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ISOLATED AND CASCADE AIRFOILS WITH PRESCRIBED

VELOCITY DISTRIBUTION 

By Arthur W. Goldstein and. Meyer Jerison 

SUMMARY 

An exact solution of the problem of designing an airfoil with 
a prescribed, velocity distribution on the suction surface in a given 
uniform flow of an incompressible perfect fluid is obtained. by 
replacing the boundary of the airfoil by vortices. By this device, 
a method of solution is develored, which is applicable both to 
isolated airfoils and to airfoils in cascade. The conformal 
transformation of the designed. airfoil into a circle can then be 
obtained and the velocity distribution at any angle of attack 
computed. Numerical illustrations of the method are given for the 
airfoil in cascade.

INTRODUCTION 

The problem of increasing the output per stage in axial-f low 
compressors and. turbines involves the use of high-solidity (closely 
spaced blades) stages of highly cambered blades. Inaddition, the 

as a function of 
arc length along the airfoil (blade section) boundary in order to 
avoid flow seraration or excessively high local velocities. 

Several methods are available of obtaining an airfoil with a 
prescribed velocity distribution when placed in a fixed position in 
a uniform stream. The methods that lead to theoretically exact 
results are based on conformal mapping theory. (See references 1 
and 2.) In reference 3, Mutterperl extended the method of conformal 
mapping to solve the problem of computing a cascade of airfoils with 
prescribed velocity distribution but, for cascades with closely 
spaced or highly cambered airfoils, this procedure becomes very 
cumbersome. Approximate solutions have been obtained by placing 
singularities such as vortices, sources, and sinks in a uniform 
stream. Cascades of airfoils can also be computed by distributing
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such singularities periodically throughout the region of the cas-
cade, as described by Ackeret (reference 4). Because these vor-
tex methods are not exact, a method has been developed with the 
vortices on th.e boundaries of the cascade airfoils. This results 
in a theoretically exact solution without the coinrutation difficul-
ties encountered in conformal mapping methods for highly cambered 
airfoils or closely saced. cascades. Furthermore, for the same 
accuracy in computing the airfoil shape, this vortex method re-
quires the computation of fewer points than the method of conformal 
mapping because these oint may be arbitrarily placed on the airfoil. 
The method may be applied to isolated airfoils and to airfoils in 
cascade. For the cascade, th.e inflow and discharge velocities and 
a velocity distribution on the surface of an airfoil are given and 
the shupe of the airfoil is determined. In some cases, the spacing 
of the blades is preassigned, which places a condition on the as-
sumecl velocity distribution. Before th.e airfoil shaDe has been 
evolved, the velocity distribution may be computed for any angle 
of attack by the method described in appendix A. 

TBEcXRY

Outline of Method 

In ref rence 5, it is demonstrated that the two-dimensional 
potential flow about a bod'y in a uniform stream can be represented 
by substituting for the body a sheet of vortices along its boundary. 
Th.e vortex strength per arc length at any point is equal to th.e 
magnitude of the velocity at that point. A proof of this relation 
for the case of the cascade is given in appendix B. Th.e problem 
of finding a shape with a prescribed velocity distribution when placed 
in a stream can then be stated: given a vortex distribution, to find 
a contour which satisfies the condition that it will be a streamline 
in the flow field. induced by the uniform flow and the vortices 
distributed on the contour. 

Th.e procedure of finding the shape begins by choosing an 
approximate shape and distributing the vortices on it. The stream 
function of the flow induced, by the vortices and •bhe uniform stream 
is computed at points on the botthdary of th.e assumed shape. If 
this stream function is constant, the assumed shape is correct. 
Variations of the stream function are a measure of the deviation of 
the assumed shape from the correct one. These variations are used 
to distort the original shape into a new shape whose stream function 
is more nearly constant. The process is repeated until th.e
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variations become negligible. In the process of shape adjustment, 
the velocity is altered on the pressure surface. 

Derivation of Equations for the Stream Function 

Isolated_airfoil. - The complex or reflected velocity w'(z) 
(which is the derivative of the complex potential function w(z)) 
induced at the point z by a vortex of strength k located at 
z	 is 0

it w'(z)
2ti z-z0. 

A summary of the main symbols used n this report is given in 
appendix C. 

The complex velocity, w'(z) induced by a uniform. stream with 
complex velocity w	 and a distribution of vortex strength per unit 

length y(z0 ) along a curve with coordinates z0, is 

w l (z) = w	 + _!__ 
2itij	 z-.z0 

where ds0 is the element of arc length along the curve. The complex 

potential at the point z is the integral of w'(z) with respect 
to z, namely 

w(z) =	 +	 [ y(z0) log (z-z0 ) ds0	 .	 ( 2)
2iti. I 

From reference 1 (notation modified) 

y(z0 ) ds0 = r'(z0 ) dz0 = dw(z0 ) = dp(z 0 ) + id,(z0) 

where 

cp	 velocity potential, R[w(z)J 

stream function, I[w(z)J 

When equation (2) is applied to obtain the complex potential 
function at any point z in the flow field, the integration must be 

(1)
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carried out along the boundary of the body Because this curve is a 
streamline, dJ = 0 and, therefore, euat1on (2) becomes 

w(z) =	 +	 r io (z-z0 ) dcp(z0 )	 (2(a)) 
2t I J 

The imaginary part of eguation (2(a)) is the stream function at the 
point z,

= - xV + yV -
	

log J(xx0)? + (y-y	 d(z0)	 (3) 

where 

'Y complex velocity of uniform stream for isolated airfoil, 
( v - 1v) 

z	 coordinate of point where stream function is computed, (x + iy) 

z0 coordinate of point where vortex is located, (x 0 ^ iy0) 

x-coniponent of uniform stream velocity V 

y-component of uniform stream velocity V 

It is convenient to use the arc length along the airfoil as a 
parameter. If (x, y) is a point on the airfoil boundary, then s 
will denote the arc length there; similarly, s will denote the 
arc length at (xe , y0 ). The vortex at	 on the airfoil influences 
the stream function at the point a on the airfoil. The streaL 
function induced at (x, y) by a vortex of unit strength at 
(x0 , y0) is

1 
- f1 (z, z0 ) = -	 log [(x_x0)2 + (y.y)2]	 (4) 

A plot in the (x, y) plane of curves for a constant f 1 (z, z0) 
consists of concentric circles with center at (x 0 , y0). 

The velocity at the point 
s 

on the airfoil is the directional 

derivative cp'(s 0) of the potential along the streamline. If the 
velocity along the airfoil has been specified and an airfoil shape 
has been assumed, the resultant stream function along the boundary
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of the airfoil can be approximated by using the approximate shape in 
evaluating the integral	 - 

(s) =	 (s) ffi (s,	 )	 '() ds	 (5) 

where

stream function at (x, y) due to uniform stream, 
(xV + yv) 

Z	 total arc length of airfoil 

All variables are expressed in terms of the arc-length parameters s 
and s. The integral in equation (5) can be evaluated either 
numerically or graphically over the entire range of inegation 
except in the region where a = 	 is small, for in this 

region f1 (s,	 becomes inrinite, This portion of the integral 

can be evaluated by approximating the .airf oil boundary by a line 
segment. Then,

iog (_)2 
4iiT 

The prescribed velocity can be given in this region, which may be 
defined by s-a	 s+a, by. a Taylor expansion as a function 

about the point s. 

' (se) = p' (s) ± 	 '(s)	 +	 (sl ()2 + •. 
2. 

where the primes indicate derivatives with respect to s, The 
integral is then

s+a 

's-a	
f 1 (s,:s0)cp'(s 0 ) ds0 

log (_)2 [i() + cptt(s)	 +.. . •J ds0 Us-a 4it 

=	 [a cpl(s) (log a-i) + a3'''(s) clog a -	 + . .
	

(6) 
3
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In most cases it is necessary to use only the first, term in equa-
tion (6). The same type o± approximation can be used to evaluate a 
portion of the integral If the opposite side of the airfoil comes 
in the neighborhood of the point (x, y). 

A more general equation applicable to a senent that does not 
pass through s is: 

1	 2 

4TJ+b 
log [(Xx0)2 + (y-y) ] cp'(s 0 ) d(s0) 

='{e() [c1og(i2+2) - b log(h2^b2 ) - 2(c-) +2h tan
h2+bc 

+	 '	 [2+c	 log (h2 c2 ) - (h2+b 2 ) 10 (h2^b2) - (c2-b) ] 

+	
log (h2+c 2 ) - b3 log (h2 +b2 ) -	 (c3-b3) 

+ 2h2 (c-b) - 2h3
 tan h(c-b)] 

+	 }	
(6(a))

h?-i.bb 

where •h is the perpendicular distance from s to the segment, 
= p locatet the foot of the segment, (pfb) and (^c are the 

limits of the integration °'	 and approximate1, 

cp'(p) = cpt(p+b) - 

?l(p) -p''(p+b) - b	 ''(p+b) 

cp''(p) = cp'(p-b) 

Eq.uation' (6(a)) may be used when the line segment is not of equal 
lengths on ' . elther side of the perpendicular foot or when cpt(s) or 
its derivatives are discontinuous at : elther (p+b) or (p+c). If 
a = c = -b and h = 0, equation (6(a)) reduces to equation (6),
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The size of a, b, or c is determined by the requirements that the 
seent in question be nearly straight (the approximation is of the 
second degree) and that cpt(s 0 ) be accurately represented by a 
TayThor series expansion of few terms. 

Airfoils in cascad - The expression for the complex potential 
for the flow about a cascade of airfoils is derived in appendix B 
The notation is defined in figure 1. The formula, which corresponds 
to equation (2(a)) for isolated airfoils, is 

= ZWm t +	 r log [sin ) (zz0)] dcp(z 0 )	 ( 7)2iciJ 

where 

d	 distance between successive airfoils in cascade 

mean stream velocity, which is one half the sum of complex 
(reflected) velocities upstream and downstream. of cascade, 
Vx iVy 

The mean velocity w	 corresponds to the uniform velocity w' of 
the isolated airfoil flow. 

The term ZWri' is the complex potential function resulting 
from the mean flow, Iii the integral, the element dcp indicates the 

'vortex element strength and -log [sin (3'r/d) (z-z 0 )J represents 

unit vortices at z 0 ± nd where n 0, 1, 2 .....The imaginary 
part of equation (7) is the stream function, 

r5 o= i(s)	 -j	 f2(s,	 dcp(s0)	 (8)

where

f2 (s, s) =	 log [n2	 (x-x ) + sinh2	 (y-y0)] d	 °	 d 

is expressed in arc-length parameters and	 is the stream 
function at (x, y) induced by a mean stream whose complex velocity 
is w t ; that is,

= - xV + yV
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('x-x\ 
The values	

" d 
0i and __2' for various values of f2 are 

• given in table I. A plot of x-x0 and y-y0 for constant values 
of f2(z,.z0 ) is shown in figure 2. These curves may be interpreted 
as the streamlines of the flow induced by an infinite row of vortices 
of unit strength located at the points (x 0 ±nd,y0 ), where 
n = 0, 1, 2, . . .. In the region of avortex, the streamlines are 

• nearly circles; that is, the flow is nearly that induced by an 
isolated vortex. At a distance fr the vortex row, the streamlines 
are parallel lines, as in the flow pattern induced by a continuous 
uniform distribution of vorticity along a straight line instead of 
a row of discrete vortices. The velocities on the two sides of such 
a vortex line are of equal magnitude but opposite direction. 

This behavior of f 2 for large	 Yol and also for small 

+ (x-x0 ) 2 ]

	

	 x-x0
can be described as follows: When both - 

d 
y-yo 

and	 are small, 
d

f2(z, z0 )	 log 4 [(X_X0)2 + (yyo) 21 	 (9) 

• • which differs from f1 (z, z0 ) only by a constant. For large values 
______	 x-x0 

of L 

d	
irrespective of 

d	
and a constant terni, 

f2 (z, z0)
	

2d
	 (10) 

which is the stream function of a uniform stream parallel to the 
x-axis. 

Euation (3) canbe used for computing the stream function along 
the boundary of an airfoil in cascade just as equation (5) is used 
for the isolated airfoil. ThO integral over the range in the neighbor-
hood of the point a is obtained by using equation (9) for f2(s, 
The result, derived in the same manner as equation (6), is
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s +a
f2 (s,	 cp'(s0) ds0 

= {a cp?(s) [lo( a) il + a3	
T() 

[lo( a)	
+ . . .} 

(6(b)) 

The more general equation (6(a)) is modified for cascades by 
multiplying the argurent of all logarithms by the factor it2/d2. 

Adjustment of Shape 

If the stream function for the assumed airfoil has been computed 
and has been found to vary, the shape must then be adjusted to give 
a more nearly constant stream function. The shape changes are made 
by rotation of the body, plus displacement of the individual points 
normal to the mean stream. A succession of such changes results in 
the most general type of shape distortion. The rotation is used to 
place the front sta2'nation point properly. 

Rotation of the airfoil. - In the formula for computing the 
stream function of an isolated airfoil, the contribution of a vortex 
element at (x0 , y0 ) to the stream function of a point at (x, y) 
is dependent merely on the distance between the two points. 
Consequently, if the entire airfoil is rotated, the effect of the 
bonnd-a-ryvorti-cesonthe--st-reaunct-i-on--at--any--po±nt--on--t-he--a-irfoi-1 
boundary will not change. The effect of the blade rotation on the 
stream function along the boundary is therefore determined by the 
change in relative position of the points in the uniform stream. 
The first adjustment in shape is a rigid rotation of the airfoil in 
order to obtain a more nearly constant stream function along its 
boundary. 

If the airfoil is rotated through an angle 3, the stream 
function is so changed that s(s) is a function of 	 and s and 
may be written 4i(s, 13 ). When 13 = 0,	 i(s, 0) is the original 
stream function before rotation. After rotation the new stream 
function 4i(s, 13) may be expanded in a Taylor series about the 
point 13 = 0, 

(s, 13) =(s, 0) 
+ 13[(s3	 1	 + .. . 

6)13
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Only the first two terms in this series will be used because it is 
assumed that 13 is small. The angle 13 is to be determined for 
the minimum mean-square deviation of the stream function from Its 
mean values Because the object of the rotation isessentially to 
adjust the shape of the nose, the rotation might also be made to 
reduce the root-mean-square eviation of the stream function to a 
miniiuni.f or a portion of the shape including the nose, 

The mean value of the stream function at any angle 13 is 

13) ds	 !f[;(s 0) ',+ 13	

13=0] 

ds (11) 

The difference between the new stream function 1i(s, 13) and its moan 
value '(i3) Is squared and integrated to obtain a measure of the 
variation of .I(s,' 13) .. from the mean value at' the ne angle. •The 
condition for obtaining. a minimum root-mean,square deviation by 
adjusting 13 Is'	 .	 . 

0 =	 13) -

	
ds =	 0) + 13	

-	 j 

2	 0)'	 13	
(s, ' 0) :4():] [d(s i o) - __	 . . (2) 

0) + 13 
d/(s,	

- ( 13) 

- 2	 0) + 13 th2) - (13)] ds = 0	 (13) 

•	 LOL 

The second integral vanishes by. virtue of equation (11), which may 
also beu.se.d to. eliminate '1(13): .. from the remaining term. .The.solution 
for.	 13	 is	 •.	 ,	 .'..	 •.	 .:	 ::	 .;.	 . .	 .	 ... 

13

j:b. 
r d 4J f	 0)12 ds
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In order to apply equation (14), d\J/dl3 must be known at points 
along the boundary of the airfoil. In the case of the Isolated air-
foil, the contribution of the voi'tices Is unaffected by the rotation 
and therefore,

(15) 

If the airfoil is rotated about the point ( xc,	 equa-
tion (15) becomes

= cos	 (x-x) v + 

± sin 13	 v	 (Yyc )Vxl	 (16)

where (x, y) are the coordinates of the point before rotation. 
For small values of 3 , equation (16) reduces to 

d4 - = ( x-x ) V + (y-y0 ) v df3	 C 

The choice of (x0 ,	 will have no effect on the results in this 
case.

tihen the o4rioil in cascade isrota 	 the_change nthepos_
tion of the vortices o± the adjacent blade must be considered. In 
the case of the isoated airfoil, it was unnecessary to consider 
the change in position of the vortices because the influence of a 
vortex (equations (3),, (4), and (5)) depended on the function 
which is constant on circles. The influence of the vortices on 
the airfoil is. therefore independent of direction. Because the 

contours are not circles, the rotation in cascadedoes have an 
effect, which is aDproximated by considering all closed f 2 curves 
(f2<o) as circles in order that the effect of all vortices 
in the reion f2 <O may be neglected during iotation. The 
effect of all vortices in the region f 2 >0 is estimated by 
assuming that all the f 2 contours for f 2 >0 are straight lines 
uniformly spaced. The flow corresponds to that between two infinite 
straight parallel vortex sheets of uniform strength per unit length. 
This flow induced by the vortices in the region f 2 >0 is in the 

(17)
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x-direction, and the direction of the flow induced bythe vortices 
f or which y0>y is opposite in sense to that induced by the vortices 
for which y0<y. 

As the point being considered is changed, the regions for 
f2 >0, y0 >y, and. f2 >0, y0 <y will inciudedifferent sections 
of the blades, and hence different vorticity, with the result that 
the x-velocity component v induced by the vo'tex sheets will vary 
with the point under consideration. The algebraic sum of the 
x-component of the uniform flow velocity and the variable x-velocity v 
induced by the vortices in the region f 2 > 0 is to be used like the 
velocity component V in rotatIon of the isolated airfoil (equa-
tion (17)). The quantity V in equation (17) is replaced by the corre-
sponding Vx,r (= V + vx). The vortex strength per unit length at any 
point on the airfoil is equal to cp'(s 0 ) and, therefore, from equa-
tion (10) the x-component of the velocity induced by the vortices is 

cp (se , ds0 , where the Integration is carried out over the portion 

of the airfoil where f 2 (s, s)>O. A distinction must be made between 
the two regions y0 <y and y0 >y because the induced components have 
opposite direction. 

The computed result of rotating an airfoil in cascade depends upon 
the choice of (x0, Yc) because d\1J/d3 is only approximate. In order 
to minimize the error involved, values of. dj/d are reduced by 
choosing (xe, y0) as the centroid of the vortex distribution on the 
airfoil. If the improvement iii the mean-square deviation of 	 is 
small compared with its original value, it may be preferable to omit 
the rotation of. the airfoil because of the error inherent in the coniputa-
tion. •The decision nhould be made chiefly on how 4i varies at the air-
foil nose and whether -it is approaching a constant.value in this region 
with successive corrections of the shape. 

Distortion of the shape. - The stream function computed after the 
Isolated airfoil has been rotated will, in general, still vary along 
the boundary.. Thiâ variation can be reduced by ditorting the shape of 
the airfoil. If the distortion is small, the change in distance between 
any two points on the boundary will be small, although the change in the 
direction of a seçnént joining those points may be considerable. The 
effect of the dIstortion on the contribution to the stream function of 
the vOrtices on the boundary is consequently neglected, The largest 
effect of the distortion will be to change the position of the boundary 
points in the uniform. strea. The airfoil is therefora distorted in such 
a maimer that the chane in the contribution of the uniform stream to the
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stream function will eliminate the variations in stream function. 
For points directly opposite each other on the airfdil, the change 
in distance will be of the same order of magnitude as the distor-
tion. Consequently, distortions that result in change of thickness 
of the airfoil converge very slowly because of the inaccuracy of the 
fundamental assumption on which the correction is based. 

Thus, when the stream function along the boundary of the 
isolated airfoil is known, some number is arbitrarily chosen a the 
desired constant value of the stream function. If &ji = 4i - 4i is 
the difference between the computed stream function at a point and 
the desired constant, the point is moved a distance	 \1i/V perpen-



dicular to the direction of the mean stream, where the direction of 
increasing uniform stream function is taken as positive. The air-
foil in a cascade is distorted in the same manner, using the varying 

resultant local mean stream velocity Jyx , r2 + V 2 ; corrections 
are made ith	 equal to the mean value of \J on the airfoil. 

COMPIJTATIONM, PROCFDUPE FOR CASCPDES 

Choice of Velocity Distribution 

Several factors influence the choice of the velocity distribu-
tion for which an airfoil is tO be found. Especially in rotors, 
sturdy blades are required. Long thin tail sections must be 
avoided and where high rota-bive speeds and stresses occur, overhang 
of thin sections is likely to induce blade failure. The radial 
di-stributi-on ofir:I o	 ioJJà is also fundamental in 
determining the blade-root stresses. Overhang can be reduced 
by proper choice of the velocity diagrams for the sections, but the 
other factors are influenced chiefly by the thickness of the section. 

The desired thickness may be attained by first assuming a blade 
shape and spacing and using the stream-filament method of reference 5 
to compute the velocity distribution over a portion of the airfoil 
that determines the thickness. The spacing may be regarded as fixed 
but the curvature can be adjusted if local velocities are too high 
for the desired thickness, This computed velocity will then serve 
as a guide to the choice of an airfoil velocity distribution, which 
should be chosen to avoid high velocity peaks and steep negative 
gradients. If the average of the velocities on opposite sides of 
the blade camber line is retained in the modification of the velocity 
distribution computed from the stream-filament method, the thickness 
will also be retained.
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Because of the irrotationality of the fluid motion, the velocity 
integral or circulation around the airfoil must be equal to that 
around a blade but over a width equal to one blade space. Therefore, 

f
'(s) ds = F = d ( V ,i - V,2) 

where 

V ,i tangential velocity entering cascade 

Vx2 tangential velocity leaving cascade 

F	 circulation about airfoil 

This relation places a condition on the assumed velocity distribution. 

If the computations thus far have been made in order to select 
a velocity distribution for the airfoil cascade in a compressible 
fluid flow, an equivalent velocity distribution for the flow of an 
incompressible.fluid must be determined before the blade shape can 
be computed by any method based on incompressible flow theory. For 
subcritical flows the directions of the incoming and discharge 
velocities are the sane for compressible and incompressible flows, 
but for incompressible flow the component normal to cascade axis is 
the seine upstream and downstream The Karmn-Tsien compressibility 
correction (reference 7) or that of Garrick and Kaplan (reference 8) 
may be applied to the velocity on the blade surface to estimate 
roughly the corresponding incompressible flow velocity distribution. 
The resulting velocity distribution in any case must satisfy the 
circulation condition. This procedure does not give an exact solu-
tion for compressible flows, but the resultant compressible flow will 
have approximately the desired characteristics of low pressure 
gradients and no high velocity peaks. 

Computation of Airfoil Shape from the

Chosen Velocity Distribution 

The numerical computation of the quantities involved in the 
preceding analysis, particularly the function f 2 , is extremely 
laborious when tables of f2(s S) are used. Most of the computations 
are therefore executed graphically. In the cascade example, it was 
assumed that the air entered the cascade at an angle of 450 from the
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cascade axis and was discharged at an angle of _300 from the cascade 
axis. The assumed velocity distribution is given in figure 3(a). 
The value of the lift coefficient for this airfoil is 3.1. The 
shapes of the isolated airfoil and the airfoil in cacade are 
computed by the following teps 

1. Curves for constant f 1 for the isolated airfoil, or 
constant f2 (fig. 1) for the airfoil in cascade, are drawn. This 
diagram should be made on some transparent matria1 that will neither 
change size nor shape. The coordinates of the curves for constant 
are given in table I. 

2. A desired velocity pt(5) is chosen as a function of the 
arc length of the airfoil (fig. 3(a)). An airfoil shape having the 
desired total arc length is assumed and is drawn to the same scale 
as the plot of f 1 or f 2 . The drawing is made on grid paper and, 
in the case of a cascade, the x-axis is taken along the cascade 
axis (fig. 4). 

3. The velocity distribution pt(s) is integrated to obtain 
the velocity potential cs). This function is plotted on the same 
chart as the assumed airfoil shape for the corresponding y-coordinate, 
as shown in figure 4, by plotting both p and the y-coordinate of 
the airfoil against s on a supplementary graph. In regions of the 
airfoil where y varies little with s, that is, where the airfoil 
boundary is parallel to the x-direction, p should be plotted 
against x in the same manner, as shown in figure 4 

4. In order to find the stream. function at a point (x,y) 	 - 
on the airfoil, a plot of f 2 (s, s 0 ) a a function of cc(s 0 ) must 

be obtained to evaluate the quantity f f(s, s) dcp(s 0 ) of equa-

tion (8). If the chart of f 2 is superimposed on the airfoil with 
one vortex center overlaying the point (x, y), the value of f2 
may be read at (x0 , y0 ) and the corresponding value of cp(x 0 , y0) 
may also be read from the plot of cp(x0 , y0 ). The value of f2 (s, s) 
is the same as would have been obtained by centering the chart on 
(x0, y0 ) because of the symmetry of the function s A succession of 
values of p and f2 are obtained in this fashion for various posi-
tions (x0 , y0 ) that intersect the f2 contours, and a plot of 
these points (f2 , cp) may be made for the assumed position (x, y). 
This procedure is illustrated in figure 5 for a particular point 
(x, y) on which the f 2 chart is centered. The readings for a 
particular (x0 , y0 ) are shown by the arrowed lines. The
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points 1 to 6 on the blade are shown on the corresponding f 2 curve. 
The discontinuity of cp between points 1 and 6 is the circulation. 
The discontinuity between 4 and 5 represents the region where f2 
approaches -. 

5. The proper method of integration then proceeds from 1 through 
6 to 7 and then to the origin, with bonstan.t f2 from 4 to 5. The 
region from 4 to 5 with f 2 approaching - is computed by equa-
tion (6) or (6(b)); the constant a is assumed to be the radius of 
the near-circle, which corresponds to the value of f3 where the 
discontinuity from 4 to 5 occurs. 

The total area including this small addition is 

	

f'() f2 (s, s0 ) ds =[f2 (s,	 ) 

which is the stream. function due, to vortices on the entire set of 
airfoils in cascade. Where f ., = C at the points A, B, C, and D 
(fig. 5), the values of T are noted as C7A(s),	 (s), cp0(s), 
and cpD(s). These values are used in computing the stream-function 
change caused by rotating the blade. The streamfunction at the 
point (x, y.) may now be computed from equation (a) or (5), and 

= _vyx +.vxy 

A plot of the stream function (variation from the mean value) 
is shown in figure 6 for the initially assumed shape. Corresponding 
points on adjacent airfoils have a difference of J/Vd equal to .1.0. 

6. When i (s) is imown at a sufficient number of points, the 
airfoil may be rotated as previously described. For the isolated air-
foil, equations (14) and (17) . may be used directly. For the a.rfoil 
in cascade, the coordinates of the centroid of the airfoil must first 
be computed by

lJ 
=	 P'(o) ds0 

lt 

=	
cp(s0) ds0
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Before equation (17) can be used to compute thi/d, the variable 
quantity Vxr must be computed. The vortices in the region f2>0 
are considered to be uniformly distributed along the cascade axis 
and the velocity induced by such a distributionis 

vx = 

where y is the vortex strength per unit length along the cascade 
axis for f2 >0, Therefore, 

vx =	 jI Cpt(80) ds0 

where the integral is to be taken over the regions f2 > 0. The 
region f2 >0, y0 >y contributes.a positive component to 
whereas the region f 2 >0, y0 <y contributes a negative component. 
The computation is simply carried out by making use of the fact that 
the integral for v is the difference between values of cp at 
points where f2 = 0. The values of ?A(0)' 
and cpD(so) from step (5) are used at this point to obtain 

2v d = / cp' () ds0	 + r'	 - c 2B )	 (18)Xj 

where r is introduced because of the 
trailing edge 0 The term cp	 9D ± F gives the effect of the 

vorticity in the region f2 (s, s)>0 near the trailing edge, and 
the term. cp 0	 gives the effect of the vorticity in the 

region f2(s, )> 0 near the leading edge. If either the leading 
edge or the trailing edge lies in the region f 2 (s, s)<0, only 
two points of intersection will remain and one of the two groups of iP terms in equation (18) will vanish. The quantity -/ cp(s) ds0 

is added to the x-component of the original uniform sream velocity 
and the quantity d4j/d13 of equation (17) may be computed for a 
number of points and the angle 	 computed from equation (14), using 
the values of ( xe, yc) just determined. After these computations 
have been made, the airfoil is rotated through the angle , and the 

value	 + f3	 is assigned as the value of the stream function of

the point after rotation.
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7 A value of j(s) is known at points along the airfoil boundary. 
The mean value over the airfoil is subtracted from j/ leaving L4'. 
For the isolated airfoil, no subtraction is necessary. Each point is 

moved a distance - ______ ____ in the direction perpendicular to 

ATx, r+ Vy2 

the velocity computed in step 6. The curve joining the points in their 
new positions is the adjusted airfoil. 

8. The total arc length of the adjusted airfoil will be different 
from the original one, In general, although local changes in length 
will be negligible. The airfoil Is so scaled that the length of the 
suction side is the same length as it had been before distortion 
because this surface is the critical surface of the airfoil. This 
process will result in a change in length of the pressure side. The 
velocity over the pressure side	 t(5) must then be altered in such 
a maimer that the difference in potential between the two stagnation 
points remains the same. As a result, the quantities that retain 
specified values are the length and the velocity distribution on the 
suction side and the circulation around the airfoil, The entire 
procedure is repeated with the adjusted shape until the variations 
in the stream function result in very little change in the shape of 
the airfoil.

Discussion of camples and Techniques 

For the example being computed, the stream functions obtained 
for the initially assumed shape and the first and seventh approxirna-
tions are plotted against the arc length (fig. 6), which is taken as 
zero at the trailing edge and proceeds counterclockwise around the 
airfoil as shown in figure 7. The fact that Ai for the initial. 
shape is positive over the first half of the arc length and negative 
over the second half indicates that it is too thick: because the 
required distortion in shape will make it thinner. The change in 
thickness results in a change in velocity distributionover the pres-
sure side of the airfoil in order to maintain the desired circulation. 
The velocity that was originally assumed, which is equal to the 
vorticity .per unit length distributed on the initial airfoil, is 
shown in figure 3(a) and the velocity over thefinal shape In fig-
ure 3(b). The length of the pressure side has increased and the 
velOcity has decreased in the proportion of 1:1.1. 

Over the section of the airfoil that has collapsed to zero thick-
ness, the surface velocities of figure 3(b) may not have been obtained, 
but the loading (circulation per unit arc length), which is the
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difference in the velocities on opposite sides, has been realized. 
In practice, this collapse is prevented by increasing the assumed 
velocity on the airfoil surface. 

If the initially assumed airfoil shape has a thickness that 
differs considerably from the correct one, the process of shape 
adjustment will converge rather slowly. The labor can be reduced, 
however, by coaputing the stream function at a few points on the 
airfoil and locating these 1oints to determine the thickness. This 
procedure is followed for the first few approximations until the 
thickness of the airfoil is fairly accurate, The stream function 
is then computed at a largér number of points, particularly near 
the leading edge, in order to get more detail of the shape. 

If a velocity distribution is arbitrarily specified, the 
resulting shape may not be a physically real airfoil but may result 
in a figure-. 3 or a collarsed shape (zero thickneso over a portion 
of the blade). It is then necessary to modify the velocity 
distribution to obtain a real shape; these modifications should he 
selected to kee p the desirable properties of the original distribu-
tion. Velocity peaks and steep velocity gradients, which tend to 
occur on the suction side of an airfoil, are to be avoided. If the 
airfoil collapses, the vorticities of the two sides tend to cancel 
each other and the remaining vorticity represents the difference in 
velocity across the thin airfoil rather than the velocity along the 
boundary. 

The method was also applied to the design of a thin airfoil 
(camber line) in a cascade. The vortex distribution is equivalent 

rather than velocity as in the case of a thick airfoil. The 
velocity diagram for the cascade and the desired velocity difference 
are shown in figure 3. The value of the lift coefficient of the 
resultant airfoil is 4.1. The initial shape was obtained by 
assuming zero spacing between the airfoils. The initial shape and 
the first and third approximations to the airfoil shape are shown 
in figure 9. There is very little difference between the second 
and third approximations. The third approximation is redrawn in 
this diagram to show the spacing between airfoils. The convergence 
of the method is shown graphically in figure 10. The varia-
tion	 j of t1e stream. function from it mean is divided by Vd to 
make it dimensionless and is plotted against the arc length along 
the airfoil where s = 0 at the trailing edge. rrhe stream function
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computed on the second. approxiruaUon is nearly constant, which givee 
the third approximation almost the same shape as the second one. 
The rapid adjustment of camber contrasts with the slow adjustitent 
of thickness. 

Flight PropulsIon Research Laboratory, 
National Advisory Committee for Aeronautics, 

Cleveland, Ohio,	 rch 4, 1947.
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APPENDIX A 

VELOCITY DISTRIBUTION ON THE DERIVED AIRFOIL 

AT DIFFERENT FLOW ANGLES 

Conformal mapping. - When an airfoil is given, the velocity 
distribution over its surface mut frequently be found at different 
angles of attack. This problem may be solved by the method of con-
formal mapping, which consists of mapping the region exterior to 
the airfoil on the exterior of a circle, The velocity around the 
airfoil is obtained from the mown velocity around the circle. 
Procedures for finding the function that maps a given airfoil into 
a circle are nresented. in references 1 and. 9 for the isolated 
airfoil an references 3 and 10 for the airfoil in cascade. 

In general, the procedure for finding the mapping function 
of an airfoil is a J.aborious one. But when, as in the present 
case, the velocity d:istribuUon over the airfoil at a particular 
angle of attack is known, the -correspondence between points on 
the airfoil and. on the c:Lrcle, and hence the flow velocity at 
other angles of attack, can be obtained very easily. Indeed, 
the correspondence of points and. the velocities for various 
angles of attack can be obtained. by the method of Weinig and 
Gebelein (reference 11) from the initial data without knowiig 
the airfoil shape, because the complex potentials of the airfoil 
plane and the mapping circle plane are equal. Before the airfoil 
is designed, therefore, it is possible to check whether the air-

from the design condition. 

Isolated.•airfoil. - The flow about any airfoil shape can be 
mapped on the flow about a unit circle in such a way that corre - 
sponding toints have the same potential. The flow about the air-
foil is given and the potential function cp(s) at each point is 
computed. If the potential function on the airfoil is computed 
by integrating the velocity from the stagnation point at the 
trailing edge in a counterclockwise direction around the airfoil 
oriented like the one in figure 1, the potential will be zero at 
the trailing edge, decrease to a minimum 2min at the stagnation 

point at the leading edge, and then increase to a value equal to 
the circulation F at the trailing edge. The corresponding flow 
about the circle is determined by the conditions that it must 
have the same values of Cin and F for a correspondence to
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exist between all airfoil and circle points. If 0T Is the central 
angle of the stagnation point on the circle that corresponds to the 
trailing edge of the airfoil, 

tCPmin

	

= —(cOt eT+ 9T + ,t/2)	 (Al) 
r 

Equation (Al) can be solved numerically for eT because all the 
other quantities are known. The velocity at infinity in the circle 
plane V can then be determined from the Kutta-Joukowsky cond.ition, 
which requires that 8T be a stagnation point; that is, 

F	
(A2)= - 4,t sin G 

The velocity potential at Doints on the circle is 

-2V0 cos 0 ^	 + 2V cos 0 -	 e	 (.A3) 
2it	 c	 T	 T 

The quantity 2V 0 008 is a constant that Is subtracted 

in order to make cp0 = 0 at the stagnatIon point corresponding to 
the trailing edge. 

•The correspondence of points on the airfoil with points on the 
circle is obtained by associating points where cp(s) = cpa . The 

velocity on the cirdie at a uniform stream flow angle a 2 is 

v0 ( 0 ,a2) = 2V0 sin(O + a1 ) - sin (0T + ai )j	 (A4) 

The nature of the conformal transformation is such that the ratio 
of the velocity at a point on the airfoil to the velocity at the 
correspondiig point on the circle i independent of angle of attack. 
Therefore,the -velocity c t (s) on the airfoil at flow angle a2 

C2i(8) •cp(s)
(A5) 

vc(O,a2) - v0(O,0)
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where the design flow angle is taken as zero. Equation (A5) can 
be used to conmute the velocity distribution on the airfoil except 
at the two points that were stagnation points at the design angle 
of attack. 

Airfoils in cascade. - The flow about a cascade of airfoils 
can be maped conformally into the flow about a unit circle with 
two singular 1-JointS located on the real axis symmetrically with 
respect to the center of the circle. These singular 1iolnts cor-
respond to the points at infinity in front of and behind th 
cascade, respectively, In a cascade of airfoils, the distance 
of these roints from the center of the circle is uniquely deter-
mined by the same condJt ions that determine the flow about the 
circle in the isolated case; namely, the circulation per airfoil, 
the velocity potentia.l at the leading edge, the blade sacing, 
and the upstream and downstream flot angles. 

The distance from the singular points to the center of the 

circle is denoted. by 0K• The flow about the circle is such 
that the location of the stagnation .uointe 8T is determined 
by the relation

T	 sine	 cosO 
cos +	 sin	 (A6 

2Vd. sinh K	 cosh K 

	

where	 is the angle of inclination of the mean stream to the 
normal to the cascade axis. (See reference 6 for details). The 
quantities F, V, ci, and. ? are known from the flow in the 
cascade plane and therefore equation (Az) provides a relation 
hetwen 

The velocity potential at any point on the circle is 

Vci ( .	 -1 sin e	
tanii	

e 
-cos 

it	 sinh K	 cosh K,) 

	

F	 -1 tan e	 Vd/' .	 -1 sin eT	 ..l COS.e 
+ - tan	 - -. - sin tan -	 - cos tanh --

	

2it	 tanki ic L	 sinn K	 cosh 

	

F	 -1 tan OT1 
+ - tan	 - -	 (A?) 

2ic	 tann KJ
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The exDression in brackets is a constant so chosen that the potential 
will vanish at the stagnation oint corresponding to the trailing 
edgeof the airfoil. In order to maD the cascade on the circle, it 
is required to find K so that the value of CPc,c at	 the 

stagnation point corresponding to the leading edge of the airfoil, 
is equal to	 the value of the velocity poteit•ia there. In 
successive ai.jproxiinations, a value of K is assumed and equation (A6) 
is solved simultaneously with the identity 

/ ____	 (008_e \2 (sin 0	 ____ 

	

K) sinh2 K +	 sh K) cosh2 KE 1 

sine	 case 
for the variables	 K and	 The solutions of these 

equations are 

e 5	 cosh2K sin ±cos	 /cosh2K_ cos2	 cosh2K sinh2K 

sinh K	 --	 K -. cos2 

COB 
and	 obtained from equation (Ac) . These solutions, 

cosia K 
'sin eN COB 0N"	 (sin 0T 008 

_____ ____- ) and	 '	 , are substituted in equa-
\sinja K cosh K!	 \sinh K cosh K! 
tion N7)) to find the value of CPc,c at e = 8N If cp C , C ( ON) is 

not equal to cp fl, another value of K is chosen, on the premise 
that cpc,c(ON) will decrease as K is decreased. When cpc,0(GN) 
is evaluated, care should be taken to use consistent values of the 
inverse tangents. After two values of K and .Pc,c(0N) are deter-

mined, interpolation or extrapolation may be used for new values 
of K. 

When K has been found, it is used in equation (w) to eval-
uate	 at values of 0 all around the circle. A point on the 
circle corresponds to the point on the airfoil where cp(s) = cc 

The velocity at the point C on the circle is 

v	 (0 )	
sinh 2K	 - [cos (cos & - eQs 

CC '	 cosh 2K- cos 28 L	 cosh K cash K) 

/ sin0	 sin 

sinhKoinhK)j
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and. the velocity on the airfoil at any other mean flow angle l 
is

cp'(s) = v ,0 ( e ,i)	 (A9) 

as in the case of the Isolated airfoil. 

The designed airfoil was mapped on the unit circle by the 
method described. The constant K, the natural logarithm of the 
distance from the singular points o the center of the unit circle, 
is 0.075. The correspondence of points on the airfoil with those 
on the circle, is Diotted. in figure 11, which shows the arc length 
of the airfoil as a function of the central angle of the circle. 
The velocity at any point on the airfoil for any angle of attack a1 
may be obtained from equations (A) and. (A9)', using the velocity 
distribution as In figure 3(b) and. the relation between s and e 

de as in figure 11. The ratio	 is equal to	 (radians) 
Vc c ' ' 

and need be computed only once or any given airfoil.



+1 
J(N+1/2)d

w t (x0+it) 
x0+i:E: dx0 +

(t
w'[-(N^1/2)d.+1y0] 

J t
(B2)
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APPENDIX B 

DERIVATION OF TEE CASCADE EQ,UATION 

An equation is to be developed, for the complex velocity at any 
point in the field of flow of a fluid. past a row of equally spaced, 
congruent bodies0 Coordinate axes are chosen with the origin inside 
one of the bodies and the x-axis in the directioh of the row. 
(See fig. 12.) The body containing the origin is denoted. by B0, 
bodies along the positive direction of th x-axis by B1, B2 , etc., 
and. along the negative direction of the x-axis by B..1, B, 2 , etc.. 
A circle A of small radius is drawn about the point z where the 
velocity is to be determined.. A rectangle R is drawn with its 
center at the origin and its sides parallel to the axes of length 
(2N+1)d and width 2t, which contains, the bodies B _N . . . B_1, 
B0, B . . . B, and the circle A. If a side of the rectangle 
intersects one of the bodies, the side may be distorted to go 
around the body with no essential change in the proof. The func-
tion w (z 0 )/z0 -z is an analytical function of z in the region 
inside the rectangle R but outside the bodies B and the 
circle A. 

Therefore

N 
Iw'(z)	 I w t (z)	 /w'z) 

)	 -	 o - /	 -	 -z dz0 = 0	 Bl) 

R	 A	 n=-N Bn 

The first integral can be broken up into four integrals, one 
along each side of the rectangle, namely, 

r	 r:(N+l/2)d.	 Pt 

/w t (z0 )	 I	 w(x0-it)	
J	

w'[(N+1/2)d.+iy0J 
----- dz 

= J-(N+l/2)d. 
'iit-z	 O J	

id.y0 
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In an evaluation of these integrals, the function w'(z 0 ) is 
periodic, with teriod. d., and approaches a constant value 
infinitely far from the cascade; that is, 

w' (X0 + iy) "2 as y0 .3co 

and

w1 (x0 + iyo) —w1' as y -4 -c 

From the last of these cond.tioris, .t follows that 

w t (x0 -it) = w3 (Xô * it) + 

where

w3t (x - 1t)-o as t—c 

Therefore, the first integral on the right side of equation (B2)) 
is

[(N^l/2)d w1(x0-it)
	

f(N+.1/2)d 

= w1' /	
dx0 

J_(N+1/2)d x0-it-z
	

J—(w^l/2)a 
x0-it-z 

"( N+1/2 ) d 
(	 w31•.(x0-it) 

+ /	 0-it-zo	 'B3.) 

The first of these integrals is 

t (rr+1/2)a
w1' 10g[(N+l/2)ditZ] WI 1	 x0-it-z 

J—(N+l/2)d. 

as N—	 and t—#,.provided that	 The last integral 
in equation (B3)is
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N •	 '(n+1/2)d. 

/	 w37(x0-it)	 ç -\ /	 w31(x0-it) 

/	 x0-it-z - dx0	
/	

x0-it-z 
tj (N^i/2)d	 n=-NJ(n-l/2)d 

N c'l/2a. 

	

I	 w3'(x0-it) 

	

= /_ I	 x0+ndiTi d.X0 
n = -Ni ..1/2d 

\l/2c1	 L.	 ,1/2a. . 
w3 (x0-t) 

=1	
x0-it-z	

d.x0 +	
i 

' -i/2

2(x0-it--z)w3' (x0-it)d.x0 

(x0 -it-z) 2	 d2 

If t is chosen sufficiently large so that 1w 3 (x-it)J< , where c 
is any preassigned positive number, the integrals are less than or 
equal to

	

pl/2d	 1L 1l/2d 
I2Ix-it-zld 

t :x_it_z I	 /	 I	 ;(x. -it-z) 2 -n2 d21 

	

J .. 1/2d.	 n=1 '-l/2d	 ° 

	

r'1/2d	 -k i/2o.
2 i1(X0X)2+(y0-t-y)2J0 

+ 

/_,,	 x+(yty)2n2d2 

	

L -l/2d	 °	 n=lL;-l/2d ° 

When N	 , this quantity approaches 

fl/2d 

J- cot -	 + (y0 -t--y) dx0 

J -1/2d
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This integral is finite and, because c can be made arbitrarily 
small as t-4 , the last integral in equation (B3) approaches 
zero. Therefore,

, (N+i/2 )d 

	

/	 w'(x0-it) 

I x0-it-z 

as N -4 Co and. t —4 C° ihlle	 —40. In the same ay and under 
N 

the same conditions, 

((N+i/2)d 

	

/	 r'(x0+it)
dx0-3itiw2t 

J(N+i/2)d 

The second and fourth integrals on the right side of equa-
tion :B2) can be evaluated by combining them. Because w is 
er.odic,

w [(N+1/2)d+iy0 J = WI [ -(N+1/2)d+1y0] 

and therefore, 

fw [(N+i/2)d+iy0J	 ______________ 

— idy + 
/	 (N^i/2)d^1y0-z	 °	 -(N+l/2)d+1y0-z 
j-t.

fit 

	

I	 -2(N+i/2)d W I [(N+1/2)d.+1y0] 
_____-	 —dy0 

(iy0 -z) 2 - (N+.1/2) 2 d2 

The velocity w 1 [(N^1/2)d+iyoJ is bounded for all values of 

that is, there is a constant W such that !w' [(N^l/2)d+iy0J<w. 

The absolute value of the integral is less than
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'It
d.y0 

2d(N^1/2)	 /	 I (iy -z )2 - (N^1/2 )2 a I 
1J-t 

2d(N+1/2) w Lt d.y0 

( y0 -y ) 2 + (N+1/2) 2	 -x2 

- 2d(N+1/2) w	 - tan1	 t-y	
tan1	

-t-y	 - 

-	 d2-x2	 //1/2)2 d2 -x2 	 ,1j(N+1/2)2 d2-x2 

As N —	 and t-4c, this quantity approaches zero. It has been 
shown, therefore, that when t—* and.	 -40, 

Cw'(zo) dz 0-i(w2 '+ w) 
J z0-z 
B 

By the residue theoren, 

rwl(zo) dz = 2iw'(z) j z o -z	 0 
A 

The periodicity of w'(z) inplies that

.B4) 

B5)
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N
'	 / w'(z,) 

.1	 ---dz - 

.L___1 I z0 -z	 0 
n = -N / 

B..1

w'(z) > I0^ n = -ri' .' 
B0 

=
 J

tw!(z)	 2(zoz)	
cot	 (z0 iz)dz 0 dZQ +	

j(z0*z)2 -n2 d2 °	 d 

as N—o. 

When equations .(B4), (B'5), and	 are substtutea, into
equation (Bi), the expression for the complex velocity is obtained: 

w(z) =	 (w1'^w2')	 (z0) cot	 (z0 -z) dz0 

0	 (p7) 

The complex potential is obtained from equation 	 r7 by integrating 
with respect to z and neglecting the arbitrary constant, 

w(z) = z w +	 fw' (z n ) log sin	 (z-z0 ) dz0	 (B8) 

B
0 

=	 I 
where Wm '	 is the mean stream velocity. 

2
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APPEIDIX C 

SYMBOLS 

The main symbols used. throughout the report are listed here 
for convenience of reference. 

d.	 distance between succossive airfoils in cascade 

L log (x-x0 ) 2 + (y-yo)2 

iog	 (x-x) + sin2	 ()j 

K	 natural logarithm of distance from singular point to 
center of circle corresponding to cascade airfoils 

1	 total arc length of_airfoil 

s	 arc-length arameter corresponding to z 

s	 arc-length parameter correspondong to z0 

V0	 local velocity on circle corresponding to isolated. airfoil 

Vc,c local velocity on circle corresponding to airfoil in cascade 

v	 velocity induced by vortices in region f 2 > 0 

V	 magnitude of uniform or mean stream velocity in airfoil or 
cascade plane (fIg. 1) 

Vc	 magnitude of uniform stream velocity in circle plane 

V	 x-component of uniform or mean stream velocity V 

Vx,r resultant local mean stream x-component of velocity V 

Vy	 y-component of uniform or mean stream velocity V 

w	 complex potential function, (cp+ ii) 

Wu'	 complex velocity of uniform stream for isolated airfoil, 
(v - ivy)
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coipiex velocity of mean stream for airfo.l in cascade 

(w	 (w	 + w3 ') = V - ivy) 

Xc,Yc coordinates of point about which airfoil is rotated (centroid 
of vortex distribution for cascade airfoils) 

z	 coordinate of point where stream function is computed, 
(x ± iy) 

coordinate of point, where vortex is located., (x0 + 1y0) 

a	 angle of inclination of uniform stream velocity to x-axis 

angle through which airfoil is rotated 

7(z0 ) vortex strength per unit arc length at z0 

F	 circulation about airfoil 

e	 central angle of circle 

0N	 angle of stagnation point on circle corresponding to leading 
edge of airfoil 

eT	 angle of stagnation point on circle corresponding to trailing 
edge of airfoil 

angle of inclination of mean flow to normal to cascade axis 
(fig. i) 

velocity potential on airfoil, R [w(z)] 

cp0	 velocity potential on circle corresponding to isolated airfoil 

velocity potential on circle corresponding to airfoil in
cascade	 - 

A 2B values of co at points A, B, C, D, respectively, where 

C?CpD	 the curve of ps 0 ) intersects f2 (s,s0 ) = 0 (e fig 
ure5.) 

CPmin	 velocity potential at the leading edge of the airfoIl 

stream function, I [w(z)]

/
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stream function of mean stream of cascade flow 

stream function of uniform stream flowing about isolated 
airfoil 

mean value of stream function over airfoil 

t J variation of stream function,	 (41	 4') 

Subscripts 1 and 2 WiiOfl appended to w', V, and V indicate entrance 
and discharge values, respect±vely. 
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TABLE I. COORDINATES OF 12o.YYo 
y-y 

(a) Values of ----n 
d 

NATIONAL ADVISORY 
COMMITTEE FOR AERONAUTICS 

0 0.05 0.10 0.15 0.20 0.25 0.30 L35 0.40 0.45 0.50 

-0.40 ).0257 - - - - - - - - - 
•	 .38 .0292 - - - - - - - - - 

- .36 .0331 - - - - - - - - - - 
-.34 .0375 - - - - - - - - - - 
- .32 .0425 - - - - - - - - 
- .30 .0481 - - - - - - - - - 
- .28 .05450.0229 - - - - - - - - 
- .26 .0618 .037 I - - - - - - - - 
- .24 .0699 .0497 - - - - - - - - - 
- .22 .0791 .0621 - - - - - - - - 
- .20 .0894 .0750 - - - - - - - - - 
- .18 .1010 .0887 0.0296 - - - - - - .- - 
- .16 .1140 .1035 .0620 - - - - - - - - 
-	 .14 .1286 .1195 .0871 - - - - - - - - 
- .12 .1447 .1369 .Il0'l).0392 - - - - - - - 
- . 10 . 1626 .1560 . 344 .0881 - - - - - - - 
- .08 . 1824 . 1768 .1588 . 1241 0.045: - - - - - - 
- .06 .2041 .1993 .1844 .1572 .lI0 - - - - - - 
- .04 .2277 .2236 .2113 .1896 .l550.lOi - - - - 
- .02 .2532 .2498 .2396 .2222 . 196( . 1608 . 1096 - - - 
0 .2805 -2778 .2694 .2553 .2354 .2096 .1777 p. 1400 ).0969 ).0496

--
0.0000 

.02 .3097 .3074 .3006 .2892 .2137 .2542 .2318 .2081 . 1858 . 1692 . 1629 

.04 .3405 .338 .3331 3239 3 Ill 95p .2804 .263E .249 I .2389 .2352 

.06 .3728 .3713 .3668 .3595 .3498 .3384 .3260 .3139 .3036 .2965 .294Q 
.08 .4064 .4052 .4016 .3958 .3881 .3793 .3698 .3óOEa .3533 .3482 .3464 
.10 .4412 .4402 .4373 .4327 4i .4198 .4126 .4058 .4001 .3964 3951 

12 .4769 .4761 .4739 .4702 4655 .4601 .4545 .4493 .4451 .4423 .4413 .14 .5135 .5129 .5111 .5082 .504! .5003 .4960 .4920 .4888 .4867 .4859 
• 16 • 5508 .5503 .5488 .5466 .5437 .5404 .5371 .5340 .5316 .5299 . 5294 
.18 .5886 2 .58?t .5853 .5830 .5805 .3779 .5755 ,5736 ,5724 .5720 
.20 .6269 .6266 .6257 .6243 .6225.6205 .6185 .6167 .6152 .6143 .ñ140 
.22 .6655 6653 .6646 .6635 .6621 .6606 .6390 .6576 .6565 .6557 .6555 
.24 .7044 7042 .7037 .7029 .7018 .7006 .6994 .6983 ,6974 p6968 .6966
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TABLE I. COORDINATES OF f2 (x- 0 ,y-y 0 ) - CONTINUED. 

(a)	 Values of	 - Concluded. 
d 

NATIONAL ADVISORY
COIITTEE FOR AERONAUTICS 

- xc

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 
\d 
\ 

1.26 0.7436 1.7434 0.7430 1.7424 O.741 r 0.7406 7396 O.738( 0.7381 .7377 0.7375 
.28 .7829 .7828 .7825 .7820 .78l .7806 .7798 .779 .7787 .7783 .7782 
.30 .8224 .8223 .8221 11 .8211 .8206 .8200 .819! .8 191 .8188 .8 187 
.32 .8620 .8619 .8617 .8614 .8610 .8606 .8601 .8597 .859 4 .8592 .8592 
.34 .9017 .9016 .9015 .9012 .9009 .9006 .9002 .8999 .8997 .8995 .8995 
.36 .9415 .9414 .9413 .9411 .9409 .9406 .9403 .940 .9399 .9398 .9397 
.38 .9813 .9812 .9811' .98 10 .9808.9806 .9804 .980 .9800 .9800 .9799 
.40 1.021)1.0211 1.02101.0209 I.02071.02061.02041.02031.02011,.02011.0201 
.42 1.06101.0610 1.06091.0608 1.06071.06061.0604 1.06031.0602 I.O6O 1.0602 
.44 I. 1009 I. 1Q09 1.10081.1008 1.10071.1006 I. 1005 I. Ioo I. $003 I.	 ioo: 1.1003 
.46 1.14081.1408 1.14081. 1407 1.14071.14061.1405 I. 1404$. 14041.140: I. (403 
.48 1.1808 I.. .1807!. 1807 1.18061.18061.18051.1805 I	 lHfl4 I. l8O 1.1804 

n i 22071 L22072206 I.220fl226L2205I2205i22O4l.220 1.2204 
1.2607 (.2607 1.2607 1.2606 1,2606 I2606 (.2605 I.260 I.260 I	 260! - 
1.3007 i3flfl 1.3006 1 .3006 1.30061.3006 1.3005 1.30051.30051.30051.3005 
1.3406 1.3406 1.34061.3406 1.34061.3406 1.3405 1.34051.3405 l.34p5l.34O 

.58 1.3806 1.38061.38061.3806 1,38061.3806 P.3805 1.3805 1.3805 I.380!l.3805 
.60 I. 4206 I • 4206 I • 4206 .4206 I • 42061.4206 I. 4205 I .4205 1.4205 I • 420 f I.4205 
.62 $.4.6O6l.4606I46O6 .4606 L 4606,.4506 1.460 5 I.460!I.46051.460!1.4605 
.64 I. 5006 I • 5006 1.5006 .5006 I • 5006 I • 5006 I . 5005 I .5o0 I• 500f 1.5005 
.66 1.5406 1.5406 1.54061.5406 1.54061.54061.5406 l.54051.54051.54051.5405 
• 1.5806 1.5806 1.5806 1.5806 1.5806 1.5806 1.5806 1.5805 1.5805 1.58051.5805 
.70 L62O6L 1.62061.6206 I.6206162o6 1.6206 I .62O P.62051.62051,!6205
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TABLE I. COORDINATES OF f 2 (x-x 0 ,y_y 0 ) - CONCLUDED. 

	

NATIONAL ADVISORY	 lb)	 Values of __.__a 
COMMITTEE FOR AERONAUTICS 	 d 

\ 0 0.025 LOSO ).075 0. 100 0. 125 0. ISO 0. 175 0.200 225 0.250 

0.40 L02580.006( - - - - - - - - - 

.38 .0293 .015 - - - - - - 

- .36 .0332 .02I - - - -

____ 

.

____ 

-

- 

- 

54 .0377 .0281' - - - -

____ 

-

_____

- 

- .32 .0420 .03M - - - -

____

-

____ 

- - 

•	 .30 .0485 .04l - - - -

_____ 

- - -

____ 

- 

• .28 .0551 .048S0.0219 - - - - - - - 

.26 .0625 .057 .0367 ____ - - - -

____

- 
•	 .24 .0710 .066 .0496 - - - -

_____ 

-

____ 

- - 

.22 .0808 .0766 .06250.0256 -

____ 

- - - - - - 
• .20 .0918 .088: .0761 .0500 - - - - - - - 

• 18 • 1046 .10 I .0908 .0700 1.0 148 - - - - - - 
-	 . 16 .1192 . I l6 . 1071 .0897 .0571 - - - - - - 
-	 . 14 . 1362 . I33 . 1254 lOS .0854 ).0317 - - - - - 
-	 • 12 •j559 •	 53 . $467 . 1330 jj. .0782 - - - - 
•	 .10 .1791 .1769 .1702 .1585 .1405 .1137 ).0685 - - -

- 

- 
•	 .08 .2068 .2047 .1985 .1877 .1717 .1490 .1160 0.057, - - - 
• .06 .2406 .2386 .2326 .2225 .2076 .1873 • 1598 .120 .0463 - - 

.04 .2837 .2816 .2756 .2654 .2509 .23 17 .2068 .I74 .1290 0.04O - 
•	 .02 .3437 •34l .3344 .3229 .3072 .2871 .2624 .2321 .1942 .1432 0.0487
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Fig. I 

Exit velocity diagram 

I 
v'.

Complete velocity diagram 

Entrance velocity diagram	 Reflected velocity diagram 

Figure I. - Notation for Cascade flow.
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fI x-x0,y-y0)	 ly-yol

.2 

.3 

Figure 2. - Plot of curves for constant f2x-x01y-y0).
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Figure 4. - Plot of airfoil and velocity potential for use in computation.
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Fig. 5 

Figure 5. - Superposition of flgures 2 and 4 to obtain plot of f 2 against °.
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Initial airfoil 
Final airfoil 

0 

Figure 7. - Initi&l shape and final approxintIon of thick air-



foil showing cascade spacing.
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----lnitial airfoil 

First approximation 
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Figure 9. - Assumed shape and first and third approximations 
of thin airfoil showing cascade spacing.
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Central angle of circle, O.deg 

Figure II.- Correspondence between points on airfoil and points on unit circle 
by conformal transformation.
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