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iI'TTESTIGATiON OF T_E ST_$!LITY OF THe; iAMIN_T-.;

,,_wINBOU_,YDERY IAYE_< A CO}r_Z{ESSIBi/_ FLUID

By Lostor Lees and Chia Chiao i,in

SL_...@,RY

in the present r_port the stability of two-dimensional laminar

flows of a gas _s investigated by the m:,thod of J"s_.r_ _erturbat:i. ons

The chief em.phasis.. is placed on the case of the !,_mminar boundary _iavGr,,_:

Part i of the present report deals with the general. _'_......_"

•theory The general equations governing one noz_l mod_ of th_ __" ]

velocity and tempe_ratur_ distur=bancos az'(__eri__"T_d and studied in _r_t'_'_'

_e_a-_]. It is fo_u_d t_at for Reynolds nu_Y_ers of the ord:_r of those

_ <"_ the temperatur_ disturbancesencountered in most aerodyn _amic Droo_ems_

have only a negligible _.fect on those particular v,-_locity solutions

_hic,.h ,_.e--endprimarily on the viscosity coefficient ("--_- -_ IJ _. v -'$00"0_8 so_.[._.-

tion_"), in.deed, the latter are actually of th_ sam_ form in ÷.h_,-'

_ • _rstcompressible fluid as in th_ incompressibi_ f]uid, at least to the _"_'-
,._.r_ - ] _ ." _,_approximation. Because of this fact_ the m_...tn_matic,...._analysis is

a ...... . The ..gre._tJ._sim_iifi_d. _ final eauation d_t_rmi.r.dng tlle char'actoristic

val.uGs of the stability probiem d.epend.s on. th_ "i_'Ivisc:i(iooiLu_ic)_._ and

the ftunction of Tietjens in a manner very simJ.iar to the c_;_......of the in-

compressible_ fluid. The second visco _'_o_tycoeffi_ient._ a,_a_,._......the noeff_ cior_

of heat conductivity do not enter the problem; ""_".. o_._:_,the ordinarj coeffi-

cient of v-"scosity near the solid surface is in_olv_d.

Part IT deals with the limi_._,._ case of ]'n!':i.nitoReynolds n_zr_0,::_rs
_.'__' ," c_ ""* --

The study of energy relations is veery much _mphao_zod. it is sho_m that

th_ disturbance will gain energy from the main flow _f the ':,radiont of
... .J. 6=9 .....

the product of m_an density stud msan vortloity n(_ar the solid surface

has a sign oppositm to that near th_ outer edge of thin bo__dary layor.

A geners_l stability criter].on has been obtainmd in to]._ms of th_

gradient of th_ product of densit;7 and vorticity, anaio}j_ous to 5hm

Rayleigh-Tolim,_ien criterion for the case of an incompressible fluid. If

this gradient vanishGs for some value of th_ v_locityrstio of the main flow

mxceeding i-i/M (wh_r,:_ M is the fre_ str_am _ch hum{bet)
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then neutral and se3f-excited "subsonic" disturbances exist in the in-

viscid fluid. (The subsonic disturbances die out rapidly with distance
from the solid surface. ) The conditions for the existence of other

types of disturbance have not yet been established to this extent of

exactness. A formula has been worked out to give the amplitude ratio of
incoming and reflected solmd waves.

It is found in the present investigation that when the solid bomld-

ary is heated, the bo_nda1%v layer flow is destabilized through the cha_
in the distribution of the product of density and vorticity_ but stabi-

lized through the increase of kinematic viscosity near the solid bound-

ary. _en the solid bo_mdary is cooled, the situation is Just the
reverse. The actual extent to wl_ich these two effects colmteract each

other can only be settled by actual computation or some approximate

estimat_s of the minimum critical Reynolds number. This question will

be investigated in a subsequent report.

Part III deals with the stability of laminar flows in a perfect gas

with the effect of viscosity included. The method for the num_rical
i 4-computation of the stability I mi_ is outlined; detailed numerical cal-

culations will be carried out in a subsequent report.

IN_0DUCTI ON

In a recent pap_r (reference I), one of the present authors has

clarified the theory of the stability of two-d_men_1onal parallel flows

in a homogeneous viscous incompressible fluid. The _xperlmental inves-

tigations of H. L. Dryden. G. B. Schubauer, H. K. Skramstad (reference

2) and H. W. Liepmann (reference 3) agree with the calculations made by

Tollmien (reference 4), Schlichting (reference 5) and those given in the

paper quoted (reference 1). Because of the increasing importance of'

phenomena of gas flow at high speeds, it seems nat1_ral that the investi-

gation should be extends& to cover the case of a gas. taking into ac-
count the effects of conLoressibility and heat transfer.

Tho int_rost in this problom is further or2_anced by the fact that

disturb_Jz_cos of fi_.ite amplitude in high--speed flows are known to have

the tendency of building themselves up into shock waves. It is there-

fore Dosslble that instability of high-speed la_ir_r flows will lead to

shock waves instead of turbulence. Although an instability theory in-

volving on3j small disturba_ces would not be able to settle this polut,

it at least paves the way to such an investigation.

1

This possibility was first pointed out to the authors by Doctor
If. W. LiepI_n.
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The present r_,port is concerned with t_;n_ stgbility of two-

dimensional lami.nar f!o_{s of" a perfect _as, subJe_;t to small disturb-

ances. The chief c_<Dhasis is placed on the case of the boun_zry layer.

it is hoped that the results may throw light on the general features of

the relation of compression _saves with the boundary layer_ that it n_y be

kno_h_:_v the stability of a bo_.uld_ry layer is a.ffect_d by the fr_e

stz"_s_rlv_!ocity_ and by the thern_l conditions at th_ solid boundary.

"" case, only snm,il two-dlmensional wavy dis-As in the incompressj.ole

turbances will be considered. Unfortunately, thersis no ri;_orous proof
in the present cas_J that these disturbances are more, unstable than the
three-dimensJ, or_! ones, But the results of the incompressibl_ cas_ to-
gether with _OL_.0 physical considerations seem to justify sllch a tr_a[:ment,
which natura!]j simplifies the mathematical analysis to a largo extent.

One essential difference of th_ present problem from the instabil-

ity problem in an incompr_s'_le,=._ fluid is the presence of an appreciable

interchange of mechanlcal and heat enez_les. Another is th_ fact that

the flow velocity is of the same order of _n.itude as the velocity of

sound. The present inw_stigations, howover_ r_veal that the chief _hys-

.ical m_.chanism is not char_ed That is, the stabi__ty of two-dim_nsional
h "! •

l,ara_lel flows depends primarily on thedistribution of _ngular momentum
of , _ . •

an _lement o_ the _luld_ and on the effect of viscous forces, but not

directly on heat conductivity. The viscous forces influence the stability

of the flow both in buildir_ up th_ disturbance by increasing the

Reynolds shear stress and. in destroying the, disttu-b_c_ by dissipation.

(Of. see . 14 of reference I. ) In the present case, however, the:,ar_u-

lar momentum of a given v olume of the fluid depends upon the product of

densit2L and vorticl_. Thus, the _gradient of this product plays the

same role as the curvature of the velocity profil_ (gradient of vortic-

ity) in the incompressible case. Moreovor_ since the magnitude of

viscosity varies with temperature across the flo_: there is an uncer-

tainty in defining a Reynolds number which will properly d_scribe the

stability characteristics under various conditions. It is concluded

from the present investigations that the viscosity coefficient in the

neighborhood of the solid boundary is important. This tends to Justlfy

the process of Allen and Nitzberg (ref-ore_ce 6_in estimatiz_3 the criti-

cal Reynolds number for the boundary layer of a compressible• fluid, so

far as their treatment of the viscosity coefficient is concern_z-d. They

have, however, neglected the effect of the distribution of angular
momentum in the fluid.

It is found in the present investigation that when the solid bound-

ary is.......................heated, the boundary layer flow is destabl.li-_z ......._. through;-_:......:;_.....the

change of _istribution of _ngular momentum, but stabilized-t}_ro-ugh the

increase.....of kirmmatic viscosity near the solid boundary . W_en" the solid
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bola_c_ry is cooled, the situation is just the rov.:,rse. %_i,._actual e:v.-
tent to w_,ich thes,_ __wo effect_ cotmteract each _""........... o o.r,._r can only be settled
by actual co_m)utation or some approxJ.mate estimai:,@.s of the minimum (.',m':.]._-.

icai Reynolds n_mber This auestion will be investigated in a ....<'-.....• .j. 0 t,,,_ _3 _D ",_ ""

quent roporb.

-,_:_,_ n!.c:,_<aflow and bhe &i sDur-banc'o _ s

a_._o so_m;.whab dii'fsrent _"_'*;ti0_:.. _uh._i_"* J.I1 t_le J.nCOLR:_',._--,S_.L_.,_v_'"" "" _ .... C:.&SO_ ]_@C&;(i,<_c5

the velocity of som.._-" .is .t?i.nite. _:,,#_en a &i s_u_,.;,::<n.,._.__- _; ...., ,", :Ls" "oo:Lr4_" amp!'.....,....i."-_.mu.:'_

ener,r_; pas_;os from tho main :f].o'_z to tho .d.isburb,z,z:co not only to :::u:gpl 2
the " _ ,_,- . ,_.=n_r_:_e of' ',:_nc._:Tffy of d.i'-.:turbance inside the boun.dar,_., ].a_yor_ bu%
also to v_r,-r-,_',_._._e.,..,the energy ca_-.ri<-_d out of bho b.",r'_:.:_.'-,_"-:.,...o._,,.,._.<,...!<:_._","_e._"by "d:t-o' d" ......_.....tu,.b

ar.,ce,. For a damood disturbance, tho o-0po ire 3..,,. u='me. For suLJo.rson"_,c
._

+'_........ i _ al the " _,,-flo,,,_s_ .... ,_:. me -ooss.mb; ]..ity of ene"-_,_ ' "

...... " >"- r_zl izlco.'.!!i_u_rv_._.s ,a.._ ener:<y is carried iz:.to +_-,_-bo_,-_,:,27 _,ayo2 ,.:,:_
• ' -.i ,- 7 -:-'rwave and out of it by __m oui, gc)i_g ware. T_ese two waves a,re g,.;n(.-;.ra.,..._,;,

pro sent _,_'z.,_'_.'.,-i....#"_,<.,n,,._-_.-','.oi _, a>.d the si ....bu_t-.o_ e_,:,-,_m-._,..j be de sc.rib_,_, as a .u,_=_"_._.<'.:.,c...
tion _4th a _" , _,-_

.... . o,.-'o,:_.,..c].c_.+:,',-, iooun_l'_j .,.ez.:,,.._z"_..........,
• " " "SozLic " "'tlley ......_'_'<classified s,s "s_l>,soni.c,.,,. _ .. and s'__.e_:..............u.._c""_." diu:tuz"b--

antes, accordi>g "bo whethor the 19_a;::e ve_,, ,"._-- _..,c.._.tv of tho wavy ,7isturb._ -,---..... " , _.- <.',-:._'k_ t_t

..... freo " " "_-_"in tho diroctioll c).,+." L_,,c stro&.m <_ncLa." rc-a_.,.v{_ tO _1 ob_+_o:uv'_:,f :_'o':"Jr_.,
d.',wl _._ %ho veloc" _- of _>, "± <'.: vo.ie_ fl_O0 _-_" "o uro:_lil_ iS be ] 0_.$_ oqU.'.&l to OZ' "-_"..... .. • _'_L,OVO tho

local _oi c!_-- of

The method, of ari.a!;?,<3:[s used :in the present ::,.:',:_..?orbis v<:?z';y _.--;:_..:r,_i].a.r
to that _.'s,:-_d :i._ the i ....... ,'r,"....:_<-,-<"_:_ " --' _ ..........al_.w_r,.._ _ lo case. Z!-_(_CO <t, ,_II _,I5 u_;'_.kr: _ i 8 l;p_&d.o bO

ostablis>, re,_._i _.< .- 7, _ ..... to those ",.>.<'_4_:_d -Lz'. +"'_'- c,........,_ 7 dJ....*.< a_._Oc..;O _u; ........ ,,..... _..;c., _ CO, SO _.,.,'.:.,cJ,___ ¢D

tul_bance,s aro c>onsi_.orod__, _ whic'.i_ az'o alq&J..L':"ze_, i]'..n.e::L:,_'i;$r -_'_:'_,._.,-_,, no:r:..*_z]. ,;_.._.... ,_'-_._,..s.,
period:it ...._._*v-_._ d.iroe ti.on of '"_.,_=,_:..... .:._:,,......ou _-,#.-.",:,;-_,_a_..._"_" the<-,, "..` a:..':c-"',,_..:uz_..... #-_,.,r_.re&

i ...... '_-'d ....... _ri_ l_o-_,_a "i r_or..!o8 _la_r bo c,<--,-_.-,_...,,<......&_ _. ..... _......-.7 OZ' _:i_o].:;i:'...,:_-XC'.i",_._.:<]......

OSCI_._LI.3,1,:_ il! "B].LRO. li'O"2 -_% 6 ''''_:''_ C, ................. :.........'_c___ _,_ o.ud:!tlon the ma,Lz" flow .t._;-_.... ',_,:-:._ .....

if _ny ono of these modos is <"_If-o:ccitcd : ....... .a,., ::+:,"O', 1",o,:_- , W.t'].<_Z_. "E.C'4_ '_.._ .... ........... &ZiC@ -

-'- . ..... b]._oDeCO!_(-._S SO l_._."_]O thg3,_ .[L cai% lq_O iOl%_,?,or bo 2'o_,_77,_{o,2. &s .[.l,_'_[J_],_"j

Dros,:.,_n% thoo.r7 coasos to " _ ]3ut may +;",", bo ' ."; ....._-'_a nr,, _, it ,.,_..,.,..,.:,. ox-c,e.c-0o ,..,.a:_.,., tuz'bu-

!once or s>oe'.>:.-.-;,_a,vc-..::;dil oe.........pi"oc:ipibxto£ by th<. non!.in¢:a-_ c:,Y;coct.

,,uforenco _':.... ;_ - u.].u work of o ,<-.,_ro>.ce 7]
...... a- .<:.)

eJl('l re'..':;_7 • _ ',..au_..oz,_,m_ (reference ,..__,. o,_°'_>...._,.."cht; "_,[_ _:as " " .......... .b._d ]..n tt@,i3.]I_.,t_]?o S 'biiO B .:

liz;Ln_ or de,_-,_','.... o:t'fec "":'7_ ....... '_:" < _Z*''-'_{ ',_,,<_.v.:.l:_.zi,_.._ 0 oi" ,,,",--,:,'-_+.v and _ " _
he neglected the " "_-_ '-.. . ].!'_vt:,Z'cll__2:© of _t-:_(;hazlic&l e_vi_ ];l(!_a,_6oiz,3r_;]..,s,_:_., IrL a(_...... ,_..
(iyn_,aical proo_.__'",:n=,," t,._,a ambhors _:o_",cnot ......p_rt._cu.it.:mly'-4 intorostoci izi the
effect o_" (sravi.ty _....• _-O'WO"v'Or: i_ t110 ._.-" -_" ............. ;........ :• .. _.nor._. _.a+'.',_:,.,_ +" ca/. znvost:!._]ation_
tho inadoquacy in Sci-lic]_tir.,..c: ' s :':Jm_.ch:a,._cntal ecuat:i.on, will. be .discuss_d.
(soc o)., K{icheman ...._-" " id" " '..... .,:_=o.e onl:7 s,_n invisc /.nvc.etigat:!.o.,...._ of the st.abii-

-ty of the L o.,n_<_,._ layer (;!?-!::. ii of t.h:ts roport_.,_ , _, a,_ ....,- _' but hc nogl,_ctod, the
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gradient of temperature and tho curvatume of the vo!oc::i.typrofile. Z_ese

are serious omissions Their significance will _- -• ,.,,._z.n out in the process
of the present investigation.

This investigation, cond.ucted at the Ca!i-forn_a ..... ins+,i _''-_,,._teof'

Techno!og_F, was sponsored by and conducted with the financia.1 assist.'_mce

of the National Advisor,), Co_m:£ttee :['orAeronautics.

The authors are indebted, to Professor T._e}__,_oz_yon Karman" " for -:_-,e

vising the work and to Profe_,sol,._o -, C.,__._'-,--'___B ......M_,.,._._,_-o._',.,_:._,.and }] ":._, Ts ien for
their interest and discussions.

I_[ST 'Y- _vMi_nT o

. .

t'eri sti,"

Dimensional _ -" ties Dim_nsiorO.ess q.uan!;, _ ties

Positionai coordinates

Time

(!) x* x

Velocity co_one, nts in the directions of the x- ::{u:).dy.-_,.zes, resi:,e.ct:J.v(_ly

* -. .... +_' ___,(x - <:_,0) ..

:"- - -:+' ::tc_(x -- or) .. -
(5) _ = x. + v v = _J(_,.)o _:<.

Compon_nts of _,ot_....<_...n__tensor

_" -)';" -b i .. t

-_- _ ._.<.t _ t

('2) E -:E +E E = E + r.
xy xy x_r X_.?

-_ -b ! .. !

(8) E = _:_, +< c - c +
<_, " yy- yy yy E,vy..yy

uo /t

It
]lO I

_ -?_.

u o /Z
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Charac -

teristic

Dimensional quantities Dimensionless q_tit!es__ m_asure

Components of stress tensor

(9)
T = T +T T = T +T =_OXX XX XX XX XX XX

(lo)
-@ 9Ft _ t _+_

T -T +T T =T +T POXY XY xy XY xy xy

(11)
=T +T T =T +T POTyy YY YY YY YY YY

Density of the gas

@ _-}: _ t

p - p + p o(z)+ r(z)_
i_(x- ct) -_'_

Oo

Pressure of the gas

(13) p = p +p p(z)+ _(y)oi_(x- ct) P:o

Temperature of the gas

_(y) + e(y)o im(x- ct) T_
0

Coefficients of viscosity of the gas

* .I
(19) Bl = lal + BI _(y) + m_(y)_i_(x - ct) _10

_2(y)+ m2(y)ei_(x - ct) -*
B_o
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Dimon_ional _%}ntitios Dimensionless qus_titics

Charac -

t_'_ stickJJ. _.

moasurc

Thor_l conductivi ty

* _* *' 1 1 !a(x- ct) *
(Is) k = + _: _ _(Y) +-_ok(_)° % _o

I'

Wave number of the disturbance

Phase velocity of the disturbance

(_o_._) c c %

Specific heat at constant volume

(2z) cv i cv

Specific heat at constant pressure

(22) Cp 7 cv

Gas constant per gram

(23) R -7- 1 Cv

' ,_ ..,,_ •Acceleration duo to gravity (in the ho_at!vc direction of the y-axis)

2

uo/z(2_) g F
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Dimensionl_ ss quantitiQ s

Froado number

Heynoids r_._!ber

UO

(26) ' R - poUo_/_l o

Mach number

_. ! i ....

Prandtl n_._mbe r

(,_o) _ = c_,!:i.:

Remarks" For the case of the bolmdaiD_ layer, the _'_--_-_oua**_eory-layer thick-

ness 5 will in general be taken to be the characteristic length; for

some purposes, the displacement thicMuess 61 will be used. A bar over

a_not_s averao,_ ._a!ue_ • .a quantity _=_ _ =' ,_ a dash denotes fiuctue, tion, and tbo

subscript ( )o denotes free stream value in the case oJ._" _on_',boundary

layer. The subscripts r and i denote the rGai and imaginary

parts of a qu_mtity, respectively.

I - _}_*_L TIT_,ORY

I. The General Equations of Disturbance

The general equations of disturbance for a perfect gas which is

flowing parallel or nearly parallel to a given direction will now be de-

rived. As has been explained, omly two-dimensloi_i motions with two-

dimensional disturbaz_ces will be considered.
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With the syStem of notation explained above, and _th positive y-axls
pointiP_ vortically upward, the general equations for two-dimensional

motion of a,perfect gas may be written as follows:

(a) Equations of motion,

(i)

/

------ + U "_ ----__ + 'V*

p-- . + .....by.-....-
(2)

(b) Equation of continuity,

.___..°P.... + __ (p'u*) + _ _p*vx-) = 0

_t* _x* _
(3)

(c) Equation of' energy,

(d) Equation of state,

p* = p*R*T* (5)

In these equations, e_x, Cxy,* 6_y are the components of the rate-of-

stz-ain tensor, and V_x , T_y, T gy are the components of the stress

tensor. They are defined as follows"
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u. (6)

The coefficients of viscosity _l and B2 and the coefficient of

heat conductivity kZ_ are essentially functions of temperature. Hence_
there results a system of five differential equations for the five

T* p* u* v*variables p*, , , , .

Consider a motion which is slightly disturbed from a steady state.

Then it.....is convenient to separate _ quantity Q*(x*_ y*_ t'x-)Iinto a

steady-state part Q* (x*, y*), and. a smaZ1 disturbance Q*'(x*, y*, t*)

q*(x*,y*, t*)- Q*(x*,.Y*)+ Q*'(=*,y*, t*) (8)

By substituting expressions of the type (8) for each of the variables

into (1) tie (7), remembering that the steady-state parts satisfy those

equations by themselves_ and, finally, neglecti_ terms quadratic in

the small disturbance, the following system of equations of disturbance
is arrived at"

St* +-\U'_' + v;''"
• ohx* By*/ 8x* * By* /

lO
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1
+ V

(Io)

dp + p u + p u + p--,,..,,,,,,_

._

_.,_ _-_- . ! \_

v + p v / 0 (ii)

8x*

+ f*_ -/'
-X. -X--

4"

*' ,32 ,-* *'
+ k ,----- +(_

. ,, XX XX + 2_xy _ xy

.,- t __(-

+(_
\ xx :-xx

+ 2T
xy exy +'ryy Cyy) (].2)

P P 2

_-X- .-X- __

P P T

where

iI
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(Relations of this type, of cot_-se, do not hold for the distu!_:)ances.)

By considorJnf,..) only a local region, say around x ._ = X'_o., and intz-od.uc..

ing the boumdary-!ayer approximation, the flow is regarded as essen-

tial!y parallel, with every mean quantity Q evaluated, at x '_ = x."
. O •

Thus, for parallel or nearly parallel, flows_ tile differential equations

of disturbance do not contain x* and t* explicitly and an atte_:ui_t

may be _,_adeto find solutions of the type

,_ ! ._ .×. ._ _,.

Q (=,z,t)-q (z)e:_ (=-c t ) ('-"i)

Indeed., ever,_ ,_uantity_ will be rc_uced to a dimensionless ._":o,.min

accor(]._ce with the scheme /istod (Lisb of S._hr_7 :-,)_.,...........for examo. !e ;

_/(_/) = % w(y),

, I i_

7M "

I!

,. i _"

._ .,_ I 1,.
+ ...........................o__:: h-f + i'.i) _

3 R _ .,'

+--- mzw
!_. L

"+ m' w' + pl(_" + id--:t?) "i
i"

.,1.._
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- if' - cc_ }

(20)

i(;,--c):-" + p(m' + if) + p q_ = 0 (21)

+ 7
"]

_' 12 ! 1 , ,:.._ !>.
(7 R- l) M2 _Lmlw + 2_lW (f" + !o;-<O)j (22)

r e

p p T

The following two dimensior_less equations for _an quantities should
also be noted:

Equation of state,

p = oT (24)

14
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Equation of static pressure gradient across the boundary layer,

2

p = . - p

F 2

(25)

In all these equations, and in all subsequent equations, a dash denotes

differentiation with respect to the dimensionless variable y, and
should not be connected with the idea of a fluctuation. For example,

, dpl d_l dT

_tI =---- (26)

while the fluctuation m! is given by

ml = O ....dI.4.! (27)

&T

Note that in (i8) a characteristic ve!ocity has been used as the

reference variable. This stresses the role of the inertial forces. In-

deed, tho simultaneous comparison of the inertia forces with pressure
and _t "grav_ _atlon, as embodied in the Mach nunfber

M=Uo

C
O

and the Froude number

%

!5

(/ ....
L
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makes it difficult to consider the limit of small inertial forces

Uo ......_-O. For in such a limiting case, the phenomenon is ossentially

governed by _ressure and gravitational forces, which both become in-

finitely large compared with the reference inertial force. In aero-

dynsmical problems, ho_ever, this limiting case is not of importance.

Mathematically speaking, a singularity is brought into (20) if the

neighborhood of F = 0 is considered. Thus, it is possible to study

only the case of a small Mach nv_ber. The limit of vanishing Mach num-

ber and vanishing Froude number can be considered only when r = O.
These statements will b • _ecume clearer after reading the detailed discus-
sions in section 3.

To study the case of an extremely large _ch nuzfoer 3 on the other

hand, it would be more convenient to use the staglmation or "rest" val-

ues of pressure, density, and temperature as characteristic measures,
rather than the free stream values.

2. %!:_.n_a_._Ical"Nature of' the System of Equations

of Disturbance and Its Solutions

The system of equations of disturbance (19) to (23) consists of

five linear equations in the five variables f, .p, _, r, _3, with p,

O, T, w supposedly }mown from the steady-state solutions. Before

applying this system to any definite problem, it is necessary to know

clearly its analytical nature; for example, the number of sets of lin_

early independent solutions it possesses must be known. It is also

o _ " ,l ofdesirable to know the general _naljt_ca_. nature the solutions in

the variable y s_nd in the paramete_s_ M_ , F_, R, _, and c. In all

these discussions of analytical nature, both the variable y and the

parameters will be regarded as comolex.

To settle these questions, it is convenient to choose a number of

new variables ZI, . .., Zn and rewrite the system into the forth

n

dZi _'-
- /

J_J

dy j=x

(28)

where A iJ are _o,_. functions of y. Since (19), (20), and (22)

involve the second derivatives of f, _, and O, it seems desirable

•16 .
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to choose the six dependent variables as f, q_, e, f', q_', e'. In
this way, the equations can be set equivalent to six equations of the

type (28) _ if r and _ are supposedly solved algebraically from (21)

and (23). It is seen, therefore, that the system of five e_quations (19)
to (23) is actually equivalent to si_ homogeneous linear differential

equations of the first order, and there are six linearly independent
solutions. " "

However, this choice of the dependent variables is not satisfac-

tory. It leads at once to the suspicion that the solutions have

olving rsingularities at the point where w = c. For, in s for from
(21) a singularity is introduced into the coefficients Aij(Y ) of the

system (28). Physically, the solutions cannot have such a singularity

for real values of y. Hence, it is necessary that such a singularity
be only apparent. Indeed, this can be shown to be true by a new choice
of the dependent variables.

To be more precise, let it be assumed that the known functions w,

1
P, O, T are analytic functions of y and of the pa_ame:_ers'_ _, --.

These functions nmy be _'egarded as independent of the Roynolds number

R, when the characteristic leith Z is properly chosen. This assump-
tion is related to the botmdary-layer approximation, and is therefore

accurate up to the s_e order. For example, for the Blasius profile, it

is acc_u-ate up to the order of (RS)-J2, 5 being the thickness of the
boundary layer.

Now choose the system of dependent variables

Z_ =-

W
Zs = 0, Z6 = e'

-}
>

Then, at once,

• dZl

.... =Z 2
ay

(3o)

17
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a_

= Z 6

The equation (23) becomes

0 0
r-- _.,FZ_ - - z.s (_.i _:,)

_T}-_ch,:,_..ms_os_t possible to el.i_nate the variable r without l.ucz'oas-"-.-"
-- . .LziC5

the ordor of the differential equations m-xd without intro&ucing any

si_!a_,......_'Ity. m?.___s,_from. (19) , (21_), and. (23)., solve for Z :a., _'"'s., mad

, which when reduced with the help of " (_0) to (32j are ea ........

02' Zi.,<_type (28) with Aij(Y ) regular in both y a.ua the par_]te.z}s.

The eeuation for Z a is

but the other two equations aro -too lengthy to be written out explicitly.
They are of tho foi!owi_w2.'._Tenera! nature"

- r7

]
! .... !

t
r • r 7

o i i(_.;- c)Z_. + w %_ + _";"_i + o(]..)

-Y'6

- 'Tp li(w- c)_.s + T _
dy 7 u.:L _ !_ _i

(r- z) > _=- _(_,_..-c)>;:'z=. + o(__.) (:"_f" ,.]J ]t
• I

where 0(!) _= -'" _ . . . wh _ch is o:f' theo._not_s a lineazt frontal.on of Z_ _ Z_s
C2.

tn_ r R e,nd J. s i th,_ .-.-,"..........","_',order of unity in ..... para:mete ,.<- " o-,-
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!

The differential equation for Z _ must be obtained from (20) in a
.!

slightly different manner. It is necessary first to eliminate cp by

using (33) and then solve for _' = M2Z '. There is obtained

dZ_ _i + "yM2 ic_ 2

dy --- R 3 J

i, _2 'p

P Z \ 1

T / R J

whero 0(I) has the same general meaning as before. It is noted that the

last step is the only division involved in this process of elimination.
Thus _ unless

I + FM2 ic_ 2 (_2 + 2_I) w-_ = 0

R 3 p
(37)

(which is not possible for !RI >> i), the system of differential equa-
tions (30) to (36) is regular in y and in the parameters. But since

the regularity breaks-d6_m for ir_finite R and for R satisfying (37),
any expansion of the solution as a po_er series in R must be in the

form of Laurent series. In the parameters .....1 and M2, the coeffi-
F2

cients are entire functions; in the .parameters _ a_d c, they are
analytic in a region includir_ the origin.

From the genera], existence proof of the solutions of linear differ-

ential equations by means of successive approximations, it is clear that

these properties of the coefficients persist in the solutions. That is,

there exists a ftmdamental system of six solutions Zi(y; M2_ 1/F2_

R, c_,, c) (i = I, 2, .;_° 4_ 5_ 6) which are analytic functions of
y and of the parameters.

Now consider a few limiting cases" (i) M2 -->0, (2) I/F2 --_0,
(3) R .......->_. As discussed at the end of section 2, if M2---__ 0 by

19
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making the velocity 11o--> O, then F2 and R approach zero at the

same time. This is certainly not what the authors wish to discuss. Rath-

er_ they are thinking of the solutions Z i as expanded in power

series of the parameters, say,

Zi y; M2, , = Z _y; .....I , R, _, c
F 2 \ F 2

(38)

and retaining only the zeroth order term as an approximation. This

process is valid so long as M2 is sufficiently _nll compared with

unity, while both F 2 an_ _ are of their usual _gn_ou_es (namely,

much larger than unity). For convenience, the mathen_at!cal process

M2 --_ 0 will still be preserved. But this must not be confused with

......_ 0 or c---_>-_ the latterany physical requirement that u° o '

being in contra&iction with the equation of state. The limiting case

R -> _ is an asymptotic approximation and will be dealt _dth more
carefully be low.

CaseL (1) ....M2 _ O. Wlth the relation (24) in mind, the equations

(19) to (23) become (_ = _/_M 2)

- _I '_ ----,m,l_ " , , '

B R '
(39)
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r,, ( I rc_p%. i w- c =-d) ..... +

_ F2

_l CL _ ,,

i 2c.p -

(ko)

! !

i(w- c)r + p(e + i±')+ _ _- 0 (41)

=o!=(_." - c)e + 'r'_ - -_(:Y--i)pT(m' + if)

ff ! f ! I

Ra o _ P

0 = r O-- +--. (43)
p T

The fact _> ' __'a1 . . that the gray_,,'.,atequation (25) re&uces to p = 0 ._.___,.cater_

ita-.bio_l force is importa_nt in th,_se problems only ir_sofar as the

buoye_%cy correspondi_ to density fiuctu<o_:Lons Is concerne& and not in

connection with the detei_mination of [moan d.ensitv (Iistr_r.ution. '

This set of equations (39) to (4.3) :;,.so__.ferent from th...;_,,used by

Scl_i_htl1__ "_ " (re-_.erenc__e 7), who neglected temperature variations but in-

cluded density variations. In his case, .(42) yields the ¢ondit:i.on of

incompre ssibi!i ty

!
q) + if = 0 (42a)

and (41) becomes

'<p o (_-t.,_)i(w- c)r + o =



NACA TN No. 11].5

He also made certain other minor reductions in (39) and (40). The Jus-

tificatiof of Schlichting's assumptions is not obvious. Also, his

c0_ equation of' disturbance (equation (ii), p 33-9; re_er_nce 7)

has a singularity at the point where the phase velocity is equal to tho

mean velocity of the flow. This gives rise to multip±.e-valued solutions,

to which it is difficult to assign a proper physical interpretation.

Reduction to the e_uation of 0rr and Son_nerf£!._:_..i]0rar} homogeneous

incompressible fluid.- This simple case is obtained from the iimit:i._

case of zero F_ch nt_nber with the additional reau[reme_its t_._.atthe mean

pressure_ mean tempe_sture_ and mean density are constsnts __"-

ditions can hold only in the case where there is no conduct_ton of heat

across the bo_adaries. 0ther_ise: there must be a finite _emperaturo

Tgradient at the boundary. _:_en p_ p, are constants, indeed

p = p = T = I; then the equations (41) to (43) give

i(w- c)r + (._'+__,_')= o

r+ 0 =o (_5)

.t_(_._,-c)o = _z___,!o(e" - _:.:"6;) (_46)
±,,00

Multiplying (46) by 0, adding, the co-r'responding; complex conjugate,, and

integratir_z between the bo_mdarie s along the real _._is of the y-plane

gives

_Y l tJ"y 1

....., ................ _. -- , . "" "iu.-,_.,,, %}:0_ ......_-,:"_,'.:].)r)v_._,_]_,)f__ oori.{!" I;:]..o:]._:_":_.:.:::'-._. _ -- '_ ::.:t_:.]:)ot}::. i.;_.u:._<!...::._.:.'::[,o_:.-".......... .......

c,r_7ti i;i rbr_ 0:!' ( ' "

(47)
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Thus, if the main interest is in the limit of stability (ci changing

sign), only the solution e = 0 need be considered. Then r = 0 by

(45)_ and the equation (44) reduces to

_' + if - o (44a)

The equations (19) an.d (20) then become

1
i_(w- c)f + _w'_ = -iao +--(f" - _2f)

R
t
I
\
/

f

Eliminating _ from these equations and then substituting f from

(44a), thc equation of 0rr and Sommerfeld is obtained.

Caoe (2) F_ ........._ In this case, all the equations (19) to (25)

remain unaltered, except that the terms in i/F_? should be dropped from

(20) a_d. (25). This is the case which will be discussed more in detail.

Case __3] R --->_. In this case, the equations (19) to (23) become

p i(w- c)f+w = ......
< J _,M2

(49)

0 i±_2(w- c) :- _ r
_.. j 7M2- F e

(5o)

i(w- c)r + p(_' + if) + o'_ = o (Sz)

23
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_ _(,_-o) o + T'<i)!= -(j- i)pT(_)'+ i_')
j

The equations (24), (25) remain uncha_ged. It is to be noticed that the

orders of' the differential equations are reduced., This is consistent

with' the fact _-_hat the solutions hs_e an essential silk_ular:ity at
R _ CO,

After thG clilmination of f., _ r, 9_ the f_ a _ : -"_"

_,qd._.,olOl'l • O'.C r# road.s

r(,{ ,)c,0' ' -c.)- _-'_.= -- c_)
d.-7_k.T .. m (;._- o)-j 'i' _:, -

where L (q)). is a linear expression in r# involvin_:_ q)' and <p.

The bo_Idar$(-value .orob!ems For a given ",_,_"_,-;_.............................................. • - i',,_;,. .... ai problem, there

so ...... ited certa'_.n boundary conditioz_s on the d.ist'orbanc_.are usually as -__"

For exs_ple, fo__, flow between f" -_ _. z_.e_ i;ara.iiei plates, tho ve].ocity dis-
turbances must vanish at these _:,_._._-_:s Also if these [plates are

insuiators_ the temperature grad'.ent must be zero. ii_:i_e!j_.e:_!_:.]:_there-

fore_ it may be expected that six boundary condit:].ons will be satisfied

Since there are six homogeneous linear differential equations J.n six

variables, there is a characteristicva!ue problem, if the botmd.ai'y con-.
ditlons are also homogen.eous. Let

Zi = Z_j<y; M2_ F2 ., R, a, c ,, i, j = i, 2, . . . , 6 (_:_:--- , D'P )

//

represent a complete system of six solutions, and let the boundaz\y
conditions be

24
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L_fz_,._ zo,.. . . , z_)=o at y=y_, k= i, 2, . .., 6 (56)

where L k is a homogeneous linear f_!ction. Then if the solution is

there results

6

z_ = _ Ajzij(z)
_--I

i = i, 2, .... , 6

k =_ 2 6

, i
\
/

i

J
(58)

Hence_ there follows the secular equation

LJk()i2 i. i, , , R, _, c) = 0
J

F2 f
(59)

where

If equation (59) can be solved for c, there results

f

J

(6o)

25
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c R, M2,
\ F 2 /

(6:L)

For real values of _, R, M 2 and I/F2, it is convenient to split

(61) into its real and imaginary parts,

= cr , P,, M 2, (62)

The condition ci = 0 gives the limit of stability.

For incompressible fluids without the effect of gravity, plot the

curve ci(ec,i_) = 0 in the e_.R plane. Here it has to be done for a
series of values of M 2 and i/F .

Continuous characteristic values.- In case one of the conditions

(56) is absent (cf. the case of "supersonic disturbances" in a boundary

layer, sec. 5), no such relation as (61) exists, and a solution satisfy-

ing the remaining five boundary conditions (a_Id certain other conditions

of bo_idedness) can always be found. This is the case of "continuous

characteristic values." The physical significance of such solutions

will be discussed as the case turns up.

3. Solution of the System of Differential Equations

by Method of Successive Approximations

The _xact solution of the system of differential equations (]-9) to
(2_) or rather (30), (31) and (_ _, _,j) to (36) is almost impossible. With
the appe ara_Ice of tile small parameter i/_lq it seems desirable to use

the method of successive approximations. The general plan of solution

w'tll be exactly the same as in the case of an incompressible fluid (ref-

I). Two methods of solution are possible, the first using con-erence

vergent series and the second using asymptotic series
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(i) Solution b2___ans of convergent, series.;_ In the first method,

n _rod.uce the par_neter

,and the new variable

,_= (y - Zo)/C wt_e:_'e w(yc) = o (65)

The e.quations (.30), (31), a_ad (33) to (36) then take the following forms:

dZ 1

_7

d.h
(66)

=c Z6 (67)

dZ.3 p '
= -icZ! - _ cZa - I£(w - c_f'__M2

d-n o ._
Z_ +__ Z .

j
(68)

_2

dri

-- t _.

] : i j(_ )z_. + + iz,._! + c-.--- _ p .... c w.z 3i o(z) (69)

iT) ,--_
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i *p _ P ] i:__(_ c)% + _o(i).__'_ M Z_ -___Z_ - .

P

(7o)

(71)

_e average quantities w, p, T, and so forth, are to be regarded as

expa_ded in Taylor's series in the neighborhood of w = c; thus_

w- c=w,., (on)+
2'

(c_1)2 + . . . ,

!

P = PC + PC (_:q) + " " " ' etc.

!
\
/

1
(72)

(In general, attach the subscript c to denote quantities at the criti-

cal layer where w = c.) The coefficients of the system of equations

(66) to (7],) are therefore convergent power series in c so long as the

power series (72) are convergent and the condition (37) is not violated.

An attempt c_an then also be made to obtain a fundamental system of solu-

tions as power series of _. A consultation of equations (66) to (71)

shows that the solutions should be of the i'ollowing forms-

28
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Drol)ping the superscript zero and recalling the definitions (29) and

(73) gives, to the initial apT,_roximation,

(8o)

which satisfy the equations

I

d_Xl iw c dXl i

dD3 !-_Ic dN F£ulcT c
x5 (5i)

!

d_=_ iwcq c
..... _'X s -

d_2 _iC

| .

' 7_ i pc\
/Tc - ix3 (""----- , - - 0_)

t_ic \, 7 _c _

:- ixz (83)
d.q

where _ is the kine_t:i.c viscosity coefficient Sz/P, and o is
the _ randtl m_Der.

The hi_her approximations _:_i_:_no:d_omogeneous equati.o,_,_ which are

too com!_iicated to be written out in detail. The ho_p]_eneous parts of

tl o e equations are the se21e as (74-) to (79) with v[.o) _-ci ...._ _,v

X (i i, . ., .= 2, . 6) The i_homogeneous part consists of functions

of lower orders, and is therefore imown. Thus, ir the equations (74) to
(79) can be solved, t_es_ equations for higher-_,_,,-, ...._............. l-,zzo_-,_tions can all
be solved by means of quadratures.

if Xs is eliminated from (81)by means of (o_

differential equation of the sixSh order is obtained ._ r Xi, _ ....c

will give six ind.ependent solat:ions. The coz'res:ponding function X_

and X_ can then be obtained from (83) and (82). This is fairly com-

plicated; fortunateiy_ the case where the Froude number is _-_erylar{.Te

is of interest. Thus, as an initial a_@roximation, (8i) may be re-
duced to

I

dSXl i wc _ dXi 0 (o,.......... - 0_%)

the solut ions 0f which are

/ u / - 3, _ ._3

.g _ . / -J

i (n_::

3o
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where

= ! vl
/

(86) -

apparent±._, three solutions a.....missing. These can be supplied by

_ X = 0 X = O (87)

The reason u_ese solutions are not trivial will be clear when the cor.-

re<:@,_,_l_;.Ingfunctions X s and X 5 6_'e worked out below.

From (83), it is clear that the functions Xa corresponding to
(85), are

L 1C- / i " I

. L _5 o/ U _.:

IW_ _ !

i

The functions Yw_ corresponding to (8"2) are

(89)

Corresponding to each function X_, there <,aretwo '_articular
JY

integrals Xs obtainable from (82). These are e_pressible in quadra-

tures involvi_z Hankei functions, for the left-hand side of (82) has
the soiutions

Indeed, the sets of functions (X_ s, Xas, Xss) , (X_, Xse , Xs_ ) form

two sets of solutions of (8i) to (83), and it now becomes clear that
(87) is not trivial.

31
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Next, the asymptotic solutions will be studied, and the convergent
" solutions will be discussed later when the boundary conditions are con-

sidereal.

(2') Solution by meansof asyn_ptotic series.- Analogous to th.e in-
compressible case, "twoasymptotic solutions are obtained by the most
naXve method of expanding the solutions in powers of (al_)-i. In the
present case, the initial a_proximation gives the inviscid equation (54),
which is of the second order. The equations for successive higher ap-
proxi_,tions are inhomogeneous;the homogeneouspart is of the sameform
as (54), while the inhomogeneouspart is related to functions of lower
orders. Hence, the integration of a].! tlie differential equations can be
done in te_s of quadratures, as soon as (_4)is solved.

Four other' asymptotic solutions are obtained by putting

in (30) to (36), where

(gz)

while g is independent of (_R). The initial approximations are

(ZI,Z_,Z4,Z a) = (i,0,0,0) exp ,_- d.y '

t_y c t',,,(£;)

"'YC -"
Y ,

,-. 1 / ------

(zl,z_,,_%,z_) = (o,o,o,z) e_....+.(_'_) - (_r- c)

Yc

1 ................. 1 Y -

d'°1 J " '" " "JYc

'>(9_)
[

32
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Each of these sets contains two solutions. From these expressions, it

appears that the solutions are multiple-valued. Actually, they are valid

only for certain regions of the complex olane determined by comparing
them with the asymptotic expans:ions of the convergent solutions (85) to

(90). Analogous to the incompressible case, the asy_ptot}c expressions

hold when (el. equation (5.4) of reference i )

,(o6 )<-6 < ar_ (_)< g, aria --6 < a.r_ ( 6- (99)

simultaneously. If c is vel_y close to a real number, this means that

the expressions (93), (94) represent solutions in a connected region
which contains at 1 ....ea._t a substantial portion of the real a-_.s. This

fact will be seen to be of significance in discussing the boundary-value
problems.

Similar considerations hold for the solutions of the inviscid equa-

tions. These solutions appear to.possess a logarithmic sin&_larity at

the point w = c. As in the incompressible case, the asymptotic expan-
sions of the convergent solutio _n_ bring these solutions into correspond-

ence with X33 and. X3.4, and the restrictions (95) explain this appar-
ently multiple-valued nature of the solutions.

Analogous to the incompressible case, there are points on the real

axis where the ass_ptotic solutions fail in the case of damped dis-

" " " where theourbances These are inte:coreted as "_nner viscous layers_

effect of viscosity is not negligible no matter how large the Reynolds

number is. Considering the conditions (9_), it is seen that there are,
in general, ..four of them. For the lines

ar_3 (_) = 7_ _
- -_-, arg (_) - ?o

intersect the real _xis in four points, if _ is not a constant and

ci < O. These are the points where the 'inviscid solutions fail. The

four points reduce to the single point Yc when c is real, and there

is no intersection when ci > O. Hence, the four inner viscous layers

coalesce into one in the. case of neutral disturbances and disappear

completely for self-excited disturbances. The significance of these re-
sults for the studies in part II is also similar to that in the incom-
pressible case.
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4. Botmdary-Value Proble_._

Having obtained the solutions in convergent series of ¢ and in

asymptotic series, the bo'_md.ary-value problems discussed briefly in see-

tion 3 will now be enlarged upon. The physical requirements give z',ilseto

certain mathematical conditions on the real axis of the complex y.-plane.
In general, the boundar_ conditions for tiJe velocity disturbances are

independent of the temperature disturbances. For e_t_l)le_ for flow in a

channel with walls at Yl and Y3, the boundary conditions

= YZJ =: 0

must be _':"" ° "_oisf_ed whatever the conditions on the temperature disturb-

ances may be. These conditions are identically satisfied by the solu-

tions Xis and Xie._ to the proper degree of approxi_tion. Thus3 the

quantities Ljk defined by (60) vanish if j = 5,6 and k = 1,2,3,4
(say). Hence, condition (59)reduces to

I Ljk = O, .J,k= i,° 3 4
_'- 3 J (97)

The characteristic-value problem therefore does not e_licitly depend on

the temperature disturbances in the initial approximation. Indeed_ after
the temperature disturbance correspon-__ to the characteristic oscilla-

tions has been determined, it is always possible to satisfy the boundary
conditions for the temperature disturbances by including a suitable lin-

ear combination of the solutions X_5 and Xse. The corres_onding ve-
locity.disturbances are identically zero and wi].l therefore not interfere

with the Boundary conditions imposed upon Xss and Xse. Such a situa-
tion is in....general the case. T'ne cha=acteristic-value problem therefore

becomes very similar to that in the case of the incompressible fluid.

Two inviscid solutions i'1,2, q_l,_ are derived from (_.)4)and two viscous
solutions from (8_) and (88):

i(98)

J

As explained in the last section, the asymptotic solutions hold in a

connected, region containing most points of the real axis except a
neighborhood of the point Yc. Thus, there will be no difficulty in

using the solutions fx,_, q_,2 for the discussion of boundary-value
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problems. The path leading from one bo_dary point to another lies es--
sentially in the lower !lalf plane.

Now, let these results be applied to the case of the boundary layer.
Begin by making a careful investigation of the boundary conditions. At

the wall the conditions f - cp= 0 hold. However, f may be replaced
by a linear combination of _ and _'. In the case of the viscous so-

lut ions, _ - -,_+ if3,4 - 0, so that f3,4- i_ ,4" For the inviscid so-
lutions, the relation

!

, (99)

holds (equations (49) to (53)). At the wall, w = O, and

Ta - M2C _ (99a)

Thus, the condition that f vanishes at the wall may be replaced by the

condition that a linear combima_on_" of q_[, s. ,qo' and. %. 2 v_ishes
.. - 5_4_ J •

Analogous to the incompressible case (cI%equation (6.8) of refer-

ence 1), the condition of bolmdedness at infinity rules out the solutions

f4 and _. it _.s convenient to take the lower limit of integration" in

f3 and _3 at +_. Then, these solutions vanish rapidly as y --_.

Thus, for y >> l, the inviscid solutions dominate. In the incompress-

ible case, the Inviscid solutlons buh_%._elike e±_y. The condition of

boundedness therefore leads to _ _ e"_y. This is conveniently express-
ible as

-- + =--_ 0 as Y ---_= (i00)

In the present case, a corresponding condition must be established.

However, the situation turns out to be more complicated. Consider the
equat ion

dy T - Ma(w - c)a_ T
(lOi)

-' I
obtained from (_) by dropping the term in F-2. As will be discussed

more in detail in part II, the behavior of the solutions as y _
is given by
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(io2)

where _ is uniquely determined if a cut is drawn along the negative

real axis of the complex _-plane. Then it is clear that the real part

of i_ is always positive if g] is .not on the cut, and hence the solu-

tion _ ~ e+_y must be rejected. Thus, there results the condition

This reduces to the incompressible case if M = O. If _ lies on the

cut c = cr < i - _ , the situation is more complicated. The situation

will become clearer only af%er a thorough investigation of the inviscid
problem (see. 7).

Except in the case I - M2(I - c)2_ O, the characteristic-value

problem is therefore almost the same as that in the incompressible fluid.

The characteristic values are given by the dete_minantal relation

!

Tiq)il + M wi cgi____iTI_21__ + M w i _--C(P2I_3

Ti -M2c 2 Ti - M2c 2 i

where _0i and qo2 are any two linear independent solutions of (lOl)_and

_ij = _i(:/j),q_'j = qo[(yj), __,j = z,2

Y2 being the coordinate of the "edge" of the boundary layer. Strictly

speaki_, the value +_ should be substituted for Y2. However, for

Y > Y2, the solution of (i01) is practically identical with e_Py.

Tli:as, it is a good approximation to impose equation (103)for Y = Y2.

Naturally, the larger the thic}auess of the boundary layer is taken, the
better is the approximation.

The determinantal equation may be written in the form

E (_, c,M2) -_ -F(z)

36
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where F(z) is the function of Tietjens (referenca ll)

-z

F(z) =I +./
+co

with

being the value of q at Y- Yl, the solid boundary. The ......function

M2E(m,c, ) depends only on the i_nvlscid solutions, _id is given by

(n- y =

!

!

! 2 !
Tz_II + M wlc_l_ ,

Ti -M2c e (Pie + _le

The manner in which the viscosity coefficient enters the final equa-

tion (106) is noteworth_r. As compared with the incompressible case, it

amounts only to a change of'the definition of z. By referring to (106),
(64), and (65), it is seen that this amounts to the replacement of R by
R/Die. This means that the Reynolds number defined in terms of the free

stream veloci_t._yand the kinematic viscosity coefficient at the critical

_" (instead of that in the free stre_z) is the quantity governing sta-

bility phenomena. This point must be kept in mind whenever it is neces-

sary to compare a case of homogeneous temperature with a case of inhomo-

geneous temperature. Greater detail will be given in discussing the
stability problem in a real fluid (pt. iII).

In the case I - Me(l - c)2 < 0, it is possible, of course, also to

imDose the boundary condition (103), with _ imaginary. The same equa-

tion (108) holds. But the gener 1 discussion of the physical signifi
cance of the solutions is more complicated. It will be discussed more in
detail in oart If.

The Inviscid case. Ill the limit of infinite Reynolds number, the
the relation (106) b0comes

: O, or

!

|
=0 (io9)

3?



ii!ii

.....i!_

• !
,_, ......!iii__

i/

f[ACA TN No. 11],5

Th_s corresponds to a solution of (i0!) with the boundary,conditions

9(Yl) - O, _$'(Y_)+ _9(Y2) = 0 (liO)

Cog_Id.eration of this boundary problem gLvcs the asymptotic behavior of
the relation (61) in the form

c : c(%M ;_1 (ill)

This will be discussed fully in the next part.



NACA TN No. 1115

II - STABILITY IN AN INVISCID FLUID

5. General Considerations

:ii

It has been shown that, in the limit of infinite Reynolds n_mbers,

the problem can be treated with viscosity neglected, provided proper care

be given to the inviscid soluti@ns. Such investigations will naturally
give some information to the stability problem in a viscous and conductive

fluid. Indeed, the complete calculation of characteristic values, in par-

ticular, of the limit of stability, can be carried out, once the invisci_

solutions are known. It is therefore advantageous to study the inviscid

case as a prelude to the actual case, with the expectation that certain
important cha_'acteristlcs may be obtained.

However, it must be noted that the results Obtained in this case can-

not be a.ppl _d c1!r_:_ct]..vto the viscous case without modification° Thus, if
only stable (damped and neutral) d_sturbanc_s_ _ _ can exist for a given flo_ in
an inviscid fluid, it cannot be .concluded that unstable disturbances carmot

exist under the action of viscosity. However, if unstable disturbances ex-

ist in the inviscid case, the flow will still be unstable when viscosity is

taken into account. FQr if the continuous dependence of ci on R is con-

sidered, it is evident that ci cannot remain less than or equal to zero

for all finite values of R and still become positive as R becomes infi-
nite.

This investigation will begin with a careful study of the analytical
natur6 of the solutions, especially for y becoming infinite. It is

found that the disturbance there takes the form of progressive waves out-

side the boundary layer. For more detailed discussions of their properties,
II _ _ _ II f! |!it is found convenient to classify the disturbances as suo_onic, sonic,

ft ff

or supersonic when the x-component of the phase velocity of the disturb-

ance relative to the free-stream veloci%T is less than, equal to, or
greater than the mean speed of sound in the free stream.

The amplitudes of these waves go to zero as an exponential function of

the distance from the solid boundary, except in the case of neutral super-

sonic disturbances. To an observer moving with the velocity of the free
stream, the ,_aves are propagating opposite to his direction of motion for

neutral subsonic disturbsmces. For a general disturbance, the direction

of propagation is inclir_d outward if the wave is amplified and inward if

it is damped. For the neutral supersonic disturbances 3 there may exist

both an incident _ave and a reflected _ave with (in general) non-vanishing
amplitudes at infinity.

Analogous to the incompressible case, an attempt is made to establish

necessary and. sufficient conditions for the existence of certain ts,-pes of
dieturb_ce. But a consideration of energy relations is found to be ex-
tremely he'lpful. This is carried out in section 8.

• .

In the case of neutral or slightly non-neutral subsonic disturbances,

the physical situation for the compressible fluid must be cluite similar to
e
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the situation in the 15_iting case of an incompressible fluid. There-

fore, it should be possible to obtain a general criterion for the exist-
ence of sli__-

_itly amplified subsonic inviscid disturbances, analogous to
" Tthe Raylemgho ollm!en criterion for an incompressible fluid (sec. 9b).

After such a criterion is developed, mean velocity-temperature profiles

could be readily classified according to their relative stability at very

large Reynolds numbers, and the effects of the compressibility and con-

ductivity of a gas on the stability of laminar boundary layer flow can
be evahated (sec. ll).

In the case of neutral supersonic disturbances, both incoming and
outgoing waves may exist, with" the amplitudes of the incident and re-

flected waves unequal in general. Except in the particular case of a

pure neutral outgoing or incoming wave, there is therefore no character-

istic.value problem; or rather, the characteristic values are continuous,

and not discrete. By utillking the results of the investigation of the

energy balance for a neutral inviscid disturbance (sec. 8) a general ex-

pression will be obtained for the ratio of the energy carried out of the
boundary layer by the reflected wave to the energy brought into the

boundary layer by the incident wave (sec. lO). With the aid of this ex-

pression for the "reflectivity," at least a necessary condition for the

existence of a pure neutral outgoing or incoming wave can be determined
(see. I0).

6. The Equation of Inviscid Disturbance and the Analytical Nature of

the Inviscid Solutions

In the limiting case of infinite Reynolds number and inflzlte

Froude number, the disturbance equation for _ reduces to the follow-
ing linear differential equation of the second order (cf. (lO1))

or, in the self-adJoint form,

(n2)

where

(!i3)

4o
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9here is also the relation

_..yM2r(w__)_,__,__ ,_= ..... < = iT _ +if
p [ T_M_(w-c w.-_

The second part cf the last equation may also be written as

Since the coefficients of the differential equation (112) are entire

functions of the parameter ec2, the" two particular integrals cpl and" r$2

of this equation must also be entire functions of cc_. Series develop_
ments of cPl and q02 in powers of _2 are therefore uniformly con_

vergent for any finite region of _, for a fixed value of y, except
when y is a s_ ..... . of_ng_la_. point the differential equation. -_

If the series development _ = _(o) + _2q_(1) + i_(2)+ . . . is

substituted into (112)_ two particular integrals _i and q2 are ob+_ined
by successive quadratures.

,_ (y; a_-,c, H2) = (w_) > _2nhsn(y, c, M2)
___...

n=o

qO2 (y; cd? = _ a= k2n+l (y, c,, c, M2) (w-c) v_ °n M2)
z.__.

n=o

(i18)

where

,_Y
/ C T

h_n(y; c, M2) = / .,

ho (y; c, M_-) = !

- _Y 2._i , (w-c) -',
__-_ %" _ i

.. / Fr_

Yl ]
\

x.hmn-2(y; c, _)dy / (Ii9)

1
J

• It will be shorn later (sec. 7b) that the point at which T equals

Me(w-e) 2 is only an apparent singularity of (112). The _._oint Y - Yo

and the point at infinity are the only true sir_guiarities.

41
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and

k2n+_(_;c,M....) / r _" 2= / -M dyi 2

PYr T
kl (y; c, M;_)- /

;/ _--('W'--C)2
Yl

"] dy

× k2n_ I (y;c_M 2)dy, n > ! (12o)

In those integrals, the lower limit is taken at the wall (Y- Yl) merely
fer convenience.

In order that qoi and c_2 may be w_d.id approximations to tiie r(_u!ar

solutior.s of' the co.mp].ebe disturbance equations (19) to (23) all along the

path of integration between the points Y = Yx _ld y = y on the real

axls, that path, mast lie whol].y In a region in which the asymptotic ex-

pans!ons o.L the regular solutions l o.,.large values of _R are valid.

The as2"mptotLc e,_)ansions of those solutions for la'rv::e values of' _

hold only in the r_2ge defined by
7,_ f" We'-\-l/z' ( )< arg -Y-Yc < -
o L '- _:tc-" 5

Oensequently, the :path of Integration between Yl and y must be taken

below "l the point Y - Yc" (See fig. 1.)

lContrary to the statement made by Tollmien (reference 4), the proper

path must be taken bolo_ the point Y = Yc reg,_rdless of whether this

point lies above, on, or below the real axis. This question, which has

been responsible for a certain amount of confusion, was finally clarified
recently by C. C. L!n (reference I).

42
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It is now possible to define a region in the complex y-plane in which

- the solutions _i an_ cPe are everywhere analytic in. the variable y

and the parameters _2, c, and M2. Consider the s_ply comiected re.glen

R' which includes the end-points Y = Ya. and Y = Y2 but not the (singu-
lar) point Y = Yc (fig. 2). The region. R' and the region S' in tile

neighborhood of the point Y- Yc can be made mutually exclusive. Pro-

vided _(y) _ 0 in the range Yx <" Y < J2, the relation c = w(y) maps

the regions R' mud S' in the y-plane into the mutuail2 exclusive re-

gions R" and S" in the complex c-pla_ie.

If y is now restricted to B' and c to R", the coefficients of

(112:) are analytic functions of the variable .7 arid the p_mameters c_ _,
c, and M2, and the solutLons cpi and _2 must also be analytic func-

tions of (Yi, _, c, M2). So far as the characteristic..value problem

is concerned _ the 'anal2ticity' of' the solutions _i and rp2 in a si_LT)ly

Connected region enclosing the boundary points Yl and Y2 is assured.

Unfort_lately, this argt:mtent fails when c = O, because the singular

point Y = Yc, w - 0 coincides with the po _nt y = Yi at the solid

boundary, and the regions R' and S' cannot possibly be mutually ex-

elusive. This special case will be discussed briefly in sections 9a and
9b.

7 _arther Discussions of the !Lna]j_tica]. _ '-"• },]atuz'eof the oolutions;

Their Behavior around the Singular Points of the Differential Equation

Although the analytical character of the solutions rp! and. _P2 in

the region R is of great importance for the characteristic-value problem,

the behavior of _i and q% in the neighborhood, of the singularities of

(112) is equally iI_\portant in the investigation of the physical mech_u:ilsm
of instability.

(a) Si u.larit-_ ,.Ln_-t=:_=2E at the Point w = c"

i r-

dy J w=c L dy \ T / ..j w=c
vani ,.qt! e s,

the point Y = Yc in the comolex y=plane, is a regu].a:r slnGularit2 of the

differential equation (112). Since (w...c) and T are analytic f_mct.ions

of y everywhere in the finite regiou of the complex y--_].ane, the;);,can be

developed in Taylor's series around the point y " (w-: c) as follows• =YC :' "
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ft

w_ =Wc' (y-_Tc)+ c (y_!c)2
2!

t!

Tc 2

' (Y--_o) + ---- (_"-Yc) + • •T=Tc +Tc 2.' "

Upon substituting the series developments (121) s_d (122) into (i12), two

linearly independent solutions q_l _md _2 valid in the vicinity of the
singular point Y = Yc are obtained.

_z = (Y-zc)_(Y-Yc) (123)

q:'2 = g2 (y-yc) +

2

c_,1:t.og (z_;,-o) (_.2_)

where gl and g2 are analytic functions of (Y- Yc), a_, c and _i2
= 3

be subjected to the same restrictions (05) as the solutions (117) and

(I18). Consequently, in passing from BZ (y - Yc) > 0 to RZ (y - Yc)

< % the correct path lies below the point Y = Yc, and the proper
analytical continuation of (124) for (Y - Yc) < 0 is I

transfer of energy from the mean flow _ to the disturbance(see. 8).

For the physical problem, of course, only the pro:.nerties of the

solutions _z and q_2 along the real axis are importer. If ci > 0

(amplified disturbance) the point Y " Yc lies above the real axis, and

the. solutions are regular along the, real .axis. In this case, the effect

18 . - . __.

< ,_nce f is related to q_ by (1.!6), the discontinuity suffered by
Im q02 in passing from (Y-Yc) < 0 to (Y-Yc) > 0 leads to a phase

discontinuity in f, and it is this phase shift which makes possible the

or vice versa

• 44
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of viscosity and conductivity on the disturbance is negligible in the

interior of the fluid for very large Reynolds numbers. However, If
ci < O, the inviscid solution (124) cannot possibly be valid all along

the real axis (fig. I). If ci -0 (neutral disturbance), there is a

critical layer of fluid at the point w = c in _hich the velocity varies

very rapidly (f ~ log [ Y-Ycl), and in which, therefore, the viscous

forces must be taken into account even when the Reynolds number becomes

indefinitely large. If ci < O, (damped disturbance), there are fot_

such inner critical layers, because the lines arg ]_ (y-yc =

(fig. I) and the lines argLwC',<_.Vlc)I/3(y__c_ )]--6-,- 6' which delimit

the region of validity of the solutions _l and _2, intersect the re..ul

axis in four points.

With the aid of the equations of motion and the relations (115) and
(116), the physical situation in the neighborhood of the oolnt w = c

can be made still el.eater. It is not difficult to show that the rate of

chsnge of the quantity I p*_/* where _- is the vorticity, for any two-
dimensional motion in an Inviscid_ non-monductive compressible fluid is
given by the relation:

In the present case, if c = Cr, then from (125) and the equations (49)
to (53), there is obtained

or

d

q) _-_ (pw') = 0 at y = Yc (127)

that is, the transport of the quantity pw' across the plane w = c

must vanish. It will be shown later (sec. 8) that it is impossible for

qP(Yc) = _c to vanish if q_(y) is a solution of the disturbance equation

The quantity p*_* is related to the density of angular momentum.
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(112) which satisfles the boundary condition q0= 0 at the wall. If the

value of c : cr is chosen so that _ (pw') i _ 0, then the trans-
-J _=C

port of pw' across the plane w = c can be balanced only by the dfffu-
sion of pw' through the action of viscoeity. It can therefore be con-

cluded that a neutral disturbance free from the effects of viscosity in

the interior of the fluid can exist only for velocity-temperature profiles

for which d (pw') =
dy _ -_-: = O, at some point.

From the energy equation (52), the relation (116), and (123), (]24),
(124a), it appears that if c = cr (neutral dist1_rbance), then O be--

comes indefinitely large as w-m c, Y_ Yc" Even if the quantity

i d /w'__I vanishes' the c°nductivity °_" tI!e i'll-lidcannot beneg]-ected_\_v-_c

in the vicinity of the point w = c unless T' = 0, which is not gener-
ally the case. However, the mathematical results obtained in part I in-
dicate that the influence of the conductivity on the "vic;cou_" solutions

of the velocity components is only secondary for _e:<nolds numbers of the

order of magnitude of those encountered in .most aez'odynamic problems.

(b) _ " "oi__.n__u=!a_r:[_:a_.t_the Point T = M2 (w -- c)2

In the case of tl_e neutral supersonic distlu"bs_Ice_ outside the
botmdary layer, the relative velocity between the mean flow m_d the x-

componenttheof the phase velocity of the distui_loance ie always Greater than
2nearl SOIliC velocity. At some polnt within the boundary !sve_,- the

relative _vel°city must be equal to the local mean sonic velocity a.

Since x,.-- - this point will be reached when (w-c) = _ =
/

• 0
T
• Although _ (y) -m _ as T--> }42 (w.-c)2
M2 " , by means of a change in

dependent variables it is not difficult to show that this point Is only
an a__arent singularity of the differential equatlon (112). If the de--

Pendent variables are chosen as _ and
-, rathe?_ than _ and _'
P

then by util!zing (ll2) and (ll6), a new system of linear differential
equations of the first order is obtained"
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o ;, (_ _. o)
= - !TM'-_- _........ c_ (_.29)

dy T .

The only'singularities of equations (!28_ &ud (1,09) occur: S,t _-_,->........<.....

w- c and the point at infinity.. So far as the disturbance !s conc_.__-_.-_

the pD_'s!cal significance of the point T = M2 (w--c) 2 lles only in the

fact that it marks the point of transition between the supersonic and su&_
sonic fields of flo_.

For the neutral s "_ . !-\ .
_on].udisturbance[ I --c = -, the :Coznt at which

", M/

2 T
(w-. c) equals __ moves out to ird'inity; (T-e> I, w -_."!, a,:s,jv-_c,_),

}4,-=

The pl%vslcal and mathematical _.rob].emis more difficult to investigate
in this case. because equation-(1],2) has an essential singularity at in__

fin!ty and the asymptotic behavior of w(y) and T(y) as y -_ _ is
somewhat complicated In the next section, tho _ _........ _eh......;,,.,'..orof the sonic d! s_
turbance as y_-> :.__i!_ be discussed in some de' "I--- '_.ai_.

(c) Behavior of the !nviscid Dlst_zrbance as y _ _:

Bound_r_ Conditions and the C_ar_ter.i.s L,zc--_/s_lue Problem

A
i

the disturbmuce equation (i12)¢_2_es the llmit,_r4_.f'o:_a

q_" = _ "_ 1 -H'- 1 - c)2 _!,q.o (].30)
< .j

Equation (130) has the solutions e-py _znd e '__', where p = _ dr_-o_-_

and _ = I -M _(I - c)
2

It fol!ows 'tna _ the _,_ ÷ion (112) has a fr,.nda--
,'---'D

mental system of solutions behaving l!ke e .as v -_* o._ ,% -" -,--.... ,, . _ _ t"te_. Ine

_ "cut" ..uniquely, it is necessary to in_,.=oducea a]_oz_gthe ne_ative real

r
axls of the complex _--p!ane. Regardless of whether .,tI " M_e(!-Cr)2]_"j,<0,.
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(subsonic, sonic, or supersonic disturbance) l the real part of _ will be

positive so long as -_ < arg (,f_)< _ Since the physlca]_ conditiom:_ of

the problem require, that q0 must be bounded as y _-> _, tile solution

+_y

e must be rejected. Therefore, this solute.on _ Imlst behave like

e as y m>o_.

Solutions of the type e , when combined _,ritt.l the factor e

evidently represent progres'-._iv_ waves, but it is necessary to be c_'efu].

in discussing its direction of propagation. A disturbance which i_ pro .....

pagated:. outward with respect, to a fixed observer at the wa]..l is ac_,_.al!y__ .

an incident wave re]..atlve to an observer moving _¢ith the veffocity of the

mean flow outside the boundary layer, and vice versa. This fact can be

readily appreciated by referring to figure 4. Thewave fronts moving

outward a.nd also downstream with a velocity cr re].atlve to the wa].i are
overtaken by the obserw_r moving downstream with _,• t .....e velocity ! relative
to the ' _ _

_,a±_. To such a moving observer_ these wave fronts appear to be
propagating inward. The _itua'b.ion is obviously reversed.for the w'avo

fronts moving inward and downs'bree_ with re o,_'_ect_:to the wa].l . The s_u_e

conclusion can be reached, of course, by referri_g to the analytical form

of the dist1_rbance. A wave front movi_ outward with respect to the fixed

_ (x - c t) e "_iuywall will have the form e " . However, for the observer

moving with the free stream velocity; the x-coordinate is x' = x- t,

:i._(_:' + (] .... c j t)e in his (x'and the wave, front has the, form e ffLuy ,.Y)
' coordinate system. The _ave front is obvdously moving inward _n this

system. If ci > 0 (disturbance increasing with time), then g_i > 0

and _i > O; the d.istt_rbance takes the form of an outg_qo:Jn_wave of ex-.

ponentially damped amp].,itude (in y) as y -> ,_,. If ci < 0 (disturb-

ance d_ped with time), then _i < 0 and• _i < O; the distu_'bsnc_-e t_kes

the form of an J.ncomffn_ wave of exponentially " ._", a.s_]p,_a. s_l-_ ii tude ( in y)

as y_ ,_. If c i :- 0 and. _ > 0 (neutral sub,_on:tc disttu:'bance),

the disturb,_ce is propagated parallel be the x-axis, and the _._plltude

is exponentially d_u.Ltped:].n y as y _ ,_._. Thus, for --_ < arg (,2_)<n,
the bcm_dary ccndition at y. = _v;_...is.. qo' (y_,,_ + _3qo(y) = 0 and the

characteristic values are discret 9 (see. 4.).

The curve O,i 4g._, correspondffng "to the condition ],_M__(l-_z,)'_"" _ _ 0

for a sonic disturbance divides the complex _--]?].ane into a re{_ion of su_-
sonic disturbances and. a region of _._! ;" "'_ou _er_oni_ disturbances (i_g. 3).
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If ci = 0 and _ < 0 (neutral supersonic disturbance), then J_-

is purely imsginary, and both solutions of equation (130)( e_c_J'_-_q-_yi)
are bounded as y--._c_ The corresponding pressm:e disturbances are also

finite (equation (115)i. In thls case, both incoming and out_oing waves

exist, but in general they are not of equal amplitude. This phenomenon

can be described physically as a reflection of an incident wave, either

with absorption or reinforcement, and will be discussed in more detail in

section lOa. Mathematically spemking, !n thls case there is no homogene_
ous boundary condition of the type (_8) at Y = Y2. Except for the special
case of a pure incoming or a pure outgoing wave, there is therefore no

chsrac_ristic-value problem, or rather the characteristic values are

continuous and not discrete. A solution satisfying the boundary condltion

at the wall can always be found for arbitrary values of c emd _. In
fact, from (I17) and (118), such a solution for YI< y < Y2 is

2_ _ -_m+i(Y; c, )

n=o

2 M2 _- ) - _ 2The condltion _ J_.l-- (I .-c) -/.0 breaks down when I-M (l_c)

= O, (neutral sonic disturbance) or. when _ = O. In the latter case, with

! -M2(l -c) 2 _ O, it is not difficult to verify that the solutions (117)

and (118) are continuous in _ as _--> 0 even as Y --> _, although
the point at infinity.,of the y-plane is an irregular singularity of the

equation (1].2). Indeed, these solutions behave like e-_y (I- c) and.

J I _ M (i--

_ ((i _ c) ' e --e respectively, as y _>a, in the limit-

ing case _--> O.

For the case of the neutral sonic d.isturbance, /'I M2(I c)2_

and the as_wmptotic behavior of the inviscid solutions as y-_-_ is quite
complicated. The asymptotic behavior of the mean velocity w(_) for the

case of the compressible fluid boundary layer is similar to that of the
Blasius profile (reference II, equation lO, p. 228).

2

dz , for y >>I, (k = const.) (132)
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In the special case in which the Prandtl mmlber is _mity and the mean pres-

sure gradient in the direction of the mean flow is zero, the mean tempera-

ture T(y) is a tuuique quadratic ftunction of w(y). Thus, (reference ii)

< 7-.I • ._
T = TI + 7 - 1 M 2 (Tl - I)]_ w --..... M2w *

2 - j 2
(133)

In that case, since c -c o = I I._..._

M

T - W(_ - c)_~ (I- w) F for y>>l

where F is a positive constant. The differential equation (112) must
take the limiting form:

where $ = q0/(w- c). If the physical condition that _, be bounded as

Y--> _ is imposed, then lira (I - w)_ = O_ and e_uation _ijo)'i''_

admits of two possible solutions.

or

\_ --> constant, _ ~ w- c --> conste_-it, as y -=_ (137)

(138)
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The asymptotic behavior 9 ~ (w--c) i_l!es that

d (p) ___> _2, °r _ ~ _(y + A) as y-->_, by equation (129)
dy p

OO

If _(y)~ /_(1-w)dy, then

P
---_ O, -- _ constant as y--_ _

p

Thus, for the sonic disturbance, if the pressure disturbance is to

remain finite at infinity (equation (].40)), then q0 must approach zero ,

very rapidly as y becomes infinite (equation (138)). The solution (137)

must be rejected, _ud the characteristic-value problem may be expected to
have discrete characteristic values. The condition for the existence of a
solution in this case will be discussed in section !Oc.

However, if 0nly a finite _.adJ.ent of pressure disturbance is required,
but allowing the pressure disturbance itself to become _ ,f" _ both solu

tions (137) and (138)maybe included, and the characteristic values become

continuous. The physical significance (if any)of this solution is not clear.

But the situation is somewhat e_a!ogous to the case of the steady flow of

a compressible fluid in the vicinity of the speed of sound, where small

local changes in the cross-sectional area bounded by stream lines produce
very large local changes in the velocity and pressure.

It should be noted that if _ = 0 and c - I -1 both solutions
M

(137) and (138)may be included. (See end of sec. 9a.) From the rela_

tion (llS), it can be seen that the pressure disturbance remains finite
as Y--->_ in this case.

8. Energy Relations for an Inv!scid Disturbance

The disturbanc_ have just been classified into (1) self-excited

disturbances propagating outward , (Im(C_) > 0), (2) de_.ped dlstt_rbances

propagating inward (Im(_) < 0), (3) neutral disturbances propagating

Parallel to the x-axis (g_> 0), and (4) neutral disturbances propagating
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both in_mrd and outward (_ < 0). It is very interesting to consider
_e energy relations in all these cases. I

In the first case, there is no doubt that energy must pass from the
mean flow into the dist'_'bance, because the amplitude of the disturbance
is being increased and energy is being carried to infinity by the _ve at

the same time. In the second case, the opposite is true. In the third
case, there is apparently no transfer of energy between the mean flow and

the disturbance. In the fourth case, energy is being carried in and out

by the waves; whether energy will pass from the mean flow to the disturb-

ance, or vice versa, depends upon whether the amplitude of the outgoing
wave is greater or less than the amplitude of the incoming wave.

For the two cases of neutral disturbances, (3) and (4), it is possl-

ble to clarify the physical situation by considering, the time aver_e
over a period (which is well defined for neutral oscillations).

Since viscosity and conductivity are disregarded, and the neutral

disturbance is harmonic both in x* and t*, the average time rate of

change of the total energy per unit volume over ono period and one w_ve-
length must be zero; that is,

de*
=0*

dt*

2

dt---¥• 2 J

d
+ 0* (opT*)= o (141)

dt*

or

By neglecting triple and quadruple correlations, and utilizing the dynamic
equations like (49) to (_3) to carry oat certain red_uctions, the energy
ba].ance for the disturbance is obtained in the fol!o_ing form-

2

•_\T = - o* ui* uj _j

_.p. I

ui*' . - 0 (14B)

ZThese investigations will also form the basis for the discussion of

the necessary and sufficient Conditions for the existence of a disturbance
(secs. 9 an_ I0).
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Now the quantity p*' is equal to - R_ _ ' + i_) , where

the symbol ~ denotes the complex conjugate. From the re].ation (115),

there results _- = i7 _' + if--, so that the quantity in the bracket of
p w _ c

the above expression is purely imagina_ when c is real. Hence,
3ui*'

P_' = O. Using this relation, (143) c_u be reduced to
_:i

_ __{_..d. (ui*)!t
dt 2

__ ui o

J

(u±_-,p-:_-,) --o (144)

The relation (144) holds for every point in the fluid. Hence,

" --- .......p*' ui_';''dV
/ . -_, IpdV- /_ii/i_"_xl_,,_./_:/ ..- p ui'_'uj _xj._-_ ./././

= // D_''Un*' dS
//

-.j,,d

where V is a given volume of fluid, S is the bounding surface, and
Un*' is the component of the velocity perturbations normal to S. Let

V be a rectangular parallelepiped of unit dimensions in the x* and z*

directions, extending from the solid boundary (Y = Yl) "to infinity:' in

the y* direction. Then with the condition v** = 0 for Y = Yl, (145)
becomes

co _ 1/" =Uo _

,_ _ du* du* l_m
/ - p* u<-'v*' -_ dy* = /q 7" -_dy* =

JYz dy* _./u---o dy* y --'; oo
p_,"v*' (I_6)
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that is, the net energy propagated outward bythe distuz'bance in trait t'Ime

across the plane y = constant (y large) is equal to the total, energy
transferred in unit time from the mean flow to the disturbance by the

action of the sheaz _ s_ess T* = --0 u*'v*' within the boundary lawyer.

It can be verified that

U6 _ 2

where q0 denotes the complex conjugate of q0. By making use of (116),

the e-'rpression (147) for the velocity correlation can be brought into the-
following form when c is real-

or rather

- (]49)

_'h.en c = Cr, the coefficients of the differentia] equation (112)

are real. If (p satisfies (I!_), then _r and (_i must also _¢- - _ _isfy

the equation independently, and the e.xn_ression..in brackets in (149) is

the Wronskian of the two solutions, by def:tnitlon. For equation (ll2)
the Wronski_ is

-i- dy 2

i

_ °)2]
/ ( 5o)
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from the relation (114), whero k is a real constant. Hence, from (149),

Thus, if c = Cr, the shoat stress is constant wherever _'- :" (%, mi)

is continuous, that is, outside of the J.nll@r critical layer at w = c,

where the effects of viscosity and conduct/vity predominate (sec. 7a).

To satisfy the bolmdary condition at the wall, _r(yl) and _i(;"i)

2 12]mus-_-tbe zero independently, and therefore., ;_= k [ Ti- M (wi-- c -0

In general., c2 _ Tz/M 2, so that k = 0 and

T¢ O, T = 0 for v Yc < 0 ( ':=2= _ 1.;.)

(G. I.)

]_y utiliz " "_ -,ozn_ th_ solutions (i2]_)_ (i,,°_.),and (__.4_._.),and equation

(150) the dJ ......c_"_ _ .... ,_+'_'__...._ o_s_-;sJ._3 from
(Y < Yc) to (Y > ;Yc) can be caiculat_a l_i facb i

m ¸

, I w' L dy \T / Jc

= . I¢ for _ = y_ + 0 snd therefore,where _c (P (yc). _om (150)., = kT c ._ ._ ,

and

I

-'C

T - _ for y v > 0 (]_5)
...?

lTn_ . _.- _ ............................
the limiting case of an incom_p:L":._,!:_.::._.oLef!uid_ ..../_;7 reduces to

the value calculated by To].lmien (reference !0).
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Thus, assuming for the moment that _c _ 0, if the si_gn of the q!:_anT_it;!::.

I d (w')] i-s_ositi_er--gF will pass from the mean flow to the

d_sturbancel if the si.[_ of _ T,) is nA.gatiw, th_e__.l.ean f!O Z

= 0, there

_s no exchange of _....._v ,_ _- .__ _=_ between t,n_:__ean flow and the disturbance.

In the foregoing discussion, it was tacitly assumed that _c # O.

By means of a proof similar to that given by Tol]mien (reference !0) for
the case of an irJ.compressible fluid, -,-__it is not d_f._cu]..t to show that

q_c cannot vanis_ if q0(y) is a solution of (112) satisfying the bound-

ar_y conditioi_ q(Yl) a,t the wall. This presently will be done.

if ._(y) satisfies (1].2), then q0 = Al q)z + A:_ c#_., "_nd the be-.

havior of q01 sand _2 in the neighborhood of the point Y = Yc is

given by (123), (124), and (124a). Since qoz(Jc) = 0 and <P2(2"c) _- 0

A2 = 0 if _(Yc) :/anishes. Now (PI(Y) "s analytic and =-d ./_____ \
(Iv \,W - C/

is finite at Y = Yc- By direct integration of equation (112),

.... M s • dy i ....... dy + . . .!. (135_:)
2 I 1 T I

-_ "JYc j

If Yl _g Y <-_ where Y4 is the value of y for which ........T _ (w- c)2
M2

then . T M _
., (w-c) "° -- . > 0, and the qumntity in brackets in (].56) is

positive. Therefore, q0(y) > 0 for Yo < y < Y_ and _(y) < 0 for

Y! < y< Yo; _(Y) can never satisfy the bom_dary condition _0 = 0 at the

wall; and the assumption q0(yc) = 0 must be abm,_doned.
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9. Necessary and Sufficient Conditions for the Existence of an

Inviscid Sub@onic Disturbance

So far in the discussion of the inviscld disturbance in a compress-

ible fluid, it has been assumed that solutions of equation (I12) exist

which satisfy the given types of boundary conditions. The energy criteria

developed in section 8 not only serve to clarify the physical problem

considerably, but also lead directly to the formulation at least of the

necessar _ conditions for the existence of each of the three possible types
of neutral inviscid disturbance The sufficiency conditions cannot follow
directly from energy considerations.

This section will deal with subsonic disturbances, neutral and self-
excited. First a necessary and sufficient condition for the existence

of neutral subsonic disturbances is established. -it"is then possible
to establish a sufficient condition for the existence of self-excited

subsonic disturbances. However, a necessary_ condition has not yet been
established.

(a) _TheNeutra I Subsonic Disturbance:

At large distances from the wall, the neutral subsonic disturb-

ance dies off llke e , and .p.--_t ---> 0 as y---> _. In

this case, no energy is transporte_ into or out of the boundary layer
by the disturbance, and therefore there is no not exchange of energy
between the mean flow and the disturbance within the boundary layer

(cf. (146)). From the results of section 8, 7 =, 0, and hence the

r d _ must yanish_, if c _ 0 If d (w'_ does
_%t f-

quantity I ___. , _._tc " dy '±'/

not vanish for some w>l- l, the only possible neutral subsonic dis--.

t_'_b_nce is th_ one for _hic _ c _ 0 . _'_en __d _'_'_dy -T- vanishes, for

w = c s (say), then c equals c s for the neutral subsonic disturbance,

The condition that --- must vanish for some w > i---
dy M

is also sufficlent for the existence of a neutral subsonic disturbance.

As in the case of an incompressible fluid, the sufficiency condition can
be derived by means of an argument based on the fact that _(Yl; m) is

an analytic function of m (reference 1). For the purpose of this dis--

cussion, it is convenient to deal with the disturbance equation in the

}7
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aself-adjoint form (113). Suppose now that --- = 0 for some

Y >Yz, where w- cs (say). Then, by the necessary condition, the

phase velocity of the neutral distm_bance, if it exists, must be e_ua!

to c s . Now, [ (y) is positive continuous and b otmded ever._,_,here, and

hence q(y) is also continuous and bounded everywhere. Equation (1].3)

can then be integrated directly to give the retation

Y2
2

/

t_y

By choosing the value of _2 large enough, the quantity q + _2---_ can
• T

always be made positive_ since q(y) is bolmded. Now, for c = cs,

the solution q_(y) can be completely defined by the boundary conditions

r@(y2) = 1 _ Cs, (P'(Y2) + ct d/l- M2 (1- cs)2 9(22) = O. Therefore,

q_'(Y2) < 0 when _ > O, and from (157), O'(y) < 0 when q + .......>0.
T

Hence, the value of _ c_u be chosen large enough so that

q_(Yl) > q_(Y2)> 0 For a O, however, _(y) = w- c s and _(_I) _ 0

Since q_(Yl; _) is a bounded, continuous function of _ (sec. 2),

_(Yl) must vanish for some value of _ = _s > O. For a given value of

the Mach number, the value of c = c is determined from the mean velocity ....

temperature profile, and the correoponding value of the _requ_ncy _ _s

is given by the secular equation (109). The boundary-value problem for,

the case of a neutral subsonic disturbance is cozqp!etely solved.

From the distlu_bance equation (_!2) and the _ :_ _:_-_. _oun,.,a,_ ,_ condi ti ons,
it can be seen that for M < ! the singular so-u-_zon_ _" cp - ,_,,,,for

c = O, _ = 0 (infinite waveleng_l- and zero wave ve!oczty) always

exists, provided !in wz' c _/!'------I'4_ - I. If M .. !,-- -- - _ then in
C_ C_-9 _ 0

%.co
the limiting case of infinite wavelength, (_ = 0) the neutral subsonic

disturbance becomes a neutral sonic disturbance c _ I-- ; that

M /

is, the condition
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lim

c-=> _

Wz' .M2 _, . - M {i - c)'-

...............:=- = constant

TI

c_ __> 0

holds. The solution for q_ is a linear combination of (w- c) and

_3

P f T
/ "1 c)

5'

If M = 1.0, the condition

_l I C "_

lira + ......... = constant
c .--> o

Tz c_
_--> o

holds for the neutral subsonic disturbance, in the limiting case of in.-

finite wave!ength, and the s" ' _. T. zngu!ar solution _ : w exists .he sig--
nificance of these limiting conditions will be appreciated in the in ....

vestigation of the ass_ptotic behavior of the _--R curve for the

neutral subsonic distL_bance in a viscous compressible f].uid, which
will be carried out in a subsequent report.

(b) _plified __uc_ Damoed Subsonic Disturbances :

" --.- _ mustIt has been founa (see. 9) that the condition that __
T/I

vanish for some w > ! -- is necessary and sufficlent for the exist
M " -

ence of a neutral Inviscid subsonic disturbance. By analogy with the

case of' an _ncomp.._essib!e __luid, __t can be ezpected _',_hatthe condition

d <w'___ = 0 fo:_ some w > I _ l_ is also s_ff_clent for the existence
dy z I

M

of amplified subsonic disturbances ("ad "
jacent to the neutral, subsonic

disturbance
_ = _s ). If d_ <w'_] does not vanish for some

C
Cs_

1

value of w > i -_, it appears probable that except for the disturbances

59



NACA TN ""J,JO. 1].ip

c = 0, _ = O, for M< I, or c :: I -. I/H, _ = O, for M >-i, only

damped subsonic dlstuubancos"'''" can exist Jn the inviscid compressible- fluid.

d ("'7To prove that t].._econditJ.on ....... = 0 for I .......!

d.y _2-/ some w > ._,,,:T

is a s__qfi._j!.g.i_n,_ ' co..ud.ition for ±,hr-: ez, istence of s_._.uD].:T.fic;.d dis_,,-,_-.,._,..._

...... _...... z_'i_7.c is qu_.be si_]i L_-,.._:"to __",_+ _.t,ix _-,-. ...- . _" ....... -,,_.__ uso. 'the ......,_omp_'ess
ibie c;::._;e [reference 1). The fo.!.ioTin_ poizr[;8 are settled- (i) The

existe:o.oe of characberi,ttic values of c and r_ uear (c _ ) such
O _

that i_(c) = oi _ O; (2) the Si__gnof ci.

(!) It has already been foo_d (sec 7) tha", the _'" _
for +_......,_, • ,Jo_n,Jary condit:[ons

z e_.ation be t;.,Teent• -_.o-- - - ".... h.., ch&_cao-ter_,_blo _a_,_es of the form

c = c (_, _)

where c is an analytic fuuction of _, and H ;_- e_cept in the ne],3hbor

hood Ofistheatpoint omeC=valueO,_ = O. _n the ne_'hborhood.,._.,..- of _' = _s % O,

there__ then leastcJ c and of c for every-value of _ (real)_ and if

- _ r s, c mt_st be corn-ple:z; that is_ ci % O, for

the only permissible real value of c is c .
S

- ,T
(2) In the neighborhood of ec = _,s > O, ec and _ are un_.quet.y

related, and c _is an m_al.vtic function of _2. Then c(_ 2) may be

expanded in a Taylor's ,se:t'ies of k .... ks = cc2 -- ecs-:_ 8ro;_nd the point
_8 = C_S2: " "

s s _ dkJs + ----o-" _l \ _,_x'-)s + • • • (z59)

.....4, - o, -- 1, 3, -

Im (dkndnc) -_ O, and n is odd,__ them c i will always be positive for

some value of o: slightly smaller or larger than _s' For these values

axis°f(Clsec._),7aa).s°luti°n q)(y) exists which is valid all along, the real

6O
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The imaginary part of ( d c) can most readily be calculated by

successive differentiation of the differential equation (112) with re--

spect to k. If _(y) is a characteristic function, and c &rid k are

d_
the corresponding characteristic values, __ exists in the regions B'

dk

and R" (sec.,6) and indeed

dcp .85 85 dc

For the purpose of this discussion, equation (1!2) can be re_Jr!tten in
the form

L(_) =_" + ___,_. q + - = 0

where the primes denote differentiation with respect to y. By differ-
entiating (161) once with respect to k, the, following differential
equation for _% is obtained"

_, , k)

- .

- aoIT- + +_ ( +'_' ao ',.-_ _>do.j' _._) + T--f

(1_2)

"When k --> ks, c _ Cs, the corres9onding expressions for L(cpk)

and L(q0) wil! be denoted by Ls(CPls/)and. Ls(qgs), respectively. _2om

(16o) aria (z_z),
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2

: 4-
2 dq_ +<Is

If both sides of equation (163) are integrated between the limits Y = Yl

and Y = Y2 along any path in the region R in the. col_._lexy--plane, an

expression for is obtained. Consider first th.e inte_al of the
dk s

left-hand side of equation (163) :

Y2

.jl __ L._ _°_, _ , .= , ° _<.,,:,<,=_<=..,!
Yl - '" _Yl

Since (P (Yl; c, k) = 0 is an identity in k, q_s(Yl) = q)ks(Y") = O,

and the integrated expression vanishes at Yl. At the u_per !.!.mit,

• _(Y_; cs, ks),

'ks (Y_, cs, k

< dk Us
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Substituting these relations into (164) finally results in

s <gs _°'ks- 9'

,Y2

Yl
= a: + a2 <a_ s

where a_ and a2 are real constants.

The integral of the right-hand side of equation (164) is

_ro 2

. T dk s ".
Ym Yl

Y2 .

<(;>

-_ dy =
ac _%..:

_s

T
%: S

(:_6)

Equations (164), (165)_.:ud (166) 7ield

Y2

, _ dy + a:
T

&-.k-)s - ____
I: _ as

(167)

Y2 q_s2
In evaluating the

inte_als I_ and / ----dy, integrate _o_ _ real
T

j.v:
Y2

axis, except for the tez_m/P _s 2 _ dq'_ dy. Indeed, all the other
\
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integrals have real and finite integrsm.ds along the real ax_s. Thus,

the imaginary term in (]67) csn occur only w_._th the integral

oY2 2<dq)
dc s°lyI

the intogrand of which becomes infinite at Y = Y c"

By expanding the integrand in po_._erseries in the neighborhood of Y -Yc,
there is obtained.

( )Im Ii -

=+ 1{ ,, . i
r_y2 _c' _o et' (:,"-:..v"c)+ _- ,, (f _',,' _c (Y--Yo)+ • • • t (

Im tt ._i_._--. sc • • '-- /___:,__................... _. dy

l,,,,,,) (y._..+.o_._Jr_-,..+;;o._ (_-_y<_)+. . . c i1

"! 2w ' j J

(zd8)

from which,

Zz = _ epsci (1.69)
,. _ i (_jo,)2 ...

e _-_If q0s(Y)is a charact _stic function, _0 cam never vsmish (sec 8)
SC " '

_ono_, Z=.I." ¢ O, _LA-=
tl

cl must be positive for some value of _ __t_,_,=,,_. ,._, smaller or .larger
..... -.---.-..___--=-, __2L'_ . .

than _s.

")" must _%ot v_nish can eas_!y be re_The restriction that (_sw
C

moved by an extension of the foregoing ar_ent. By the physical nature

of the mean velocity-temperature profile, if (_w')' = 0 the quantity

_isw', must have a true extremum at the point Y = Yc w = cs and not an
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inflection; in other words, (_s_._')' must have a zero of od._(:l order at

the point Y = Yc. Therefore,

(2_n+l) ; c

_c

From (169), It can be seen that Im (d__.)s = 0 for m &" !. The differ-

ential equation (162) for _k is regu].ar in the vicinity of the point

Y =Yc, and therefore _X(Y) is real. Dy differentiating (162) suc--

cessively with respect to %, differential equations sine obtained for

--, -_-, • .., , which are a!l regular in the vicinity of the point
dka d.k _ dkk "

(k)
Y = Yc if k <: 2_+I. Consequently, fl"k is real for k < 2m+l. In

k

the expression for ( dd__. )s
a tern,_of the form

(dk / / (w a (
k ' do Nk /.'_,Y2 _)8 \'

... - o
"Yi s

always appears by analogy with (168) (All the other _• ue_ms in the ex-

( dkc'_ are always real. ) By virtue of (170) the im-
pression for __J[_/s 2

aginary part of this term vanishes if k < 2 m + 1. Eo_,_ver, if k = _n+l,
the imaginary part of this term is

i i2

2_+J i_ci _(

c

2Dl+ 1

Id c_
Therefore, !m (,

k dk am+:1. J
O, and ci> 0 for so_e value of _ s].ight&y

larger or smaller than _s" The proof of the existence of _mp!ified
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subsonic disturbances adjacent to the neutral subsonic disturbance

c = Cs, cc = % is thus complete.

It is quite difficult to give a rigorous proof of the existence of

ampli._._.ed subsonic disturbances adjacent to the neutral disturbance c = 0
= O, chlofly because c is not an analytic function of _ in the

vicinity of thls point° (See se_. 7 and 7c.) Although It does not seem
worth while to discuss the det_.ils, it can be shown by a method similar

to that utilized by Tol_en (reference I0) that # tic__

C = 0

s rea!,

is positive if .__ (,_._ > O, and RZ/d2ck_
Im dX'2 c=o i_dy " T _ ""- - JYl dk 2" c=o

is unfort_ately logarithmically infinite. The argument in this case

is therefore inconclusive. Of co_se, J.rom the asymptotic behavior of

_t should be possible to see that amolifiedthe neutral _-R curve, ._

subsonic disturbances do actually exist in the neighborhood of the neu-

tral disturbance c = O, _ = O, if the neutral disturbance c - Cs,
= _s exists.

I0. Some Further Discussions of Inviscid Dist_bauces

So far, only subsonic disturbances which are neutral or nearly neu-
tral have been discussed. These disturbances correspond to the im_ned_%e

_rhood of the positive real axis of the complex g_--Dlalle(i_ig. i__
It has not yet been possible to get any result regarding general non-

neutrall modes, except that they possess the property of being eit_ self_

excited and outgoing, or damped and incoming, and that no sharp change
in property would be expected Jn passing from subsonic to sonic and to

supersonic disturbances. The neutral sonic and supersonic disturbances,
however, do enjoy a special position. The former corresponds to the

branch point of _/g-V- at the origin, and the latter corresponds to the

cut i drawn in the !:__plane to separate the two solutions exp (±_ j_ y).

In the following sections, the neutral supersonic disturbance is

first considered. The transfer of energy is made the basis of this

investigation. In section !Oc, the case of the neutral sonic disturb-
ance is discussed briefly.

_Of course any other cut might have been used. This particular

one, howeve.r,-has the desirable property that one of the solut!ons

exp (± _j-_y )is in general ruled out by physica! requirements.
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(a) Ne__cessary Conditions__fo_r. the Existence of a Neutral Supersonic

Disturbance"

The results of the investigation of the energy balance for any type

of neutral Inviscid disturbance lead directly to the necessa.r_y conditions
for the existence of the neutral supersonic disturbance"

(1) If the mean flow in the boundary layer absorbs energy from the

_d /w'',]
dlsturbance, _ d_ \'T-If i < 0, c > Cs. The amplitude of the re-

-'Y=Yc

flected wave must be less than the amplitude of the incident wave.

(2) If there is no exchange of energy between the mean flow _nd

the disturbance, c - cs. The amplitudes of the incident and reflected

"WT{VeS _:"® eq} a±

(3) If the disturbance absorbs ene_,y from the mean flow in the

Y-'.JC

reflected wave must be _eater than the smT?!itude of the incident wave.

Of course i
.... _ _ tationary Mach waves, c< I , and _ is arbitrary. The s

M

c - 0 (_ arbitrary) can always exist.

The necessary conditions _or the existence of a pure outgoing or a
pure incomxng wave will be discussed in connection with the reflection

and absorption of the neutral supersonic disturbance. (See sec. lob. )

Formulation of the sufficient con ditmon_ in this special case has proved

to be a formidable task. In general, q(y) is not bounded at the point

w = c, and _ (y) is not bounded at the point T = M 2- (w- c)2 Con-

sequently, it is difficult to determine the sign of q0(yl; _) for large

values of % snd it has not yet been possible to carry through the type

of argument which served in the case of a subsonic disturbance (See
sec. 9a. )

(b) R_eflection and Absorp_tio__n of the Neutra_! Supersonic Disturbance:

By the action of the viscous forces within the critical !ayer at
w = c (c _ Cs) , a relative phase shift is produced between u __' a_ld
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v*' and the shear stress T =
T

p%*(u%',<-)_
ir.,:crea'__,e_(or _ecreaso_) rap-

idly from zero for (Y- Yc ) < 0 to the value _ k for (Y - Y c ) > 0
2

(sees. 4 and 6). Thus, the critical layer takes the place, in a sense,

of a wavy wall or irregular solid boundary, in reinforcing or partially

canceling de_ending on the sign. of i ........ ! an incoming
Ldy T/ c /

disturbsauce dt_ring the process of reflection.

From equation (!48), the shear stress T = _ k is also equal to
2

a, I
the expression _

2 T - M2(w-- c) 2

for z 9>I (see. 7)

!m (rp'_). Since _o ~ Ae
ia_ , -iws,"

+ ]3e

(Z
T =--k =

2 e JH(! - o) _. _.
" "'2 I" (]-7:[)

and hence, from equation (]_54),

i
' 1
t r,-+gC_ i-d

' -- --/ic
Ldy "T -

(].72)

By making use of equation (172) and the additional relation

}P'(z2)
i

(173)

an expression is obtained for the "reflectivitv" K = " ' define@ as

IAI _-

the ratio of the ener_, carried out of the boundary layer by the reflected
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wave to the energy brought into the boundary layer by the incident _ve
It is fo_d that

where

l+J

It follows that

"> _o (i j i<"I{<'-I Vher, J < , " i) (175)

The necessary condition for the existence of a pure outgoing or incoming
wave is

J = I

j-__]
.L-

In this case, the boundary condition at Y = Y2 is

q_'(:T2) + i-_(y2) = o

and

_2 i_ (5-2)i e -y-i
69
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In section 7c, it was remarked tllat a solution of the dist_bance

equation (ll2) satisfying the bo_dary condition $ = 0 at the wall

(Y = Yl, or y -O) could always be fo_d for arbitrary values of c

and m in the case of the supersonic disturbance. Such a solution is
(of. (131)

so that

(_6 •:

_y) - (w C) T 2n M 2)- k2n+l (y; c,
Z.._.

..... n=o

(178)

L_D

_P(Y2) (I - C) _ 2n M2 )= o_ k2n+l (,Y21 c,

n=o

CO

V 2nm'(y2)= (i o) = k'

n=o

2n+l (Y2; c, M2)

(179)

(18o)

,"30

mc - qg(Yc) = ---1 lira ( (w - c) 2 _-_j>_2n k'
w'O Y_> Yc L__

n=o

,M 22n+l (Yc; c ) /
_y

To yr,_'c(_o) 2 p_ /- T !,
=- <il + o_2 ......... _y , t (v-c)2 r ' ",'

, . - ..... M2 "[ a_.,.y+ . _, (18i)

",," T "J 5"_ _jc y_ - J [

It is assumed that the mean velocity temperature profile in any

particular case is known for each Mach number. Subject only to the re---

striction c < I- l, the reflectivity can be calculated for a series of
M

suitable real values of c. These calculations should give some

7O
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indication of the conditions under which apure outgoing wave or a pure
incoming wave can exist.

(c) Necessar2 and Sufficient Conditions for the Existence of a

Neutral Sonic Disturbance"

If the physical condition that both _ and _/p must be bounded

as Y--_ co is imposed, then in the case of the neutral sonic disturb_

ance, _ and q)'_ 0 very rapidly as y -_ _ (sec. 7c) and no

energy- can be transported into or out of the boundary layer by the dis-

turbance. The necessar._yycondition for the existence of a neutral sonic
disturbance is therefore (see. 8)

1
o=c s =I__ (182)

M

Unlike the case of the neutral subsonic disturbance (sec. 9a), the
condition c = cs is not entirely sufficient for the existence of a

neutral sonic disturbance. Because the physical significance of this
sonic disturbance is not.yet clear, it does not seem worth while to

discuss this problem in groat detail, although some mathematical results

have been obtained. A brief sketch of the arguments _nd results will be

given here. From equations (ll7) to (120)_ _ud equation (138), the so-_
lution of the differential equation (ll2) for m = 0 which has the cor-
rect asymptotic behavior in this case must be

There fore,

( 83)

_-- 0
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and hence,

according as

I ( 0 ) _ 0 ( 18 ) )

•/oo )_ T M2 dy < 0

!- (w- c) 2

On the other hand, an argument almost identical with that utilized

in the case of the subsonic disturbance (s.ec. 9a) shows that (p(O; _):> 0

for large values of _, if c = cs. Since q_(0, _) is ,:_.bo_mded con- "

tinuous f_ction of _, i_ff

poo r :_ M_
//0 <" -- ". ,. (w_ o)2 j

dy>0

_(0, _) must v_uis h for some value of _,> 0; if

Ma ) dy = 0

a non-trivial, solution exists for _= O} if

,_ _ T M2 _ dy < .0

0 -- "- ". (,,, _ c)_

it must first be determined whether or not q0(0, _) > qo(0, 0) for all

co, before any definite conclusion cmu be drawn. By employing a mod--_iea-
tion of the oscillatlon, or comparison theorem (reference ll), it can be

shown that q_(O, _2)> qD(O, _l)' if _2>_i, and therefore _(0, _)

is a monotonic increasing function of _. Hence, if,
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CO

r r T
j ..........._........ M2 dy< 0c)

O

no_solution of this type. exists l, with _ _ 0. (See end of sec. 9a.)
.._..- ..... _ ..... ,..... J _.

II Concluding D _^-. __sions

The above investigations of energy relations and the necessary and

sufficient conditions for the existence of certain types of disturb-

ance, though incomplete, serve to give a general understanding of the

stability problem in an inviscid fluid. Before proceeding to include the

effect of viscosity, the significance of the results will be discussed
somewhat in detail,

The distribution of the density of angular momentum across the

_. du
boundary layer is unstable if the quantity p has an extremum

dy*

-* "'* (I I)for some _ositive-value of u > uo -_ , where M is the Mach

number for the mean flow outside the boundary layer. From the equations

of mean motion, it is not difficult to show that the quantity

d (pw') d (w')
ay T

will always vanish for some value of w > 0 if the solid boundary is

insulated, or if heat is being transferred to the fluid across the solid
boundary. This can be seen as follows:

The dynamical equation for the mean motion
_._

iSubsequent investigation has shown that this is the case.

73
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gives

2---_

if

_( T
_o To

(m = 0.76 for air)

where the subscript "_" refers to the wall. If heat is transferred to

--. > o. o-

f ore, the quantity

must be positive for y* = yl _,._.Thus, _ _ncreases from some posi-
T _Y _

tlve value as y increases from Yl*. But also it is known that it

approaches zero as y_ becomes infinite. Hence, _ ---- has a maximum
T 8y*

d _.w'_ vanishes for some w > 0
at some point Y *L_ YI*; that is, dy \ T

If the solidboundary is insulated, (___) =_0_ and ( >, _,2 "_/
_Y_ I oy T __

= O. The above argument yields no conclusive result. By differentiating
the dynamical equation once more with respect to y*, _d utilizing the
equation of continuity for mean mot'zo_,_

74



NACA TN No. lll_

it is found that

_u .
Thus, ---_ must be positive for some Y* > Yl; and since --- < 0

3y* 2
By*

for y* < y[, it follows that the quantity _-_ T" 8-_,/ must be posi-

tive for some y_> .yz. Hence, tile essential conditions for the last

case also hold in this case. The same conclusion is therefore obtained.

However, if heat is withdrawn from the fluid at the so].id boundary

> 0 and ....... < O. The signs of the quantities

and A.._j.2will remain unche_uged as y* increase e.from Y*l in general.l

d _w'_ remains negative and will not vanishHence, the quantity __ ¥_/

Therefore, for M < I, if the boundary" is insulated or if heat

is brought into the fluid, it is certain that the laminar boundary layer

In a compressible fluid wlll be relatively less stable than the isothermal
Blaslus boundary l_yer in an incozpressible fluid, as far as the inertial
forces are concerned If heat is taken _- _rom the fluid, the flow will be
more stable. Although these conclusions can probably be extended to the

Except when the quantity T --. T gI/R

+ T-° _ TI-* Ts-*_ _w,-_o/ is verv_ small, where Ts - stagnation tem-

perature.
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case whenthe velocity of the meanflow outside the boundary layer is
only slight_ supersonic, no statement can as yet be madefor the general
supersonic case._

However, the critical Reynolds number defined in terms of free-stream
quantities may not necessarily be decreased by heating the solid boundary.
For in the viscous solutions of section 3, it is the kinematic coeffi-
cient of viscosity ne_ the solid boundary that enters. This coefficient
is increased by heati1_g3 thus leading to greater stability. Whether the
minimumcritical Reynolds n_nber _o_r stay compressible-fluid boundary laye__
at any Machnumberwill be greate_ or less than the value for the B!asi_
profile can be determined only by actual calculation. This question will
be settled for several representative cases in a forthcoming report by
somenumerical w_rk following methods to be discussed in the next part
of this report.

In a recent report (reference 6), Allen and Nitzberg suggested
that the "proper" Reynolds number Should be based upon ghe kinematic
viscosity at the solid boundary For small values of c* this

• J

is n ot v ery different from that at the critical layer, However,

they have assumed that the critical Reynolds number _u _ g ,_ is
_ ! cr

e,_tual te the critical Reynolds number for the Blas.ius profile, For the

case of insulated solid bounde_ies (eo g., airfoil s_faces), their

value of _u 5_ /_ o cr may therefore be too high.

• • r....

IFer example, for M > 1.5, it may not be possible for a subsonic

characteristic_oscillation to exist in certain cases, because in add:t..tion

to satisfying the equations of motion and the boundary conditions, _t
must also satisfy the condition c*> I ._ I/M.
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li! - STABILITYIN A VISCOUSCONDUCTIVEGAS

I_. General Considerations and Methods of Numerical

Calculations for the Stability in a Viscous Fluid

The foregoing inviscid investigations serve to illustrate the gener-.
al behavior of the pressure and inertial forces in the control of the
stability of the flow of a compressible fluid. These results can there-
fors be used as a guide in the investigation of the stability in a real
fluid at large Reynolds numbers. In the case of_the incompressible
fluid, very valuable information has been obtained by consideration of
a mo"i_n of the results in an inviscid fluid by the effect of vis-
cosity. The general conclusion has been reached that the effect of vis-
cosity is essentially destabilizing at very large I<eynolds numbers; and
it has been possible to obtain the asymptotic behavior of the neutral
stability curve for large value_ of the Reynolds number, also to give a
quick approximate estimation of the mini_mm_critical Re&_olds number and
ind_ed to compute the complete curve of neutrai stability. In the present
case, corresponding developments should also be possible, but the results
evidently depend upon the Machnumber. Any computation of the curve of
neutral stability must be carried out for each value of the Msahnumber of
the free stream.

_ing to the limitations of time, it has not been 'possible to carry
out these computations, The authors, however, laid. down the general plan
of the calculation of the neutral curve of stability 3 and repeated the
calculation of TietJens ftmction. Some of the numerical values turn out

to be slightly different from those originally given by TietJens (table I,
fig. 6). They agree very closely with the results of Schlichtingts later
calculations (table 2, p. 73, reference 5).

A method of numerical calculation very similar to that used in the
incompressible case will be outlinedbelow. It enables the curve of

neutral stability to be computed for each Mach num2oer as soon as the dis-

tributions of velocity and temperature are izuown for that Mach number.
Several such distributions have been obtained by if,a:rman and Tsien

(reference 12), by Crocco (reference 13), by _ons and Brainerd (refer-
ence 14), and by }i_antzscheand Wendt (reference 15).

Method of numerical calculation.- The calculation of the neutral

curve depends upon a proper evaluation of the function EIa, c,M _)

occurring in (10_) According to (108), its evaluation depends upon

the evaluation of q0ij and _j (i,j - 1,2) To evaluate these

functions, the invisci__ solutions (ll7) and (ll8) are used ' After a
little calculation, there is obtained

77



l
r

.I

(eff,ote._:) ue,_ , _4_ x__T

• = '_I*o)1:+ue_

O=U

_- [ j:

(±eT)

_'o) _+u_x(_ -- _

O=LI

00

= as_

0=I_

:-"7

¢0

t_oq_
"(O81) 10tr_(gT'I.),_o _ l_ _ s'g_oq._z2zot_. uo_Lu p_zodop a¢ 3:0 SOUT'SA

_TTT "OfZ_'_Z,VOV_



NACA TN No. Ii15

Substituting (187) into (i08) gives

! t _2_2_l (_22+ _ )

where k = k(c) is defined by

(z90)

By introducir<g the ftuuction

F(z) -
z - r(z)

(_9!)

and using the relation (189), (I05) may be reduced to the form

! i

(i + _) (u + _.v) wz c(,'.p<.o.2 + Pro2:-:)
F(z) = l + X (u + iv) with u + iv = I + (Tz)(' Pq%'::,)- _:Pa:,i: +

It is ncted tilat the quantities r_.'zs and r#22 involve the integrals

2 _ _rKen and Ken+z. These integrals _n_,'ol:.e

.i _._in the first step of inte6ration By substitut" _,. .. In_ the right-hs_nd -_';"_

-' it is not difficult to verify that theexpression into _2e + _.92e,

te_s involving Ki combine to give (_'_e+ _°_2. Hence, 't is conven-

ient to write

SubstitutiP@z this into (192) gives finally (with Y2 - Y_ = i)

The function

(193}

t T 4 _ " c,',-, ,':,-_ I' .................. dy and the __iteo.al_ involved in 9z2, qJl2,

•J (w ..o)2
Yl

and ¢ may be evaluated by methods similar to _hose used in the
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incompressible case. The si_ificance of bringing the final equation in

the form (193) is that the imaginary part of the right-hand side

Y2.

is mainly contributed by the term involving I T(w - c),_'2dy the

Tc w_ . This can be easily calcu-
imaginary part of which is -_ w,-__ -

G

lated. Thus, using the fact that k is usually very s_ll gives,
approximately,

T 2 r_,1_\Wl CFi(z)- -. :_/_c _ _o

where F_i(z) is the imaginary part of F(z). The relation (194)would

give a correspondence between c an& z. From this, the value of o2
can be easily calculated by means of (107). For more accu_'ate calcula-
tions, use is made of the relations

Fr(z) = (i + k) I_(i + ku)- kv__ _(i + ku) 2

2i(z)--(l+ _)_<(l+ _u)_

f
I (195)

(
9

where Fr(Z) is the real part of 2(z). Using (194) as the initial ap-

proximation, a method of successive approximations can be developed

exactly as in the incompressible case for the calculation of @3 R
for given values of c. The complete n_meri_al calculation will be
carried out for a few t_pical cases.

California Institute of Technology,

Pasadena, Calif., November 15, 1944.
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Table I.- Functions F(z)

0.89161

.78969

•71970

.66931

.63143

.6oi44

._7599

.9_=30

-773

•49952

.464.56

.41947

3 _ I_

.28802

.203.52

.11800

.o4698

.00240

,o2z6o

.01477

Fi

-0.35025

-.27310

-.21213

-.16009

-.11274

-.06741

.-.02226

-.02395

-. 07203

+.12220

.17391

.22520

.27193

.30705

.32130

.30721

.26959

.208ii

.14475

.09879

F(z)

0.80630

i.770i2

2.26836

2.44985

2.48i04

2.43 927

2.35196

2.22724

2.06929

-2.298_4.

-I .71669

-!.18600

-. 75892

-.41253

-.i2348

+.ii9i6

.31558

!. 85566

!.68938

i.49726

1.32_!6

1.18429

1.07982

I.C" - r_),±Io

.97361

•96056

•95989

.97659

.46043

_37P

•58082

.56401

.5io74

.43560
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Figure i.- Region of validity of the asymptotic expansions of

the regular solutions for C i > 0.
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stream outside the bo'_udary layer.
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Figure 5.-Distribution of Wronskian, _(y), and shear stress,_(y) for the invlscid,
neutral supersonic disturbance.
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