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THE ONE-DIMENSIONAL THEORY OF STEADY COMPRESSIBLE FLUID FLOW

IN DUCTS WITH FRICTION AND HEAT ADDITION

By Bruce L. Hickas, Donald J. Montgomery,
and Robert H. Wasserman

SUMMARY

Steady, diabatic (nonadiabatic), frictional, variable-area flow
of a compressible fluld is treated in differential form on the basis
of the one-dimensional approximation: The basic equations are first
stated in terms of pressure, temperature, density, and velocity of
the fluld. Considerable simplification and unification of the sgqua-
tions is then achleved by choosing the square of the 1oual Mach num-
ber as one of the variables to describe the flow. = 7

The transformed syatem of equations thus obtained is first
examined with regard to the existence of a solutlon. It is shown
that, in general, a solution exists whose calculation requires know-
ledge only of "the variation with position of any three of the
dependent variables of the system. The direction of change of the
Tlow variables can be obtained directly from the tranaformed egqua-
tions without integration. As examples of this avplication of the
equations, the direction of change of the flow variables is deter-
mined faor two speclal flows. :

In the particular case when the local Mach number M =1, a
special conditlon must be satisfled by the Flow if a solution 18 to
oxist. Thle condition restricts the Joint rate of variation of
heating, friction, and area at M = 1. Further analysie indicates
that when a solution exists at this point it is not necessarily
uiqus. - - : -

Finglly it is shown that the physical rthenomenon of choking,
which is known to occur in certain simple flow sltuatians, is
related to resirictions imposed on the variables by the form of the
transformed equatlions. The phenomenon of choking is thus given a
more general significance in that the transformed equatlions apply
to a more general type of flow than has hitherto been trested.
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INTRODUCTION

The rational experimental development of Jet- and rocket-
propulaion power plants requires adeguate knowledge of the theoreti-
cal mechanlcs of dlabatic (nonadiabatic), frictional, varlable-areca
compresalble fluid flow. The differential equatione describing this
type of flow are well known. (See, for exampleo, veferences l{a),
1(b), 2, 3, and 4.) Their solution in the three-dimensional case,
however, is so difficult that soms simplification ls necessary to
nermit development of the theory in a form immediately useful for
technical applications. ' ST T '

In the present paper, such simplification is effected by gen~
eralizing the familiar "cne-dimensional’” or hydraullc treatment of
fluld flow to include the simultanecus effects of heat addition,
friction, and area change upon the flow of a compresaible fiuid
rather than by attempbing to show that the one-dimenslorm]l approx-
imation follows from a simplification of the hydrodynamic and heat-
flow equations in thelr general three-dimenalonal form. The gen-
eralizstion leads to one-dimensional squations in differential form,
which are ildentical with equations previously used by other inves-
tigators in less general cases.

Generalized conservation equatlons have been derived in appen-

dix A in order that a complete and loglcal basls for the thoory may
be accessible to the reader. The resulting theory is intended to
serve as & foundation in differential form for calculatzon of all
types of mathematically continuous (that is, shocklcss)} flow of per-
fect gases to which the one-dimensional approximation is applicable.
Thus the tkeory applies dlrectly to compressible flow in combustlon
chambers and also, with but slight modification, to flow in turbines
and compressors (cf. reference 5) and nozzles and diffusecrs whenever
the one-dimensional approximation is wvalid.

In order to obtain convenient and unified equatlons, the gen-
eralized relations are itransformed by introduci a new basgic
variable, the square of the local ifach number M<¢ = H. Pressure’
and temperature are chosen as the additional basic varlables; othexr
relevant flow variables (for example, density, veloclity, mass Tlow)
way be expressed in terms of Mach number sguared, pressure, snd tem-
perature. Values of M from zerc to infinity are consldered; the
treatment ia therefore applicable to both subscnic and supersonic
flow.
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The variable M has been used throughout differential treat-
ments by Guklman (reference 6), Bailey (reference 7), and Nielsen
(reference 8j), who investigated various examples of frictional
dlabatic compressible flow. A related varilable
Z = (y-1)M2/[2 + (7-1)M27, which can be used alternatively with M,
wlll be discussed briefly in appendix B. Pertinent papers in which
M 1is rot used extensively are referencee 9 and 10, which report studies
of isothermal and of adlabatic frictional flow, respect*vely. A
treatment of frictionless diabatic compressible flow carried out by
Szczeniowski (referencell) is partly in differential form. The
ssme subJect, using the M language without differential formula-
tion, is discusssd in reference 12, The variable M has also been
employed to advantage in reference 5 for analysis of compressible
flow through turblnes and compressors, a related field that is not
specifically discussed 1n the present paner.

In the general case, the differential equations obtained in the
present treatment do not permit of formael integration: but belng of .
the first order, they are particularly amenable to numerical methods.
A polution of the system is shown to exist, except possibly at sonic
veloclty, and the behavior of the solution in this neighborhood 1s
investigated. From the djfferential equations useful information
may be easily obtalned about direction of changes in the flow vari-
ablea. Choking is shown to be & consequence of a ceritain pronerty
of the equations. .

THE ONE-DIMENSIONAL AFPROXTMATION
Basic Equations

The "one-dimensionel" steady-flow theory utilizes a model con-
sisting of a perfect gas contained within a duct, across any section
of which the flow varisbles are constant. Only the component of
velocity normal to the section is congldered; body forces are neg-
lected, and heat, whether supplied by combustion, conversion of
frictional work, or conduction from the walls, is assumed to be
transferred instantaneously and completely but only transversely
throughout the cross section, which may be of variable area. Each
Tlow variable can thus be considered as a function of a single
parameter, say the distance along the axis of the tube, wience the
term "one dimensional."”
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The conventiocnal variables — pressure, temperature, density,
and veloclty in one-dimenslonal flow — are connected by four rola-
tiona derivable from the first law of thermodynamics, the conserva-
tion of mass, the second law of motion, end the thermal equation of
gtate for a perfect gas. ) _

The four relatlons sre:

Conservation of snergy cp 4T + VAV = 4Q (1)
Conservation of mass d{pva) = 0O (2)
Equation of motion : ~-dp = pVAV + pdF (3}
Equation of state A(p/ReT) = O (4)

The specific heat at constant pressure ¢4 and the gas constant R
do not vary in the flow. The symbols p, V, », and T, respec-
tively, stand for density, velocity, absoluta static pressure, and
absolute static temperature. The pipe area, wiich may be variable,
is represented by A. Heat added per unit mass is Indicated by qQ,
and work per unit mese done ageinst friction by F. Conslstent
unlts are used throughout. In equations (1) through (4) each vari-
abler is to be coneidered as a function of a single narameter, such
ag the distance x along the tube considered positive in the direc~
tion of flow; and, of course, the meaning of each differentisl du
is then glven by

du = u'(x)dx

Bquations (1) to (3) are customarily used without explicit
reco#énition of their true meaning with regard to the one-dimensional
approximation., The Interpretetion of the quantity dF 1in particular
is of'ten obscure. In order to provide a logical, unified basis for
the theory, equations (1) to (3) are derived in apmendix A; spocial
care 1s talken to keen the derivations w1th1n the f“amework of the
one~dimenaional approximation. S 3

Apnlicability
The validity of the one-dimensional avproximation demends upon

the agsumption of the unifcrmity of flow conditions across a planc
normal to the direction of flow. Experience has shown that this

{
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agsumption constitutes an adequate approximation in many special

cases; in particular, with subsonic turbulent flow in long wmipes _
without separation, the reasonably flat velocity proflile permite

the use of equations derived on thls basis. In cases involving
incomplete growth of boundary layer or where geparation of flow occurs,
however, there is grave doubt as to the applicabillty of a one-
dimensional treatment. Although boundary-layer effects are somewhat
smensble to calculation, the occurrence of separation ls difficult

or impossible to predict and the question of apnlicability must uesually
be determined by experiment or estimated by experience.

The one-dimensional approximation would not be valid 1f oblique
shocks occur in the flow. Nor can normel shocks, 1f treated as flow
discontinuities, be handled in the differential form of the present
approximation. If, however, in equations (1) and (3), 4Q and dF
are coneidered to depend upon the derivatives of T and V and if
heat and momentum transfer in the direction of flow is allowed, then
the equations for continuous normal shock (reference 1(c), p. 219)
can be put in the form of equations (1) to (4).

In the development and use of equations (1) to (4) verious
approximations are made, such as neglecting the squares of velocity
components normal to the direction of flow, replacing the squars of
the cosine of the half-angle by unity, and assuming the comstancy
of R and Cp. Im this paper no attempt is made to state under
what circumstances such approximations are sultable.

TRANSFORMATION OF BQUATIONS
Change of Varlables

A canonical form for equations (1) to (4) 1s obtained by taklng
logaritbhmic derivatives and choosing as a variable the square of the
local Mach number

M2= N = V2 /yRT (5)

whore ~ 18 the ratio of smwecific heats. This choice to obtain
gimplification of the equetions is not unique; similar advantages
result with other dimensionless combinations of wvelocity squared and
a temperature. For instance, some workers have used the ratio of
dynamic temperature to total vemperature; In anpendix B of ths -
present report are presented the canonical differential equations

in terms of this variable.



6 NACA TN No. 1336

If equations (1), (2), (3), and (4) are divided by cpT,

p, and p/RPT, resmectively, thers result—

) — = —
(v )RT A T cp'l‘
av  dp dA
v e STk

)

(7)

(8)

(9)

With use of equation (5) and the expression for dV/V obtained by

logarithmic difforentiation of equation (5),

av 1/4anN ar

— = | e P e

v 2\ N T/

and, upon elimination of dp/p, there are found

(.7_—2.1_\{ i{[ +[1 +(7_1)N}E = E_q'_ = 4de

2 N 2
T CPT
1L dN 4y 14t da
—— e e = — = - —E da
2 N D 27T A

where the dimensionless quantlities 46, do, and dp have besn

introduced to simplify the following analysis.

T

(10)

(11)

(12)

(13)
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Solution for Logarlthmic Differentials

If the determinant formed by bthe coefflcients of éN/N, dp/p,
and 4T/T in equavions (11), (12), and (13) is not identlcally zero,
the equations may be solved uniquely for thnaese three diterentials.
As the determirant in question is proportionai to (1-¥), which vanighes
only for N = 1, the solution 1ls obtained as follows: o

aN/N = (1-1\1r)'l f(r+9m) ae+(2+ (r -1N] a +[2 +(r-1)F] aa\_, (14)
ap/p = (1) {- w0 - [1 40w} e - oW aa ) " ()
ar/r = (1-§)-1 ‘_-(1-7N) a8 ~ {y-1)N du - (y-1)W ..d_a 1 (1s)

J

It is also convenlent to record the differential expressions for
the density p and velocity V: ' '

dp/p - &T/r = (1-N)"! (-d6 - du - ¥ da) (17)

(aN/N + aT/r) /2 = (1-1~r)'l (86 + du + do) (18)

do/p

av/v

Application of Second Law of Thermodynamics

The first law of bthermodynamics was used in the formulation of
the baslic equations; the second law of thermodynamice may be
employed to furnish addltional Information. The entropy differ-
ential dS for a perfect gas is given (cf. reference 13, p. 63) by

ds/e, = av/T - {(7—1)/7] dp/p = a6 + ‘_(7-1)/7] dp (18)
The second law of thermodynamics then states
0= ds/e; - dQ/oyT = [(_7-1)_/_7] & N (20)

The relation, according to equation (19), that
<1s/cp = (46 + du + da) - dp/fy -da
_ when used with equation (20), results in the inequalities
a6 = dS/cP=dB - dufy - do S dp -da (21)
where d4dR=E- 46 + du + do.
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DISCUSSION OF EQUATIONS
Remarks on Integration of Equations

Equations (14), (15), and (16) can be rewritten as

N 14N - 2+(y-1 N 2+(y-1)N
N = e _iz_ t ..I:I_ :.SZ_._)E | I, +<7._)_ Al (22)
1-N cpT 1-N RT C1-N A
pf = - P 7N Q."' P 1+(7'1)N ' + _E_ 11! At (25)
1-N cP‘I‘ 1-N RT 1-N A
T 1l-yN T (y-1)N T (y-1)N
| . ————— 3 - ——— Sttt & . S —————p—— 1
Tetgoymg Y15 ™ Frm—z 4 (24)

where the primes indicate differentiation with respect te =x. This
system clearly satisfies, except at N = 1, the conditions of the
fundemental existence theorem (see, for exawple, reference 1l4) when
Q, F, and A are differentlable. Hence a solution cxlsts except
at sonic veloclty and may e obtained formally when possible, and
by standard numerical methods otherwise, as soon as tie functions
Q, F, and A (or their derivatives) arc specified. More gener-
ally, the system may bo salved in similar fashion for any three of
the variables N, p, T, Q, F, and A as functions of x, when
the variation with =x of the other three 1s prescribed. Also it
may be noted that as all the foregoing variables are funchions of
one parameter, eny two may be considered as functions of each cther
under suitable clrcumstances.

Direction of Change of Flow Varlables

In practical as well as in theoretical work it 1s frequently
ugseful to be able ta determine the direction of change of flow
guantities with respect to heat addition, fricktion, or area varia-
tion without troubling to get quantitative information from inte-
grated formg, Equations (14) to (18) (or (22) to (24)) -ermit the
specification of signe of derivatives at any particulsr point and
also throughout certain regions of flow. Thue equation (14) shows
that in subsonlc flow the effTect of positive @', p', or af,
is to increase N, whereas for supersonic flow the effect is to
decreagse N. When the derivatives have different signs, the net
effect will depend upon the algebraic sum of the scparate con-
tributions. ' ' T
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As an example of the use of this technique, suppose heat is
added to a fluid in a constant-area pipe, with negligible friction;
that is, €' # 0, p' = o'= 0. Tt is eamily seen from equa-
tions (14) to (18) that for the entire range of N from zero
to infinity

(1-N) aN/aQ Z © (25)
dp/aN S 0 (26)
(t-om) -1 am/an 2 © (27)
dp/an = 0 (28)

av/an Z 0 o _ - (29)

Thesge results are given in reference 12. By use of the chain rule
for the derivative of a function of a function, the sign of the
derivative of any of the flow variables with respect to any of the
others may be obtained; thus, from equations (25) and (29) it is
clear that

(1) g = (W) g == O (30)

As another example, consider the flow in circular cylindrical
pipes with heat addition and with friction; that is, 6' # O,
p' # 0, a' = 0. (See also related discussion in reference 8.)
Equation (14) will be used to determine the direction of change of
N with respect to x. If the heat addition is only through the
wall, which is at temperature T, +the heat added per unit mass of
fluid in passing a distance dx along the tube is given by

PVA 4Q = h (T -T) (xD dx) (31)

where D is the tube diameter, and h +the local surface-to-fluid
coefficient of heat transfer, in heat units transferred per unit
temperature difference, per unit area. (Cf. equation {2), refer-
ence 15, p. 135.) In conjunction with equation (11}, equation (31)
leads to

4@ Bl(Ty/m)-1]1 apax 4n[(m,/T) - 1] ax

CpT cy oVieD? /4 cp PVD

a6 =

(32)
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The expression for frictional work done is assumed to be glven (cf.
reference 15, p. 119, equation (8)) by

£v2 ax

: (33)
2(D/4)

vhere f 18 ths Fanning friction factor. From eguations (13) and
(33) it follows that

dF 289N dax (34)
Ll B :

If Reynolds' analogy is valid, h may be replaced by co pVf/2
(reference 15, p. 162, equation (1)), whence equation (1£) beconmes

an/ax = L x/(1-¥) | {(1+7N) [(m/T) - 1]+ [2+ (7-1)¥ ) 7N~}2f/D (35)

This equation may be used to determine the direction of change of

N with x, and hence of other flow quantitios, for various

ranges of N and of T /T. For values of (T,/T) <<l (maximum rate
of cooling), dN/dx is positive for values of

1> N > {-7 +J5f.(-57_':_4—)_]/27(7-l) = 0.58

for ¢ = 1l.4; that 18, the effects of friction in dncreasing tho

Mach number overbalance the effects of the cold _walls in lowering

1t if L >M=wN> 0.76 for 7y =1.4. If N> 1 then (dN/dx)<O
and acceleratlion of frictilonal, supersonic flow by convective

cooling appears to be impossible. Acceleration of frictlonless
superso?ic flow by cooling should, however, be possible (refer-

ence 12).

Behavior of Solution at Sonlc Velocity

The differential equations (14) to (18) must be examined
as to behavior at the singular point N = 1. In order that the
logarithmic differentlals may be defined at this point, it is neces-
sary that 4B =46 + du + da vanish sultably at N = 1; that is,

d =46 + du + Ao = 0 at N =1 (36)

because each logarithmic differential 1s proportional %o dB/(l N)
there, If 4p# O upstream of the end of the duct, N can squal
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1 only at the end of the duct. This situation 1s illustrated by

the "choked" converging nozzle and by the frictional dlabatic flow,
which 1s treated in the prevlious section. Equation (38) is formally
satisfied at the end of & duct where df, du, and da may be
conslidered to vanish for all values of N.

Between the ends of a duct, however, df must always vanish
where N = 1. This condition shows that at N = 1 arbitrary varia-
tions of 46, du, and do are not poesible. A specific lllustra-
tion i1s the ideal nozzle in which 46 = dp = O; according to equa-
tion (36), da is then restricted to the value 0, which means
that the area hag a stationary value at N = 1. This is the well-
known result that sonic velocity can be attained only in the throat
of an idesl nozzle in shockless flow. A guite similar tresatment
applies for the cases where d6 and dp are the quantities to be
investigated. (See pertinent material in references 5 to 12. )
Condition (36), which was necessitated by the presence of the deter-
minant (1-N)/2 in equations (14) to (18) is thus seen to
provide a unlification of the treatment of the flow behavior in the
neighborhood of sonic veloclty. : . -

Combination of the second law of ﬁhermodynamics with egqua-
tion (36) also yields limitations on the behavior of the flow at
N = 1. According to equations (21) and (36), at sonic velocity

S ds/ep T - do = dA/A : (37)

These results may be stated In words to the effect that in converg-
ing or constant-area channels at N = 1, mneither the heat term

ae = dQ/c T nor the entropy term dS/cp can be positive. In
‘diverging channels these two terms may be either positive or neg-
tative. If either 46 or dp is everywhere O, relation (21)
yields more detalled results. For example, iIf 46 = O then at

N =1, by equations (36) and (20)

dyp = -da

[r/(7-1)] as/ep £ 0 (a6 =0, N =1)

Continuous flow with friction and without heat addition at sonic
velocity cannot therefore occur in & converging channél (refer-
ence 7).
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A more complete treatment of the behavior of the flow when
N =1 between the ends of the duct is obtained by considering
second-order terms. As N approaches unity, equation (14), which
mey be writien

N'/N = {(1+7N)e' + [24(7-1)0] p' + [2+(y-1)N] o' }-/(l-N)
(where the prime indicates differentiation with respect to ),

takes the form 0/0‘ For the evaluation of this limit, IL'Hopital's
rule glves after some calculation A

NO' = [eo'No' + (1+7) BO"J /(“NOK)

where subscript o denotes value of functlon at N = 1. The solu-
tion for N,' 1is

No' = -65'/2 i«/(eo’/z)z - (1+7)Bo" (38)

The double~-valuedness of the derlvative at N =1 will have impor-
tant conseguences in that a unique solution of the equations may

not be obteined when N = 1 along the flow path. In general, it
will be possible to continue the solution from N = 1 along elther
of ‘two paths, depending on the cholce of sign. In certain ‘cases,
depending on the signa of 65 and B,", one sign wlll correspond
to continuation into subsonle flow, the other into supersonic;
otherwise the two choices will correspond to different continuatlons
into flow of the same character. Thils result means that specifica-
tion of inltial conditions and of varilation of 468, d4p, end dao
alone is not suffilcéint to Insure a unigque solution 1f N becomes
unity along the flow. In the event that the radicand is zero, it is
poasible that only one solution is cobtained; or it may happen that
gome hlgher derivative ls double-valued wlth resultling ambigulty of—
solution. The analysls for this case is somewhat involved and will
not be continued here.

It is Interesting to note that a less general problem of the
same nature has been presented by Lorenz (reference 16) and Prandtl
and Proell (reference 17). Some of this work is possibly more
acceasible 1n reference 18.

The Phenomenon of Choking
The general equations (11}, (12), and (13) impose restrictions

on the relations between the flow varisebles and the heat, friction,
and aresg variation. When these restrictlions teke the form of upper
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or lower limite on mass flow, the associated phenomena are termed
"choking" processes. As an example, it is well known that the ldeal
nozzle has for given subsonic entry conditions & maximum mass flow
beyond which the discharge cannot be Increased no matter how much
the exit pressure is lowered. Another case is "thermal choking,"
wherein the entrance Mach number and hence mass flow in diabatic,
frictionless, constant-ares flow is limited for given heat addition
despite indefinite reductions in outlet pressure (reference 12).

The nature of choking may be studied with the help of equa-~
tion (22), which was derived simply from the baslc equations. Tt
will be shown that unless heat, frliction, and area varilation are
such that (1-N) +times the right-hand side of equation (22)
changes from positive to negative as X increases, the Mach number
in the tube cannot become greater than 1 if the entrance veloclty
is subsonic and cannot become lese than 1 if the entrance veloclty
is supersonlc, provided that the flow varisbles remaln continuous.

For convenlence, designate by Y the factor (1-N) times the
right-hand side of equation (22). The quantity Y is seen to con-
sist of a saum of terms in Qf, F', and -A' multiplied by func-
tions of N that are always positive. (In the event that only one
of the terms Q', F', and -A' 1s not O, Y becomes merely the
derivative of the heat added, the frictlonal work, or the area,
multiplied by a simple function of the flow varisbles; then posi-
tive Y corresponds to the case of heat addlition, friction, or a
converging duct.)

Suppose first that Y 1s always negative. Then 1f the flow
at the entrance section x; 1s subsonic, dN/dx = (1-N)Y<O, and

the Mach number decreasesg; 1f the entering flow is supersonic,
dN/dx = (1-N)Y >0, and the Mach number increases.

Suppose now that Y 1s always positive. Then, If the entering
flow at x; 1is subsonic, dN/dx = (1-N)Y >0, and the Mach number
increases. But N cannot increase past unity as x 1ncreases.

For suppose N =1 at X = X, and is greater than 1 in the right-
hand neighborhood of xo (exclusive of xg); then dN/dx 1s nega-
tlve in this neighborhood, because (1-N) is less than O and Y 1is
greater then O. Now N 1s equal to unity at x = x5, 1is contin-
uous, and has a negative derivative in the neighborhood mentioned.
Hence N 1is less than 1 in this neighborhood, which contradictse

the assumption. Therefore N cannot be greater than 1 if Y 1is
always posltive, N is contlnuous, and N(xl) is less than 1. In
gensral, no continuous solution exists for values of X > x5 if ¥
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is always positive. This statenent, and the foregolng proof, ave
valid even if N'(xo) does not oxist. An analogous develomment
mey bo made for N(x3) g&roater than 1 with the conclusion that,
with Y positive and N continuous, N cannot be lesse than 1.

If Y changes from positive to negative at x = X,, however,
the value of N may cross unity at that point, but 4f Y ig ini-
tially negative, N goes away frum unity as previously shown and
can only turn toward unity if Y changes from negative to positive;
this change must be made at some value of N other than 1. Aftcr
Y hag changed to pogitive, the situation reduces to the cése that
Y is always positive, with tho N where Y changes sign now taken
. a8 the entrance N, '

It has been shown that up to some fixed point in the tube,
which can beo either the exit or the point at which ¥ changes from
positive to negative, N and therefore the Mach number do not
become greater then 1 1f theo entering velocity ia suvsonic nor lces
than 1 if the entering velcoity i3 suwersonlc. Furthcrmore, if Y
is posltlve up to the point at which N 1is limited, the derivative
of N Ybvefore this point is always positive if the entoring flow is
subsonic and is always negative if thc omtering flow is suporsonic.
Thus, for posltive Y and subsonic entrance velooity the entrance
N cannot exceed some limiting value less than 1 detormined by the
particular Q, P, -A variation, for N is always increasing
from its 1nitial waluoc and cannat exceed 1; and, by analogous con-
slderations for positive Y and supersonic eutrance velocity, N
canuot be less than some limiting value greater than 1. This
limitation 18 essentiamlly tho choking pheonomenon,

The specific form this limitatlon takes is not easily statod

in the goncral case, bocause the cholce of which factores arc to be

 held constant and of which variablos are to be considecred limited

dotormines tho particular form of . the restrictions. Numcrical
results for some-particular cases are given in refersnce 12, among
others, to 1llustrate the nature of possible results. It is felt
that additional speclal cases shculd be investigated before a thorough
study of the general case ia attempted.

Flight Propulsion Besearch Laboratory, .
Natlonal Advisory Committes for Aeronautics
Cleveland, Ohlo, February 24, 1947.
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APPENDIX A

DERTVATIONS OF THREE BASIC EQUATIONS
Congervation of Energy -

. The first law of thermodynemics applies to snergy changes
between two states of a system enclosed within a surface. Let the
gyatem (fig. 1) be the gas of mass Am that is contained in the

X =0

//‘//l

—
— "‘K\\\lk

Xp ~—amy

£ 2 Figure 1

\

initial state within the tube walls and the sections at x; and
X, &nd in the final state within the tube walls and the sectlons

at €, end fp; x3, xp, and {7 4are arbitrary, end £, is
determined by the condition that the mass between x; and El
equal the mass between x, and §,. When m(x) is defined as the

total mags of gas contained within the duct between the sections
x =0 and x =2x, the definition of Am becomes

tm=n(x,) - m({xy) ==2,) - mE,) (33)

Let TU(x) denote the internal (thermal) energy per uni’t mass
of £luid, p(x) the static pressure, V(x) tihe gas velocitiy,
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A(x) +the cross-sectionsl area of the duct, each .tsken at the .sec-
tion x; and Q(x) the heat (in mechanical-enorgy unite) added
from walls or by combusticnt to a unit mass of the fluid during its
pesgage from x =0 %o x = x. Then the first law of thermcdynamice
gays for steady flow that

4 ' &)
fm( 2)(U+%V2>dm—fm(x2)(U,+%V2>dm=fm 2 Q dm
m(il) ] m(El)

m(xy )

e E i
_jm(xZ)Qdm- f'szM-flpAu (40)
m(x; ) x2

1

As A dx = (1/p) dm, where p(x) is the density of the gas, egua-
tion (40) becomes

£,) (1)
fm(z(U+}-V2-Q+p/p>dm ml<U+%V2-Q+P/de

m(x Jm(xy)
(41)

when the limlts of integration are changed.

Frovided that the integrand is contlinuous {which requirement
axcludes shock) the expresgion on the right-hand side of equa-
tion (41) may be written, by the theorem of the mean for intograls:

[m(ﬁl) - m(xy )] £(m*)

where f(ml*) indicates the value of the integrand at some m = m*,
m(x;)<m*<m(1). The integral on the left-hand side ylelds &

- 8imilar result, with subscript 1 replaced by subscript 2, whence,
by virtue of eguation (39)

Flm*) = £(me¥*); m(x1) < m* < m(f;), m(xp) < mp* < m(Ep)  (42)

lActually the heat liberated by combustion might be considercd as
part of internal energy; or the external surroundings might be
considered to include the fuel; or the first law might be genera-
lized to include heat sources. The treatment given hers is con-

venlent buf must be understood to require same Justificatioh on
one of the bases mentloned. B
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As £q,—>x,, gz—a» X,, this equation becames

fEu(xl)] = fEn(xz)] (43)
but x end X, are arbitrary. Hente £ 18 a constant, and
a
E<U+-]2-'V2 ~- Q+P1/p>

or, since d(U + p/p) = dH, where H 1is the enthalpy per unit
mess

dQ = dH + Va&v (44)
For & perfect gas, dE = cpd.‘l’ , whence the energy equabtion is finelly
dQ = ¢ aT + Vav (45)

P

Congexrvation of Mass

The conservation of mass, in the form useful here, states that
in steady flow the mass entering a closed surface during any time
interval A% 1is equal to the mass leaving during the interval At,
Let the closed surface consist of the sections at arbitrary ?, and
X, (fig. 1) and the portions of the duct, between these sec‘bions and
let At be the time required for the mass m( El) - m(xl) to enter

the surface while mass m(g ) - m(xz) flows out. The values of =Xy
is arbitrary, whereas gz is fixed by the conditions on the time

intervael., Upon definition of +{x)} as the time required for &
fluld particle to travel from origin x =0 %o x =x, At mnmay be
defined by ’

st =t(g) - t(xy) = t(Ep) - t(xp) (45)
The law of conservation of mass says that
€1 €
pA dx = pA dx - (47)

Upon change of variable, this equation beccmes
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By t(%,)
dx
pA -a_—_E ét = pA
t(xy ) t(x,)

= a4t (48)

as before, by the theorem of the mean for Integrals and condi-
tion (46) the integrand must be constant, whence

d(pVa) = O (49)

Equation of Motlion

The vector form of the second law of motion for continuous
media states that the integral of the density of swrface forces
over a closed surface 1s equal to the integral of the density times
the particle derivative of the velocity over the volume enclosed by
the surface. (See, for example, reference 1S.) For the mass of
gas contained within the sections at x, and x, (fig. 1) and the
wallg of the duct, the horizontal component of the equation of
motion becomes

p(xy) AGm) - Dlxg) Alxy) + F""‘ R ax =f’2 o T pax  (50)
1 *1

wvhere R(x) dx 1a& the force exerted on the gas by the portion of
the duct between X and x + dx. For steady flow, the integral on
the right-hand side may be transformed as follows:

i
2 2 2
av dv dx av
p E’E Adx = s} ——3 % A dx = pVA —-—1 dx = pVA [V(xz)-V(xl)]

X X X

It follows from equations (50) and (S1) that the eguation of motion
may be written in differential form as

paA + Adp + pVAAY = Rax (52)

Now Rdx may be resolved into twoe constituent parts, the
horizontal components of the tangential friction drag and of the
normal pressure reaction, If the half-angle of the duct is dencted
by $(x), +the wall surface dby o(x), and the tangential frictlomal
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drag per unlt area by T(x), from figure 2 it 1s clear that

pdo =
‘%

]

"

Tdao

S

v - 3 sle} ) )
L
/]

#JF\

Filgure 2
Rdx = -(t 40) cos § + (p d0) sin @
and that
d0 = d4/sin @
hence
R dx = -(t do) cos § + p dA (53)

It is possible to use equation (53) directly without further
analysis 1f the friction Tactor is related t©¢ T by the equation

T = £oV2/2. In many englneering treatments , however, f is defined
in terms of the "energy loss due to friction." In order to make
this concept of energy loss nore precise and to make possible
derivation of a rigorous connection between T and energy loss
define F(x) as the work done by unit mess of the fluid against
friction in moving from the origin to position x. The work done

in moving the entire mass of fluld between x;
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and §; to the region between xp and . gg (fig. 3) will dbe com~-
puted in terma of the original variablés T &and g and in terms

I'b %/‘,_/

A ;
—TXg —“44 . i;@;é;f

T~

: Figure 3

of the new variables F and m. If the two quantities are equatod

and sultebly transformed, a relation will be obtained between A4F
and TA4Q,

Let x, £;, and x5 be chosen arbitrarily, emd let £, ve
determined by the condition that the total mass Am between xl
and £, equal the total mass between xp; and £,. Let x, be an
erbitrary point between x; and £,, end let x, be determined
by the condition that m(x,) ~ m(x;) = m(xy) - m(xs). In particular,
if..xg =x;, then x =x5; if x, =f;, then x, =§,. Thus it
ls séen thet, as x, runs from =x; to £, x, rune from x, *%o

£ .

In order to determine the work done in terms of the variables
T and «, the procedure is to move thin sections from their original
poaitlons, given in each case by =x , Yo thelr final positions Xy,
to find the work done by each of them, and then to add wup the work
done for all the sectlons,
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First, dlvide the mass Am between =x; and £; into smaller
elements of mass Ajm, Agm, . . . Am. (See fig. 3.) Let A0 _
be the wall surface corresponding to the element of mass Ajsm and
let the duct wall between the inltial and the final position of

Aym be divided into elements of length & 38 For a given Aym it
follows from figure 3 that

Aio' = Zﬂri Ais
A4 = cos B1 Ay8

so that

where gi;= 2nr;/p, Ay cos §;. Each of the quantities py, T, P,
and g4 1s to be evaluated a_:b the proper point within A4x.

Finelly from figure 3 there exisis on Aym a force Asli(s J) s
to be overcome by the work against friction, equal to

T(SJ) A:p(sd) = T(BJ) 31(53) Aym

where it is convenient to consider 7 and ¢ as functions of s,
inasmuch as frictional drag and the extension of an element of f:Lx:ed.
mass depende on the position of the element in the tubes,

For any element of mass Aym then, an approximation (the
accuracy of which depends on 'bhe glze of Aim) to the work done

by Asm in golng from section x, to section xp 1s

s(xy)
lim lim k
kK-> Aa'i(sj) AJB = k—>o T(BJ) gi(sj) Aim AJE
AJs-?O B(xa) AJs-ao J=

)

= Aqm (=) gi(s) ds

[y
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It follows that the corresponding approximaticn to the work done
by the entire mass Am is
BEm(xbi]

';._(s) ,51(5) dsy Aym .

"E'El(xai)]

..

and, as the approximation hecomes more and more accurate as the
largest Ajm becomes smaller and smaller, the expression for the
work.done against friction when the entire mass between x; and 53_

1s transported to the position between x, and £, becomes

»~
~

JECH) a(ty) [ slmixy)]
— < T(8) gy(s) dsp Am = 1(s) g(s) ds du
: B [m (Xg,].j ) m(xi) stm( xa)J

The limitof the double sum may be' written as an iterated integral

ag follows:
/m(il)fs[m(xb)] Tg de dm (54)
C Jm(xy) [m(xg )]

It is clear that the work done against friction when the entire
mass is moved as previously described is wvqual also to

1im : m(¢,) F[m(xb)] m(€ ;) F[mCXb)]
A F—>0 ZZ AsF Asm = o deds
pym—>0 1 m{x;) YFlm(xy)] m{xy ) JF[m(xs)]

(55)

whence 1t follows, since the intervals for both integrations are
arbitrary, that

¢ d-F [
_— = q 0 6

"
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and

2T LA
aF = T(pA cos ¢) (an)
then
(tdg) cos ¢ = cos® ¢ pA aF (57)

Becauae, for the small angles usually under conslderatlon, cos? ¢
is very nearly unity (for a half angle of 6°, cos® ¢ = 0.989), the
retention of this factor except for particularly precise work would
not seem Justifiable. Hence equation (53) may be written

R dx = -pA dF + p.dA (58)
The differential equation of motion is finally
~-dp = pVAV + pdF .. (59)

The connection between dF and the differentlal loss 1in
stagnation pressure (-dpy) cen, with the help of equations (14)
and (15), be expressed in the form

-dpy  gF ¥yNd6
_— = — +
1 RT [2 + (y-1)N]

(80)

Thus except for the limiting case of incompressibls flew, (-dpt)

and dF cannot be used interchangeably in defining the friction
factor even for the adlabatic cass where 468 = O.
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APPENDIX B

THE Z TLANGUAGE
In the place of "N = Vz/yRT the equations may be formulsted
in terms of Z, defined through _
7 = (VZ/ZGP)/(T + Vz/ch}- (s1)
The numerator is the so-called dynamic temperature, the denominator
18 the total temperature, Z and N are related by
[(7-1IN )/ [2+(7-1)N] (s2)

2z/(y-1) (1-2) (63)

Z

N

This replacement represents a ons-to-ons transformation of N into
Z -in the range 0 to infinity for N, O to 1 for 2.

In order to illustrate the form that somes of the earlier equa-
tions take under this transformation, equations (14), (15), and (16)
are written in terms of 2,

az 2 1-2 7+LY ‘1
—_—= + {=——Z]| 46 + (1-2) du + (1-Z) doo (84)
1-( 2 \ZL _ _ J
71 )
dp 2 PR 142 7
—— - (- Z a6 - —dp - — Z da (€5)
P 7+1) 7'1 7’-1
1- 51 Z
4T 2 “(1-z 72) -J
—= - de - Z du - Z do (68)
T PN 2 -l :

Rt |
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