.) 
In the present report the following two simplifying assump­
tions are mad e: 

A. Only circulation-free flows around symmetrical pro­
fil~s are cons ide red. 

B. It is assumed that the velocity potential satisfies 
the simplified differential e~u a tion resulting froQ the so­
called ChaplY6in-Karman-Tsien equation of state. (Cf. ref­
ere n c e s 3 I 4 I an d 5 . ) 

Some remarks may be made concerning this second assu~p­
tion. In ~eneral, the velocity potential ~(xIY) satisfies 
the partial differential e~uat ion 

where p is the density of the fluid. 
a s i v en function of the speed q 

Since the density is 

p = P(~), 2 = \ ~ + ~ ()8 ()8 
~ 'ox oy 

e~uatio!1 (1) is nonlinear. T!~e function p(~) is determined 
by the pressure-density relatio n (equation of state). In an 
isentropic flow tne pressure p satisfies the rAIRtion 

, . 

.. , 
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p p-Y = constant 

where Y is the r atio of s p ecific heats for constant pres­
sure ~nd constant volume. (The st an dard v alue of Y is 
1 . 405.) This implies the density-speed rel Rtion 

P = Po (1 - Y 
\. 

2jl!(Y-d - I _q_ 

2 a 2 o 

where a o is the speed of sound at a stagnation pOint and 

Po the stagnation den~ity. Chaplygin noticed t hat the 
equ~tion s atisfied by the potential becomes simpler if the 
density-speed rel a tion is t~kcn in the form 

This relation may be obtained formally from (4) by setting 

3 

Y = -1. Though this value of Y violates fundamental phys­
ical l aw s, it should be ob served that only the density-speed 
relation and not the pr essure-density relation enters in the 
equation for the potent ial. 

As a ma tter of fact , the function (5) behaves qualita­
tively in the same way as does the function (4) within the 
subsonic ran g e; that is, for 0 -; q2 -; 2a 0

2 /(1 + Y), and 

for small values of q/a o the function (5) gives a good 
numerical approximation to (4). 

Von K~rm~n and Tsien justify the use of the value Y = -1 
by the remar k that it is poss ible to determine such values 
of the constants A and B that the pressure-density rela­
tion 

p = A/p + B 

will give a good approximation to the relation (3) for val­
ues of p and p close to some preassigned values, say to 
the values of p and p for the undisturbed flow . This 
r emark is of interest as far as co mputations of the pressure 
distribution are concerned. It in no way affects the velocity 
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distribution for, as it w~s already noticed, the differential 
equation for t he potential function depends only upon the 
density-s p eed relation, and the p receding pressure-density 
relation le ads to t he same equation (5) no matter what values 
are assigned to A and B. 

It s hou ld "be emphasized, h.O\·lever, that the primary pur­
pose of this r ep ort is not to facilitate the use of the ap­
plication of the approximate r~lation (5) "but rather to de­
velop methods which coul d "bp extended to the c as e of the ac­
tual density-speed r e l at ion . 

In t h e followin g, use will "be ~ade of certain results 
co ntain ed i n a previous report. (See reference 6. ) 

Th is investigation, nonductpd at Brown University, was 
sponsored "by and con Cucted with the financial assistance of 
the Na tion al Advisory Committee for Aeron autics. 

The auth or large l y profited fro m s everal : nstructive 
disc~Ds io n s he had with ?rofessor S. E. Wa rschawski . He 
also i s inde"bte d to Mr. Oharles Saltzer for competent assist ­
ance. 

SYMBOLS 

A(W) auxiliary function defined "by equa tion (35) 

a lOcal speed of sou nd 

a o speed of sound at a stagna tion point 

B (w) auxiliary fu nc tion defined by equatio n (35) 

C, Cj positive constants 

dS 2 non-Euclidean length element defined "by equatio n (22) 

domain exterior to the p rofile P 

F inte g ral transf ormation defined in section 5 

f (w) f u nction defining t h e mapping of the circle into the 
profile P 

fn( w) nth approxim a tion to the function f(w) 

~ . 



HACA TN No. 1006 5 

G complex potential of a co mpressible flow 

g (a ) fu n ction inverse to few) 

gik coefficients of t hA metric (22) 

function defined b y e quut ion (44) 

Im() im ag inary part of 

P profile surrounded by a co mpressible flow 

p pre s sure 

q lo cal speed 

qco speod of the un disturbed flow 

q(a) valu e of q at a boundary point 

q. distort ed speed 

q* -co distort ed speed of the undisturbed flow 

q* (a) value of q* at a boundary pOint 

M loc u l Ma c h number 

M::o str eam Ma c h number 

R r adius of the circle i n the ~-plane 

Re( ) re a l part of ( ) 

s arc length mea sured along P 

S len g th of t he curve P 

t parameter occurri ng in section 8 

u,v co mp onents of the velocity 

w· distorted velocity 

x,y Cartesian coordinat e in the z-plane 

z complex variable 
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Z(s ) coordina te of ~hc profile as a function of the arc 
length 

ZL 1 eacii r..g edge 

ZT trailing edge 

a. angle at the trBilt ne end 

'Y exponent in t he adiabatic relation 

E: thickness paraMeter of a symmetrical Joukowski profile 

E: i cO n s tan t soc C llr r i n. ~ ins e c t ion 8 

8(0) slo p e of the profile P 

8 angle between the velocity ve~tor and the x-axis 

6 value of 8 on the boundRry 

~ auxiliary complex variable 

A square of the distorted speed of the undisturbed flow 

A function defined by equation (54) 

~ , T) Cartesian coor ~inates in the ~-plane 

P density 

Po stagnation density 

0 dimensio aless length par~weter along the profile P 

cp velocity p ot ential 

...-
qJ value of ~ at the bound~ry 

X auxiliary analytic function defined by e quation (34) 

\j! stre am function 

w argument of a pOint on the circle I ~ I = R 

~--- - - -~--~--
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ANALYSIS 

1 . The Boundary Value Problem 

Consider a symmetrical profile P in the plane of t he 
complex vari ~ble z = x + iy. It will be assumed that P 
is a smooth curve, except, perhaps, for a sh a rp angle at the 
trailing edge zT, that the x-axis is parallel to the axis 
of symmetry of the profile and th a t the profile is given by 
an equation of the form 

z = Z(s), o .::; s <5 S 

where s is the arc length on the curve 
counterclockwise direction from the point 
the total length o f th e profile and 

P measured 
zT ' Then 

( 6 ) 

in the 
S is 

is the le a ding edge. It will be convenient to introduce the 
dim~nsionless pargmeter 

cr = 2rrs/S (7 ) 

The func t ion 

8 (0) = arg ZI(crSj2n) (8 ) 

where 

ZI(S) = dZjds 

depends onl y u p on the shape but not upon the size or po s i­
tion of P. Note that by virtue of the foregoing assump tions 

8(0) = n - a,(2, 8 ( n) = 3n /2 , 8 (2n) ::;; 2n + a/2 

where a is the angle at the trailing edge, 
and 

8 (2n - 0) = 3n - S ea), 

O < < a _ n, 

The e quat ion of the curve P may be written in th e form 

( 9 ) 
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z = Z ( a S / 2Tt) 

(J 

= L J e 18 (a) 
2fT • 

o 
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(10) 

Now let ao~{x,y) be the potential of a circulation­
free flow of a compressible fluid paat the profile P; that 
is, a function such that 

uCP 
u = ao -, ox v = ao 

oy 

are the components of the velocity in the x- and y-directions, 
res p ectivel y , ao being the speed of sound at a stagnation 
pOint. ~h e function cp(y,y) is defined and one-valued in 
the domai n E(P) e x terior to P a nd satisfies the boundary 
condition 

Q.2 • 0 on P ou 

as we ll as the condition 

ocp °co o~ 
~ -, -~ 0 as z ---7 co 

6x a o oy 

Here %n denotes differentiation in tbe direction normal 
to P, ar. d q co is t he speed of the flo w far away from the 
profile (un disturbed flow). 

The conjuga te complGx velocity is given by 

w = u i 
_i e 

- v = qe 

where q is the speed a d 8 the angle bet~een the ve l ocity 
vector and the x-axis. The function e satisfies the condi­
tion 

e = 8 - fT on the up p er bank of P 
(14) 

8 :: 8 - 2fT on t he lowe r b a nk of P 

ali.d 
8 -7 0 as z -~ co 
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Under the assumption of the approximate density-speed 
relation (cf. Introduction) 

the equation of continuity 

:x (pu) + ;y (pv) ; a 

tal\es the form 

9 

{
I + (oCP)a} ,,2cp _ 2 ocp acp a

2

cp +{l + (OCP)2} ,,2cp = a (15) 
oy ox d ox oy axoy ox oy2 

This is the classical eauation of a minimal surface. 

The determination of the flow around a given ~rofile P 
requires the integration of the differential eouation (15) 
under the boundary conditio~s (11) and (12). In the c~se of 
an incompressible flow the corresponding boundary value prob­
lem can be reduced to the problem of mapping the domain E(P) 
conformally into a domain exterior to a circle. A similar 
mapping will be defined presently for the flow considered 
here. 

2. Mapping of the Profile into a Oircle 

The stream function of the flow ~(x,y) is defined by 
the equations 

= ox p oy 

ocp 
- = -
oy 

Po o\jl 

P ox 

This function is constant along any streamline and can be 
normalized so that 
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\)I = 0 on P 

The complex potential G(z) is defined by 

G(z) = ~(x,y) + iW(x,y) (16) 

Let the potential ~ be normali7.ed sO that 

where ~L denotes the value of ~ at Z = zL and ~T the 
value of ~ at Z = zT. This can always be achieved by add-
ing n constant to ~. The fu ction 

G = G(z) 

maps the domain E(P) into the domain in the G-plane ex­
terior to the slit 

\jJ = 0, . (18) 

This latter domain is now mapped conformally into t he domain 
I t I ~ R 1 nth e }:i 1 '3. n ~ 0 f the c 0 ill P 1 e x va ria b 1 e t, = ~ + i 1'\ 

by means of the relation 

(19) 

Equations (17) and (19) define a transformation 

1'\=n(x,y) ( 20) 

of the domain E(P) into the domain I t, I > R. The points 

z = ... z = ZT ) z = co 
"'L ' 

are taken into th e pOints 

t, = -R , t, = R, t, = co 

respectively. If R is chosen as 
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R = (21) 

the mapping (20) satisfies the conditions 

.~ 0, o ~ 
-~ 1 ox: 

as 

By virtue of the foregoin e ~apping thpre exists a One­
to-one correspondence between the points of the profile P 
and tho s e 0 f the c ire lei t I = R . Th i, s cor res p 0 n den c e can be 
described by means of a function 

(] = f(w) 

such that the point Z [f(W)S/2n] corresponds to the point 

Re i W. Pl a inly few) is an increasing function satisfying 
the c ondi t ions 

f(O) = 0 , f ( 2n) = 2TT 

as well a s the symmetry condition 

f ( 2TT - w) = 2TT - f (w) , O<W<TT 

In the following sections it will be shown that the knowledge 
of the functio n few) implies the knowledge of the velocity 
distribution along p. 

Remark: In the case of an incompressible flow the mapping 
just constructed is e xactly the standard conformal mappin g of 
the pro f ile i n to a circle. In the case considered here the 
mapping (20) is conformal with respect to the Riemann metric 
(dS) defined in E(P) by mea n s of the formulas 

where 

a :2 + n:2 cos:2 e · 0 '1. 
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qG sin e cos e 
a

o
'3 + q2 

a
0

2 + q<l sin<le 

:3 2 
a o + q 

The proof of this assertion follows immediately from the re­
sults of a previous report. (S e e re f erence 6.) 

3. Velocity Distribution Exp ressed in Terms 

of the Function few) 
iw 

At a point t = Re equ a tion (19) takes the form 

t:p = CPT COS W 

or, by (21) 
q cx:> 

cP = 2R COS W 
a o 

Now 1 et 
q;(o) 

q (0) denote the value of q at a pOint Z [a S /211 ] 
and 

be the 

On the 

SO that 

t h e 

func t ion 

val '~e of cP at this point. 

W = g(a) 

inverse to f (W). By (26) 

cp(a) = 2R 
a 

co 
cos g(a) 

ao 

Furthermore let 

(27) 

other hand, On the profile P 

q(a) I dcP (a) I 211a o Icpr (a)1 = = 
I ds S 

q(a) 4TTR 
Isin g(a)1 g r (0) = -- q(X) 

S 
(30) 

---_ .. - ------~----~-~ 
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This formula shows that the function g(a), and therefore 
also the function few) determines the velocity distribution 
along P but for a constant factor. 

A formula permitting a complete determination of the 
velocity distribution can be derived by introducing the so­
called distorted velocity ,* defined by 

w* = * -i8 q e 

where q~ is the distorted speed given by 

q :~ 

Not e t hat Cl. >I< a h! ay s sat i s fie s the in e qua lit y 0 <S q * < 1. 
It hl.:1 been shown (see, for instance, reference 6) that the 
comp~qx potential G is an analytic function of the variable 
w*. Thereiore w* is an analytic function of G and hence 
also of the comple x variable t. The function w* does not 
vanish, except at the points t = -R and t = R. The imag­
inary part of the log~rithm of w* is -8. Along the circle 
It I = R the function -8 may be regarded as a function of 

. • the rAal variable w , t = Re iw . This function possesses 
jumps of the ma~nituae a and TI at w = 0 and w = TIt 

respectively. It follows from known theorems of function 
theory that at t = -R the function w* vanishes as (t + R) 

and at b = R 0. S (b - R) a In , res p e c t i vel y • Fu r the r m 0 r e 

Hence the function 

q * > 0 co 

is regular for It I > R, continuous for 
where equal to either zero or infinity. 

! hi ::: R, 

(33) 

(34) 

and nO-

Therefore log 
which is continuous 
t = co . Set 

x(t) is a one-valued analytic function 
on the circle Itl = R and regular at 
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log X (R e i w) = A ( w) + i B ( w) ( 35 ) 

A(W) IDay be exuressed in terms of B(w) by means of the 
l. ... ell- !:nown formula 

n 

A(W) = :TT.[ { 13(W+t) - B(w - t)J cot ~ dt + Arp 
, 0 

where A~ is the value of log 
instance, refe r ence 7, p. 2 4. 3.) 

IX ; at infj,ni ty . (See, for 
No~ by (33) and ( 34 ) 

A(W) = log q'" [few)] -

and 

I iwr 
log 11 + e I 

I 
11 

,..., i UI a i W (a.) B(w) = - 8[f(w)]- arg(l+ e)-TT arg(e -1)+ l+iT W 

(37 ) 

(38 ) 

Here 8(0') and q* (0) dep ote the va l ues of 8 and q"', 
res pee t i vel y, at the poi n t Z (a S / 2TT) 0 f P • _J 0 tin e t hat 

and that 

as well 

arg(e iW - 1 ) = 

W 

2 

W + TT 
2 

W TT 
+ -

2 2 

as that by (14 ) 

SCf(w)] { e [ f (w) ] - TT 

= 
S[f(w)] - 2n 

for O<W<TT 

fo r n < W < 2n 

for o < W < TT 
( 40 ) 

for n < W< 2n 
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e<1.uations (38) and (39) can be written in the form 

log q' [f (w) ] =A (w) + 1 og {2 1+ ~ leo S ~ I lSi n ~ I:; } ( 41 ) 
E ( w ) = - e [ f (W) J + a:

TT 
TT W + (TT ;) ( 42 ) 

From (41), (42), and (36), it follows that 

where 

Since by (32) 

a o 1 (q\ - <1. *) = q 2 

it follows from (43) that 

a o = -L 1 ('L {e -h (w) 

fl[rCw) J 2 + a I Isin 
<1.* TT w ~In «> 2 I COS 2" I 

<3(1+.g:) <3 w 
-~2 cos 2 sin 

where 

1 = 

cot t dt 
2 

(47 ) 
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This is the desir~d expr~s3iQn of ~(a) in terms of the 
function f(w). The -0 :..l?ame~er f... ma~r oe uS6d instead of 
qoo/a o to d e tprmtur t~e conditions at infinity. This param­
e t er c nn be easily ex~rc soed in terms of tne stream Mach num­
ber (of. reJ.'eren.;e 6): 

2 
'f. 

f... 
. • cc 

(48 ) -- [1 + J-;-=M~J 

Th e f ac t that the v eloc ity distribution can oe expressed 
in t e r ms of the lunction f(w) in t~o different ways permits 
the derivation of an integral equation for the function f(W) . 

4. The Integral Fqu~tion for the Function f(w) 

Equations (28) and (29) IDaJT be written in tl e form 

.... r ( ) ] 2n e. c I dcP [f (w ) ] I __ 1 _ 
q L f W = ·S-- d w f ' (w ) 

Oombining these two equations yields the r e lation 

:t' 1 (w) -_ 2n a o 2Rqoo I ' I - ----- -- Sln w 
S q[f(w)] a o . 

Now substitute in (49) the value of ao/q given by ( 46 ). 
Then 

a, 

t ( ) w -h w ~ n II ) 2 I /l-n( ( ) 2(1+~)1 II 
f lU = C sin "2 t -/\ 2 cos 2 sin 

where 
l-~ nR 

C = 2 Tl' 
S 
~ 
a q * o 00 

~ 

wITT h(W )"l 
2 e J ( 50 ) 

and h(W) and A are given by (44) and (47) , respe c tively . 
Integrating 
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I
l-G. ~dHf&.) I I I ~' n fe- h (UJ ' )-"2 1T COs ~I 2 sin 

Settin g W = 2n here it follow s from (24) th a t 

2 Ct 

w' Il-~~ ( -he w') ",2(1+*) 1 ""2 ~ e -1\2 C03 
\.. 

'2' ITT.h(W' ~ dW' 

so t ha t f ina ll y 

Sinc :) h( w is g iv e n by f ormul a ( 44 ) this 
inte c ral equatio n for t h e un kno wn fu nction 

is a nonlinear 
f ( w ) . 

5. Solution of the Inte gral Equation 

The integral equation (51) can be written in the form 

few) = F {WI f( W!) } 

where F{ W. f( W! )} denotes the ri ght-hand side of (51) :. The oper­

at ion F is a functional transformation which takes a COn­
tinuously diff erentiable function feW ' ) satisfying the con­
ditions 

f(O) = 0 f ( .2n ) = 2n 

into a function satisfy ing th e s a me end-point conditions. 
Therefore the solution of ( 5 1) can b e att e mp ted by the iter­
ation met h od. Choos e some function fo( W) s a tisfy ing the 
preceding condition3 and compute s u ccessively 
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fl (w) ::: F fu) fO(W t )} I t 
'-

f ~ (w) ::: F{W t f1('JJ) } . 

- - - - - -

If 'che ~equc:;'lce 

· .. 
converges toward a f n nction f(W) and lim F(fn ) = F(f), this 

function f satisfies t~e intobral e~uation. 

r rom the purely mathematical pOint of view it would be 
nece 0~ aTY to au plem Bnt t~e preceding consideration by prov­
ing t h\3t under suit.<tule p.sEmmption: (t) the integral equa­
tion pOQser,ses a solution, (ii) this Golution can be obtained 
by i t erat:ons, and (iii) this solution is an increasing 
function. It is hoped thnt such proofs will be presented at 
BOIDe latrr date. At present it may suffice to state that 
the · statements (i) to (iii) seem to be verified in the cases 
for which the computations have been carried out. The ex­
istence of an increasing function satisfying the integral 
equation seems quite obvious from physical reasons. As for 
the conve~gence of the method , reference i~ made to the fact 
that the m~thod describod here is rather similar to 
Theodorsenls method of conformal mapping (ref erencos 1 and 2) 
for which a rigorous convergence proof has been found (ref­
erence 8). 

It might be noted that the desired solution f(W) must 
satisfy the symmetry condition 

f (2n - w) = 2n - f (w) , f I (2n - w) = f I (w) 

If the function fo(W) satisfies this condition, SO will 

all successive approximations fn(W). It will therefore be 

Dufficient to compute fn(W) only in the interval O~ w::; TT. 
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The only nontrivi~l step in computing the functions 
fn(W) consists in evaluat~ng the integral 

where 

TT 

= l r· {A + (w + t) 2n n 1 
LO 

It (W- t)} cot t2 dt n+1 

= 8 [f (W) ] _ a + 11 W 
. n 2n 

19 

(53) 

(54) 

(Cf. equa tions (51) and ( 4:'1 ).) 
is a 9rop~r Rienann integral. 
tegrand at t = 0 i3 

It should be noted that this 
In fact. the value of the in-

{Anh (W + t ) - An+1 (w -tl c t)} 1 i H1 2t cot 2 
t"7U 2t 

= 4A~'+1 (W) = 4 fe ' [f n (W) ] f~(W) -~} 2n 

By using this information . the integral (5~) can be evaluated 
numerically. say by the trapezoidal rule . 

Afte"T.." few) has been computed with sufficient accuracy, 
the velocity distribution is computed by means of formula 
(46) • 

6 • C hoi ceo f the Fu n c t ion f 0 (W ) 

The rapidity of convergence of the iteration method for 
solving equation (51) will depend u pon the choice of the 
function fo(w). the Oth approximation . In order to reduce 
the computational work, this function should always satisfy 
condition (52). 

A few methods of choosi ng the function fo(W) are 
listed. in the order of preference: 
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(a) Choose for fo(W) the solution of equation (51) 
for a value ~I as close as possible to the value of ~ for 
which the equation is to be solved. 

(~) Choose for fo(w) the solution of equation (51) for 
the desired value of ~ or for a value ~I cl ose to the de­
sired value, and for a profile pI different from but close 
toP. 

(Y) Choose for fo(W) the function resulting from the 
conformal mapping of the profile P onto a circle ; that is, 
the solution of (51) for ~ = O. 

(8) Choose for fo(w) a function approximating the 
function resulting from the conformal mapping of the profile 
P onto a circle . For thin profiles such a function is given 
by 

TT 
fo(w) = (1 - cos w), 

:2 
(55) 

Note that (Y) is a special case of (a) (set ~I = 0) and (8) 
a special case of (a) (set ~I = 0 and choose pi as a 
straight segment). 

7. VelOCity Distribution at Points Not on the Profile 

It remains to show how the knowledge of the function 
few) permits the computation of the velocity distribution 
at points not on the profile. This is done by means of the 
following theorem which also shows that solution of the in­
tegral equation (51) actually yields a solution of the bound­
ary value problem stated in section 1. 

Note first that from the way the integral equation has 
been set up it follows that there exists an analytic function 
w*( 0 regular for I ~ I > 1 and such that 

( iw) -w* e = q* (56) 
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where q~ is given by (43) and (44) and 8 by (40). If 
f( e iw ) is kn own, w*(t) can be com p uted, Ray by Cauchy's 
formula: 

21 

(5 7 ) 

Now the followin g theorem ho lds: 

Let few) be an increasin~ function satisfying (51). 

z = x + iy = (58 ) 

wh er ~ C1 is a r eal c onstant ana. the bar denotes the con­
jugate co mplex qnantity . The t r ansf ormation 

y ::;: y(L 1')) (59) 

of the z- plane into th e t-plane defined by (58) (for I ~ 1:::- 1 ) 

is one-to-one. It takes the domain I U > 1 into the domain 

E(P) exterior to the profile p. The function 

( r- + ~) cp = 2C 1 Re !:, !:, (60) 

consi d ered as a func t ion of x and y is the desired poten­

tial of ! .he C OI:' .. t?~_ssib le flo\.,. around P; that is. it satis­

fies the dif fer ont ia l equation (1 5 ). the boundary cond ition 

(11) and the condition (12). 

The proof of this theorem will be found in the appendix. 

After cp is found. the velocity 
can be determined by differentiation. 
that w· considered as a function of 
vel 0 cit Y ( c f. sec. 3) an d the ref 0 r e 

components u and v 
But it is also true 
z is the distorted 
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u - iv 
2I w I!C, W * 

= 8. 0 -- ---
I - Iw 4l 1:a Iwz>1 

The proof of this last statement is left to the reader. 

8. Examllles 

As an illustration of the method, velocity distributions 
have been computed for a circle and for a symmetrical Joukowski 
profile with £ = 0.15 (£ beinG the usual parameter determin­
ing the thickness). The following values of A have been used 

A = 0,045 for the circle 

" = 0 .1 57 for the Joukowski profile 

These correspond to the follow i ng values of the stream Mach 
number 

Mco = 0.406 for the circle 

M,:x> = 0.685 for the Joukowski profile 

These values of M~ are known to be close to the critical 
values. (The critical stream Mach number is the stream Mach 
number for which the maximum local Mach number is equal to 
unity.) 

In the case of the circle 

8(0) = 0 + 
TT 

2' 8'(0) = 1 , a. = 'TT 

It is natural to set 

f 0 (w) = w 

This corresponds to case (y) of section 6. The first approx­
imation is easily computed in closed form and is equal to 

f 1 (w) = w + 
1 - 21\ 

sin 2w 

In the case of the Joukowski profile 

.. 

. ' 
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a. = 0 

The function 8(s) and 8'(s) are given by the parametric 
formulas 

4 cot 
8 == TT + t - tan - 1 

[<cot 

de = esc t 

ds 8 E:l 

where the p a rameter t ranges from t = 0 to 

~1' E:a' and (3 are constants determined by 

E:l == 
TTf; 

2(1+E:{E: 3 
tanh -1 (3 - E:atanhw1 

== /1 2 
E:a - E: 

)(1 + d (1 + 3() 
E:3 = 

1 + 2€: 

t =!L and 
2 

E:a ] 

The proof of these formulas will be found in reference 9. 
The function St 8, d8/ds are tabulated in table I. The ap­
proximati0n of order 0 has again been c h osen according to 
case (~) of section 6. In the case of a circle the func­
tion f(w) must satisfy the symmetry relation 

f(TT ~ w) = TT - f(w) 
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It is therefore sufficient to consider this function in the 
interval 0 S w S n/2. Accordingly the functions fn(W) 
have been computed fo:::' w:; 0 0 , 10 0 , ... , gO°. In the case 
of the Joukowski profile. the functions fn(UJ) have been 
computed for W = 0°, 10°, "., 180°, The convergence of 
the successive ap p roxi mations is ~een from tables II. 

The resulting velocity diAtributions are given in tables 
III and plotted in figures 1 an~ 2. The argument 8 is the 
ar~lment of a point on the circle into which the profile is 
mapped conformally. The results obtained have been compared 
with those arising frofu the Kirfl~n-Tsien velocity correction 
formula 

q 1 - A ( 61 ) 

_ A (.:L). 
qco 1 

where (~) is the val').9 01' the t'atio at local velocity to 
. qco i 

velocity at infinity for an incompressible fluid. To use 
this formula amounts to replacing the function . f(W) . by the 
function arising in conformal mapping of the profile into 
the circle. In the case of the Joukowski profile Kaplan1s 
re~ults (reference 10) obtained by a modified Poggi method 
are also given for the sake of comparison. 

It will be noticed that the present method (which con­
sists of an actual solution of the boundary value problem 
for the case ~ = -1) gives a greate r compressibility effect 
than the one predicted by the approximate "methods mentioned. 
(To evaluate this remark correctly, note that Von Karman ex­
pressed the opinion that in the case when the assumption 
~ = -1 is applied to air and formula (61) is used, the error 
committed in using this formula seems to counteract the error 
committed in using the incorrect pressure-density relation.) 

CONCLUDING REMARKS 

It has been shown that under the' assumption of the lin­
earized pressure-volume relation and of a symmetrical flow 
the velocity distribution of the compressible flow past a 
wing section of arbit~ary given shape can be determined rig­
orously by a method Which requires not considerably more 

J 
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computational labor than the case of an incompressible flow. 
This is, of course, only the first step t01.,rard the complete 
solution of the veloci ty distribution problem. The next 
step should consist of ~xtending the present method (a) to 
the case of the actual adiabatic pressure-density relation, 
(b) to the case of a circulatory flow around a not necessar­
ily symmetrical obstacle. 

Remark: After this paper was completed the author 
learned about a paper by Slioskin (reference 11), in which 
the same problem is reduced to an integra-differential equa­
tion, different from the one derived in this paper. 

Brown University , 
Providence, R . I., May 1945. 
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AI-PEnnIX 

This appendix cont a ins the proof of the theorem st a ted 
in section 7. 

The mapping properties of the function (58) follow im­
mediately from the following three ~t~t orne nts. 

(1'1.) The function (58) t ak es the point ~ = 00 into the 
point z = 0:> . 

(b) The function (58) maps the circle 
to-one manner into the pr ofile P, 

(c) The Jacobian 

J = o(x,y) 
O(Lfl) 

I ~ I = lin a on e-

is pO'litive for all values of t and fl, ~2 + ,,2 > 1. 

To v e r i fy (a) ,ob s e r vet hat a s ~ 4 0:> t W '" a p pro a c he s 
the value q. = ~> 0, 

To verify (b), note that t.he integr a ls in (58) are inde­
pendent of the path since the integrando are analytic func­
tions of ~. In order to obtain the image of I~I = 1 the 
integr~tion may be performed along the circle. But for 

~ = e iw 
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dw 

whereas w*(e iW ) is g iven by 
the curve into which It \ = 1 
the form 

(56). Hence the equation of 
is ta ken may be written in 

z = 2 C1 rW{ __ l_ 

·0 q*[f(W)] 

Set CJ = fe u) ) and note th"lt the jntegra1 equation (51) im­
plies that f(2n) = 2IT. By virtu!' of (40) , (45), and (49) 
the preceding equation may be written in the followin g forms: 

w 

z = Co f f' (w) 
o 

i 8[f (w)] 
e dW, o < W < 2n 

o~ a < 2n 

where C2 is a new positive const ant . Equation (AI) shows 
that It I = 1 is taken into P ( ef. equation (10) ilnd note 
that P is determined b~t for a scale factor) . Equation 
(A2) shows that the mapping of the " circle into P is one­
to-one, for by hypothesis, 

f' (w) > 0 (A3) 

To ve r ify (c), observe that it follows from (A3 ); (43) 
and (50) t hat I w ... ( e i W) I < 1. Sin c e t h ~ max i ill U m 0 f t 11 e Jr. 0 d -
ulus of an analytic function is attained On the boundary, 

for I t I > 1 (A4) 

Now the Jacobian is equal to 
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so that by (A4) 

J > 0 for I b I> 1 

Next. e~uations (58) and (GO) may be rewritten in the 
form 

Since 

x = ReXl(h). y = ReX2 ( h) • 

( ".b 
= C {1 

l) \.,*(0 
R 

z = Rex (0 
3 

(A5) 

(A5) is a Weierstrassian parametric representation of a mini­
mal surface. In other words. ~ considered as a function of 
x and y satisfies e~uation (15). 
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A simple computation shows that a line element normal 
to the circle I ~ 1= 1 is taken by the mapping (58) into a 
line-element normal to the profile P. Since the norm a l 
derivative of ~ in the ~-plane vanishes sO does the norm a l 
derivative of cp in the z-plane. Thus ~ considered as a 
function of x and y satisfies the boundary condition (11). 

Since 

oz ox oy ih OZ 
= + i - = -+ 

~ o ~ o ~ o ~ o ~ 

oz ox oy 
i (~Z~ _ oz ) = - + i = ;r oT) OT) oT) 

and w· ( ~ ) = Q .. it follows from (58 ) that as ~ -__ co 
- co • 

ox 1 - q .2 oy 
C1 

co ~O ..., -o ~ q. o ~ co 

ox oy 1 + q~ 
aT) -;. 0, aT] - °1 q* 

co 
so that 

o ~ 1 q ·co o ~ 
-?I --")00 

ox °1 1 - q .2 oy 
co 

oT) oT) 1 q'6:, 
-4 0, -;. -ox oy C1 1 + q "':0 

co 

Now. ae ~ --i>. 0 

o~ o ~ 
~ ~2Cl' -~O OT) 

and therefore 

~ o~ O ~ o~ aT) 2q~ qco 
== n ox + 

~ 
- --:.> = Ox ox 1 - q .:0 a o r;o 

~ = ( 1)) O~ + £.cE OT) 
0 - -~ oy o ~ oy on oy 

a.s z ·7 c--.. Thus con d i t ion (12 ) is alsO verified. 
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t 

0.00 
.02 
.04 
.06 
.08 

.10 

.12 

.14 

.16 

.18 

.20 
.22 
.24 
.26 
.28 

.30 

.32 

.34 

.36 

.38 

.40 

.42 

.44 

.46 

.48 

.50 

.52 

.54 

.56 

.58 

.60 

.62 

.64 

.66 

.68 

.70 

.72 

.74 

.76 

.78 

Table I. NACA TN No. 1006 

Functions entering into the computation of the velocity 
distribution along a symmetrical Joukowski profile with 

E, = .15 

s ® d@/~I t ! s ® d®/dS 
0.0000 ~.1416 I 0.80 3.0261 3.8755 , 

.0667 3.0834 -.4076 

I 
.82 3.0~20 3.8980 

.2548 3.0353 -.1731 .84 3.0371 3.9204 

.5191 3.0034 -.0804 .86 3.0419 3.9428 

.8148 2.9888 -.0220 I .88 3.0465 3.9650 

1.1062 2.9892 +.0238 .90 3.0510 3.9873 I 1.3723 3.0009 +.0647 .92 3.0551 4.0094 

+5.8608 1/ 

1.6066 3.0206 +.1040 ! .94 3.0591 4.0315 
1.8071 3.0453 +.1437 I .96 3.0629 4.0535 
1.9766 3.0730 +.1850 I .98 3.0666 4.0755 +6.0844 ; 

2.1193 3.1024 +.2267 1.00 3.0701 4.0975 I +6.3066 II 
2.2395 3.1326 +.2757 1 1 •02 3.0735 4.1194 +6.5277 .! 

2.3407 3.1630 +.3264 
1

1 •04 3.0768 4.1412 +6.7464 ,I 
2.4265 3.1933 +.3813 1.06 3.0800 4.1630 +6.9630 I 
2.4995 3.2232 +.4408 1.08 3.0831 4.1848 I 

I 2.5620 3.2526 +.5052 1.10 3.0861 4.2065 
2.6158 3.2816 +.5750 1.12 3.0890 4.2282 
2.6623 3.3101 1.14 3.0918 4.2499 
2.7029 3.3381 1.16 3.0945 4.2715 , 
2.7385 3.3655 +.8185 1.18 3.0972 4.2932 

2.7697 3.3926 +.9119 1.20 3.0998 4.3148 
2.7975 3.4192 1.22 3.1024 4.3363 
2.8221 3.4454 1.24 3.1049 4.3579 
2.8442 3.4712 1.26 3.1073 4.3794 
2.8640 3.4968 +1.3500 1.28 3.1097 4.4009 . 
2.8818 3.5220 +1.4761 1.30 3&1121 4.4224 
2.8980 3.5469 +1.6089 1.32 3.1144 4.4439 
2.9127 3.5715 1.34 3.1167 4.4653 
2.9261 3.5959 1.36 3.1190 4.4868 
2.9384 3.6201 1.38 3.1212 4.5082 

2.9497 3.6441 1.40 3.1234 4.5297 
2.9600 3.6679 1.42 3.1256 4.5511 
2.9697 3.6~15 +2.5419 1.44 3.1277 4.5725 
2.9786 3.71.49 +2.7190 1.46 3.1299 4.5939 
2.9869 3.7382 +2.9014 1.48 3.1320 4.6153 

2.9946 3.7614 +3.0895 1.50 3.1341 4.6367 
3.0019 3.7844 +3.2823 1.52 3.1363 4.6581 
3.0087 3.8073 i 1.54 3.1384 4.6794 
3.0150 3.8302 I 1.56 3.1405 4.7008 
3.0210 3.8529 . 1.5708 3.1416 4.7124 +10.177 
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Table IIa. 

Successive approximations to the function feW) in the 
case of a circle (M~ = .406, )\ = .045) 

fo(W) f1(~) f2(41 ) fa (lJ) f4(lcJ) 
I 

f5(w) I 
.0000 • 0 • . • • i 

.17453 .17453 .19144 .18171 .18611 .18470 .18558 

.34907 .34907 .38086 .36239 .37082 .36808 .36976 

.52360 .52360 .56643 .54122 .~5287 .54900 .55135 

.69813 .69813 .74683 .71769 .73138 .72673 .72951 

.87266 .87266 .92136 .89172 .90587 .90095 .90388 
1.04720 1.04720 1.09003 1.06355 1.07635 1.07183 1.07450 
1.22173 1.22173 1.25352 1.23362 1.24333 1.23985 1.24191 
1.39626 1.40768 1.40586 1.40698 
1.57030 

1.39626 I 1.41317 I 1.40250 
1. 57080 ~ 5708~--1 1.57080 1.57079 1.57080 1.57080 I 

Table lIb. 

Successive approximations to the function few) in the 
case of a symmetrical Joukowski profile (€ = .15, 

MO" = • 685, >-..= .469) 

~) fo(W) f1 (14.» f2(w) f3 ('-I ) f4(w) 
de~" rad. 

0 .0000 .0000 .001JC) .0000 -:OOO<Y .-OOO-rr 
10 .1745 .0437 .0324 .0323 .0324 .0324 
20 .3490 .1273 .1275 .1274 .1271 .1275 
30 .5236 .2570 .2786 .2785 .2779 .2787 
40 .6981 .4470 .4762 .4755 .4750 .4760 

50 .8726 .6645 .7090 .7070 .7068 .7078 
60 1.0472 .9078 .9649 .9609 .9615 .9620 
70 1.2217 11 1.1682 1 . 2320 1.2257 1.2270 1.22'72 
80 1.3962 1.4332 1.4996 1.4909 1.4931 1.4928 
90 1.5708 1.6956 1.7586 1.7484 1.7514 1.7508 

100 1.7453 1.9502 2.0022 1.9914 1.9951 1.9943 
110 1.9198 2.1857 2.2253 2.2156 2.2193 2.2182 
120 2.0944 2.4016 2.4P.48 2.4174 2.4208 2.4199 
130 12.2689 2.5922 2.5992 2.5956 2.5982 2.5972 
140 /2.4434 2.7555 2.7481 2.7494 2.7501 2.7495 

150 2.6180 2.8902 2.8728 2.8787 2.8776 2.8778 
160 2.7925 2.9964 2.9764 2.9850 2.9821 2.9831 
170 ~.9670 3.0773 3.0639 3.0702 3.0675 3.0686 
180 3.1'i1S 3.1416 3.1416 3.1416 3.1416 3.1416 
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Velocity distribution about a circle (M~=.406) 
i 

~~ Present ,.. '" T Incompressible Karman- sien 
Method Method 

0 0.000 0.000 0.000 
10 .335 .333 .347 
20 .675 .667 .684 
30 1.014 1.000 1.000 
40 1.350 1.326 1.286 

50 1.671 1.636 1.532 
60 1.952 1.912 1.732 
70 2.185 2.134 1.879 
80 2.336 2.279 1.970 
90 2.389 2.329 2.000 

I 

Table IIlb 

Velocity distribution about a Joukowski Profile (t=.15, M~=.685) 

~ Present K~rm§.n-Ts1en ! Kaplan Incompressible 
5 ~ Method Method 

0 .849 .839 .870-
10 .835 .854 .852 .874 
20 .847 .869 .867 .887 
30 .873 .894 .892 .909 
40 .912 .928 .927 .938 

50 .957 .970 .970 .974 
60 1.011 1.019 1.021 1.016 
70 1.073 1.073 1.078 1.061 
80 1.142 1.132 1.139 1.109 
90 1.215 1.191 1.203 1.157 

100 1.289 
I 

1.265 1.203 I 1.250 
110 1.360 1.303 1.322 1.244 
120 1.417 1.347 1.368 1.278 
130 1.446 1.373 1.394 1.297 
140 1.4.27 1.369 1.385 1.294 . 
150 1.325 1.308 1.312 1.247 
160 1.088 1.128 1.110 1.106 
170 .645 .704 .674 .738 
180 0.000 0.000 0.000 I 0.000 

L_. __ _ 
- ---------- ----
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Figure 1.- Velocity distribution along a circle (Koo ·.406). 



• 

-~--.~-----' 



• 

2.0 
~ ~ 

~ 

1.8 rr .. ~ ~ ~ Pre.ent •• thod 
~ 'th &pproz.) -', 
o 3rd &vproz.) , 

1 . 6 

= 
f 
• 

i 
I I I 

~ \ 

llarla&U-'fai.n-_ -... t-..... 
C· ::::::>. .' , v, ~ ~x,.- -~ IuoolDpr ••• 1.bl. " 

l~ ......... 
1.' 

, 
k t::J j..><' f-"" -...-- . ~t-- ...... 

~ l.-piu-- -- - .-: 1>-

~ ~ ~-- -- r, l..,.:::::: 

1.2 

.... ,.,P-' 
~~. 

~ 
.....-::! ~ \\ -

t-- f--

[\\ <r 

~ 

1.0 

q/q 
00 .8 

. ""l 

\ 

1 
.6 

•• J 
II 

~ 
\ 

.2 , 
o 10 20 30 '0 50 60 70 80 90 100 110 lao 130 10&0 150 160 170 180 

6, dell 

r1gure 2.- 'elo01ty d1etr1but1Qu along a Jouko •• k1 ~rof11e (c-.15, ¥oo-.685) • . 

... • • 

.~ 


