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NATICONAL ADVICORY CCMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1115

INVESTIGATION OF THE STABILITY OF THE LAMINAR
BOUNDARY LAYER IN A COMPRESSIBLE FLUID

Ey ILester Lees and Chia Chiao Iin

SUMMARY

In the present report the stability of two-dimensional laminar
Tlows of a ges ig investigated by the method of small periturbations.
The chief emphasie is placed on the case of the laminar boundary laver,

Part I of the present report deals with the general mathomatica
theory. The general cquations governing one normal mode of the smal
velocity and temperature disturbances ars derived and studied in great
detail, It ie found that for Reynolds numbsrs of ths ordsr of those
cncountered in most aerodynamic problems, the temperature disturbances
have only & negligible effect on those particular velocity soliutions
vhich depend primarily on the viscosity coefficient ("viscous solu-
tiong"). Indeed, the latter are actually of the same form in the
compressible fluid as in the incompressible fluid, at least to the first
approximation. Because of this fact, the methematical analysis is
greatly simpiified. The final equation determining the characteristic
values of the stablility problem depends on the "inviscid solutions" and
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the function of Tietjens in & menner very similar to the case of the in-
compresgible fluid, The second viscosity coefficienit and the cosfficient

of heat conductivity do not enter the problem; only the ordinary coof
cient of viscosity near the solid surface is involvoed.

Part II deals with the limiting case of infinlte Reynolds nuwdbors,
The study of energy relations is very much cmphasized, It is shown that
the disturbance will gain ensrgy from the main flow if the gradiont of
the product of mean density end mean vorticity near the solid surface
has a sign opposite to that near the outer edge of the boundary laycr.

A general stability criterion has been obtaincd in toerms of ths
gradient of the product of density and vorticity, analogous to the
Rayleigh-Tollmien criterion for the case of an incompreszsible fluid. If
this gradient vanishes for some value of the velocity retic of the main flow

\

cxceeding 1-1/M (whers M is the free stream Mach number) ,
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then neutral and self-excited "subsonic" disturbances exist in the in-—
viscid fluid. (The subsonic disturbances die out rapidly with distance
from the solid surface.) The conditions for the existence of other
types of disturbance have not yet been established to this extent of
exactness. A formula has been worked out to give the amplitude ratio of
incoming and reflected sound waves.

It is found in the present investigation that when the solid bound- -
ary is heated, the boundary layer flow is destabilized through the change
in the distribution of the product of density and vorticity, but stabi-
lized through the increase of kinematlc viscosity near the solid bound-
ary. When the solid boundary is cooled, the situation is just the
reverse. The actual extent to which these two effects counteract each
other can only be settled by actual computation or somc approximate
estimates of the minimum critical Reynolds number. This question will
be investigated in a subsequent report.

Part TIT deals with the stability of laminar flows in a perfect gzas
with the effect of viscosity included. The method for the numerical
computation of the stability limit is outlined; detailed numerical cal-
culations will be carried out in a subsequent report.

INTRODUCTION

In a recent paper (reference 1), one of the present authors has
clarified the theory of the stability of two-dimensional parallel flows
in a homogencous viscous incompressible fluid. The experimental inves-
tigations of H., L, Dryden, G. B, Schubauer, H. X. Skramstad (reference
2) and H. W. Liepmann (reference 3) agree with the calculations made by
Tollmien (reforence 4), Schlichting (reference 5) and those given in the
paper quoted (reference 1). Because of the increasing imporitance of
phenomena of gas flow at high speeds, it seems natural that the investi-
gation should be extended to cover the case of a gas, taking into ac-

count the effecte of cowpreseibility and heat transtfer.

The interest in this problom is further enhanced by the fact that
disturbances of finite amplitude in high-speed flows are known to have
the tendency of bullding themselves up into shock waves. It is there-
fore possible that instability of high-speed laminar flows will lead to
shock waves instead of turbulence.’ Although an instability theory in-
volving only small disturbances would not be able to settle this point,
it at least paves the way to such an investigation.

1
This possibility was first pointed out to the authors by Doctor

H. WV, Liepmann.

n
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The present report is concerned with the gtability of two-
dimensional laminar flows of a perfect zas, subject to small disturb-
ances. The chief emphasis is placed on the case of the boundary layer,
It is hoped that the results may throw light on the general features of
the relation of compression waves with the boundary layer, that it may be
knownhow the gtability of a boundary layer is affected by the free
stream velocity, and by the thermal conditions at the solid boundary.

Ag in the incompreszible case, only small two-dimensional wavy dis-
turbances will be considered, Unfortunately, there is no rigorous proof
in the present case that these disturbances are more unstable than the
threc-dimensional ones, But the results of the incompressible case to-
gether with some physical considerations seem %o Justify such a treatment,
which naturally simplifies the mathematical analysis to a large extent.

One essential difference of the yresent problem from the instabil-
1ty problem in an incompressible fluid i the presence of an appreciable
interchange of mechanical and heat energles. Anothsr is the fact that
the flow velocity is of the same order of magnitude as the velocity of
sound, The present investigations, however, roveal that the chief phys-
ical mschaniem ie not changed. That is, the stability of two-dimecnsional
parailel flows depends primarily on the distribution of angular momentum
of an element of the fluid, and on the effect of viscous forces, but not
directly on heat conductivity. The viscous forces infliuence the staeblility
of the flow both in building up the dlsturbance by increasing the
Reynolds shear stress and in destroying the disturbance by dissipation.
(Cf. sec., 1h of reference 1.) In the present case, however, the angu-
lar momentum of a given volume of the fluiad depende vpon the product of
density and vorticity. Thus, the gradient of this product plays the
same role as the curvature of the velocity profile (gradient of vortic-
ity) in the incompressible case, Moreover, since the magnitude of
viscoeity varies with temperature acrogs the flow, there is an uncer-
tainty in defining a Reynolds number which will properly describe the
stability characteristics under various conditions. It is concluded
from the present investigations that the viscosity coefficient in the
neighborhood of the solid boundary is important., This tends to Justify
the process of Allen and Nitzberg (reference 6) in estimating the criti-
cal Reynolds number for the boundary layer of a compressible fluvid, so
far ag their treatment of the viscoslty coefficient is concerncd. They
have, however, neglected the effect of the distribution of angular
momentum in the fluid,

It 1s found in the present investigation that when the colid bound-
ary isg heated, the boundary layer flow is destabilized through the

change of distribution of angular momeritum, but stabilized through the
increase of kinematic viscosity near the solid boundary. When the solid
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gradient of temperature and the curvature of the vclocity profile. These
are serious omissions., Their significance will twrn out in the process
of the present investigation.

This investigation, conducted at the California Institute of
Technology, was sponsored by and conducted with the Tinancial assistance
of the National Advisory Committee for Aeronautics.

- ’ 4 »
The authors are indebted to Professor Theocdor von Karmen for ruper..

vising the work and to Professors Clark B, Milliken =znd H. 8. Toien for
their interest and discussions.

IS8T OF BYMBROLS

Charac-

Dimensional quantlties Dimensionless

Positional c¢oordinates.

(3) £ t 1/%

Velocity components in the directione of the x- and y-szes, vesuechively

() S A W wlr) o) E O
w0 51 iz - ct) -
(5) vV o=V o+ ¥ v o= ap(yle Ug
Components of stiain tensor
% X wt . .ot L
(6) €xx = exx + €xx €xx = €xx + €xx up /1
‘ _ ot - t S
(7) € Xy =€ Xy + € Xy EX;]' = ny -+ E_.:" U.() //Z
* - 1 - ' ' -
(8) “yy T Cyy teuy “yy T fyy * Sy vy /1
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Charac-
teristic
Dimensional quantities Dimensionless guantities measure

Components of stress tensor

* -¥ *t - ] -
(9) Tox = Tux FTox Tex = Tax *Tx P,
(lO) * - ¥ %1 - 1 _*
T =T T T =T + T
xy - xy txy xy T xy Y xy Po
(ll) ¥ ¥ %t - ] -%
= T T =T + 7T
Tyy =Ty Y Tyy vy~ vy Ty Po
Density of the gas
* o= *1 fa(x - ct) .
(12) P =p +9p p(y) + xr(y)e « o
Pressure of the gas
* ¥ *1 1al{x - ¢t -%
(13) P =5 +7 B(y) + n(y)ei®* - ) P,

Temperature of the gas

* -¥ *? - g
(1) e B e (y) + 6(y)el™* - ot) T
Coefficients of viscosity of the gas
% - 1 ) -
(15) My = M1+ W ba(y) + m(y)elx - ct Hyo
s LT * ia(x - ct) =¥
(16) HS = pp + pp wa(y) + may)e THR
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Charac-
teristic
Dimensional quantities Dimonsionless quantitics measure
Thermal conductivity
% % *t 1 1 lalx - ct ~%
(18) kK =k +Xk 5 1 (i) +g—k(y)e ( e i
¢
Wave number of the disturbance
* " I}
(19) a = an/: o = 2n/\ 1
Phasc veclocity of the disturbance
. X
I .
(CAO) c C Yo
Specific heat at constant volume
(1) Cy 1 Cy
Spocific heat at constant pressure
Gas constant por gram
i *
(23) R y - 1 Cy

Acceleration due to gravity (in the nogative direction of the y-axis)
2

a
(2k) g =z u, /1
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guantities

o]

Dimenesionles

Froude number

*

(25) Feo—

<\\
o)
o~

Reynoids runiber
(26) R = pouyt/u,

Mach number

(27) M

i
o
‘\\'
~
~2
a4
=
o

Prandtl number

% %

(28) o = cpﬁl/g

3 er, the boundary-layer thick-
ness ® will in general be taken to be the characteristic length; .for
some purposes, the displacement thickness 8; will be used. A bar over
a guantity denotes average value, & dash denotes fluctustion; and the
subscript ( )o denotes free stream value in the case of the boundary

Remarks: For the case of the boundary layer

layer. The subscripts  and 5 denote the real and imaginary
parts of a quantity, respectively. '

I - GENERAL THECRY
1. The General Equations of Digturbance
The general equations of disturbance for a perfect gas which is
flowing parallel or nearly parallel to a given direction will now be de-

rived. Ag has been explained, only two-dimensional motions with two-
dimengional disturbances will be considered.
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With the systom of notation cxplained above, and with positive y-axis
pointing vortically upward, the gereral cquations for two-dimensional
motion of a perfect gas may be written as follows:

(a) Equatione of motion,

u o e d ey T
U u u 1 T T
o e — e (2 (1)
ot ox dy p ox oy
“ % % S *
I I L 3Ty 373'3')— g (2)
3t dc* dy*  p* N ax* y*

(b) Equation of continuity,

S 9p* 3 O/ vx) =
St:; + :\_)\F (p*u") + '“a’:;:x- (p%vé() =0 (3)

(c) Equation of cnorgy,

* —
o*CvraT* +utel . V*M 1 (Tx €xx+2Txy €xy + T3y €5y)

3t o™ 3y J
M
=l :;Tc as ( :; ) ()
(d) Equation of state,
R (5)

In these eguations, Gxx: cxy, eyy are the components of the rate-of-
strain tensor, and Ty, Txy, yy are the components of the stress

tensor. They are defined as follows:
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x Bu* * l;f;_j;+ av*\ * = éﬁf (6)
Cxx T 3p% 0 “xy T o \igg* Bx*) ’ €y oy
n* 2 ¥ ov*
¥ ou * ¥y [ O 2V
Tyxx © -p" + 2 BX'X + 3( Ho - pl) < ax* + v *
N ¥ %
* 3/ Ou ov
Ty = H1<“‘: + (7)
Xy dy Ox* (
* * *. Bv* 2 * * Bu* Bv*
Toy = = 0P+ 201 T+~ (Hz - H1) w T o«
I3 ay 3 ox oy J

The coefficients of viscosity ui and uZ and the coefficient of
heat conductivity Xi are essentially functions of temperature. Hence,
there results a system of five differential equations for the five
variables p¥*, T*, p*, u*, v¥*.

Consider a motion which is slightly disturbed from a steady state.
Then 1t is convenient to separate any quantity Q*(x*, y*, t*) into a
steady-state part QF (x*, y*), and a small disturbance Qx'(x*, y*, t*)

ax(x¥, 7%, %) = QH(x¥, 7F) 4 @' (x¥, y¥, t¥) (8)

By substituting expressions of the type (8) for each of the variables
into (1) to (7), remembering that the steady-sgtate parts satisfy those
equations by themselves, and, finally, neglecting terms quadratic in
the small disturbance, the following system of equations of disturbance
is arrived at:

-

N G- VY i (’;* ! au*w
——— fuEt =yt e + K
at” \ ox™ Ay ™ N ox* oy* ~
Sl mEN e*! T om
=}_.-K xx o S xy> - 2< XX, XY > (9)
- % - ! - X-
P ‘BX* By'x P a_x“% dyx

10
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.t % ¥ e * 3
VAR - - A N A v
[ *: * -
— + —_— 7 — ) +(\n = + Vv <
ot Voodx oy / ox dy
N xt %1t *1 % ¥
/
1 f“icy vy | P /aTxy Oy
= ‘-_\ { % + ¥ - X2 ¥ * * (lO)
p \ox oy ) \ax dy
P
> > ES B BEINES | *t _x % %t
e, \/p u+pu>+._a.___<p V +p V >=O (11)
% *
ot X dy
/ P ] *t »t % \
=%y =% o7 =% T *P JT *1 T
C.o| — 4+ U + v - u o —
v * 7 ¥ *
. ot ax dy ox oy
% ¥ ¥ %1 -
VT ST S A /-e« 3T ¥ 3T
+ Cyp +u + v = + _—
\ N N * * \ s ¥ *
\ O% o dy 3x ox ox
X =%
a /-*BT %t BT o x ¥ xt % * !
+ " k " k » +(\TXX€XX + QTXyejxy +Tyy Eyy
Ay oy Sy
*t % *t ¥ * ¥ _%
+<Txx Cxx * Txy exy *Tyy eyy) (12)
*1 *>t Xt
p p T
e (13)
b p
where

11
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(Relations of this type, of course, do not hold for the disturbances.
- By considering only e local region, say around x¥ = X¥*,, and introduc-
ing the boundary-layer approximation, the flow is regarded as essen-

kR

tially parallel, with every mean quantity § evaluated at x* = X¥%q5,

Thus, for parallel or nearly parallel flows, the differential equations
of dlsturbancc do not contaln x* &and t* explicitly and an atternt
may be made to find solutions of the type
L ¥, % g (x et .
Q (x>yst)=q (¥ )ecn(X ) (17)

Indeed, every guantity will be rcAuced to a dimensionless form in
accordance with the scheme listed (List of Symbols); for exanmple,

P ¥ #1 L% ia{x-ct) e
A T TR e (12)

For the pr aﬁa¢tlonl¢ restrictl
. a2 r( -

veloclty ey tem?aratu"e Ty, and so forthy w

(T)

":5
C*
Foct
=20

lhcn the

final dimengionless and lineerized equations

1
dlsturbances 'n o parallel or nearly pax

[ v | S ot Ha te ;
ap i(w - ¢)f + w ca« = oo D00 e AT 4 @ (it 2F) -
1Y o .,}
YM o

p M2 - M1 SN P . \L
-+ IR & A 1 f 4 .i.";) i
3 R L '

{ [} \I
+£M{mw“+miw‘+uﬂf‘+iwmw (19)
R 1 J
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A} 1 [J-lGJ t A
a“p {ﬂw-cmt~ ~£;»£~+fmﬁﬁd - if -a%}
J M = Fe R 8

3 R J
. Tt o) 3
+-§§w{lnuW' + 2WQ  + §»(ug - uy) (o' + if)j— (20)
(v - e+ ple'+ 1f) + p'op =0 (21)

( 9
ap { Hw - ¢c)o + T'@}» = -a{y - L)pT(o' + if}
L J
7 1t " Tt 1t
= (8 - &0) + (T ) 4+ b
Rog J
-1y . f 12 t ot .
+ 7 (y_m_._) M2 ﬂi mw o+ 20w (f + .«c,'))jL (22)
R
T r 6
. =-E) + 7 (23)

The following two dimensionless egquations for mean quantities should
also be noted: '

Equation of state,

p = pT (2k)

1k
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Equation of static pressure gradient acrose the boundary layer,

In all these equations, and in all subsequent equations, a dash denotes
differentiation with respect to the dimensionless variable ¥y, and
should not be connected with the idea of a fluctuation. For example,

, Qi duy ar

dy dT dy

vhile the fluctuation m; is given by

m =8 (27)

Note that in (18) a characteristic velocity has been used as the
reference variable, This stresses the role of the inertial forces., In-
deed, the simultaneous comparison of the inertia forces vith pressure
and gravitation, as embodied in the Mach number

-
u
M=2°
*
c
%)
and the Froude number
-
Foae=
.
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:

mekes it difficult to consider the limit of small inertial forces

ﬁé > 0. For in such a limiting case, the phenomenon is essentially
governed by pressure and grevitational forces, which both become in-
finitely larte compared with the reference imertial force. In aero-
dynamical problems, however, this limiting case is not of importance.

Mathematically speaking, a singularity is brought into (20) if the
neighborhood of F = O ig considered. Thus, it is possible to study
only the case of & small Mach number. The limit of vanishing Mach num-
ber and vanishing Froude number can be considered only wvhen r = 0.
These statements will become clearer after reading the detailed discus-
slons in mection 3.

To study the case of an extremely large Mach number, on the other
hand, it would bte more convenient to use the stagnation or "rest" val-
ues of preesure, density, and temperature as characteristic measures,
ravher than the free stream values.

2. Analytical Nature of the System of Equations
of Disturbance and Its Solutions

The system of equations of disturbance (19) to (23) consists of
Tive linear equations in the five variables £y 9, n, r, 9, with »p,
P, T, w supposedly known from the steady-state golutions. Before
applying this system to any definite problem, it is necessary to know
clearly its analytical nature; for example, the number of sets of line
early independent sclutions it possesses must be known. It is also
desirable to know the general enalyticel nature of the solutions in
the variable y and in the parameters MZ, ¥2, R, a, and ¢. In all
these discussions of analytical nature, both the variable y and the
parameters will be regarded as complex.

To settle these questions, it is convenient to choose a number of
new variables Z3, . . ., Zn and rewrite the system into the form

n
dzi X7
....... = ," "“‘13 <y) ZJ (i = l, 2, o s ey n) (28)
v 3=

where Ajs are known functions of y. Since (19), (20), and (22)
involve the second derivatives of f, @, &nd 6, it seems desirable

—
O
{



NACA TN No, 1115

?
to choose the six dependent variables as f, o, 6, f', m', 6. In

this way, the equations can be set equivalent to six equations of “the
type (28), if r and n are supposedly solved algebraically from (21)
and (23). It is seen, therefore, that the system of five equations (19)
to (23) is actually equivalent to six homogeneous linear differential
equations of the first order, and there are six linearly independent
solutions.

However, this choice of the dependent variables is not satisfac-
tory. It leads at once to the suspicion that the solutions have
singularities at the point where w = c. For, in solving for r from
(21) & singularity is introduced into the coefficients Aij(y) of the

system (28). Physically, the solutions cannot have such a singularity
for real values of y. Hence, it is necessary that such a singularity
be only apparent. Indeed, this can be shown to be true by a new choice
of the dependent variables.

To be more precise, let it be assumed that the known functions w,

1
P, p, T are analytic functions of y and of the parameters M?, .

72
These functions may be regarded as independent of the Reynolds number

R, when the characteristic length 1 is properly chosen. This assump-
tion is related to the boundary-layer approximation, and is therefore
accurate up to the same order. For example, for the Blasius profile, it

is accurate up to the order of (R%)-l/e, ® being the thickness of the
boundary layer.

Now choose the system of dependent variables

Zy = T, Zp = £7, Za = @ “)
.& (29)
it
Zy = — Zg = 0, Zg = 0! i
M -
Then, at once,
aZy
— = 22 (30)
dy
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The equation (23) becomes

M7, -

4
it
el o)
=D
D3
(6!
—

wvhich makes it pogsible to eliminate the variable 1 without increasing
the order of the differential eguations and without introducing any

» 5 1
singularity. Then from (19}, (21), and (“3) Ive for Z ., Z'g, und

&g s which, when reduced with the hélp of (?O) to (32) are equadions

of ke type (28) with Aij(y) regular in both y and the paramcters.

The equation for Zy 1is

v}

VAN o! [ 3 1
— s Ra - 3 ) o - . 22
= =iy - Zg = i{w - ¢) A Ly + = Zgi (33)
& 3 i N pos i S
v 0 D = >
Sy b jS -

but the other two ecuations are too lengthy to be written out exzplicitly.
They are of the following general nature:

J Pi(w - )2 + W,Z3
dy My L -

,-N__-,
+
bt

v
-+
(@)

N
:‘..J
—r
—
[#

e
o
S’

where O(1) denotes 2 linear Function of
order of unity in the paremeter R end is regular in the pa:
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1
The differential equation for 2 4 must be obtained from (20) in a

slightly different manner, It is necessary first to eliminate @J by
using (33) and then solve for =' = M?Zi. There is obtained

o ) 1
42, (l + yM® 53_.(ug + 24 )(W ) T

&y - R 3 p J
X { .9 M7, - Lz, ) la(w - c)pZy +-§->(J)} (36)

p T

where O(1) has the same general meaning as before. It is noted that the
last step is the only division involved in this process of elimination,
Thue, unless

-_a_'.»?— (‘-‘2 + 2“1) v-° =0 (37)
R 3 P

1+ yME

(which is not possible for |R| >> 1), the system of differential equa-
tions (30) to (36) is regular in ¥y and in the parameters. But since
the regularity breaks down for infinite R and for R eatisfying (37),
any expansion of the solution as a power series in R must be in the

1 ot
form of Laurent series. In the parameters T2 and Mg, the coeffi-

cients are entire functions; in the parameters o and c¢, they are
analytic in a region including the origin.

From the general existence proof of the solutions of linear differ-
ential equatione by means of successive approximations, it is clear that
these properties of the coefficients persist in the solutions. That is,

there exists a fundamental system of six solutlons Z, (y, Mf, l/FE,

R, a, ¢) (1 =1, 2, 3, L4 5, 6) wvhich are apalytic functions of
y and of the parametors.

Now consider a few limiting cases: (1) M2 —»0, (2) 1/F2—0,
(3) R-->=. As discussed at the end of section 2, if M—=>0 by

19
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maxing the velocity ﬁz ~=> 0, then F? and R approach zero at the
same time. This ies certainly not what the authors wish to discuss. Rath-
er, they are thinking of the solutions .Z; as expanded in power

series of the parameters, say,

0
Zy <y; ¥, L, B, aq C> = zﬂ,’ (v; =, R, @, ¢ >
F2 \ F2

L, R o cN+... (38)

+ M?z§1)<y; - )
F

and retaining only the zeroth order term as an approximation. This
process is valid so long as M? is sufficiently small compared with

unity, while both F2 and R are of their usual megnitudes (namely,:
much larger than unity). For convenience, the mathematical process
M® —> 0 will still be preserved. But this must not be confused with
any physical requirement that ﬁ:---~> 0 or 62-—;» =, the latter
being in contradiction with the equation of state. The limiting case
R ~» = 1is an asymptotic approximation and will be dealt with more
~carefully below.

Case (1) M —> 0. With the relation (24) in mind, the equations
(19) to (23) become (w = n/yM3)

r !1 p'l " ~ ]
a.p\i(v~c)f+wcp(=iw:+-——- £+ a“(i9 -2f)}
|\ 5

J R .
s2H2 - \‘r.f + icpq, a? +-—‘Lfmlv" +mw o+ (f o+ iccacp)} (39)
3 R - J R L

. 20
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( . e () Y ooa My - Myl
apq i(w - c)@l = -0 . - L2 - ift' - aRo ;u—ig & 1{@ + if'1
“ j T2 R L J 3 R . ,j
+‘gL(imlw' + 20 +=g~(u2 - (e + if).l (50)
R 3 J
i(w - c)r + plo' + if) +'p'® = 0 (k1)
‘(‘ t \ - 1 .
ap < i(w - ¢)8 + T Q(’= ~ay-1)pT(p" + if)
. v
Y [ i 5 [N 'r' \
+ - Tpg(e - &) + (mT ) + pad (h2)
Rco i J
r 6 \
0 =— ¢+ — (43)
p T 7

The fact that equation (25) reduces to p' = 0 indicates that the grav-
itational force is important in these probleme only insofar as the
buoyancy corresponding to density fluctuations is concerned and not in
connection with the determination of mean density distribution.

This set of equations (39) to (43) ie different from thut used by
Schlichting (reference 7), who neglected temperature variations but in-

cluded density variations. In his case,.(he) yields the condition of
incompressibility

o' + if =0 (hos)

and (41) becomes

o~
gz
[
5

R

ilw -clr +p'p=0
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-

He also made certain other minor reductions in (3%) and (40). The jus-
tificatior of Schlichting's asgsumptions is not obvious. Also, his
complete equation of disturbance (equation (11), p. 379, referunce )
has & singularity at the point where the phase velocity is equal to the
mean velocity of the flow, This gives rise to multiple-valued golutions,
to which it ig difficult to assign a proper physical interpretation,

Reduction to the equation of Orr and Sommerfeld for an homogeneous

incompressible fluid.- This simple case is obtained from the llﬁltJlQ'

case of zero Mach numwber with the additlonal requirements that the mean
pressure, uwean temperature, and mean density are constants., Those cone
ditions can hold only in the case where there ig no conduction of heat
across the boundaries. Otherwise, there must be a finite temperature
gradient at the boundary. When p, p, T are constants, indeed
p=p="T=1; then the equations (Ll) to (43) give

i(w - c)r+ (p'+ if) =0 (4k)
r+ 0 =20 (45)
. . L " 203 L
iC(:(‘n' -‘C)e = e }llo(a - oYy (K})
ko
o
Multiplying (L46) by 0, adding the corresponding complex conjugate, and

integrating between the boundaries along the real axis of the y-plane
gives

e : Je
-2 /' fe; dy - 2(o2 + GRUOCi/Hlo) ,/‘ie’gdy 20

uyl ] V1

Pl B

if the bou

‘»mt‘~~ hon

211y zero only when

colution of
3 < - amofo R (47)
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Thus, if the main interest is in the limit of stability (Ci changing

sign), only the solution 6 = O need be considered. Then r =0 by
(45), and the equation (L4) reduces to

9" + 1f = 0 (4he)

The equations (19) and (20) then become

1
ie(w - ¢)f + aw'® = -iaw + — (£

/ (48)

Eliminating o from these equations and then substituting f from
(Lka), the equation of Orr and Sommerfeld is obtained.

Cage (2) F2 .5 ». In this case, all the equations (19) to (25)

remain unaltered, except that the terms in l/F? should be dropped from
(20) end (25). This is the case which will be discussed more in detail,

Case (3) R _-——»ow. In this case, the equations (19) to (23) become

o) (i(w - c)f + W'QW = - iﬁ: (49)
L J v M2
c t
o ia®(w - c)w1‘= L (50)
i(w - c)r + p(@' + if) + p'9 =0 (51)

23



NACA TH No. 1115

N
T
5
il

e

Q{ﬂw-c)G+fﬁw}=f(7-3jdﬂ@f+if)

Tt r 6 N
— g (53}
» o . T

The equations (24), (25)
orders of the differential equations are reduced, This ig consistent
with the fact that the solut*on have an essential singularity at

R = o,

After the climination of r, =, r, 8, the final differential
equation for © reads

a - clo' - w'e F(w - 1 .
¢ {(W‘ ni} W f?_ o (w ()¢'='t: (o) (54)
dy LT - M(w - ) T 5e =

where L (@) is a linear expression in ¢ involvinz o' and o.

-

The boundary-value problems.- For a given physical problem, there
are usually assoclated certain boundary conditions on the disturbance.
For exeample, for flow between Tixed parallel plates, the velocity dis-
turbances must vanish at these plates. Also, if these plates are
insulators, the temperature gradient mmst be zero. In general, therc-
fore, 1t may be expected that six boundary conditions will be uatimPiad;
Since there are gix homogeneous linear differential equations in six
variables, there is a characteristic-value problem if the boundary COnN-

ditions are also homogeneous. Leb

"represent  a complete system of 8ix sclutioms, and let the boundary
conditions be

5) remain unchanged. It is to be noticed tiant the
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kazl, Zs, ., Z5}=O at y =3, k=1, 2, ..., 6 (56)

where Ly is a homogeneous linear function. Then if the solution is

6
=
Zi = )’ AjZij(y) i = l, 2, e s e 6 (57)
J=1
there results ’
° N
\_~ " r Lyd 7 )
Ajlk; le(yk): éaj(yk); ey LGj(yk)_j = 0.
4 (58)
k=1, 2, , 6
J
Hence, there followe the secular equation
. 1 I
Lp(¥, ~_, R, a, ) =0 (59)
| F= !

where
L= T (22 4(7i),  Zoi () z (5
Jk Lk | 13 Fx/s 24\ - . 6d

d k=1, 2, ... , 6

If equation (59) can be solved for c, there results -
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74 s 1
c=cla, B, M, ____> (61)

2

For real values of «, R, M and l/Fz, it is convenient to split
(61) into ite real and imaginary parts,

1 o
cr=cr<d, R, M3, _ > - (62)
Fe
. v / ) 5> 1 \ 6
(Ji = Ci Ga, R_, M y —— ( 3)
\ 72/

The condition c; = 0 gives the limit of stability.

For incompressible fluids without the effect of gravity, plot the
curve ci{a,R) = 0 in the o-R plane. Here, it has to be done for a
serles of values of M2 and 1/F°.

Continuous characteristic values.- In case ome of the conditions
(56) is absent (cf. the case of "supersonic disturbances"in a boundary
layer, sec. 5), no such relation as (61) exists, and a solution satisfy-
ing the remaining five boundary conditions (and certain other conditions
of boundedness) can always be found. This is the case of "continuous
characteristic values." The physical significance of such solutions
will be discussed as the case turns up.

3. Golution of the System of Differential Equations
by Method of Successive Approximations

The exact solution of the system of differential equations (19) to
(23) or rather (30), (31), and (33) to (36) is almost impossible. With
the appearance of the small perameter 1/oR 1t seems desirable to use
the method of successive approximations. The general plan of solution
will be exactly the same as in the case of an incompressible fluid (ref-
erence 1). Two methods of solution are possible, the first using con-
vergent series and the second using asymptotic series,
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(1) Solution by means of convergent series.- In the first method,
introduce the parameter

and the new variable

(64)

n=(y-y)/e  whore w(ye) = ¢

(65)

The equations (30}, (31), and (33) to (36) then take the following forms:

dZy
—— = s (66)
dr)
dZ5
— =¢Zg (67)
dn
iz, o' [ M 1
= -1€Zy - i €Zg - 1e(w - Ckr*—* Zy +_ 250 (63)
dn o . P T
QZz I - - '
—— = | pi(w - ¢)Zy + w'ZSE + iZ47 + €0(1) (69)
dn é“uli“ L A J
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az o ( T 7
° - e lilw-c)Z, +T 2 i
- = i 2 2
an € My~ b -~
vy - 1 7 =
-l ' v - e | |k 0(1) (70)
y L 4 J
(o o
- - E_].E M“Z4 1“9,25.1- ief(w - c)Z, + ae0(1)
aZ, _ 2D T J
B ¢ _FE s p S— = (11)
dy L+ doet o (ua + 2#1)_~_§__~ M

The average quantities w, o, T, and so forth, are to be regarded as
expanded in Taylor's series in the neighborhood of w = ¢; thus,

(72)

p=p, + pé(gn) .., etc,

(In general, attach the subscript ¢ to denote quantities at the criti-
cal layer where w = c.) The coefficients of the system of equations
(65) to (71) are therefore convergent power series in ¢ 80 long as the
power series (72) are convergent and the condition (37) is not violated.
An attempt cen then also be made to obtain a fundamental system of golu-
tions as power series of e A consultation of equations (G6) to (71)
shows that the solutione should be of the following forms:
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Dropping the superscript zero and reca 111ing the definitiones (29) and
(73) gives, to the initial approximation,

f=X0), 9=cks(n), 6 =2%5(n), Vi Xa(n) (80)
which satisfy the equations
3 x ' 5 .
TEy  dWe iy 1 g (81)
dn3 Vie dn F2vieTy
d_‘ ! t 4
<X iweo — ao ~ 1 De N\« Y
Sy ey gy S (] L 2oy, (8
dn2 Vie Vic \ Yy Pe/
diz _ _ 1%, (63)
dn

where v, 1is the kinematic viscosity cosfficient /B, and ¢ is
the Prandtl number.

The higher approximations sive nonliomogeneous equetions, which are
toe couplicated to be written out in detail. The hor ogeneous partes of
t? ﬁe equatwnq are the same as (T4) to (7S) witn X\© o] i1

replaced by

1,2, . . .,6). The inhomogeneous part consists of functions
of lower orders and is therefore known. Thus, it the eauat one (74) to
(79) can be solved, these equations for h bner aprroxinations 211
be solved by means of quadratures.

If X5 1is eliminated from {(8l) by means of (82) and (53), =
differential equation of the sixth order is obtained for L3, vwhich
will give six independent solutions. The corresponding function X,
ind X can then be obtained from (83) and (62). This ie fairly com-
blicated; fortunately, the case where the Froude number is very large
ls of interest. Thus, as an Initial epproximation, (81) may be re-
duced to

t -r
ds a” &1 . WC d.)'\l

-3 feo, @A an
3 i n i C ( )
the solutions of which are
(W] 27,37 ri(2) f 33.= _ a:
X121 = f H1/3§ §(1§)§'£§53§: X1z = / ‘3/3§§(i§y$§£° af, Xya=1 (82)
L/ [ i / - 2l
"/
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where
t\1/3
= Yo £
‘ ¢ s )M (86)

Apparently, three solutions ars missing. These can be supplied by
£,=20, X,5=0, Xig=0 (87)

The reason uhcue golutions are not trivial will he clear when the cor-
responding functions Xy and Xz are worked out below.

From (63), it is clear that the functions X3 corresponding to
(85) are

N
SN T 372 £y T 272 ;
¥ = Ch U /gl 2 (18)2 [r2at -/ e (18)2 jt2at Ul
21 1o 2y € 1/3i3 (12) ?a ¢ / H1/3£3 (12) jS Q-{%
|
. wd NAC o r . T(2) 373 U raa
Xgg= ~ da | <~ ) 0t/ Hsjs)i % (1¢)? ifzat /Hz(/?s)' % (10)2 {Qadf} ) (88)
1cC ‘»v/ L ! / !- -4 <
' §
Wl o\ = %
X35:="i°'(°g'x °¢ |
\Vic / J

§

The functions L, corresponding to (87) are
Fza=1l, %5 =0, Xz5= (89)

Corresponding to each function X3, there are two particular
integrals X5 obtainable from (82). These are expresgible in quadra-
tures involving Hankel functions, for the left-hand side of (82) has
the solutions

(16)2 f'] (0)

- 3 1 >
SR R A

UJ'R)

Indeed, the sets of functions (X, X350 Xs55)s (Xys, Xgp, Xg,) form
two sets of solutions of (81) to (83), and it now becomes clear that
(87) is not trivial.
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Next, the asymptotic solutions will be gtudied, and the convergent
solutions will be discuesed later when the boundary conditions are con-
sidered.

(2) Solution by mesns of asymptotic series.- Analogous to the in-
compressible case, two asymptotic solutions are obtained by the most
naive method of expanding the solutions in powers of (aR)-1, In the
pregent cage, the initial approximation gives the inviscid equation (5k),
which is of the second order. The equations for successive higher ap-
proximations are inhomogeneous; the homogeneous part is of the same form
as (54), while the inhomogeneous part is related to functions of lower
crders. Hence, the integration of all the differential equations can be
done in terms of quadretures, as soon as (54) is solved.

Four other asymptotic solutions are obtained by putting

1l
24 = 21 oxp ) )* i o | (91)
in (30) to (36), where ) h

1
o} 1 - _
fi=f‘§)-+f§)(a3)2+...,i==l,3,l+,‘)
> (92)
), o EL () (2), -3 &
O 2 -
fi-—»fi( (R) ® 4+ 15 + £ (aR) T v .. L, i=2,6)
while g is independent of (aR). The initial approximations are
[ . /jy- 3 1
(2y,24,24,25) = (1,0,0,0) exp ﬂ;i(aR)'g/ 50 - o) %
) Y (93)

<

P

_,35 A — . ' ‘% /3 [.—',M:——‘——_"
(QR)" (Zil.‘// }-(W - C), O> exp (I(GR) / “",, 5—1(W _ c)dy}

i

(Z2,26) 5

y

1
P

'yv-;-—.h__...—..-..-
(0,0,0,1) e@(im)“/ JE o) ay )

H

(Zl:ZE)ZAL :ZS)

1 AN r 1 T
(22,24) = (aR)Zf<O,z Oy - c)/}exp %i(aP)g / v/ég(w - c)dy&
U1 L Ul JJ
Je
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Bach of these sets conbains two solutions. From these expressions, it
appears that the solutions are multiple-valued. Actually, they are valid
only for certain regions of the complex plane determined by comparing
them with the asymptotic expansions of the convergent solutions (85) to
(90). Analogous to the incompressible case, the asymptotic expressions
hold when (cf. equation (5.4) of wveference 1)

- ?< arg ()< g, and - zé-t < arg (gocm’)<g ' (95)

simultaneously. If c¢ is very close 10 a real number, this means that
the expressions (93), (94) represent solutions in a connected region
vhich containg at least & substantial portion of the real axis. This
fact will be seen to be of significance in discussing the boundary- value
problems.

Similar considerations hold for the solutions of the inviscid equa-
tiong., These solutions appear to.possess a logaritimic singularity at
the point w = ¢. Ag in the incompressible case, the asymptotic expan-
- sions of the convergent solutions bring these solutions into correspond-
ence with Z,. and X4, and the restrictions (95) explain this appar-
ently multiple-valued nature of the solutions.

Analogous to the incompressible case, there are points on the real
axlg where the asymptotic solutions fail in the case of damped dis-
turbances. These are intervreted as "inner viscous layers," where the
effect of viscosity is not negligible no matter how large the Reynolds
numper is. Considering the conditions (95), it is seen that there are,
in general, four of them. For the lines

o]
e
oS
—~
e
p—g
ti
i
o
e
o
a3
o~
Yo
N
H
O\ A

arg (@cg /3} = - %;, arg ({og°

intersect the real axis in four pointe, if o 1is not & constant and
ci < 0. These are the points where the inviscid solutions fail. The
four points reduce to the single point y. when c¢ 1is real, and there
is no intersection when c; > O. Hence, the four immer viscous layers
coalesce into one in the case of neutral disturbances and disappear
completely for self-excited disturbances. The significance of these re-
gults for the studiee in part II is also similar to that in the incom-
rressible case.
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4, Boundary-Value Problems

Baving obtained the solutione in convergent serieg of ¢ and in
asymptotic series, the boundury-value problems discussed briefly in sec-
tion 3 will now be enlarged upon. The physical requirements give rise to
certain mathematical conditions on the real axis of the complex y--plane.
In general, the boundary conditions .for the velocity disturbances are
independent of the temperature disturbances. For example, for fiow in a
channel with walls at y, and ¥s, the boundary conditions

£(y1) = ¢(y1) = £(ys) = ¢(y4)= 0 (96)

must be 8itisfied whatever the conditions on the temperature disturb-
ances may be. These conditions are identically satisfied by the solu-
tions Xi5 and Xig, to the proper degree of approximation. Thus, the
quantities Ljx defined by (60) vanish if J = 5,6 and k = 1,2,3,4
(say). Hence, condition (59) reduces to

!ijl =0, Jyk=1,23,4 (97)

The characteristic-value problem therefore does not explicitly depend on
the temperature disturbances in the initial epproximation. Indeed; after
the temperature disturbance corresponding to the characteristic oscilla-
tions has been determined, it is always possible to satisfy the boundary
conditions for the temperature disturbances by including a suitadble 1in-
ear combination of the solutions X,. and X5+ The corresponding ve-
locity disturbances are identically zero and will therefore not interfere
with the boundary conditions imposed upon X5, and Lgg. Such a situa-
tion is in general the case. The characteristic-value problem therefore
becomes very similar to that in the case of the incompressible fluid.

Two inviscid solutions f,,,, ®,,, are derived from (54%) and two viscous
solutions from (85) and (88): ~

(1), (=) 3/2 / h
f3,4=fﬂm, [%ﬁg)” ERARY:
\(98)
W 'ﬁéf (1),(2)5,,, 37,% (1), (2) '§—§§ 1(
05,0 = -1 (§ )1t ) B2 HE S -/31,3 L Fat

Ae explained in the last gection, the asymptotic solutions held in a
connected region containing most points of the real axis except a
neighborhood of the point y,. Thus, there will be no difficulty in

using the solutions f,,,, ¢,,, for the discussion of boundary-value

3k
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problems. The path leading from one boundary point to another lies es-
gentially in the lower half plane.

Now, let these results be applied to the case of the boundary layer.
Begin by making a careful investigation of the boundary conditions. At
the wall the conditions f = ¢ = O hold. However, f may be replaced
by a linear combination of @ and ¢'. In the case of the viscous so-
lutions, P3,a+ 1f3 4 =0, sc that 3,07 i¢;’4. For the inviscid so-
lutions, .the relation

2
. T@;;a," M (w - C)W'¢1,2

£, = 2 .
ls2 T . M(_(W . C)h (99)
holds (equations (49) to (53)). At the wall, w =0, and
T m' + M3, P
1V1,2 1¢ Yi1,2
fi,2 =1 ? ’ (99a)

Ty - Mc”

Thus, the condition that f vanishes at the wall mey be replaced by the
condition that a linear combimation of @{,g,wg,xk,and P1,2 vanishes.

Analogous to the incompressible case (cf. equation (5.8) of refer-
ence 1), the condition of boundedness at infinity rules out the solutions
fy and @4. It is convenient to take the lower limit of integration in

f, and ¢s at +wo, Then, these solutions vanish rapidly as y —>cw.
Thus, for y > 1, the inviscid solutions dominate. In the incompress-
e R . . oy s

ible case, the inviscid sctutions behuve like 6 9. The condition of

boundedness therefore leads to ® ~e" W, Thig is conveniently express-
ible as

L ]
%4-@-—-—9,0 as y —S o (100)

-In the present cage, a corresponding condition must be established.
- However, the situation turns out to be more complicated. Consider the
equation :

_d. (W = C)CD' - W'?I,- G'z(w ot C) P = (6] (lOl)
Ay LT - M3(w - ¢)2J T

obtained from (54) by dropping the term in ﬁé. As will be discussed

more in detail in part II, the behavior of the solutions as Jy — o
is given by
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O~ P, 4r peaii=a/I I TR 40 (102)

where B is uniquely determined if a cut is drawn along the negative
real axis of the complex ()-plane. Then it is clear that the real part
of B is always positive 1f (3 is .not on the cut, and hence the solu-

tion 9 ~ e*PY must ve rejected. Thus, there results the condition
' .
,%; +B—>0 as y —> o (103)

This reduces to the incompressible case if M = 0. If {2 lies on the

cut (c =Cp <l - §\>, the situation is more complicated. The situation
#

will become clearer only after a thorough investigation of the inviscid
problem (sec. 7).

; 2 2

Except in the casé 1 - M (L - ¢)" < 0, the characteristic-value
problem ie therefore almost the same as that in the incompressible fluid.
The characteristic values are g8iven by the determinantal relation

P12 P21 P31
' st ' ot
TaPry + MWy cqay TiQey + MWy c@py .0
31
Ty - MZ%c? T, - M%®
H ] :
P12 + BPiz P22 + BPa2 0

vhere $; and @z are any two linear independent solutions of (101), and
Pig = 91(y3), ol =ol(yy), 1,5=1,2 (10k)

Y= being the coordinate of the "edge" of the boundary layer. Strictly
speaking, the value +> should be substituted for Y2. However, for

y > y2, the sclution of (101) is practically identical with e -7,

Thas, it is a good approximation to impose equation (103) for ¥ = ya.
Naturally, the larger the thickness of the boundary layer is taken, the
better is the approximation.

The determinantal equation may be written in the form

E(a,c,M?) = F(z) (165)
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where F(z) is the function of Tietjens (reference 11)

-2

F(z) =1+/ f E(:g)*f ng/ / 51,3 g(ig)z}gédg (106)
with
{ ' /3
= <.
z = - Gj_m> n, (107)
N1 being the value of n at y = Y1, the solid boundary. The function

E(a,c,M*) depends only on the inviscid solutions, and is given by

1 3 - t
TiQry + Mwic@y; t

?
. \ P11 D1z + BPiz| Ty - M2 2+ PP1z
(y1 - .YC)E(C":C: ) = ' : T]_Cp o1 + M chfpgl
P21 Poz + PPz Ty - Mot Poa + PYmo
(108)

The manner in which the viscosity coefficient enters the final equa-
tion (106) ie noteworthy. As compared with the incompressible case, it
amounts only to a change of the definition of z. By referring to (106),
(64), and (65), it 1s seen that this amounts to the replecement of R by
R/vic. This means that the Reynolds number defined in terms of the free
stream velocity and the kinematic viscosity coefficient at the critical
layer (instead of that in the free stream) is the quantity governing sta-
bility phenomena. This point must be kept in mind whenever it is neces-
sary to compare a case of homogeneous temperature with a case of inhomo-
geneous temperature. Greater detail will be given in discussing the
stability problem in a real fluid (pt. III).

In the case 1 - Mz(l -¢c)B < 0, it is possible, of course, also to
impose the boundary condition (103), with B imaginary. The same equa-
tion (108) holds. But the general discussion of the physical signifi-
cance of the solutions is more complicated. It will be discussed more in
detail in part II.

The inviscid case. In the limit of infinite Reynolds number, the
the relation (106) becomes

P11 ¢;2 + PPy
(109)

Il
(o}

E(a,c,M®) = 0, or :
P21 Po2z + BPos
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Thls corresponds to a solution of (101) with the boundary -conditions
?ly1) = 0, o' (y2) + Bo(yz) = 0 (110)

Copsiderstion of this boundary problem gilves the agymptotic behavior of
the relation (61 ) in the form

#

¢ = cla,M?) (111)

This will be discussed fully in the next part,
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II - STABILITY IN AN INVISCID FLUID

5. General Considerations

It has been shown that, in the limit of imfinite Reynolds numbers,
the problem can be treated with viscosity neglected, provided proper care
be given to the inviscid solutipne. Such investigations will naturally
give some information to the stability problem in a viscous and conductive
fluid. Indeed, the complete calculation of characteristic values, in par-
ticular, of the limit of etability, can be carried out, once the inviscig
solutions are known. It is therefore advantageous to study the inviscid
case as a prelude to the actual case, with the expectation that certain
important characteristice may be obtained.

However, it must be noted that the results obtained in this case can-
not be arnl.cd directly to the viscous case without modification. Thus, 1f
only stable (damped and neutral) disturbances can exist for a given flow in
an inviscid fluid, it cannot be concluded that unstable disturbances cannot
exist under the action of viscosity. However, if unstable disturbances ex
ist in the inviscid case, the flow will still be unstable when viscogity is
taken into account. Fqr if the continuous dependence of ciy on R is con-
sidered, it ls evident that c; cannot remain less than or equal to zero

for all finite values of R and still become positive ags R becomes infi-
nite,

This investigation will begin with a careful study of the analytical
naturé of the solutions, especially for Yy becoming infinite. It is
found that the disturbance there takes the form of progressive waves outb-
side the boundary layer. For more detalled discussions of their properties,
it is found convenient to classify the disturbances as "subsonic," "sonic,"
or "supersonic" when the x-component of the phase velocity of the disturb-
ance relative to the free-stream velocity is less than, equal to, or
greater than the mean speed of sound in the free stream.

The amplitudes of these waves go to zero as an exponential function of
the dlstance from the solid boundary, except in the case of neutral super-
sonic disturbtances. To an observer moving with the velocity of the free
stream, the waves are propagating opposite to his direction of motion for
neutral subsonic disturbances. For a general disturbance, the direction
of propagation is inclined outward if the wave is amplified and inward if
it is damped. For the neutral supersonic disturbances, there may exist
both an incident wave and a reflected wave with (in general) non-vanishing
amplitudes at infinity,

Analogous to the incompressible case, an attempt is made to establish
necessary and sufficient conditions for the existence of certain types of
disturbance. But a ccnsideration of energy relations is found to be ex-
tremely helpful. "This is carried out in section 8.

In the case of neutral or slightly non-neutral subsonic disturbances,
the physical situation for the compressible fluid must be quite similar to

39



NACA TN No. 1115

the situation in the limiting case of an incompressible fluid. There-
fore, it should be possible to obtain a general criterion for the exist-
ence of slightly amplified subsonic inviscid disturbances, analogous to
the Rayleigh-Tollmien criterion for an incompressible fluid (sec. 9b).
Af'ter such a criterion is developed, mean velocity-temperature profiles
could be readily classified according to their relative. stability at very
large Reynolds numbers, and the effects of the compressibility and con-
ductivity of a gas on the stebility of laminar boundary layer flow can
be evaluated (sec. 11). :

In the case of neutral supersonic disturbances, both incoming and
cutgoing waves may exiet, with the amplitudes of the incident and re-
flected waves unequal in general. Except in the particular case of a
pure neutral cutgoing or incoming wave, there is therefore no character-
igtic-value problem; or rather, the characteristic values are continuous,
and not discrete. By utilizing the results of the investigation of the
energy balance for a neutral inviscid disturbance (sec. 8) a general ex-
pression will be obtained for the ratio of the energy carried out of the
boundary layer by the reflected wave to the energy brought into the
boundary layer by the incident wave (sec. 10). With the aid of this ex-
pression for the "reflectivity," at least a necessary condition for the
?xiatenci of a pure neutral outgoing or incoming wave can be determined

sec. 10).

6. The Equation of Inviecid Disturbance and the Analytical Nature of
the Inviscid Solutions
In the limiting case of infinite Reynolds number and infinite

Froude number, the disturbance equation for ¢ reduces to the follow-
ing linear differential equation of the second order (ef. (101)):

¢ [ E‘L‘f_.)j'?_f:‘fi‘_’i} -2 ve) g (112)
dy L T-M2(w—)? i
or, in the self-adjoint form,
—(t2) 1450 = 0 113)
dy \” dy / _@ T")
where
o 27t _ 1 4, aw (114)
JOEES (n—c)} ) = 2 (I

L0
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There is also the relation

T MRl (ve)etate | gy @'+ 1T (115)
P T_42 (v )2 S we

The second part ¢f the last equation may also be written as

Tot — Mew! (w<)
£ =1 ® wleo)o (116)

5 >
TM (v—c)”

Since the coefficients of the differential eguation (112) are éntire
functions of the parameter a®, the two particular integrals ®; and o0

of this equation must also be entire functions of «f., Series develop_
ments of ®; and ©, in vowere of aR are therefore uniformly con-
vergent for any finite region of a, for a fixed value of Y, except
wvhen y is a singular point of the differential equation,l

If the series development © = @(o) + aew(l) + qf@(2)+ ... is
substituted into (112), two particular integrals ¢ and P> are ¢obtained
by successive quadratures.

[0a]
= . 7
o1 (5 2%, ¢, M) = (w2) ) ohoy(y, o, M7) (127)
n=o
92 (v; a®, ¢, M) = (w—<) > aMons1 (v, ¢, MB) (118)
n=o
where
y - J 2 -
. . T w—C) |
hon(ys c, M) =/ \f - M b dy /P £~—— |
4 - - B J b T
vél (o) ‘Y1 ’
!

i
bt

\
( 2) X hon-2(y; c, M)ay ( (129)
hg (¥; c, M2

)

1t will be shown later'(sec. 7b) that the point at which T equals

g .
M2(w—)” is only an apperent singularity of (112). The point y = Ve
and the point at infinity are the only true gingularities,
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and
\ 2
2 ~ f T 2 I (w_c)

ken+1(yse,M ) = j/ e — M Ji dy /1

: - (v—)” : T

Sy, lwe) Sy

X kgn..l (y; C} M'a )dy)
Yoo

ky (75 ¢, M%) /q (ww- ~ - Mal»dy

/ (w-c)? J

In these integrals, the lower limit is taken at the wall (y

for convenience,

In order that ©¢; and

may be wvalid approximations
2 8!

n> 1, (120)

= y1) nerely

to the resular

solutiors of the complote disturbance equations (19) to (23) all along the

path of intepration between the points Yy=y1 &and y =y

on the real

axls, that path must lie wholly in a region in which the asymptotic ex—

pansions of the regular solutions for large values of oR

The asymptotic expansions of these solutions for large values of

t.\j/f-"
gl (TN
© LNV

)} "

T

hold only in the rangé defined by

1/3

(y""yc <Cfo (95))'

Tre o, w,!
and _ .__ < arg (JZ_EM)
6 v
. 1c

T

are valid.

™

Cls

-;fc)}<g

Consequently, the path of integration hetween yy3 and y must be taken

below' the point y = Voo (See fig. 1.)

lContrary to the statement made by
path must be taken below the point y = T
point lies above, on, or below the real exis.

Tollmien (reference 4), the proper
regardless of whether this
This question, which has

been responeible for a certain amount of confusion, was finally clarified

recently by C. C. Lin (reference 1).

Lo
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It is now possible to define a region in the complex y-plane in which
the solutions @; and ¢ are everywhere analytic in the variable y
and the parameters o, c, and M2. Consider the simply connected region
R' which includes the end-points y =y; and y = yo but not the (singu-
lar) point Yy =y (fig. 2). The region R' and the region S' in the
neighborhood of the point Yy = ¥Yc can be made mutually exclusive. Pro-
vided W(y) # 0 in the range y; <« y < y2, the relation c = w(y) maps
the regions R! and &' 4in the y-plane into the mutually exclusive re-
gions R" and S" in the complex c-plane.

If 'y 1s now restricted to R' and ¢ to R", the ceefficients of
(112) are analytic functions of the variazble vy and the parameters o,
¢, eand M2, and the solutions P1 and @ mnmust also be analytic func-
tions of (y., o?, ¢, M®). o far as the characteristic-value problem
is concerned, the 'analyticity'of the solutions P1 and @z in a simply
connected region enclosing the boundary points Y1 and yo isg assured.
Unfortﬁnately, this argument fails when c¢ = 0, Dbecause the singular
point y = yec, w = O coincides with the point y = y; at the solid
boundary, and the regions R! and S' cannot possibly be mutually ex-
clusive. This specizl case will be discussed briefly in sections 9a and
9b.

7. Further Discussions of +the Analytical Nature of the Solutions;

Their Behavior around the Singular Points of the Differential Equation

Although the analytical character of the solutions @3 and ®- in
the region R ig of great importance for the characteristic-value problem,

bl &
the behavior of ¢, and ®= 1in the neighborhood of the singularities of
(112) is equally important in the investigation of the physical mechanism

of instability.

(a) Singularity at the Point w = c:

r . I
Uhless the quantity. ’.fé (EW')] = | 4 (i ? vanishes,
Cdy ’

the point y = Yo in the complex y-plane, is a regular singulerity of the

differential equation (112). Since (w—c) and T are analytic functions
of y everywhere in the finite region of the complex y—plane, they can be

developed in Taylor's series around the point y = Yo (v =¢ s a8 Tollows:
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"

W, 2
Ve = we! (y-y5) + 5?" (ye)™ + . .. (121)
11 >
. (¢4
T =T + T (y-y,) + . (y-v5) + ... (122)

Upon substituting the series developments (121) and (122) into (112), two
linesrly independent solutions P1 &and @ valid in the vicinity of the
singular point y = J., are obtained:

o = (y7,) alyv,) (123)

. T 2 - d .
o5 = - c i v f Ql;
Pz = g2(y-y,) + FyE | é‘f(?> ]ch P1 log (y-y,) (124)

~ -
where g; and go are analytic functions of (y - Je)y, o, ¢ ana M,

and gy (0) =we' £0, g (0) = Te/ve' # 0. These two solubions must
be subjected to the same restrictions (95) as the solutions (117) end
(118). Consequently, in passing from R? (y ~3ye)>0 to RL (v - y¢&)
< 0, the correct prath lies below the point y = y,, and the proper
analytical continuation of (124) for (y - Je) <0 1

.
i5

2
T Ca ,wh r ! i
+C / i :
Pz = g2 (y—yc) L Qi ~).] P1 | log | vy,
c :

- '-f] 124

~

For the physical problem, of course, only the pronerties of the
solutions @; and P2 salong the real exis are important., If ¢y >0
(amplified disturbance) the point y = y. 1lies sbove the real axis, and
the solutions are regular along the real axis. Tn +hic case, the effect

1Sinbe f is related to ® by (116), the discontinuity suffered by
Tm 92"y in passing from (y-yc) <0 to (yy,) >0 leads to a phage

discontinuity in T, eand 1t 1s this phase shift which makes posgible the
?ransfe§ of energy from the mean flow to the disturbance, or vice versa
sec. 8).

Ly
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of viscosity and conductivity on the disturbance is negligible in the
interior of the fluid for very large Reynolds numbers. However, if
¢y < 0, the inviscid solution (124) cannot poseibly be valid all along

the real axis (fig. 1). If ¢, =0 (neutral disturbance), there is a

critical layer of fluid at the point w = ¢ in which the veloclty varies
very rapidly (f ~ log | yﬁycf), and in which, therefore, the viscous

forces must be taken into account even when the Reynolds number becomes
Indefinitely large. If ¢y < 0, (damped disturbance), there are four

1/5

we n
such inner criticel layers, because the lines arg«( <«9M) (yuyciq= - Z_ P .
L \wie/ J 6 6
we'\1/3 LA 4
(fig. 1) and the lines argjktmi_> (yﬁyC)l = - zw, —, which delimit
I\vie J 6 6

the region of validity of the solutions ©; and P2, Intersect the real
axls in four points. ‘

With the aid of the equations of motion and the relations (115) and
(116), the physical situation in the neighborhood of the voint w=c¢
can be made still clearer. It is not difficult to show that the rate of

change of the quantity® p*{* where (* is the vorticity, for any two—
dimensional motion in an inviscid, non-—conductive compressible fluid is
given by the relation:

4 (orgx) = e B0, 1 3(e%,p¥) (125)
3t o 3, 70)

In the present case, if ¢ = ¢, then from (125) and the equations (49)
to (53), there is obtained

-
&E¥.(pff*) =0 at w=c (126)
or
oL (ow) =0 at y=y (127)
dy e |

that 1s, the transport of the quantity ow' across the plene w = ¢
must vanish. It will be shown later (sec. 8) that it is impossible for
?(y;) = @, to vanish if ¢(y) 1s a solution of the disturbance equation

1The quantity p*{* is related to the density of angular momentum.
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(112) which satisfies the boundary condition ® = 0 at the wall. If the

-4 |
value of ¢ = c, 1s chosen so that [ = (pw') ] # 0, then the trans—
J w=ec
port of pw' across the plane w = ¢ can be balanced only by the diffu~—
sion of pw' through the action of viscoelty. It can therefore be con—
cluded that a neutral disturbance free from the effects of viscogity in
the interior of the fluid can exist only for veloclty-temperature profiles

for which & (pw!) = fL(:ﬂL) = 0, at some point.
: dy dy \ T

From the energy equation (52), the relation (116), and (123), (124),
(124a), 1t appears that if ¢ = ¢, (neutral disturbance), then 6 bo—
comes indefinitely large as W->C, Y- Ve Even 1f the quantity

{ f;/’ﬁl) vanishes, the conductivity of the fluid cannot be neglected
iy \T/ |g

in the vicinity of the voint w = ¢ unless T! = 0, which is not gener-—
ally the case. However, the methematical results obtained in part I in-
dicate that the influence of +he conductivity on the "viscous" solutions
of the velocity components is only secondary for Reynolds numbers of the
order of magnitude of those encountered in most aerodynamic problems.

-y

P

(b) Singularity et the Point T = M2 (v~ ¢)

In the case of the neutral supersonic dlsturbance, outside the
boundary layer, the relative velocity between the mean flow and the x-
component of the phase velocity of the disturbance is always greater than
the mean sonic velocity. At some point ‘within the boundary layer, the
relative velocity must be equal to the local mean sonic velocity a.

a* T 2 a¥ \2
Since <-17~> = —p, this point will be reached when (wc) = <._;,\ =
ﬁ.".o P M ao * /

T o
~= . Although { (y) — o as T—> M2 (w-¢)2, by meane of a change in
M .

dependent variasbles it is not difficult to show that this point is only
én apparent singularity of the differential equation (112). If the do—

: 7t

pendent variables are chosen as ® and -, rather then ¢ and o,
iy

then by utilizing (112) and (116), a new system of linear differential

equations of the first order is obtained:
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2 2
i T~M(w—-c) = w!
@ _ 1. (v-o) n, 0 (128)
. :
dy M. (w-—2¢c) T W--¢C
d < g> o (w —¢)
= ' ~MRF 2T T , (129)
dy : T
The only singularities of equations (128) and (129) ocour st +heo voinh

w = c and the point at infinity. So far as the disturbance is concerned,

the physical significance of the point T = M® (w —c¢)® lies only in the
fact that it marks the point of transitiocn between the supersonic and sub..
sonic fields of flow. :

: ; k]
. . / A\ . .
For the neutral sonic disturbance ({1 ~c = —~1}, the point at which
\ M/
\2 T .
(w ~c) equals _ moves out to infinity; (T - 1, w =1, a8 y=> o),
e
M

The phyeical and mathematical problem is more difficult to investipate

in this case, because equation (112) has an essential singularity at in._
finity and the asymptotic behavior of w(y) and T(y) as y - o« is
somewhat complicated. In the next section, the behavior of the sonic dis-
turbance as y—> = will be discussed in some detail.

(c¢) Behavior of the Inviscid Disturbance as y—® =

Boundary Conditions and the Charzcteristic-Value Problem :

As 5 —=>o>, T—>1,v—> 1, wt—> 0. If 2 4(1 - ’(10)“1‘#0

the disturbence equation (112)takes the limiting form B
" 2 f a2 ‘ 87\
P =a 31 —-M (1 -c) ;P (130)
Ny J
8y 48y —

Equation (130) has the solutions e ° and e , where B = a .0
-~ 2 . .
and Q =1 ~M (1 -c)°. It follows that the equation (112) has a funds--
mental system of solutions behaving like e as y —=> o, ‘Yo define
B uniquely, it is necessary to introduce a "cut® along the negative real
axis of the complex (-vplane. Regardless of whether r 1 - M‘?(l—cr) :“2 0,
i I'4

\
L7
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(subsonic, sonic, or supersonic disturbance)® the real part of B will be
posltive 80 long as - x < arg (())< n. Since the physical conditlons of
the problem require that ¢ must be bounded as y -=>» o, the solution

+
e by must be rejected. Therefore, this solution ¢ must behave like

By

e as y > o,

Bolutions of the tyve émﬁy, when combined with the factor ‘ela(x”Ct)
evidently represent progressive waves, but it is necegsary to be careful
in discussing its direction of propagation. A disturbance which is pro..
pagated outward with respect to a fixed observer at the wall is asctually
an incident wave relative to an observer moving with the velocity of the
mean flow outeide the boundary layer, and vice versa. This fact can be
readlly apprreciated by referring to figure 4, The wave fronts noving
outward and also downstream with a velocity Cyr relative to the wall are
overtaken by the observer moving downstream with the velocity 1 relative
to the wall., To such a moving observer, these wave fronts appsar to be
propagating inward. The mituation ig obviousgly reversed -for the wave

fronts moving inward and downstream with respect to the wall., The same

conclusion can be reached, of course, by referring to the analytical form
of the disturbance. A wave front moving outward with respect to the fixed

s X - C S
wall will have the form ej { t) eFi“y. However, for the observer
moving with the free stream velocity, the x-coordinate is %! = ¥ - t,

4 . — el ) 1wy
and the wave front has the form el“(l F (1 el t>@“uf in his (x', y)
coordinate system. The wave front is obviously moving gggggg in this
system, If cy> 0 (d1sturbance increasing with time), then Q,> 0

and B; > 0; the disturbance takes the form of an outaolng wave of ex—

ponentially damped emplitude (in y) as y-=> w, If c; <0 (disturd-

‘ance damped with time), then Q; < 0O and Bi < 0; the disturbance takes

the form of an incoming wave of exponentially damped amplituds (in v)
as y—= . If ¢; =0 eand Q> 0 (neutral subronic disturbance),

the disturbance ig propagated parallel to the x-axls, and the amplitude
is exponentially damped in y as y — >, Thus, for - < arg Q)<in,
the boundary cendition at y = yn 1z @' (y) + foly) = 0, and +he
charscteristic values are discrete (sec. 4).

1 2 . ) . 2 2
The curve (2,° = k2., corresponding to the condition 1..M (1—¢,.)"= 0

for a sonic disturbance divides the complex Q-plane into a region of sub-
sonic disturbances and a region of supnersonic disturbances (fig. 3).
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Ir ¢y =0 and Q<O (neutral supersonic disturbance), then ,\/?2_

- 100y
1s purely imeginary, and both solutions of equation (130) < eiam 7 i)
are bounded as y-> w, The corresponding pressure disturbances are also
finite (equation (115)). In this cage, both incoming and outgoing waves
exist, but in general they are not of equal amplitude. This phenomenon
can be described physically as a reflection of an incldent wave, either
with absorption or reinforcement, and will be discussed in more detail in
section 10a, Mathematically speaking, in this case there 1s no homogene —
ous boundary condition of the type (58) at ¥y = yo. Except for the special
case of & pure incoming or a pure outgoing wave, there 1s therefore no
cheracteristic-value problem, or rather the characteristic values are
continuous and not discrets. A solution satisfying the boundery condition
at the wall can always be found for arbitrary values of ¢ and «. In
fact, from (117) and (118), such & solution for y1< y<y- is

o{y) = (v - ¢) Z o, (s e, MF) (131)

n=0

2 2 2 o2
The condition « {il ~-M (1 -¢) }'# O breaks down when 1-M (1)
= 0, (neutral sonic disturbance) or when « = 0. In the latter case, with

1 -M3(1 ~c)? 40, 1t 1s not difficult to verify that the solutions (117)
and (118) are continuous in o as a—> 0 even as y —> o, although
the point at infinity of the y-plane is an irregular singularity of the

equation (112). Indeed, these solutions behave like e By (1 —¢) and

J1 M1 - o)2
a (1 -¢)

ing case a — O,

- +
( E} Py - e By:L respectively, as y > » in the limit—

- 2 2
For the case of the neutral sonic disturbance, {1 .M (1 — ¢) } =0,

and the asymptotic behavior of the inviscid solutions as J = @ 18 quite
complicated. The asymptotic behavior of the mean velocity w(y) for the
case of the compressible fluid boundary layer is similar to that of the
Blasius profile (refersnce 11, equation 10, p. 228),

® Ag"
l1-w ~‘/1 © dz, for y >>1, (M = const.) (132)

k9

2 .
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¥

In the special case in which the Prandtl numbsr is unity and the mean pres -
Sure gradient in the direction of the wean flow 1s zero, the mean tempera--
ture T(y) is a unique quadratic function of w(y). Thus, (reference 11)

—- 1 | y-1 o
T="7T, + 7 M _ (T, ~ 1) 1 wo- LT My (133)
2 J 2
In that case, since ¢ = Co =1 ~-% s
T —M(w - ¢)2 . (L-w)F for Vs> 1 (134)

where F 1is a positive constant. The differential equation (112) must
take the limiting form:

& - 0ol -eeE a#0 (135)
dy | T =7 J
or,
Yo —_E.:“ Yt o= it Q1-w)rvy (136)
1-w T

vhere Y = @/(w —¢c)., If the physical condition that  be bounded as

y = o is imposed, then 1im (L—~w)y=0, ana equation (136)
¥y —> o

admits of two possible solutions:

¥ —> constant, @ ~w - ¢ —» constant, as y —» o (137)

or

o
Vielow o) 1@ -wly > 0 as y s s (138)
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The asymptotic behavior © ~ (w— c¢) implies that

%(g) —> 2, °r§ ~a*(y+A) as y >, by equation (129)  (139)

o]

m
If o(y)~ / (1 -w)dy, then
Yy

a X

£ 20, L - constant as y —> o (1k0)
dy p

Thus, for the sonic disturbance, if the pressure disturbance is to
remain finite at infinity (equation (1%0)), then © must erproach zero -
very rapldly as y becomes infinite (equation (138)). The solution (137)
mist be rejected, and the characteristic-value problem may be expected to
have discrete cheracteristic values. The condition for the existence of a
solution in this case wlll be discussed in section 10c.

However, if only a finite gradient of pressure disturbance is required,
but allowing the pressure disturbance itself to become infinite, both solu-—
tions (137) end (138) maybe included, and the characteristic values become
continuous. The physical significance (if any)of this solution is not clear.
But the situstion is somewhat analogous to the case of the steady flow of
a compregsible fluid in the vicinity of the speed of sound, where small
local changes in +he cross-gectional areae bounded by stream lines produce
very large local changes in the velocity and pressure.

It should be noted that if a« =0 and o = 1 _ I3:, both solutions

b

(137) ana (138) may be included. (See end of sec. 9a.) From the rels.
tion (115), 1t can be seen that the pressure disturbance remains finite
88 y.-->o in this case.

8. Energy Relations for an Inviscid Disturbance
The disturbances have just been classified into (1) self-excited
disturbances propagating outward » (@) >0), (2) demped disturbances

propageting inward (Im(Q) < 0), (3) neutrsl disturbances propagating
parallel to the x-axis (> 0), and (4) neutral disturbances propagating
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both inward and outward (< 0). It is very interesting to consider
the energy relations in all these cases.l

In the first case, there is no doubt that energy must pass from the
mean flow into the disturbance, because the amplitude of the disturbance
is being increased and energy is belng carried to infinity by the wave at
the same time. In the second case, the opposite is true. In the third
case, there is apparently no transfer of energy between the mean flow and
the disturbance. In the fourth case, energy is being carried in and out
by the waves; whether energy will pass from the mean flow +o the disturb—
ance, or vice versa, depends upon whether the amplitude of the outgoing
wave 1is greater or less than the amplitude of the incoming wave.

For the two cases of neutral disturbances, (3) and (%), it is possi-
ble to clarify the physical situation by considering the time average
over a period (which is well defined for neutral oscillations).

Since viscosity and conductivity are disregarded, and the neutral
disturbance is harmonic both in x* and t#, +the average time rate of
change of the total energy per unit volume over one period and one wave—
length must be zero; that is,

2
de* a [(ul*) .l . @ .
—= P + 0% T¥) = 0 1k
it* a* L2 g (o™ ‘_ ()
or
L2
* & r(ui%) 1 dp* '
w 2 ST Tww (142)

By neglecting triple and quadruple correlations, and utilizing the dynemic
equations like (L9) to (53) to carry out certain reductions, the energy
balance for the disturbance is obtained in the following form:

. i )

— a ((u,*) - - du, * Jp*?

" g | Y MR o0 ()
.

lThese investigations will also form the basis for the discussion of
the necessary and sufficient conditions for the existence of a disturbance
(secs. 9 and 10).
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éu;;; a - 1
Now the quantity p*! > is equal to - Rl < n(op' + iaf)‘[, where
X 4 2 L

the symbol ~ denotes the complex conjugate. From the relation (115),

there results %- = iy ?1~i;1§; so that the quantity in the bracket of
c

W -

the above expression is purely Imaginary when ¢ is real. Hence,

aui*f
p*! = 0. Using this relation, (143) can be reduced to
¥y
z — - ¥ ~
— *'d (ui*) ) — e aui o] [
y } = p ui*' u.,.*t — e (ui-m PM) =0 (l)-ﬂ’r)
dt 2 d d}’_‘j* axi-i(-

The relation (144) holds for every point in the fluid. Hence,

/7:’)() { _ — 5‘31 * p Ay O f I
/ —-— p* ui 1 uj * ¥ o " d‘V' = / // = p i ui * - d.v
‘/_/// h © Xej o / ./f d S j

- /.//" p-',cl une‘:t as (l).;5)

where V is a given volume of fluid, S is the bounding surface, and
un*' is the component of the velocity perturbations normal to S. Iet

V be a rectangular parallelepiped of unit dimencions in the x* and z*
directions, extending from the solid boundary (y = y1) "to infinity" in
the y* direction. Then with the condition v*! = 0 for ¥y =y1, (145)
becomes

o) _ U=y,




NACA TN Fo. 1115

that Is, the net energy propagated outward by -the disturbance in unit time
across the plane y = constant. (y large) is equal to the total energy
transferred in unit time from the mean flow to the disturbance by the

action of the shear stregs T* = - 5* u*ty*?  yithin the boundary layer.
"It can be verified that

Ela LR (r5) (147)

T

where ¢ denotes the complex conjugate of ¢. By making use of (116),
the expression (lh?) for the velocity correlation can be brought into the
following form when ¢ is real:

1R ekt T ~
A - In (o' ) (148)
g2 2T~ M (w—¢)?
or rather
FToEL T
ax 2T M (w—-c¢)

When ¢ = C,.» the coefficients of the differential equation (112)
are real. If © satisfies (112), then, ¢, and ?; must also satisfy

the equation independently, and the expression in brackets in (149) is
the Wronskian of the two solutions, by definition. For equation (112),
the Wronskian is

'=kifT~M2 (w—c)'??ﬁ (150)
S
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from the relation (114), where k 1is a real constant. Hence, from (1L49),

ey e a T a
= - kKT, T= .= _k (151)
(wg)® 2 0% ?

Thus, if ¢ = ¢ the shear stress ie congtant wherever ¥ (9,., ©:)
constan r> Yi

I‘)
is continuous, that is, outside of the inner critical layer at w = ¢,
where the effects of viscosity and conductivity predominate (sec. Ta).
To satisfy the boundary condition at the wall, op(y1) and 0(r1)

2 2.
must be zero independently, and therefore, W=1% [ Ty - M (w3 ~c) ]=0
In generel, c2® # T,/M®, =0 that ¥ = O and

(Cf. fig. 5.)

By utilizing the solutions (123), (12L), and (12ka), and equation

(150) the discontinuity suffered by the Wronskian in pagsing from
(y < 5'C) o (y > Yc) can be calculsted. Iu factt,

where O, = ¢ (y,). From (150), W =xT  for y =y, + 0, end therefore,

2
! | a !
T
. (e | 7N ] (154 )
i ::' T bt o TT:‘ i{?— H | ) .
C ay ~d e
and
G’ N
T=zk for y-y, >0 (155)
1 ceps - im P Y T
In the limiting case of an incorprescinle fluid , AW reduces to
the value calculated by Tollmien (reference 10).
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Thus, assuming for the moment that Pe # 0, if the sign of the gquantity

d vt
[ <~-} is positive, energy will pass from the mean flow to the
(o] .

L dy T 7
. o fa /wn ] e -

disturbance; if the sign of = Us) is negative, the mean flow
= \ 2 Degablve, lie mean :iow
of N /_:c

' ) . . ["d wis ]
will absorb energy from the disturbance; if - <'-w> = 0, there
‘ ToLdy NT /g

1s no exchange of energy between the meen flow and the digturbance.

In the foregoing discussion, it was tacitly assumed that P % 0.

By means of a proof similar to that given by Tollmien (reference 10) for
the case of an incompressible fluld, it is not difficult to show that

Pc cannot vanieh if o@(y) is a solution of (112) satisfying the bound—
ary condition @(y;) at the wall. This presently will be done.

If 9(y) satisfies (112), then o = Ay 91 + £y 0z, and the b

havior of @; and . in the neighborhood of the point y = yg s
given by (123), (124), end (124a). Since Pr(yc) = 0 and 9z(ye) #0
Az = 0 if o9(y.) vanishes. Now ¢i(y) is anaelytic and

is finite at y = Ye- By direct integration of equation (112),

+

' e 2 7
{ . y NY -
?(y) = (wc) 41402 | . Coay £f~fl_ dy + . . .L- (156)
: L ) L (wc)”® J J T ‘ .
L Yo Uy ' J

c

.)\._.\
+3
=
n
_
<9

2
where y, is the value of y for which Eg.z (w-c),
M

' T 2
then ‘r.¢-_~m.2 - M 1 > 0, and the quantity in brackets in (156) is

Lw=o) J

positive. Therefore, o(y) >0 for Yo<¥<y, &and 9(y)< O for
1< ¥< yo; ®(y) can never satisfy the boundary condition ® = 0 at the
wall, eand the assumption ?(y,) = 0 must be abandoned.
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9. Necessary and Sufficient Conditions for the Existence of an

Inviscid Subsonic Disturbance

So far in the discussion of the inviscid disturbance in a compress—
ible fluld, it has been assumed that solutions of equetion (112) exist
which satisfy the given types of boundery conditions. The energy criteria
developed in section 8 not only serve to clarify the physical problem
considerably, but also lead directly to the formulation at least of the
necessary conditions for the existence of each of the three possible types
of neutral inviscid disturbance. The sufficiency conditions cannot follow
directly from energy considerations.

This section will deal with subsonic disturbances, neutral and self-
excited. First a necessary and sufficient condition for the existence
of neutral subsonic disturbances is established. It is then possible
to establish a sufficient condition for the existence of self-excited
subsonic disturbances. However, a necessary condition has not yet been
establishsed,

(a) The Neutral Subsonic Disturbance:

At large distances from the wall, the neutral subsonic disturb-
By

-

- 1
ance dies off like e , and {p*'VW'f —> 0 88 ¥y —> . In
this case, no energy is transported into or out of the boundary layer
by the disturbance, and therefore there is no net exchange of energy
between the mean flow and the disturbance within the boundary layer

(cf. (146)). From the vesults of section 8, T = 0, and hence the

not vanish for some w>1 _.é, the only possible neutral subsonic dis--

. a '
turbance i1s the one for which ¢ = 0, When —. ;%) vanishes, for

dy
w =c4 (say), then ¢ equals ¢y for the neutral subsonic disturbance.

d w! 1
The condition that E— <:i?> must vanish for some w>1 — -
5

M

1e also sufficlent for the existence of a neutral subsonic disturbance.
As in the case of an incompressible fluid, the sufficiency condition can
be derived by means of an argument based on the fact that o(yy; o) is
an analytic function of a (reference 1). For the purpose of this dis--
cugsion, it is convenient to deal with the disturbance equation in the

5T
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-1
(%: <WF,{'> =0 for some
Yy >y1i, Wwhere w = Cq (say). Then, by the necessary condition, the
phase velocity of the neutral disturbance, if it exists, must be equal
to cg. Now, ¢ (y) 1is positive continuous and bounded everywhere, and
hence  q(y) is also continuous and bounded everywhere. Equation (113)
can then be integrated directly to give the relation

self-ad joint form (113). Suppose now that

T2 >
O"C_ =4
LR =t Get ) - [ (a4 2)ou (157)
'J?)’
By choosing the value of «? large enough, the guantity q + %; can

alwaye be made positive, since ¢(y) 1s bounded. Now, for c¢ = cg,
the solution o{y) can be completely defined by the boundary conditions

P(y=) =1 - cyy OHyz2) + o V1 - WP (1 - ¢e)? @(y2) = O. Thersfore,

o' (y2) <0 vhen a > 0, and from (157), ©'(y) <O when q + %; > 0.
Hence, the value of « can be chosen large enough so that

?(71) > 9(y2) > 0. For a =0, however, ¢(y) =w - cg and o(ry) < O.
Since @(y1; o) is a bounded, continuous function of o (eec. 2),

@(yl) must vanish for some value of o = ag > C. For a given value of
the Mach number, the velue of ¢ = c¢_. is determined from the mean velocity..
temperature profile, and the corresponding value of the frequency a = ag
is given by the secular equation (109). The boundery-value problem for,
the case of a neutral subsonic disturbence is completely solved.

From the disturbance equation (112) and the boundary conditions,
- 1t can be seen that for M < 1 the gingular solution ¢ =w, for
¢c =0, a=0 (infinite wavelength and zero wave velocity) always

lim ' 1 M2
exists, provided - vite MI-M _ 4 1p oy 1, then in
c, > O

m
..;lq,
the limiting case of infinite wavelength, (o = 0) +the neutral subsonic

disturbance becomes a neutral sonic disturbance <c — 1 _-}1>; that
M

is, the condition
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W]_‘C sz/l*— M2 (1-—0)2

lim 1o — = consgtant
c “‘9’@. - :> Ty a
M
a0

-

holds. The solution for ® 1s a linear combination of (w— ¢) and

(' -~ C) f * — M2) .
’ uéé 1 (v - ¢)® J v

If M=1.0, the condition

o cs/e

1

. l%? ot - —— = constant
= Ty o

@ -3 0

holds for the neutral subsonic disturbance in the limiting cace of in.-
finite wavelength, and the singular solution ¢ = w exists, The sig-
nificance of these limiting conditions will be appreciated in the in--
vestigation of the asymptotic behavior of the @ - R curve for the
neutral subsonic disturbance in a viscous compreselible fluid, which
will be carried out in a subsequent report.

(v) Amplified and Damped Subsonic Disturbances :

a ,w!
It has been found (sec. 9) that the condition that —. Et) must
dy N T

1
vanish for some w >1 v is necessary and sufficient for the exist-

ence of a neutral inviscid subsonic disturbance. By analogy with the
case of an incompressible fluid, it can be expected that the condition

4 W'\} =0 for some w >1_1 1ig also sufficient for the existence

dy \ T / M

of amplified subsonic disturbances ("ad jacent" to the neutral subsonic

disturbance ¢ =cg, o = ag). If §L~ %%.> does not vanish for some
ay

1
value of w > 1 _.M, it appears probsble that except for the disturbances

o9
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¢=0, =0, for M<1, or ¢ = -1/M, @ =0, for M> =1, only
damped subsonlc ddstuzbdnco% can exist in the invig CJd compressible fluid.

1
To prove that the condition - < > =0 for some w>1 . y
dv M
t condition for the ax1“te > of amplificd 44 rhances,
< 2Loy3d which is guite sindioe to that u;,a, tiig Incompress -
ibie cuse {(reference 1), The fo’;owmlﬂ 001h’~ are The

existence of characterictic values of ¢ anl ¢ neay (c
that TIm(c) = c; # 05 (2) the o gign of ¢y

) such

(1) It nas already been found (.ﬁ 7) that the boundary conditions
for the subsonic disturbeuce Yield & unique ”eJleon between the charac-

¥

teristic values of the form

2 .
c=c¢ (a, M%) (158)
vhere ¢ ig an analytic function of o ang M2 except in the neighbor
hocd of the point ¢ = O, @ = 0. In the neighborhood of a=a, #0,
there is at least one val ue of ¢ for every value of q (reel), and ir
a # Gy then ¢ # Cey and ¢ must be complex; that ig, cy # 0, for

the only perm1881ble real value of ¢ ig Cqe

(2) In the neighborhood of ¢q = ag >0, a and o are uniquely

related, and ¢ is an analytic function of o, ?hen c(a?) may be
expanded in a Taylor's series of A . Ay = a .- ag= around the point

Ag = aga
de ) M - d()
cC =c <+ ()\, - A ) s'/ _S\ + .(__...m__,)_ (_...S_\ L (lr)g)
5 ANV o1 /g
de 4 kC
I () 4o, or, 1r m (5%) =0, k=1,2,3 n-1, b
ax /4 ar* 4

n
d7c
Im <-_71\\ # 0, and n is odd, then ¢; will always be positive for

gome value of ¢ slightly smaller or larger than «.. For these values

of (c, @), a solution ¢(y) exists vhich iz valid 811 along the real
axis (sec., 7a
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: k
The imaginary part of ( 2%%) can most readily be calculated by
ar 8

Buccessive differentiation of the differential equation (112) with re-
spect to A, If o(y) is a characteristic function, and ¢ and XA are

d R
the corresponding characteristic values, :? exists in the regions R!

axr
and R" (sec. 6) and indeed
do .09 3v de
_..,:- = Epk = S.Ci). + ___q.). — (160)
ax I dc dx

For the purpose of thisg discussion, equation (112) can be rewritten in
the form

L{p) = 0" + £t @'".< q + l.) ?-0 (161)
¢ T

£
S
where the primes denote differentiation with respect to y. By differ.-

entlating (161) once with respect to A, the following differential
equation for 9y, 1s obtained:

When A = A, ¢ —> ¢ the corresponding expressions for L(@K)

a’

and L(@) will be denoted by Ly(0g) and Ly(9g), respectively. From
(160) ana (161),
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' d
b ( Pelg (Prs) ~'%Ls<%>} "% { SO cp'scw}

@ @ D e Bkl 0)]

If both sides of equation (163) are integrated between the limits y = v
and y = y- along eny path in the region R 1in the complex y-plane, an

expression for <.nu is obtained. Consider first the integral of thae
ar ‘s

left~hand side of equation (163):

Since ¢ (yi; ¢, M) = 0 is an identity in Ay 9u(r1) = ¢y (71) = 0,
and the integrated expression vanishes at Yi. At the upper limit,

O (72, ¢, M) == og /1 1 (1= 0g)® 0, (ras cg, M),

’ 2
P'hg (72, €y M) = - ag V1M (1 - cg)® Oyg (v25 cg, Ag)

. a = >
- CPS (:}”2; Cu, A’ﬂ ) \r (i—i 07 '\/l - M ( 1 - ]
- ,J 8

62
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Substituting these relations into (164) finally results in

|72 de
= 81 + ap ( ....) (165 )
8

¢ (@w - o' @ )
N 8 a Xs} 8 ‘As ar

|
Ji

where a; and a, are real constants,

The integral of the right-hand side of equation (164) is

y2 @2 Vo y Mg
o 2 [ o d 8 1
o (D /7R, + (40D e )
/ ™ s L% Naels oo de t/°
TN

J1

a ¢! = de
— 905t d — = | dy = Ps_ dy + (-M. I,
de ¢ /g . T ad /g
}7
' (166)
Equations (164), (165),.and (166) yiela
. 72
- 2
T
(g) -2t (167)
ax
Iy - an

Vo 2 .

= P

In evaluating the integrals I, and /q — dy, integrate along the real
Jy1 .

Ng-]
axis, except for the term(J/q @qe (/dq\ dy. Indeed, 211 the other
= \d_j‘c./s

J1
63
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integrals have real and finite integrands slong the real axis. Thus,
the imeginary term in (167) cen occur only with the integral

J2
J/n s ( > dy, the integrand of which becomes Infinite at y =7y .
J1
By expanding the integrand in power series in the neighborhood of ¥y = g,

there is obtained

m{;{l} -

" ‘ i
y2{®°c+0@50@ ac (V“"Vrc s+ @ w( I,- (g SW' }(J (y_-yc )+ ot },{ \

Im //1 — ~ &y
H

dy
ton
3 N2
fut, (y'f)f’+----(‘/-v)+...‘; )
. aw'y, J )
(168)
from which,
o (tewt)e ,
Tn 311} = |og : (169)

| i ('WO' ) -
Ir (r)is a charscteristic function can never vanish (sec. 8).
8 ? sc

/dc

Im {Ilj 74 O, ka —

Hence, > # 0, provided (imw')" £0; eand

¢y must be poeltive for some valus of o alightly emaller or larger

than g,

The restriction that (isw')"c must not vanish can easily be re~

moved by an extension of the foregoing argument., By the physical nature
of the mean velocity-temperature profile, if (ﬁﬁw')'ﬁ = 0 the quantity

=

ﬁsw( must have a true extremum a2t the point y = Yo W = Cg é&nd not an

6l
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inflection; in other words, (gsw')’ must have a zero of odd order at
the point y = y,. Therefore,

( )“m*l (ome=z)
/ggw'>' = Vel <§ w'> +..., m=0,1,2, ... (170)
\E (om+1) ! ® e
From (169), it can be seen that Inm ( ...... / =0 for m <1, The differ-
axr /=

ential equation (162) for ¢, 18 regular in the vicinity of the point
¥ = Yo, and therefore ¢)(y) is real. By differentiating (162) suc—

cesslvely with respect to X\, differvential equations are obtained for
d2p @30 akp
——— ey Y]

a2 as T
. (
Yy =JYe 1if k< om+l. Consequently, @k(“) is real for %k < 2m+l, In

vhich are all regular in the vicinity of the point

k
the expression for <gf_’_
ks

a term of the form

ot {d0\ /ﬂYE Pg 2 (ﬁ ?d\i i
\an 7/ / (w-~c)1+l v/
BV

alweys appears by analogy with (168). (A1l the other terms in the ex—
: a¥e _
pression for (""E’ are always real.) By virtue of (170), the im--

eglnary part of this term vanishes if k< 2 m + 1. EHowever, if k = 2m+l,
the imaginary part of this term is

2
ac 2ml g@ z )
i c! \ +2
s / > N (irw'; #0
\‘dh ( w! )23’1!- 2 e
c
2m+1
Therefore, Im < / #£0, and cy> 0 for some value of o slightly
a) 2L

larger or smaller than ag. The proof of the existence of amplified
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subsonlc disturbences adjacent to the neutral subsonic disturbance
¢ =¢g a=oa, ls thus complete.

Tt is quite difficult to glve a rigorous proof of the existence of
amplified. subsonic disturbances adJacent to the neutral disturbance ¢ = 0,
a = 0, chiefly because c is not an analytic function of a in the
vicinity of this point. (See secs.7 and 7c.) Although it does not seem
worth while to discuss the details, it can be shown by a method similar

( de \
to that utilized by Tollmien (reference 10) that =) is real,
7 e =0

d=c ra ,w 7 GEAN
Im <._:;> is positive ir | _ <_“_>i! > 0, and RZ(~~;}

dr ¢=0 Ldy “p - V1 a)< c=o
is unfortunately logarithmically infinite. The argument in this case
is therefore inconclueive. Of courge, from the asymptotic behavior of
the neutral o-R curve, it should be possible to see that amplified
subsonic disturbances do actually exist in the neighborhood of the neu—
tral disturbance ¢ =0, ¢ = 0, 1if the neutral disturbance c¢ = Cs,
a = ag exists.

10. Some Further Discussions of Inviscid Disturbances

So far, only subsonic disturbances which are neutral or nearly neu-—
tral have been discussed. These disturbances correspond %o the immediate
neighborhood of the positive real axis of the complex Q-plane (rig. 3V,
It has not yet been possible to get any result regarding general non—
neutral modes, except that they possess the property of being either self —
excited and outgoing, or damped and incoming, and that no sharp change
in property would be expected In passing from subsonic to sonic and to
supersonic disturbances. The neutral sonic and supersonic disturbances,
however, do enjoy a gpecial position. The former corresponds to the

branch point of v (1 at the origin, and the latter corresponds to the
cut® drewn in the (_plane to separate the two solutions exp (fa /71 y).

In the following sections, the neutral supersonic disturbance 1s
first considered. The trancfer of energy is made the basis of this
investigation. In section 10c, the case of the neutral sonic disturb—
ance is discussed briefly.

tor course any other cut might have been used. This particular
one, however, has the desirable property that one of the solutions

exp { t aQy } is in general ruled out by physical requirements.
66
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(a) Necessary Conditions for the Existence of a Neutral Supersonic

Disturbance:

The results of the invegtigation of the energy balesnce for any type
of neutral inviscid disturbance lead directly to the necessary conditions
for the existence of the neutral supersonlc digturbance:

(1) If the mean flow in the<boundary layer absorbs energy from the

a /“w"\ 1 . .
disturbance, — { e} | < 0, ¢ » ¢, The amplitude of the re-
i dy \ T / i yzyc et

flected wave must be less than the amplitude of the incident wave.

(2) If there is no exchenge of energy between the mean flow and
the disturbance, ¢ = Cg. The amplitudes of the incident end reflected

waves are egual,

(3) If the disturbance absorbs energy from the mean flow in the
r ' .
boundary layer, | 4 <’Km\51 > 0, ¢« cg. The amplitude of the
L dy T / - Yy=7e '

reflected wave must be greater than the emplitude of the incident wave,

}, and o 1s arbitrary. The stationary Mach waves
M

¢ =0 (aarbitrary) can always exist.

Of courss, c< 1 -

The necessary conditions for the existence of a pure outgoing or a
Pure incoming wave will be discussed in connection with the vraeflection
and absorption of the neutral supersonic disturbance., ({See sec. 10b.)
Formulation of the sufficient conditions in this special case has proved
to be a formidable task. In general, q(y) is not bounded at the point
w=-c, and f(y) is not bounded st the point T = M? (w - ¢)2, Con.
sequently, it is difficult to determine the sign of ®o(yy1; a) for large
values of «, and it has not yet been possible to carry through the type
of argum?nt which served in the case of a subsonic disturbance. (Sece
gec. 9a,

(b) Reflection and Absorption of the Neutral Supersonic Disturbance:

By the action of the viscous forces within the critical layer at
w=c (c# cy), & relative phase shift is produced between ! and
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*

T . ’ -
v*?  and the shear stress T = - ——— increases (or decreases) rap

RITASE

idly from zero for (y — ¥o) < 0 to the value g k for (y - yc) > 0

(secs. 4 and 6). Thus, the critical layer takes the place, in a sense,
of & wavy wall or irregulsr solid boundary, in reinforcing or partially

r rt .
canceling (depending on the eign of | f}_(/ﬁﬁ,> } > an incoming
vdy v T/ ¢

disturbance during the process of reflection.

From equation (148), the shear stress T = g k is also equal to

a 1 " icy . —doy
the expression - ~ In ('®). Since @ ~ he + Be
27T - M(w - ¢)?

for y >>1 (sec. T)

[=Y
o

L (?Béh— Al
2 2 !
e Vu (1 —e) 1 L |

(171)

e
S —

ol Q

and hence, from equation (154),

1 f p_| oo
=3 == 2 b ] =
S M(L )t - L

By making use of equation (172) and the additional relation

2 o 2 - .= r"
9t (r2) | + o olz)] = 2w® f A ER 1 (173)
i ! I ‘\ : ! i j .
. Y . " . . " IB’:: ~
an expression ls obtained for the "reflectivity" K = ——, defined as
(Al

the ratio of the energy carried out of the boundary layer by the reflected
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wave to the energy brought into the boundary layer by the incident wave.
It 1s found that

K=1+'j (174)
1=

where

2wz | 1 4 /w’)]

o2 g \T) e
o' (y2) (2 jo(y2) 2
- ! w |~ .-f
P B2

It follows that
‘:-> > , . -
Kz 1 when JE0 (13/< 1) (175)

The necessary condition for the existence of a pure outgoing or incoming
wave is

Cose
1]
-

}, (176)
In this case, the boundary condition at ¥ =52 18

o' (y2) = iwp(ys) =

and 1e /W'\ |
o v dy 1/ lye SRR (177)
a2 1o(y2) |2 -1
e
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In section Tc, it was remarked that a solution of the disturbance
equation (112) satisfying the boundary condition ® = O at the wall
could always be found for arbitrary values of ¢

Such a solution is

or y = 0) :
and a 1n the case of the supersonic disturbance.

(v = y1,
(ef. (131)
(s -]
o{y) = (w - ¢) B— e kone1 (75 ¢, M2) (178)
n=0
so that
?(y2) = (1 - ¢) ? o Konsa (yz3 c, M) (179)
Lo
) n=0
o' (y2) = (1 ) 7 " k'on+r (y23 ¢, M) (180)
n=o0
e = 9yc) = - "%‘ Lim ‘{ (v = c)* Sﬁ a® k'onss (o3 o, ME)-E
Ve y.a,yc L J
n=0
| (w-0) 1
Te Ye (w-c)? y T i
= - (1 + o7 dy //‘ [ ) dy + . . .\ (181)
w! T J 0 Llwc)2 J {
Ji Jai J

It is agsumed that the mean velocity temperature profile in any
particular case is known for each Mach number. Subject only to the re—
the reflectivity can be calculated for a series of

striction c< 1 - l,
. M
These calculations should give some

sultable real values of ec.
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indication of the conditions under which a -pure outgoing wave or a pure
incoming wave can exist,

(c) Necessary and Sufficient Conditions for the Existence of &

Neutral Sonic Disturbance:

If the physical condition that both ¢ and n/p must be bounded
a8 y —>» o 1e imposed, then in the case of the neutral sonic disturb.
ance, @ and Q' —> O very rapidly as y —> ~ (sec. Tc) and no
energy can be transported into or out of the boundary layer by the dis-—
turbance. The necessary condition for the existence of a neutral sonic
disturbance 1s therefore (sec. 8)

C=cg=1 —-g- (o £ 0) (182)

Unlike the case of the neutral subsonic disturbance (sec. 9a), the
condition ¢ = Cg 1s not entirely sufficient for the existence of a
neutral sonic disturbence. Because the physical significance of +this
sonic disturbance 1s not yet clear, it does not seem worth while to
discuss this problem in great detail, although some mathematical results
have been obtained. A brief sketch of the arguments and results will be
given here. From equations (117) to (120), and equation (138), the so- -
Iution of the differential equation (112) for « = O which has the cor-
rect asymptotic behavior in this case must be

o :
o) = (w-e) [ 1‘*""“"’} ay (183)

“(w - ¢)?

Therefore,

0 (184)

1]

i} Tpor 21 40
@(O)w-c./; \m -des, o

T1
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and hence,

e(0)So (185)

o .
{......T.,._._..Mz}dyéo
. ~(w-c)®
(o]

On the other hand, an argmnent almost identical with that utilized
in the case of the subsonic disturbance (sec. 9a) shows that ¢(0; a) > 0
for large values of a, if ¢ = cy. Since (0, o) is «~ bounded con-

tinuous function of a, if

according as

T
) Clw ~c)? J ’
0

®(0, a) must vanish for some value of o> O; if

/ L(w-c)e J
(o]

& non-trivial solution exists for o = 0; if

oo} Y
/h T _M lay< o0
Ay

\(w__c)z J

it must first be determined whether or not ©(0, o) > ©(0, 0) for all

@, before any definite conclusion can be drawn. By employing a modifica—
tion of the oscillation, or comparison theorem (reference 11), it can be
shown that @(0, az) > 9(0, ), 1f a» >ay, and therefore (0, a)

is a monotonic increasing function of a. Hence, if

T2
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m( T \{
M2 <0
'/; - 02 i

no solution of this type exists), with o # 0. (See end of sec. 9a.)

11. Concluding Discussions

The above investigations of energy relations and the necessary and
sufficient conditions for the existence of certain types of disturb—
ance, though incomplete, serve to give a general understanding of the
stability problem in an inviscid fluid. Before proceeding to include the
effect of viscosity, the significance of the results will be discussed
somewhat In detall.

The distribution of the density of angular momentum across the
—%

: _x du
boundary layer is unstable if the gquantity p* 5§¥ has an extremum

for some positive value of T > ﬁé ( - %.) , Wwhere M is the Mach

number for the mean flow outside the boundary layer. TFrom the equations
of mean motion, it is not difficult to show that the quantity

2o+ £03)

will always vanish for some value of w >0 if the solid boundary is
insulated, or if heat is being transferred to the fluid across the solid
boundary. This can be seen as follows:

The dynamical equation for the mean motion

N i 3 i aﬁ‘*>
v = H —
x* dy* Jy ¥ oy*

1Subsequent investigation has shown that this is the case.
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gives
¢
By%z 1 'F) Gy% ) ay‘x' X

if

-3 r-E"% n

"o N\ (m=0.76 for air)

—% 3t '

Ho To

vhere the subscript "i" refers to the wall. If heat is transferred to

¥
o%u .

> 0. There—
¥R
dy*a/y

%

the fluid at the wall, < §f?_> < 0 and hence (
Oy * 7y

fore, the quantity

— -—%

- -
3 1au>:1/52u Su 15T>
oy* \T* gy* F N\ Qy* 2 Oy fw oy *

4

| 10
must be positive for y* = yi*, Thus, = 5 increases from some posi—
T oy*
tive value as y increasecs from y1*. But also it is known that it
] ow*
approaches zero as y* becomes infinite. Hence, has a maximum
T Qy*

. d t A
at some point y*> y1*; that is, §,<:2%{> vanishes for some w > O,
s 4

Uy —

oT D%
> =0, and ( . >
1

If the solid boundary is insulated, < 3
¥

= 0. The above argument yields no conclusive result. By differentiating
the dynamical equation once more with respect to y*, and utilizing the
equation of continuity for mean motioxn,

Th
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= =% =% =
?E.. 4 .a_z.. = - :..J.: <{1* ?.p... + ;r* é?::)
ox*  oy* o* ox* oy*

it is found that

(N L om (3N L

— e |

2

3% , * : or*
Thus, a—-—;@ mist be positive for some y* - y1; and since é—-—; <0,
5 J

) 3 =%
for y* < y’;_ » 1t follows that the quantity -— 1 ou

% | = —= ) must be posi-

tive for some y*> yJ“{ Hence, the essential conditions for the last
case also hold in this case. The same conclusion is therefore obtained.

However, if heat is withdrawn from the fluid at the solid boundary

—5 —% T
OT d3%u
< —\ >0 and ( > < 0. The signs of the quantities
ay-* ./1 ay*a 1 . ay*
2y
du
and SE will remain unchanged as y* increases from v*1 in general.l
%2

d sw!
Hence, the quantity d—y-Q.f'—,\’ remains negative and will not vanish.

Therefore, for M < 1, if the boundary is insulated or if heat
is brought into the fluid, 1t is certain that the laminar boundary layer
In a compressible fluid will be relatively less stable than the isothermal
Blasius boundary layer in an incompressible fluid, as far as the inertial
forces are concerned. If heat is teken from the fluid, the flow will be
more stable. Although these conclusions can probably be extended to the

1 o o 1/2
Except when the gquantity L ( Ts - T1> G
% * // ; -

+ <fo - '_fl> J <§§_ i‘é) is very small, where T, = stagnation tem-

/

_ perature.
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case when the velocity of the mean flow outside the boundary layer is
only slightly supersonic, no statement can as yet be made for the general

supersonic cage.l

However, the critical Reynolds number defined in terms of free—stream
quantities may not necessarily be decreased by heating the solid boundary.
For in the viscous solutions of section 3, it is the kinematic coeffi-
clent of viscosity near the solid boundary that enters. This coefficient
1s increased by heating, thus leading to greater stability. Whether the
minimum critical Reynolds number for sny compressible~fluid boundary layer
at any Mach number will be greater or less than the value for the Blasius
profile can be determined only by actual calculation. This question will
be settlad for several representative cases in a forthcoming report by
some numerical work following methods to be discussed in the next part
of this report.

In a recent report (reference,6), Allen and Nitzberg suggested
that the "proper" Reynolds number. ehould be based upon the kinematic
viscosity at the solid boundary. For small values of c*, this
is not very different from that at the critical layer. However,

. —i '3
they have assumed that the critical Reynolds number <u 5 %) is
' D11 Jer
egqual to the critical Reynolds number for the Blasius profile. For the
case of insulated selid boundaries (e. g., airfoll surfaces), their

value of <5% 8 /5;¥>>cr may therefore be too high.

lFor example, for M > 1.5, 1t may not be possible for a subsonic
characteristic-oscillation to exist in certain cases, because in addition
to satisfying the equations of motion and the boundary condjitions, it
must also satisfy the condition c¢*> 1. 1/M,
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JIT - STABILITY IN A VISCOUS CONDUCTIVE GAS
l2. General Considerations and Methods of Numerical

Calculations for the Stability in a Viscous Fluid

The foregoing inviscid investigations serve to illustrate the gener-.
al behavior of the pressure and inertial forces in the control of the
. 8tability of the flow of g compressible fiuid. Theee results can there-
fore be used as a guide in the investigation of the stability in a real
fluid a% large Reynolds numbers. In the case of the incompressible
fluid, very valusble information has been obtained by consideration of
a mogification of the resulte in an inviscid fluid by the effect of vis-
cosity. The general conclusion has been reached that the effect of vis-
cogity is essentially destabilizing at very large Reynolds numbers; and
it has been possible to obtain the agymptotic behavior of the neutral
stability curve for large values of the Reynolds number, also to give a
quick approximete estimation of the minimum critical Reynclds number and
indeed to compute the cemplete curve of neutral stabllity. In the present
cese, correeponding developments should also be possible, but the results
evidently depend upon the Mach number. Any computation of +he curve of
neutral stability must be carried out for each value of ths Mech number of
the free stream, ‘

Owing to the limitations of time, it has not been possible to carry
out these computations, The authors, hewever, laid down the general plan
of the calculation of the neutral curve of stability, and repeated the
calculatien of Tietjens function. Some of the numerical values turn out
to be slightly different from those originally given by Tietjene (table I,
fig. 6). They agree very closely with the results of Schlichting's later
calculations (table 2, p. 73, reference 5). :

A method of numerical calculation very similar to that used in the
incompressible case will be outlined below. It enzbles the curve of
neutral stability to be computed for each Mach number as soon as the dis-
tributions of velocity and temperature are known for that Mach number.
Several such distributions have been obtained by Kaimen and Tsien
(reference 12), hy Crocco (reference 13), by Emmons and Brainerd (refer-
ence 14), and by Hantzsche and Wendt (reference 15).

Method of numerical calculation.- The calculation of the neutral
curve depends upon a proper evaluation of the function E(a,c,M]
occurring in (105). According to (108), its evaluation depends upon
the evaluation of P15 and of (i,J = 1,2). To evaluate these

functions, the inviscid solutions (117) end (118) are used. After a
little calculation, there is obtained :

7
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Substituting (187) into (108) gives

v(%é@ r 1 L+ A
Wl (9kz + B92z) +) c_ j~@i2 + B@l%j
vhere A\ = i(c) ig defined by
w1 (yi - ¥eo) = ~c(1 + 1) - (190)
. By introducing the function
.E(Z) ='i“;lF<£3 ‘ ' (191)

and ueing the relation (189), (105) may be reduced to the form

1
(L+A) (we+iv) ie . wy c(Pag + PPos) < e
_If(Z) = T i x ((/’. - i"f) with 1 + iv = 1+ (Tl)(-});’_ N QP]_;;;') (.i.y,c)

It is ncted that the quantities ©@L, and - involve the integrals
Kon and Kong:. These Integrals involve

¥ Je .
I . Iz}
i r T = / T L2
/ /{»~w~~—~; - Mé} dy = Ky -~ / f~~n~_»ﬂ; - M:l ay
Sy - ) B I L

in the first step of integration. By substituting the right-hand-gice
expression into @ég + BPos, 1t is not difficult to verify that the
terme involving Xji combine to give @}. + Bois. Hence, it is conven-
ient to write : -

: gt ) v
9oz + BPaz = (Viz + BPrz) ¥y -7

[N

Substituting this into (192) gives finally (with yo - y1 = 1)

~ T2
1 "
wie (] T . Wi ch (193)
u + iv = 1 + e \ / -._a——__,n:_—i_ d.-‘ - l\lr__ r,;~ ht 2
Ty 7 (w - ¢) 7 J (T1) (P12 + P912)
Va2 J1
& T

. 9 . N 3 o - '
The function / —_— -3y and the integrals involved in Piz, Y1z,
-J (w -~ ¢c)=
J1 E ‘
and ¢ may be evaluated by methods similar to those used in tie

9
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incompressible case. The significance of bringing the final equation in
the form (193) is that the imaginary part of the right-hand side

Iz
is mainly contribuced by the term involving‘/1 T(w - ¢)™ dy the
| J1
. To fwe T¢ :
imaginary part of which is -x -zt — - =< This can be easily calcu-
wé'\,wé T,

lated. Thus, using the fact that X is usually very emall gives,
approximately,

%/wg %\ﬂc
_Ei(z) Rers- St B (194)
Wi\ Wi Tc) Ty

vhere Fj(z) is the imaginary part of F(z). The relation (194) would

8ive a correspondence between ¢ and z. From this, the value of oR
can be easily calculated by means of (107). For more accurate calcula-
tione, use is made of the relations

2|7t

Ee(2) = (14 3) fall e n) - W 40w e o)

1

(L (195)
Fi(z) !
S

(1 + M)v {(1 « )2 4 (m)z‘}"l

where Fp{z) is the real part of E(z). Using (194%) as the initial ap-

proximation, a method of successive approximations can be developed
exactly as in the incompressible case for the calculation of a, R

for given values of c¢. The complete numerigal calculation will be
carried out for a few typical cases.

California Institute of Technology,
Pasadena, Calif., November 15, 194k,
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Table I.- Functions F(z) and F(z)
z Fy Fy Fr Fy
1.0 0.89161 - 0.35025 0.80630 -2.60557
1.2 .78969 - 27310 1.77012 -2.29854
1.k 71970 -.21213 2.26836 -1.71669
1.6 .66931 -.16009 2.514985 -1.18600
1.8 .63143 -.11274 2.48104 -.75892
2.0 o - 067hL 2.43927 41253
2.2 57599 -.02226 2.35196 -.12348
2.4 55230 -.02395 2.2272k + 11916
2.6 52773 -.07203 2.06929 31558
2.8 L9952 +.12220 1.88566 Lh60k3
3.0 Lels6 .17391 1.68938 .5h872
3.2 L1gkt .22520 1.hg726 58082
3.k 36110 .27193 1.32516 56401
3.6 28802 .30705 1.18429 5107k
3.8 20352 .32130 1.07982 43560
4.0 11800 .30721 1.01118 35220
b2 04698 . 26559 97361 27133
Lok 00240 .20811 96056 20038
4.6 02160 Jbl7s 95989 13601
4.8 01477 .09875 97659 09503
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Ye
Ci>0——i }
Y1 ¥2
Ci"O + = t
¥ Yo Y2
Ci<0bwL —
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Figure l.- Region of validity of the asymptotic expansions of

the regular solutions for Cjy % 0.
y-plane c-plane

c = w(y)

Figure 2.- Region of analyticity of the inviecid solutions.
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9
Sonic
Self-excited, cutgoing waves
Supersonic Subsonic
Or
Superesonic Subsonic
J
Damped incoming waves
Sonic
Figure 3.- The complex n-plane.
1 >
/"/ EA / ) / / / / S

Figure 4.- Direction of propagation of the wave fronts of a disturbance relative to a fixed

observer st the wall and to an observer moving with the velocity (1) of the free
stream outside the boundary layer.
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c<C,_ k>0C

T=o/2k

W(y)

51

Figure 5.- Distribution of Wronskian, W(y),

Yo

Y3 Y2

Wk {1—1«2( 1-0)3}

neutral supersonic disturbance.

and shear stress,T (y), for tae inviscid,

Figs. 5,6
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Figure 6.~ The functions fr(z) and ¥,(z).



