NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

TECHNICAL NOTE
No. 1182

A COLLECTION OF THE COLLAPSED RESULTS
OF GENERAL TANK TESTS OF MISCELLANEOUS
FLYING-BOAT-HULL MODELS

By F. W. S. Locke, Jr.

Bureau of Aeronautics, Navy Department

Washington
March 1947
This report presents summary charts of the collapsed results of general tank tests of about one hundred flying-boat-hull models. These summary charts are intended to be used as an engineering tool to enable a flying boat designer to grasp more quickly the significance of various hull form parameters as they influence his particular airplane. The form in which the charts are prepared is discussed in some detail in order to make them clearer to the designer.

This is a data report, but no attempt has been made to produce conclusions of the usual sort or correlations. However, some generalizations are put forward on the various methods in which the summary charts may be used.

INTRODUCTION

The increasing size of modern flying boats will no longer permit the designer to make a mistake. When flight tests of the first prototype show up some undesirable hydrodynamic characteristic, too much time and money are usually involved in attempting to correct it. The designer must, therefore, be given the tools whereby he may predict the performance of a proposed flying boat with reasonable accuracy.

In order to improve both the air and the water performance of future flying boats, there is imperative need of systematic design studies to determine the influence of the hull. It is hardly fair to expect the designer to wade through great masses of data in order to make these studies. He needs some simple, clear, and relatively accurate means of getting an over-all picture of the effect of various hull variables.
The usual forms of plotting the results of general tank tests are so complex that from 12 to 20 sheets of paper are often required to present the data for one hull model. Under these circumstances a long, laborious study is required to find out which is the better of the two hulls for a given purpose. The problem of finding the best of a group of hulls is practically unmanageable, both because of the work and because the method of presentation gives the designer no mental picture of the behavior of the models.

During the last 15 years or so general tank tests have been run on a very large number of hull models. This report presents the results of all the published NACA general tank tests, and some from the SIT and RAE tanks, in such form that they will be of immediate usefulness for design purposes. All the data for any one model are presented on a single summary chart which may be used to make either specific or general comparisons.

NOTATION

The test results are presented in terms of the standard NACA scale-plane coefficients. Throughout this report the following notation and definitions are used:

- **Load coefficient**
 \[C_\Delta = \Delta/wb^3 \]

- **Speed coefficient**
 \[C_V = V/\sqrt{gb} \]

- **Resistance coefficient**
 \[C_R = R/wb^3 \]

- **Trimming-moment coefficient**
 \[C_M = M/wb^4 \]

- **Longitudinal-spray coefficient**
 \[C_X = X/b \]

- **Lateral spray coefficient**
 \[C_Y = Y/b \]

- **Vertical-spray coefficient**
 \[C_Z = Z/b \]

- **Forebody length/beam ratio**
 \[L_F/b \]

- **Afterbody length/beam ratio**
 \[L_a/b \]

- **Step height/sternpost angle ratio**
 \[h/\sigma \]

- **Pitching "gyradius" constant**
 \[k/L \]
Aerodynamic pitch damping constant

\[M_q/V \frac{p_w}{2} b^a \]

where

- \(A \): load on water, pounds
- \(w \): specific weight of water, pounds per cubic foot (62.3 for RAE and SIT, 63.5 for NACA, and 64.0 for sea water)
- \(b \): beam at main step, feet
- \(V \): speed, feet per second
- \(g \): acceleration of gravity (32.2 ft/sec^2)
- \(R \): resistance, pounds
- \(M \): trimming moment, pounds
- \(X \): longitudinal position of main-spray point of tangency, measured fore (positive) or aft (negative) of the step centroid, feet
- \(Y \): lateral position of main-spray point of tangency, measured from the hull centerline, feet
- \(Z \): vertical position of main-spray point of tangency, measured from the tangent to the forebody keel at the main step, feet
- \(L_f \): forebody length, measured from the intersection of chine and keel to the step centroid along a line parallel to the tangent to the forebody keel at the main step, feet
- \(L_a \): afterbody length, measured from the step centroid to the second step centroid or sternpost, whichever is shorter, feet
- \(L \): forebody plus afterbody lengths, feet
- \(h \): step height at the step centroid, percent of beam at step
- \(\sigma \): sternpost angle, the angle between the tangent to the forebody keel at the main step and a line joining the tip of the step and the sternpost or second step, whichever is lower, degree
\(\beta_r \)
forebody dead rise at keel and main step, degree

\(\alpha \)
afterbody angle, the angle between the forebody and afterbody
keels, degree

\(\beta_a \)
maximum afterbody dead rise regardless of where it occurs,
degree

\(M_q \)
aerodynamic tail damping derivative (See reference 1 for com-
plete definition.)

\(k \)
pitching radius of gyration, feet

Moment data are referred to the center of gravity and water trim-
mapping moments which tend to raise the bow are considered positive.

Trim (\(\tau \)) is the angle between the tangent to the forebody keel
at the main step and the free water surface in all cases.

Eel (\(\phi \)) is the angle between the centerline plane of the hull
and a plane perpendicular to the still water surface.

The coordinates of the center of gravity are measured above the
tangent to the forebody keel at the main step and forward of a plane
perpendicular to the keel and passing through the step centroid. The
step centroid is the center of gravity of the area on the forebody
bounded by the tip of the step and a line joining the intersections of
the step faces with the chines.

The following combinations of the coefficients defined above are
used:

Planing Range

Lift coefficient \(\sqrt{C_D/C_V} \) (reference 1)

Resistance coefficient \(\sqrt{C_R/C_V} \) (reference 2)

Displacement Range

Speed coefficient \(C_V^2/C_\Delta^{1/3} \) (reference 2)

Resistance coefficient \(C_R/C_V^2C_\Delta^{2/3} \) (reference 2)

Longitudinal-spray coefficient \(C_X/C_\Delta^{1/3} \) (reference 3)
Lateral-spray coefficient \(C_{v}/C_{\Delta}^{1/3} \) (reference 3)

Vertical-spray coefficient \(C_{z}/C_{\Delta} \) (reference 3)

The courtesy of the National Advisory Committee for Aeronautics in furnishing detailed test data on certain models which had not previously been published is deeply appreciated. It should be noted that the resistance and porpoising data on SIT models 294-79 and 406 were determined under the auspices of the Glenn L. Martin Company. The data on SIT models 618 and 621 were determined for the Grumman Aircraft Engineering Corporation in connection with a flying boat being developed for the U. S. Navy.

DEVELOPMENT OF CHART

Figures 1 to 103, summary charts used to present the data shown in this report, are the result of a coordinated development program. It is of importance to the user of these charts to understand how they are laid out so that he can get the maximum benefit from them.

(a) Title box.- At the top of the summary chart is information defining certain characteristics of the model and the test, which must be known before intelligent comparisons can be made between charts. With the exception of the designation they are believed to be self-explanatory. Very careful consideration was given to the definition of this designation. By itself, the designation will give a crude measure of what are, perhaps, the most important hydrodynamic characteristics of the hulls of modern flying boats. Thus, if a chart has the designation:

\[4.00 - 1.00 - 25.0 \]

it would mean

\[L_{r}/b - h/\sigma - \beta_{r} \]

which, in turn, are a measure of Spray Skipping Impact

A further advantage of this system of designating the hull is that each of the particular hydrodynamic characteristics improves as the number gets larger. Like most things in nature, however, changing the hull shape to improve one hydrodynamic characteristic may harm another. The designation system is therefore not foolproof and should be used with caution.

Background for the assumption that the forebody length/beam ratio controls the main spray of the hull may be found in references 4 and 5.
Both of these references show quite good correlation of the main-spray characteristics of existing flying boats in terms of forebody/length beam ratio. While it is undoubtedly quite true that other hull form variables have a powerful influence on the main spray characteristics, the forebody length/beam ratio appears to be the primary parameter. Reference 6 indicates that one of the most important hull form variables governing the skipping characteristics is the step height/sternpost angle ratio. Recent and as yet unpublished NACA tests indicate that the afterbody length has considerable influence on skipping, but other factors seem to have only secondary effects. It is generally accepted that forebody dead rise is the hull-shape parameter controlling the violence of the landing impact. Hence, it is believed that the parameters chosen are eminently suitable for a crude and quick evaluation of the potentialities of a particular hull.

No matter how clever a designation system is devised, it cannot hope to describe completely a shape as complex as a flying boat hull. For this reason, to the right and just underneath the title box, is a simple body plan of the hull. This should materially aid the user of the summary chart in getting a quick picture of the shape under consideration.

A few other important dimensions and particulars of the hull models may be found in the tables on pages 12 to 14. These tables may also be used as an index of the summary charts included in this report. If any particular hull should prove to be of direct interest, it is strongly recommended that reference be made to the original reports. The tables also give the source of the data.

(b) Main spray data.-- The form in which the spray data is shown near the top of the chart was developed in reference 3. This method of plotting has the very powerful advantage of allowing direct comparisons between hulls, regardless of the loads at which the tests were made. A rather strong disadvantage is that the curves are not visibly related to the hull itself. One way to overcome this difficulty is to compare the height and lateral positions of the points of tangency of different models at the same longitudinal position. If it is expected to load the different hulls in different manners, care must be exercised. A comparison of this sort is only possible at all because of the fact that there is relatively little difference in the

\[C_x/C_{\Delta}^{1/3} \]

curves for the various hulls tried so far.

Plots shown in reference 3 may be used to make an estimate of the accuracy of this form of plotting through the scattering of test points.

(c) Displacement range resistance.-- In the middle of the summary chart are shown the free-to-trim resistance and trim as determined in
the displacement range. This form of plotting was developed in reference 2 and was chosen in preference to that shown in figure 23 of reference 3 because it yields definite clues to two other very important hydrodynamic characteristics.

The bow spray in rough water (windshield wetting) is an exceedingly important characteristic of military flying boats and a simple means for evaluating it is very desirable. It appears that a reasonably reliable criterion for evaluating bow spray is the peak of the curve of \(\frac{C_R}{C_V^{2/3}} \). The peak occurs at values of \(\frac{C_V^2}{C_\Delta^{1/3}} \) near 1.5, which is in the vicinity of the speed at which bow spray is at its worst. This peak should, under no circumstances, be confused with the true hump which occurs much later. The peak in the \(\frac{C_R}{C_V^{2/3}} \) curve is caused primarily by water piling up ahead of the bow. It therefore makes an excellent criterion for measuring the effectiveness with which the bow cuts the water. The lower the peak the greater the ease with which the bow cuts the water. Hence, by inference, it may be used as a measure of the bow spray in rough water, which appears to be directly related to the ease with which the bow cuts through waves. (See reference 7.)

With the lower power loadings coming into general use, it appears that the free-to-trim trim is more important than the resistance. It is hardly worth while doing much work to reduce the take-off time 10 percent if the time is already about 20 seconds; whereas it is important if the time is near 60 seconds. On the other hand, if the trim is too high or too low the spray is likely to be quite bad and, even though its duration is short, it may do structural damage. The scale adopted for trim is twice as large as that used in figure 23 of reference 3. True, the resistance scale is much smaller in the vicinity of the hump (\(\frac{C_V^2}{C_\Delta^{1/3}} \) between about 8 and 12), but it is believed to be large enough for most practical purposes.

In references 2 and 8 will be found data, plotted in this manner, which may be used to get an estimate of the accuracy to be expected through the amount of scatter.

(d) Planing range.— In the planing range the results are presented in the same manner as was developed in references 1 and 2. Contours of the planing resistance coefficient \(\frac{C_R}{C_V} \) have been omitted where they would be more than 2° or 3° outside of the limits of longitudinal stability. Since there would not be much hope of being able to operate a flying boat in this region of instability, regardless of how good the resistance might be, omitting the data should avoid some confusion. An exception is the region near get-away in which the hull is riding with the forebody clear. Under this circumstance, the contours were prepared whenever data was available.
In some cases contours of constant C_M are included—at least where it was not too time-consuming to dig them out of the original data. Actually, plotting C_M in this way is completely irrational. Constant C_M was used for two reasons: it works quite well (see data plots in references 1, 8, and 9), and it is simpler than the rational form $\sqrt{C_M/C_v}$.

The manner in which the various contours in the planing range were derived deserves careful attention at the low-speed end. At the higher values of the planing-lift coefficient, $\sqrt{C_M/C_v}$, the collapsing process breaks down. The resistance at constant trim and trim at constant moment for specific values of $C_{L_{\infty}}$ peel off the main curves. Examples of this peeling-off process may be found in references 2 and 8. When the designer is preparing resistance or trim curves from the displacement and planing range, care should be taken to see that the curves from the two regimes overlap. The lower values from either regime should then be used. This matter is discussed in greater detail in reference 8. The peak of the lower limit sometimes, but not always, performs a similar peeling off. The breakdown of the collapsing process at the lower end of the planing range is regarded primarily as an inconvenience. It can be overcome by practice in using the charts and good judgment.

The accuracy of the various contours in the planing range may be judged by plots of data shown in references 1, 2, 8, and 9. The reason that no test points have been shown on any of the charts in this report is merely to avoid the confusion to the eye of a great mass of black spots.

One last point that deserves mention is that speed increases toward the right everywhere on the summary charts.

DISCUSSION

(a) Using the chart.—The crucial job in designing a flying boat is to ensure that the hull and air structure fit together as a single working unit to give both good air and water performance. Just as airplanes designed for different purposes require different wing and power loadings, so do hulls have to be custom-tailored for the particular jobs they are expected to perform.

The designer is badly hampered, when hull data is reported in the conventional manner, by the multiplicity of charts he has to wade through to select a hull suitable for the job he has in mind. The summary charts presented with this report should aid considerably in getting to the
The first and simplest method of using the summary charts is to select those which contain hull form parameters of interest and spread them out over a large table. By merely standing back and looking at the group of charts the designer can readily pick out, without further ado, those hulls having characteristics completely unsuitable for the job he has in mind. This method is not very effective for finding the best hull for a particular job, but what is very important is that it will quickly get rid of the deadwood. It will be noted that this type of analysis will be greatly facilitated by keeping the summary charts in a loose-leaf binder when they are not in use.

Because of the job that the hull is expected to perform, certain of the hydrodynamic characteristics will have predominating influence. The criteria measuring these characteristics may be plotted against the controlling hull-shape parameters. This process will undoubtedly show the bow of one hull is best, the afterbody of another hull, and so on. This should allow the designer to fit the various parts together to produce a hull having the performance he wants, and at the same time he will have quite a good idea of its characteristics. At this stage the designer should undertake tank tests to get the specific characteristics of his hull, if the importance of the project warrants the time and money.

The third method of using summary charts is actually to fit hulls with satisfactory hydrodynamic characteristics to an airplane and determine the aerodynamic performance. A quick method of determining the hydrodynamic characteristics for specific airplanes from the summary charts will be found in reference 8. If the airplane is being designed for maximum range, for instance, at the expense of other characteristics, range may be plotted against various hull parameters. This type of design study yields its clearest results when confined to a series of hulls having some systematic change. Several such series will be found in this report. Unfortunately, they are small families; however, in the near future several more complete studies should be available.

(b) General.—The designer will undoubtedly be highly irritated when he finds a hull with some one interesting characteristic, but the data on the other hydrodynamic characteristics missing. Unfortunately, this is likely to happen quite frequently since, out of all the charts included, only about half a dozen are complete. This disadvantage should not weigh too heavily, however, because it is a relatively simple matter to get the additional data necessary. Should such a hull or hulls turn up, the designer should make his needs known.
In this connection, it is worth noting that the testing establishments would make a good deal faster progress if they deliberately left gaps in various types of data used in preparing a summary chart. For instance, as far as large military flying boats are concerned, present design trends seem to indicate that stability and spray are the controlling criteria. Work on these two characteristics, at the expense of others, would appear well worth while, when interesting hulls have been found it is very simple to go back and get the missing data.

As pointed out previously, the manner in which the displacement range resistance and trim is plotted was selected because it gave clues to the bow spray and main spray even though they were not actually tested. Similarly, the resistance contours in the planing range may be used as a clue to the upper limit porpoising and skipping characteristics. Ordinarily, the upper limit of porpoising may be expected to be about 1° below the line which shows where the forebody comes clear. Further, it will be reasonably parallel to it. This will locate the primary upper limit, but not the secondary upper limit.

At very low values of the planing lift coefficient and moderately high trims, the resistance contours frequently bend to the right. This bending is associated with afterbody wetting, and hence presumably may be taken as at least an indication of the skipping characteristics. On a few hulls the bending occurs quite suddenly, and it is expected that then skipping will be found only at trims above the lowest sharp bend.

The temptation to select some hull from this or other similar collections of summary charts as the final design should be strenuously resisted. Because a certain hull was satisfactory on some given design does not necessarily mean that it will be equally good for a new and different design. These charts should be regarded as an engineering tool for determining trends to arrive at a better hull. If kept in this light, no matter how closely they are pushed, no insuperable difficulties should arise from the use of the summary charts.

CONCLUDING REMARKS

The group of summary charts presented in this report should be a valuable tool to assist the designer in selecting a hull for a particular purpose. By using the charts and getting familiar with them, the designer will be able more quickly to arrive at the point of most interest to him—a high-performance aircraft.

Aviation Design Research Branch,
Bureau of Aeronautics, Navy Department,
Washington, D. C., January 1946.
REFERENCES

<table>
<thead>
<tr>
<th>Mode No.</th>
<th>Source</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Longitudinal concave forebody</th>
<th>30° S-shaped step on forebody</th>
<th>5° S-shaped step on forebody</th>
<th>1° S-shaped step on forebody</th>
<th>Concave step at edge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.25</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>0.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Center of gravity position above/below (in.)</th>
<th>a</th>
<th>b</th>
<th>g</th>
<th>H/L</th>
<th>L/D</th>
<th>Pr</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.05</td>
<td>3.3</td>
<td>3.3</td>
<td>1.68</td>
<td>1.68</td>
<td>1.68</td>
<td>1.68</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Designation</th>
<th>L/D</th>
<th>H/L</th>
<th>Pr</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model No.</th>
<th>b/c</th>
<th>b/c</th>
<th>b/c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>Remarks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TN 681</td>
<td>2.04 15.00 Pointed step</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TN 685</td>
<td>2.04 15.00 Pointed step</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TN 690</td>
<td>2.04 15.00 Pointed step</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TN 762</td>
<td>2.04 15.00 Pointed step</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TN 766</td>
<td>2.04 15.00 Pointed step</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TN 668</td>
<td>2.04 15.00 Pointed step</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Center of gravity position</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angle (deg)</th>
<th>Number of tabs</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.0</td>
<td>6.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Designation</th>
<th>e / h</th>
<th>3P / 4C</th>
<th>2P / 4C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ABL No.</th>
<th>3P / 4C</th>
<th>2P / 4C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Model No.</td>
<td>Designation</td>
<td>L/b</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAES MODELS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L/b = 3.5</td>
<td>2.31</td>
<td>0.30</td>
</tr>
<tr>
<td>L/b = 7.0</td>
<td>2.94</td>
<td>0.48</td>
</tr>
<tr>
<td>L/b = 8.5</td>
<td>3.57</td>
<td>0.56</td>
</tr>
<tr>
<td>L/b = 10.5</td>
<td>4.20</td>
<td>0.69</td>
</tr>
<tr>
<td>G-2/42-11</td>
<td>3.57</td>
<td>0.40</td>
</tr>
<tr>
<td>G-2/42-Q</td>
<td>2.87</td>
<td>0.11</td>
</tr>
<tr>
<td>CEB</td>
<td>4.02</td>
<td>0.96</td>
</tr>
<tr>
<td>FEB</td>
<td>4.02</td>
<td>1.09</td>
</tr>
<tr>
<td>SIT MODELS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>394-79</td>
<td>3.68</td>
<td>0.31</td>
</tr>
<tr>
<td>339-1</td>
<td>3.62</td>
<td>0.29</td>
</tr>
<tr>
<td>339-19</td>
<td>3.62</td>
<td>0.29</td>
</tr>
<tr>
<td>339-20</td>
<td>2.72</td>
<td>0.30</td>
</tr>
<tr>
<td>339-22</td>
<td>2.72</td>
<td>0.40</td>
</tr>
<tr>
<td>339-23</td>
<td>3.93</td>
<td>0.34</td>
</tr>
<tr>
<td>339-46</td>
<td>4.04</td>
<td>0.57</td>
</tr>
<tr>
<td>339-49</td>
<td>3.93</td>
<td>0.34</td>
</tr>
<tr>
<td>433-1</td>
<td>3.52</td>
<td>0.32</td>
</tr>
<tr>
<td>433-2</td>
<td>3.52</td>
<td>0.32</td>
</tr>
<tr>
<td>459-3</td>
<td>3.32</td>
<td>0.62</td>
</tr>
<tr>
<td>459-5</td>
<td>3.32</td>
<td>0.40</td>
</tr>
<tr>
<td>459-7</td>
<td>3.32</td>
<td>0.40</td>
</tr>
<tr>
<td>461-1</td>
<td>3.32</td>
<td>0.57</td>
</tr>
<tr>
<td>621-1</td>
<td>3.36</td>
<td>0.87</td>
</tr>
<tr>
<td>621-8</td>
<td>3.36</td>
<td>0.87</td>
</tr>
</tbody>
</table>
NACA TN No. 1182

DESIGNATION: 2.82-0.43-22.5

MODEL NO. II
MODEL BEAM 17.00°

C.G. = 0.36 b FWD. OF CENTROID
C_{g_x} = 1.19 b ABOVE KEEL
K/L = (NOMINAL)

TESTED AT NACA No. 1 Tank
DATE: '32

STATION SPACING GIVEN AS DISTANCE FROM CENTROID, IN UNITS OF BEAM

Fig. 1

FREE-TO-TRIM RESISTANCE AND TRIM DISPLACEMENT RANGE

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS
PLANING RANGE

M_q/\sqrt{2} b^4 =
\sqrt{C_{g_x}/C_{V}}

- 16
- 14
- 12
- 10
- 8
- 6
- 4
- 2

GETAWAY
Fig. 2

DESIGNATION: 2.82-0.43-22.5
NACA TN No. 1182

- **MODEL NO. 11-A**
- **MODEL BEAM:** 17.00"
- **C.G.** = 0.36 ft FWD. OF CENTROID
 11.9 ft ABOVE KEEL
- **C_\text{a}_a** = (NOMINAL)
- **K/L** =

- **C_\text{a}_a** =

- **D**
- **N**
- **A**
- **T**
- **K**
- **L**

TESTED AT NACA NO. 1 TANK
DATE: 4/3

FREE-TO-TRIM RESISTANCE AND TRIM DISPLACEMENT RANGE

STATION SPACING GIVEN AS DISTANCE FROM CENTROID, IN UNITS OF BEAM

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS

PLANING RANGE

\[\frac{M_0}{\sqrt{S_\beta^3}} = \sqrt{C_\text{a}_a/C_\text{a}} \]

<table>
<thead>
<tr>
<th>Trim Angle, deg.</th>
<th>Resistance, Moment and Stability Characteristics</th>
<th>Planing Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NACA TN No. 1182

DESIGNATION: 2.82-0.32-22.5

Model No. II-B
Model Beam 1700"

CG = 0.47 b fwd. of centroid
0.95 b above keel

CN = (NOMINAL)

K/L =

Tested at NACA No. 1 Tank
Date: 8/34

Station spacing given as distance from centroid, in units of beam

Free-to-trim resistance and trim displacement range

Resistance, moment and stability characteristics
Planing range

Ma/V2b4 = \sqrt{CN/Cv}

M/\sqrt{CN/Cv} = 0.05 0.04 0.03 0.02 0.01 0.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Trim angle, deg.

0 2 4 6 8 10 12 14 16

Resistance, moment and stability characteristics

0.55 0.50 0.25 0.20

0.15 0.10 0.05

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Trim angle, deg.

0 2 4 6 8 10 12 14

Resistance, moment and stability characteristics

0.55 0.50 0.25 0.20

0.15 0.10 0.05
Model No. II-C
MODEL BEAM: 1700"

C.G. = 0.47 b FWD. OF CENTROID
0.92 b ABOVE KEEL

C_{L} = (NOMINAL)

K/L =

Tested at NACA No. 1 Tank
Date: 7/34

Designation: 2.82-0.43-22.5

NACA TN No. 1182

Fig. 4

Station spacing given as distance from centroid, in units of beam.
Fig. 6

DESIGNATION: 2.82-0.55-22.5 NACA TN No. 1182

MODEL No. II-C-8 C.G. = 0.47 b FWD. OF CENTROID C_a = (NOMINAL) Tested at NACA No. 1 Tank

MODEL BEAM: 17.00° 0.91 b ABOVE KEEL k/L =

DATE: '34

CENTROID, IN UNITS OF BEAM

FREE-TO-TRIM RESISTANCE AND TRIM DISPLACEMENT RANGE

RESISTANCE

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS

PLANING RANGE

\[\frac{M_Q}{V_b^2} = \frac{\sqrt{C_m}}{C_v} \]
Fig. 7

NACA TN No. 1182

DESIGNATION: 2.82-0.36-22.5

MODEL NO. II-C-9
MODEL BEAM: 17.00'
C.G. = 0.47 b FWD. OF CENTROID
C.G. = 0.91 b ABOVE KEEL

(NOMINAL)

TESTED AT NACA No.1 TANK
DATE: '34

FREE-TO-TRIM RESISTANCE AND TRIM
DISPLACEMENT RANGE

STATION SPACING GIVEN AS
DISTANCE FROM
CENTROID, IN UNITS OF BEAM

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS
PLANING RANGE

$M_q/V_b^a = \sqrt{C_a/C_v}$

$\sqrt{C_a/C_v}$
Fig. 8

DESIGNATION: 2.82 - 0.30 - 22.5

NACA TN No. 1182

MODEL NO. II - C - 10
MODEL BEAM: 17.00"

C.G. = 0.47 b FWD. OF CENTROID
C.G. = 0.91 b ABOVE KEEL

(k/NOMINAL) tested at NACA No. 1 tank

DATE: '34

FREE-TO-TRIM RESISTANCE AND TRIM DISPLACEMENT RANGE

STATION SPACING GIVEN AS DISTANCE FROM CENTROIQ, IN UNITS OF BEAM

RESISTANCE

MOMENT AND STABILITY CHARACTERISTICS

PLANING RANGE

\[
M_0 / \sqrt{2} b^4 = \sqrt{C_R / C_V}
\]

\[
0.35 \quad 0.30 \quad 0.25 \quad 0.20 \quad 0.15 \quad 0.10 \quad 0.05 \quad 0.00
\]
Fig. 10
DESIGNATION: 2.82 - 0.26 - 22.5
NACA TN No. 1182
MODEL NO. 11-C-12
MODEL BEAM 17.00"
C.G. = 0.47 b FWD. OF CENTROID
C_{60} = (NOMINAL)
0.91 b ABOVE KEEL
C_{60} = k/L
TESTED AT NACA No. 1 TANK
MODEL BEAM, 17.00"
0.91 b ABOVE KEEL
CENTROID, IN UNITS OF BEAM
STATION SPACING GIVEN AS
DISTANCE FROM
CENTROID, IN UNITS OF BEAM
FREE-TO-TRIM RESISTANCE AND TRIM
DISPLACEMENT RANGE
RESISTANCE
TRIM
M_0 / \sqrt{2}b^4 =
\sqrt{C_m / C_v}
NACA TN No. 1182
MODEL NO. II-C-13
MODEL BEAM 17.00"

CG = 0.47 b FWD. OF CENTROID
0.91 b ABOVE KEEL

$C_d = \sqrt{C_a}$
$K/L = \frac{\text{BASE LINE}}{C_{d}}$

STATION SPACING GIVEN AS
DISTANCE FROM
CENTROID, IN UNITS OF BEAM

TESTED AT NACA No.1 TANK
DATE: '34

Fig. 11
FREE-TO-TRIM RESISTANCE AND TRIM
DISPLACEMENT RANGE

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS
PLANING RANGE

$M_d/\sqrt{V_2 b^4} = \sqrt{C_a/C_d}$
Fig. 12

DESIGNATION: 2.87 - 0.61 - 22.5

NACA TN No. 1182

MODEL NO. II-C-30°S

C.G. = 0.52 b FWD. OF CENTROID

0.91 b ABOVE KEEL

C.L = 0.99

BASE LINE

STATION SPACING GIVEN AS DISTANCE FROM CENTROID, IN UNITS OF BEAM

FREE-TO-TRIM RESISTANCE AND TRIM DISPLACEMENT RANGE

PLANING RANGE

Mq/Vb^2 = \sqrt{C_L/C_L}

DATE: '35

TESTED AT NACA No. 1 TANK

K/L = (NOMINAL)

MODEL BEAM: 17.00'
NACA TN No. 1182

DESIGNATION: 2.74-0.27-22.5

Fig. 13

MODEL NO. II-C-45°V
MODEL BEAM: 17.00°

C.G. = 0.39 b FWD. OF CENTROID
0.91 b ABOVE KEEL

C_b = (NOMINAL)

k/L =

TESTED AT NACA No. 1 Tank
DATE: '35

STATION SPACING GIVEN AS
DISTANCE FROM CENTROID, IN UNITS OF BEAM
Fig. 14 DESIGNATION: 2.66 - 0.75 - 7.5

NACA TN No. 1182

MODEL NO. II-E C.G. = 047° FWD. OF STEP C_{0a} = (NOMINAL)
MODEL BEAM 1700" 092° ABOVE KEEL k/L =

TESTED AT NACA NO. 1 TANK
DATE 3/35

STATION SPACING GIVEN AS
DISTANCE FROM
STEP, IN UNITS OF BEAM.
NACA TN No. 1182

DESIGNATION: 2.82-0.75-14.8

MODEL NO. II-F

MODEL BEAM: 1700\(^\circ\)

C.G. = 0.47 b FWD. OF CENTROID

K/L = (NOMINAL)

Cao = 0.92 b ABOVE KEEL

TESTED AT NACA No.1 TANK

DATE: 4/35

Fig. 15

FREE-TO-TRIM RESISTANCE AND TRIM DISPLACEMENT RANGE

STATION SPACING GIVEN AS DISTANCE FROM CENTROID, IN UNITS OF BEAM

RESISTANCE

TRIM

BASE LINE

Resistance, Moment and Stability Characteristics

Planning Range

\[
M_a / \sqrt{\frac{2}{3} b^4} = \sqrt{C_a / C_V}
\]
Fig. 16

DESIGNATION: 2.82-043-22.5 NACA TN No. 1182

MODEL NO. II-G C.G. = 0.47 b FWD. OF CENTROID C_a = (NOMINAL)
MODEL BEAM: 17.00" 0.91 b ABOVE KEEL k/L =

TESTED AT NACA No. 1 Tank
DATE: 8/34

STATION SPACING GIVEN AS DISTANCE FROM
CENTROID, IN UNITS OF BEAM

FREE-TO-TRIM RESISTANCE AND TRIM
DISPLACEMENT RANGE

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS
PLANING RANGE

M_y/V_y b^4 = \sqrt{C_m/C_v}
NACA TN No. 1182

DESIGNATION: 2.82-0.75-18.7

MODEL No. II-M
MODEL BEAM: 1700°
C.G. = 0.47 b FWD. OF STEP
0.92 b ABOVE KEEL
C_{a_0} = (NOMINAL)
K/L =

TESTED AT NACA No. 1 Tank
DATE: 10/35

Fig. 17

Station spacing given as
distance from
step, in units of beam

Free-to-trim resistance and trim
displacement range

Resistance, moment and stability characteristics
Planing range

\[\frac{M_n}{V^2b^4} = \frac{\sqrt{C_B/C_V}}{0.14} \]
Fig. 18

DESIGNATION: 2.82-0.75-22.5

NACA TN No. 1182

MODEL NO. II-N
MODEL BEAM: 1700°
C.G. = 0.47 b FWD. OF CENTROID
C_a0 = 0.92 b ABOVE KEEL
C_c^v = (NOMINAL)
K/L =

TESTED AT NACA No.1 TANK
DATE: 11/35

STATION SPACING GIVEN AS
DISTANCE FROM
CENTROID, IN UNITS OF BEAM

FREE-TO-TRIM RESISTANCE AND TRIM
DISPLACEMENT RANGE

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS
PLANING RANGE

M_a/V^2_d^4 =
Designation: 3.00 - 0.44 - 22.5

Model No. 12

Model Beam: 17.00"

C.G. = 0.39 ft. fwd. of centroid

C_\text{res} = \frac{1.19}{k/L}

Tested at NACA No. 1 Tank

Date: '33

Station spacing given as distance from centroid, in units of beam.

Free-to-trim resistance and trim displacement range.

Resistance, moment and stability characteristics.

Planning range

\[M_a / V_b^2 b^4 = \sqrt{C_a / C_v} \]
Fig. 20

DESIGNATION: 2.64-043-22.5

NACA TN No. 1182

MODEL NO. 13

MODEL BEAM: 17.00”

C.G. = 0.34 b FWD. OF CENTROID

C_W = 0.119 b ABOVE KEEL

C_W = (NOMINAL)

K/L =

TESTED AT NACA No. 1 TANK

DATE: '33

CENTROID

BASE LINE

STATION SPACING GIVEN AS DISTANCE FROM CENTROID, IN UNITS OF BEAM

FREE-TO-TRIM RESISTANCE AND TRIM DISPLACEMENT RANGE

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS PLANING RANGE

\[\frac{M_q}{V^2 b^4} = \sqrt{C_b/C_v} \]
NACA TN No. 1182 Designation: 2.52 - 0.39 - 20.3

Model No. 14
Model beam: 19.00" C.G. = 0.32 b fwd. of centroid C_d = (nominal)
1.07 b above keel k/l =

Tested at NACA No. 1 Tank
Date: '33

Station spacing given as distance from centroid, in units of beam

Free-to-trim resistance and trim displacement range

Resistance, moment and stability characteristics

Planing range

M_d/\sqrt{2}b^4 = \sqrt{C_d/C_v}
Fig. 22

DESIGNATION: 3.20 - 0.49 - 25.1
NACA TN No. 1182

MODEL No. 15
MODEL BEAM 15.00"

MODEL BEAM 15.00"

C.G. = 0.41 b FWD. OF CENTROID
C_{ax} = (NOMINAL)

1.35 b ABOVE KEEL

K/L =

TESTED AT NACA No. 1 Tank

DATE: '33

STATION SPACING GIVEN AS
DISTANCE FROM
CENTROID, IN UNITS OF BEAM

FREE-TO-TRIM RESISTANCE AND TRIM
DISPLACEMENT RANGE

RESISTANCE

TRIM

\(C_{av}/C_{b1/2} \)

\(C_{av}/C_{b1/2} \)
NACA TN No. 1182 DESIGNATION: 2.44-0.56-23.0

MODEL NO. 16
MODEL BEAM: 15.42''
C.G. = 0.63 b FWD. OF CENTROID
K/L = 1.03 b ABOVE KEEL
C_{e_m} = (NOMINAL)

TESTED AT NACA NO.1 TANK

DATE: 12/32

FREE-TO-TRIM RESISTANCE AND TRIM
DISPLACEMENT RANGE

RESISTANCE

TRIM

STATION SPACING GIVEN AS
DISTANCE FROM
CENTROID, IN UNITS OF BEAM

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS
PLANEING RANGE

\[\frac{M_g}{\sqrt{g}b^4} = \frac{\sqrt{C_m}}{C_{m}} \]
Fig. 26

DESIGNATION: 2.28 - 2.88 - 10.0 NACA TN No. 1182

MODEL NO. 22-A
MODEL BEAM: 17.00''

C.G. = 0.80 b AHEAD KEEL

C.D. = (NOMINAL)

TESTED AT NACA No.1 TANK

DATE: 11/33

POINTER STEP

STATION SPACING GIVEN AS DISTANCE FROM CENTROID, IN UNITS OF BEAM
NACA TN No. 1182

MODEL NO. 26
MODEL BEAM: 1786"

DESIGNATION: 2.75-045-22.0

C.G. = 0.24 ft FWD. OF CENTROID

C_{a,x} = 0.82 ft ABOVE KEEL

k/L = (NOMINAL)

TESTED AT NACA No.1 TANK

DATE: 6/34

STATION SPACING GIVEN AS
DISTANCE FROM
CENTROID, IN UNITS OF BEAM

Sikorsky S-40

FREE-TO-TRIM RESISTANCE AND TRIM
DISPLACEMENT RANGE

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS
PLANING RANGE

M_{x} / V_{x}^{2} = 0.35 0.30 0.25 0.20 0.15 0.10 0.05

\sqrt{C_{w}} / C_{v} = 0.04 0.03 0.02 0.01 0.00 0.09 0.08 0.07 0.06 0.05

Fig. 27
Fig. 28

DESIGNATION: $\infty - \infty - 0.0$

NACA TN No. 1182

MODEL NO. 27
MODEL BEAM: 16.00" C.G. = b FWD. OF CENTROID C_{a_s} = (NOMINAL)
C_{as} = b ABOVE KEEL
K/L =

TESTED AT NACA No. 1 Tank
DATE: '34

STATION SPACING GIVEN AS
DISTANCE FROM
CENTROID, IN UNITS OF BEAM

$C_{r_s}/C_{s_1/3}$

$C_{r_s}/C_{s_1/3}$

$\sqrt{C_{r_s}/C_{s_1/3}}$

$\gamma^{C_{r_s}/C_{s_1/3}}$

$\gamma^{C_{r_s}/C_{s_1/3}}$

$M_q/\sqrt{V^2\beta^4} = 0.12$

$\sqrt{C_{r_s}/C_{s_1/3}}$

$\gamma^{C_{r_s}/C_{s_1/3}}$

$\gamma^{C_{r_s}/C_{s_1/3}}$
DESIGNATION: \(\infty - \infty - 20.0 \)

NACA TN No. 1182

TESTED AT NACA No.1 TANK

DATE: '34

MODEL NO. 29

MODEL BEAM: 16.00"

C.G. = b FWD. OF CENTROID

b ABOVE KEEL

C_{ao} = \text{(NOMINAL)}

k/L =

C_{uy}/C_{a}^{1/3}

STATION SPACING GIVEN AS DISTANCE FROM CENTROID, IN UNITS OF BEAM
Fig. 32

DESIGNATION: 2.93 - 3.77 - 15.0
NACA TN No. 1182

MODEL NO. 35
MODEL BEAM: 13.00"
C.G = 0.08 b FWD. OF CENTROID
C_g = (NOMINAL)
0.97 b ABOVE KEEL
K/L = -2 -t

C.G. = 0.08 b FWD. OF CENTROID
0.97 b ABOVE KEEL
K/L = -2 -t

STATION SPACING GIVEN AS
DISTANCE FROM
CENTROID, IN UNITS OF BEAM

FREE-TO-TRIM RESISTANCE AND TRIM
DISPLACEMENT RANGE

TRIM
RESISTANCE

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS
PLANING RANGE

M_g/V^2 b^4 =

\[\sqrt{C_g}/C_v \]
Fig. 36

DESIGNATION: 3.12-0.44-200 NACA TN No. 1182

MODEL No. 40AC
MODEL BEAM: 13.47°
C.G. = 0.306 FWD. OF STEP
1.16 b ABOVE KEEL
C_s = (NOMINAL)

TESTED AT NACA No. 1 Tank
DATE: 5-25-34

C_s/C_s = 0.306
C_s/C_s = 0.10
C_s/C_s = 0.05

FREE-TO-TRIM RESISTANCE AND TRIM
DISPLACEMENT RANGE

TRIM

RESISTANCE

RESCENTANCE, MOMENT AND STABILITY CHARACTERISTICS
PLANING RANGE

M_g / V^2 =
\sqrt{C_s / C_v}

0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.04 0.03

0 2 4 6 8 10 12 14 16
MODEL NO. 40-AD C.G. = 0.30 b FWD. OF STEP C_{o_0} = (NOMINAL)
MODEL BEAM: 13.47" K/L =
1.15 b ABOVE KEEL

TESTED AT NACA No.1 TANK
DATE: 6/34

STATION SPACING GIVEN AS
DISTANCE FROM
STEP, IN UNITS OF BEAM
Fig. 38

Designation: 3.12-0.41-200 NACA TN No. 1182

Model No.: 40-AE

Model Beam: 13.47''

C.G.: 0.30 b fwd. of step

1.15 b above keel

C_{b*} = (Nominal)

k/L =

Tested at NACA No.1 Tank

Date: 6/34

Figures:

- **Resistance**
- **Free-to-Trim Resistance and Trim Displacement Range**
- **Resistance, Moment and Stability Characteristics**

Planing Range

M_{q} / V_{2} b^{4} =

\sqrt{C_{a} / C_{v}}
NACA TN No. 1182 DESIGNATION: 312-044-200

MODEL NO. 40-BC C.G. = 0.30 b FWD. OF STEP C_ba = (NOMINAL)
MODEL BEAM: 13.47" K/L =
1.15 b ABOVE KEEL Tested at NACA No.1 Tank

Fig. 39

STATION SPACING GIVEN AS DISTANCE FROM STEP, IN UNITS OF BEAM

FREE-TO-TRIM RESISTANCE AND TRIM DISPLACEMENT RANGE

RESISTANCE

TRIM

TRIM ANGLE DEG.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15

C_v^2/C_b^{1/3}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 2 4 6 8 10 12 14 16

MD_0/V_0^2 b^4 = \frac{\sqrt{C_g}}{C_v}

0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.04 0.03 0.02 0.01 0.00

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS
PLANING RANGE

-2 -4 -6 -8 -10 -12 -14 -16

TRIM ANGLE DEG.
NACA TN No. 1182

MODEL NO. 41-A

MODEL BEAM 12.00"

DESIGNATION: 3.56 - 0.86 - 26.0

K/L =

Cxx = 1.40 (NOMINAL)

TSTED AT NACA No. 1 TANK

DATE: 8/35

STATION SPACING GIVEN AS DISTANCE FROM CENTROID, IN UNITS OF BEAM
Fig. 42

DESIGNATION: 3.58-0.98-26.0

NACA TN No. 1182

MODEL No. 41-D
MODEL BEAM: 12.00"

C.G.: 0.58B FWD. OF CENTROID Cb = 1.40 (NOMINAL)
2.04B ABOVE KEEL K/L =

TRIM
RESISTANCE

FREE-TO-TRIM RESISTANCE AND TRIM
DISPLACEMENT RANGE

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS
PLANING RANGE

M0/√₀b² = √C₀/C₀
Fig. 44

DESIGNATION: 2.60-0.98-2.0 NACA TN No. 1182

MODEL NO. 46
MODEL BEAM 14.2"" C.G. = 0 b FWD. OF STEP C_a = 0.75 (NOMINAL)
0.80 b ABOVE KEEL
k/L =

TESTED AT NACA No.1 TANK
DATE: 2/35

BASE LINE FRONTAGE GIVEN AS
DISTANCE FROM
STEP, IN UNITS OF BEAM

Savoia S-55-X

FREE-TO-TRIM RESISTANCE AND TRIM
DISPLACEMENT RANGE

RESISTANCE

CM = 0
\sqrt{C_m / C_v}

- RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS
- PLANNING RANGE
- M_a / \sqrt{2} b^{4} = \sqrt{C_a / C_v}

0.35 0.30 0.25 0.20 0.15 0.10 0.06 0.04 0.03 0.02
NACA TN No. 1182
UDESIGNATION: 2.38-0.38-26.0

MODEL No. 47
MODEL BEAM: 16.26"
C.G. = 0.13 b FWD. OF STEP
1.31 b ABOVE KEEL
C_a = 0.35 (NOMINAL)

TESTED AT NACA No.1 TANK
DATE: 10/55

3 STATION SPACING GIVEN AS
DISTANCE FROM
STEP, IN UNITS OF BEAM

STATION SPACING GIVEN AS
DISTANCE FROM
STEP, IN UNITS OF BEAM

SHORT CALCUTTA
FREE-TO-TRIM RESISTANCE AND TRIM
DISPLACEMENT RANGE

RESISTANCE

C_m = 0
C_a = 0.5
0.4
0.3
0.2
0.1

TRIM ANGLE, DEG.

16
14
12
10
8
6
4
2

2 3 4 5 6 7 8 9 10 11 12 13 14

Cv^2/C_a^{1/3}

TRIM ANGLE, DEG.

16
14
12
10
8
6
4
2

2 3 4 5 6 7 8 9 10 11 12 13 14

Cv^2/C_a^{1/3}

2 3 4 5 6 7 8 9 10 11 12 13 14

Cv^2/C_a^{1/3}

M_d/V_t^2 b^4 =

\sqrt{C_a}/C_v

\sqrt{C_a}/C_v

\sqrt{C_a}/C_v
MODEL NO. 57-A
MODEL BEAM: 12.45″

CG = 0.36 b FWD. OF CENTROID

CG = (NOMINAL) TESTED AT NACA No 1 TANK

K/L = DATE: 6/58

STATION SPACING GIVEN AS
DISTANCE FROM
CENTROID, IN UNITS OF BEAM

FREE-TO-TRIM RESISTANCE AND TRIM
DISPLACEMENT RANGE

RESISTANCE

FOREBODY CLEAR

Mg/V2b4
Fig. 48

DESIGNATION: 3.38-0.85-25.0 NACA TN No. 1182

MODEL NO. 57-B

- **C.G.** = 0.36 ft FWD of STEP
- 1.93 ft ABOVE KEEL

MODEL BEAM: 12.45 ft

- **Cₐₜ =** (NOMINAL)
- **k/L =**

TESTED AT NACA No.1 TANK

DATE: 5/38

FREE-TO-TRIM RESISTANCE AND TRIM DISPLACEMENT RANGE

- **Cₐ₁**
- **Cₐ₂**
- **Cₐ₃**

STATION SPACING GIVEN AS DISTANCE FROM STEP, IN UNITS OF BEAM

PLANING RANGE

- **Cₐ₉ =**
- **ΔM =**

FOREBODY CLEAR

Mₒ / V² bₐ =

- **√Cₐ₁ / Cₐ₂ =**

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS
Fig. 49

FREE-TO-TRIM RESISTANCE AND TRIM DISPLACEMENT RANGE

PLANNING RANGE
PRACTICALLY THE SAME AS MODEL 57-B

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS

PLANING RANGE

$\frac{M_a}{V^2 b^4} = \sqrt{C_a/C_v}$

STATION SPACING GIVEN AS DISTANCE FROM CENTROID, IN UNITS OF BEAM
Fig. 50

DESIGNATION: 3.37 - 0.85 - 30.0
NACA TN No. 1182

MODEL NO. 57-C
MODEL BEAM: 12.45"
CG: 0.36 b FWD. OF CENTROID
k/L: 1.93 b ABOVE KEEL
CA: (NOMINAL)

STATION SPACING GIVEN AS DISTANCE FROM CENTROID, IN UNITS OF BEAM

FREE-TO-TRIM RESISTANCE AND TRIM DISPLACEMENT RANGE

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS

PLANNING RANGE

Mg/V^2b^2 =

BASE LINE
STATION SPACING GIVEN AS DISTANCE FROM CENTROID, IN UNITS OF BEAM.
Fig. 58

DESIGNATION: 3.24 - 0.34 - 20.0 NACA TN No. 1182

MODEL NO. 84-AF
MODEL BEAM: 15.92" C.G = 0.46 b FWD. OF CENTROID C_{g} = (NOMINAL) K/L =
1.16 b ABOVE KEEL

TESTED AT NACA No. 1 Tank
DATE: 3/59

STATION SPACING GIVEN AS DISTANCE FROM CENTROID, IN UNITS OF BEAM

FREE-TO-TRIM RESISTANCE AND TRIM DISPLACEMENT RANGE

RESISTANCE

PLANING RANGE AND STABILITY CHARACTERISTICS

M_{r} / V_{2} b^{4} =

\sqrt{C_{r}} / C_{v}

\sqrt{C_{r}} / C_{v}
Fig. 60

DESIGNATION: 3.24 - 0.57 - 20.0 NACA TN No. 1182

MODEL NO. 84-EF-3
MODEL BEAM: 15.92"
C.G. = 0.46 b FWD. OF CENTROID
1.16 b ABOVE KEEL

(1.16 b AB.)

CG

k/L

(NOMINAL)

TESTED AT NACA No.1 TANK
DATE: 3/39

STATION SPACING GIVEN AS
DISTANCE FROM
CENTROID, IN UNITS OF BEAM

FREE-TO-TRIM RESISTANCE AND TRIM
DISPLACEMENT RANGE

RESISTANCE

TRIM

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS
PLANING RANGE

16

14

12

10

8

6

4

2

0

16

14

12

10

8

6

4

2

0

TRIM ANGLE DEG.

TRIM ANGLE DEG.

\(C_m = \frac{1}{2} \rho V^2 b^2 \)

\(M_q / \sqrt{\frac{1}{2} b^4} = \)

\(\sqrt{C_m / C_V} \)

0.35

0.30

0.25

0.20

0.15

0.10

0.05
Fig. 62

DESIGNATION: 2.82 - 0.88 - 17.5 NACA TN No. 1182

MODEL NO. 126 A-I
C.G. = 0.31
b FWD OF CENTROID
C_{a,b} = 1.17
b ABOVE KEEL
k/L
TESTED AT NACA NO. 1 TANK
DATE: 7/42

STATION SPACING GIVEN AS DISTANCE FROM CENTROID, IN UNITS OF BEAM

FREE-TO-TRIM RESISTANCE AND TRIM DISPLACEMENT RANGE

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS PLANING RANGE

M_{q}/V_{k} = \sqrt{C_{r}/C_{v}}
NACA TN No. 1182
MODEL NO. 126 A-2
MODEL BEAM: 14.00"

DESIGNATION: 2.82 - 0.58 - 17.5
TESTED AT NACA NO. 1 TANK
DATE: 7/42

FREE-TO-TRIM RESISTANCE AND TRIM DISPLACEMENT RANGE

STATION SPACING GIVEN AS DISTANCE FROM CENTROID, IN UNITS OF BEAM

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS
PLANING RANGE

M_d/V_2^0.5 = \sqrt{C_m/G_v}
NACA TN No. 1182

DESIGNATION: 2.82 - 0.88 - 22.5

MODEL NO. 126 B-1

MODEL BEAM: 14.00"

MODEL C.G. = 0.31 b FWD. OF CENTROID

MODEL K/L = 1.17 b ABOVE KEEL

(NOMINAL)

TESTED AT NACA NO. 1 TANK

DATE: 2/42

FREE-TO-TRIM RESISTANCE AND TRIM

DISPLACEMENT RANGE

STATION SPACING GIVEN AS

DISTANCE FROM

CENTROID, IN UNITS OF BEAM

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS

PLANING RANGE

\[
\frac{M_\theta}{V^2 b^4} = \sqrt{C_m/C_V}
\]

FOREBODY CLEAR

GETAWAY

0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.01
Page 66

Designation: 2.82 - 0.58 - 22.5 NACA TN No. 1182

Model No: 126B-2

Model Beam: 14.00"
C.G. = 0.31 b fwd. of centroid
C_{a=0} = 1.17 b above keel
C_{a=0} (Nominal)
Tested at NACA No. 1 Tank
Date: 2/42

FREE-TO-TRIM RESISTANCE AND TRIM DISPLACEMENT RANGE

STATION SPACING GIVEN AS DISTANCE FROM CENTROID, IN UNITS OF BEAM

Resistance, Moment and Stability Characteristics

Plating Range
M_{a} = V^{2}b^{4}
\sqrt{C_{w}}/C_{V}
Fig. 67

NACA TN No. 1182
DESIGNATION: 2.82 - 0.47 - 22.5

MODEL NO. 126 B-3, C.G. = 0.31 FWD OF CENTROID
MODEL BEAM: 14.00"
1.17 b ABOVE KEEL
k/L =

TESTED AT NACA NO. 1 TANK
DATE: 2/42

FREE-TO-TRIM RESISTANCE AND TRIM
DISPLACEMENT RANGE

TRIM

RESISTANCE

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS
PLANNING RANGE

Ma/Vb^4 =

0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.03 0.02 0.01 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

TRIM ANGLE, DEG.

BASE LINE

STATION SPACING GIVEN AS
DISTANCE FROM
CENTROID, IN UNITS OF BEAM
Fig. 68

DESIGNATION: 2.82 - 0.88 - 27.5 NACA TN No. 1182

MODEL NO. 126 C-1 C.G. = 0.31 b FWD. OF CENTROID C_{d_n} = (NOMINAL) TESTED AT NACA NO. 1 TANK
MODEL BEAM: 14.00" 1.17 b ABOVE KEEL k/L =

DATE: 7/42

STATION SPACING GIVEN AS DISTANCE FROM CENTROID, IN UNITS OF BEAM

FREE-TO-TRIM RESISTANCE AND TRIM DISPLACEMENT RANGE

RESISTANCE

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS
PLANNING RANGE

\[\frac{M_g}{V^2 b^4} = \sqrt{C_d/C_v} \]
Fig. 70

DESIGNATION: 2.82 - 0.47 - 27.5 NACA TN No. 1182

MODEL NO. 126 C-3

MODEL BEAM: 14.00"

C.G. 0.31 b FWD. OF CENTROID

Cz_o = (NOMINAL)

TOLERANCE

CENTROID

K/L:

TESTED AT NACA NO. 1 TANK

DATE: 7/42

BASE LINE

STATION SPACING GIVEN AS DISTANCE FROM CENTROID, IN UNITS OF BEAM

FREE-TO-TRIM RESISTANCE AND TRIM DISPLACEMENT RANGE

RESISTANCE

TRIM

STATION SPACING

GIVEN AS DISTANCE FROM CENTROID, IN UNITS OF BEAM

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS

PLANING RANGE

\[\frac{M_q}{\sqrt{\frac{1}{2} \rho b^4}} = \]
Designation: 4.71 - 0.95 - 20.0

Model No. 146
Model Beam: 13.00°
C.G. = 0.55 b fwd. of step
1.56 b above keel
C.α α = (Nominal)
K/L =

Tested at NACA No. 1 Tank
Date: 7-42

Station spacing given as distance from step, in units of beam.
Fig. 75

NACA TN No. 1182

DESIGNATION: 5.80 - 0.66 - 24.5

Model No. 185
Model Beam: 11.81"}

C.G. = 0.46 b FWD. OF CENTROID

C_{bg} = (NOMINAL)

1.40 b ABOVE KEEL

K/L =

Tested at NACA No. 1 Tank

Date: '44

Stability Characteristics

Free-to-Trim Resistance and Trim Displacement Range

Resistance, Moment and Stability Characteristics

Planing Range

Mq/\sqrt{V^2 b^4} =

\sqrt{C_{m}/C_V}
NACA TN No. 1182

Model No. 207

Model Beam: 14.74"

CG = 0.31b fwd. of centroid

CG = 0.67 (nominal)

G/L =

Tested at N.A.C.A. No. 1 Tank

Date: 12-44

Fig. 77

TESTED AT N.A.C.A. No. 1 TANK

BASE LINE

STATION SPACING GIVEN AS DISTANCE FROM CENTROID, IN UNITS OF BEAM

FREE-TO-TRIM RESISTANCE AND TRIM DISPLACEMENT RANGE

FROM SPECIFIC TESTS, LOADS APPROXIMATE

TRIM

RESISTANCE

PLANING RANGE

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS

PLANNING RANGE

Mₜ/V₂bₜ =

\sqrt{Cₐ/Cₖ}
LOCATIONS OF TANGENCIES OF FOREBODY SPRAY BLISTER ENVELOPES
FREE-TO-TRIM, DISPLACEMENT RANGE

HEIGHT ABOVE KEEL
DISTANCE FROM \(x \)
\(C_x/C_A \)
LONGITUDINAL POSITION FROM STEP, \(C_x/C_A^{1/3} \)

\(C_x^2/C_A^{1/3} \)

STATION SPACING GIVEN AS DISTANCE FROM CENTROID, IN UNITS OF BEAM

FREE-TO-TRIM RESISTANCE AND TRIM DISPLACEMENT RANGE
FROM SPECIFIC TESTS, LOADS APPROXIMATE

TRIM ANGLE, DEG.

TRIM
0.60
0.50

RESISTANCE

\(C_D = 0.70 \)

\(C_D^2/C_A^{1/3} \)

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS
PLANING RANGE

\(M_d/V_2 b^4 = \sqrt{C_m/C_D} \)

0.35 0.30 0.25 0.20 0.15 0.10 0.05
Fig. 80
DESIGNATION: 2.31 - 0.38 - 20.0
NACA TN No. 1182

MODEL NO. L/6.55
MODEL BEAM: 1Q.92°
C.G.: 0.18 b FWD. OF STEP
C₄₆: (NOMINAL)
1.11 b ABOVE KEEL
TESTED AT RAE TANK
K/L:
DATE: 5-35

STATION SPACING GIVEN AS
DISTANCE FROM
STEP, IN UNITS OF BEAM

FREE-TO-TRIM RESISTANCE AND TRIM
DISPLACEMENT RANGE

TRIM RANGES

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS
PLANING RANGE

\[
\frac{M_d}{V^2 b^4} = \sqrt{C_d/C_v}
\]

0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.0
NACA TN No. 1182
DESIGNATION: 2.94-0.48-20.0

Fig. 81

MODEL NO. L/b=7.0
MODEL BEAM: 8.56"
C.G.: 0.25 b FWD. OF STEP
1.42 b ABOVE KEEL
C_b = (NOMINAL)
TESTED AT RAE TANK
DATE: 9-35

FREE-TO-TRIM RESISTANCE AND TRIM DISPLACEMENT RANGE
STATION SPACING GIVEN AS DISTANCE FROM STEP, IN UNITS OF BEAM

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS
PLANING RANGE

- **M_q/V_2^{1/4}**
- **√k/L =**
MODEL NO. L/b = 10.0
MODEL BEAM: 6.00°

C.G. = 0.32 b FWD. OF STEP
2.02 b ABOVE KEEL

C_{x} = (NOMINAL)
k/L =

DESIGNATION: 4.20 - 0.69 - 20.0

Fig. 83

FREE-TO-TRIM RESISTANCE AND TRIM DISPLACEMENT RANGE

TRIM

RESISTANCE

STATION SPACING GIVEN AS DISTANCE FROM STEP, IN UNITS OF BEAM

TESTED AT RAE TANK

DATE: 5-36

PLANING RANGE

\[
\frac{M_{A}}{V^{2}b^{4}} = \sqrt{C_{x}/C_{v}}
\]

\[
\frac{C_{v}^{2}}{C_{A}^{1/2}}
\]

\[
\frac{C_{v}^{2}}{C_{A}^{1/2}}
\]
Fig. 84

DESIGNATION: 3.69-1.06-27.0 NACA TN No. 1182

MODEL NO.
MODEL BEAM: 717"

CG = 0.24 b FWD. OF STEP
1.32 b ABOVE KEEL

C_b = 1.28 (NOMINAL)
k/L = 0.228

TESTED AT R.A.E. TANK
DATE: 2/42

STATION SPACING GIVEN AS
DISTANCE FROM
STEP, IN UNITS OF BEAM

SHORT SHETLAND

FREE-TO-TRIM RESISTANCE AND TRIM
DISPLACEMENT RANGE

RESISTANCE

UPPER LIMIT

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS
PLANING RANGE
M_o/V^2 = 0.36

LOWER LIMIT
MODEL No. N2/42-AI
MODEL BEAM: 6.64"
C.G. = 0.16 b FWD. OF CENTROID
1.92 b ABOVE KEEL
C_a = 1.35 (NOMINAL)
K/L = 0.218
TESTED AT RAE TANK
DATE: '43

DESIGNATION: 2.85 - 1.30 - 21.5

STATION SPACING GIVEN AS DISTANCE FROM CENTROID, IN UNITS OF BEAM

FREE-TO-TRIM RESISTANCE AND TRIM DISPLACEMENT RANGE

FROM SPECIFIC TESTS, LOADS APPROXIMATE

UPPER LIMIT

LOWER LIMIT

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS

PLANING RANGE

\[\frac{M_a}{\frac{V_{20}^2}{b}} = 0.101 \]

\[\frac{\sqrt{C_a}}{\sqrt{C_v}} \]
Fig. 86

DESIGNATION: 2.87-1.11-20.0 NACA TN No. 1182

MODEL NO. N2/42-Q C.G. = 0.16 b FWD. OF CENTROID
MODEL BEAM: 6.56" C.A = 1.40 (NOMINAL)
1.95 b ABOVE KEEL k/L = 0.218
C.G. = 0.16 b FWD. OF CENTROID

TESTED AT RAE TANK DATE: '43

STATION SPACING GIVEN AS
DISTANCE FROM
CENTROID, IN UNITS OF BEAM

FREE-TO-TRIM RESISTANCE AND TRIM
DISPLACEMENT RANGE

RESISTANCE

Mq/Vb^2 = 0.106

UPPER LIMIT

LOWER LIMIT

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS
PLANING RANGE

Fig. 90

DESIGNATION: 3.32-0.62-20.0

NACA TN No. 1182

MODEL NO. 339-1
MODEL BEAM: 5.40"

C.G. = 0.35b FWD. OF STEP
C.G. = 0.90b ABOVE KEEL
C_a = 1.069 (NOMINAL)
k/L = 0.225

TESTED AT S.I.T. NO. 1 TANK

DATE: 11-4-43

LOCATIONS OF TANGENCIES OF FOREBODY SPRAY BLISTER ENVELOPES
FREE-TO-TRIM, DISPLACEMENT RANGE

HEIGHT ABOVE KEEL, C_2/C_a

LONGITUDINAL POSITION FROM STEP, C_2/C_a^{1/3}

DISTANCE FROM C_1, C_2/C_a^{1/3}

MARTIN XBP2M-1
FREE-TO-TRIM RESISTANCE AND TRIM
DISPLACEMENT RANGE

TRIM

C_a = 1.40
1.20
1.00
0.80
0.60

RESISTANCE

0.60
0.4
0.2
0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TRIM ANGLE, DEG.

UPPER LIMIT

0.08 0.07
0.06
0.05
0.04
0.03
0.02
0.01

LOWER LIMIT

0.08 0.07
0.06
0.05
0.04
0.03
0.02
0.01

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS
PLANING RANGE

M_0/V^2 b^4 = 0.25

\sqrt{C_a/C_v}

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

\sqrt{C_a/C_v}

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
NACA TN No. 1182

DESIGNATION: 2.72-0.61 - 200

MODEL No. 339-22

C.G. = 0.350 F.W.O. STEP (NOMINAL)

0.900 ABOVE KEEL

W/L = 0.225

TESTED AT S.I.T. No.1 TANK

DATE: 11-4-43

LOCATIONS OF TANGENCIES OF FOREBODY SPRAY BLISTER ENVELOPES

FREE-TO-TRIM, DISPLACEMENT RANGE

DISTANCE FROM \(\xi, C_V/C_A^{1/3} \)

HEIGHT ABOVE KEEL, \(C_Z/C_A \) - STEP

LONGITUDINAL POSITION FROM STEP, \(C_X/C_A^{1/3} \)

FREE-TO-TRIM RESISTANCE AND TRIM RANGE

TRIM

RESISTANCE

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS

PLANING RANGE

\(M_d/V^2b^4 = 0.25 \)
NACA TN No. 1182
DESIGNATION: 3.32 - 0.62 - 200
Fig. 97

MODEL No. 439-1
MODEL BEAM: 5.40"
C_d = 0.436 FWD. OF CENTROID
C_o = 0.90 (NOMINAL)
0.90 b ABOVE KEEL
k/L = TANK MODEL BEAM, 5.40"

LOCATIONS OF TANGENCIES OF FOREBODY SPRAY BLISTER ENVELOPES
FREE-TO-TRIM, DISPLACEMENT RANGE

DISTANCE FROM STEPS, C_A/C_d
HEIGHT ABOVE KEEL, C_A/C_d
LONGITUDINAL POSITION FROM STEPS, C_A/C_d

STATION SPACING GIVEN AS DISTANCE FROM CENTROID, IN UNITS OF BEAM

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS
PLANING RANGE

M_\phi / V_2 b^4 = \sqrt{C_d / C_V}
Fig. 98

DESIGNATION: 3.32-0.62-10.0

NACA TN No. 1182

TESTED AT SIT No. 1 Tank

DATE: 3/43

MODEL NO. 439-2

MODEL BEAM: 5.40" W

C.G. = 0.43 b FWD. OF CENTROID

C.G. = 0.90 b ABOVE KEEL

K/L =

LOCATIONS OF TANGENCIES OF FOREBODY SPRAY BLISTER ENVELOPES
FREE-TO-TRIM, DISPLACEMENT RANGE

STATION SPACING GIVEN AS
DISTANCE FROM CENTROID, IN UNITS OF BEAM

- Resistance, Moment and Stability Characteristics
 PLANING RANGE

\[\frac{M_0}{\sqrt{C_L}} = \frac{\sqrt{C_m}}{C_D} \]
NACA TN No. 1182

DESIGNATION: 3.32-0.62-30.0

Fig. 99

Model No. 439-3

C.G. = 0.43 b FWD. OF CENTROID \(C_a = 0.90 \) (NOMINAL)

Model Beam: 540''

LOCATIONS OF TANGENCIES OF FOREBODY SPRAY BLISTER ENVELOPES FREE-TO-TRIM, DISPLACEMENT RANGE

- **HEIGHT ABOVE KEEL**
 - \(C_x/C_a \)

- **DISTANCE FROM \(C_y/C_y^{1/3} \)**

- **LONGITUDINAL POSITION FROM STEP, \(C_x/C_y^{1/3} \)**

STATION SPACING GIVEN AS DISTANCE FROM CENTROID, IN UNITS OF BEAM

DATE: 3/43

TESTED AT SIT No. 1 TANK

BASE LINE

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS

PLANING RANGE

\[M_a/V_b^2 b^4 = \sqrt{C_s/C_v} \]
Fig. 102

DESIGNATION: 3.36 - 0.87 - 20.0
NACA TN No. 1182

MODEL NO. 621 - 2
MODEL BEAM: 5.40" C.G. = 0.40 b FWD. OF CENTROID C_b = (NOMINAL) 1.05 b ABOV E KEEL k/L =

TESTED AT S.I.T No. 1 Tank
DATE: 10/44

LOCATIONS OF TANGENCIES OF FOREBODY SPRAY BLISTER ENVELOPES FREE-TO-TRIM, DISPLACEMENT RANGE

HEIGHT ABOVE KEEL

LONGITUDINAL POSITION FROM STEP, C_b/C_b^1/3

STATION SPACING GIVEN AS DISTANCE FROM CENTROID, IN UNITS OF BEAM

FREE-TO-TRIM RESISTANCE AND TRIM DISPLACEMENT RANGE

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS

PLANING RANGE

M_q/V_2 b^4 = √C_b/C_v

0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.0
Fig. 103

NACA TN No. 1182

DESIGNATION: 3.36-0.87-20.0

Model No. 621-8
Model Beam: 5.40"

C.G. = 0.40 FWD. OF CENTROID
1.05 D ABOVE KEEL

K/L = (NOMINAL)

TESTED AT SIT No. 1 TANK
DATE: 1/45

LOCATIONS OF TANGENCIES OF FOREBODY SPRAY BLISTER ENVIRONMENTS
FREE-TO-TRIM, DISPLACEMENT RANGE

HEIGHT ABOVE KEEL

DISTANCE FROM

LONGITUDINAL POSITION
FROM STEP, Cx/Cx

STATION SPACING GIVEN AS
DISTANCE FROM
CENTROID, IN UNITS OF BEAM

FREE-TO-TRIM RESISTANCE AND TRIM
DISPLACEMENT RANGE
FROM SPECIFIC TESTS, LOADS APPROXIMATE

RESISTANCE

TRIM ANGLE, Deg.

16
14
12
10
8
6
4
2
0

FOREBODY CLEAR

0.05
0.04
0.03
0.02
0.01

TRIM ANGLE, Deg.

16
14
12
10
8
6
4
2

RESISTANCE, MOMENT AND STABILITY CHARACTERISTICS
PLANEING RANGE

M₉/V₁₀₀⁴ =

√G₉/C₉

0.05
0.04
0.03

0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00