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SUMMARY

An exact solution of the problem of designing an airfoil with
a prescribed velocity distribution on the suction surface in s given
wiform flow of an incowpressible perfect fluid is obtained by
replacing the boundary of the airfoil by vortices. By this device,
a method of solution is develomed, which ig applicable both to
isolated airfoils and to airfoils in cascade. The conformal
transformation of the designed airfoil into a circle can then be
obtained and the velocity distribution at any angle of attack
computed. Numerical illustrations of the method are given for the
airfoil in cascade,

INTRCDUCTION
The problem of increasing the output ver stage in axial-flow

compressors and turbines involves the use of high-solidity (closely
spaced blades) stages of highly cambered blades. In addition, the

velocity distribution must be carefully selected as a function of
arc length along the airfoil (blade section) boundary in order %o
avoid flow geparation or excessively high local velocities.

Several methods are available of obtaining an airfoil with a
prescrived velocity distribution when placed in a fixed pogition in
a uniform stream. The methods that lead to theoretically exact
results are based on conformal mapping theory. (See references 1
and 2,) 1In reference 3, Mutterperl extended the method of conformal
wapping to solve the problem of computing a cascade of airfoils with
"prescribed velocity distribution but, for cascades with closely
spaced or highly cambered airfolls, this procedure becomes very
cumbersome, Approximate solutions have been obtained by placing
singularities such as vortices, sources, and sinks in a uniform
stream. Cascades of airfoils can also be computed by distributing
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such singularities periodically throughout the region of the cas-
cade, as described by Ackerect (reference 4). Because these vor-
tex methods are not exact, a method has been developed with the
vortices on the boundaries of the cascade airfoils, This results
in a theoretically exact solution without the compvutation difficul-
ties encountered in conformal manning methods for highly cambered
airfoils or closely snaced cascades. Furthermore, for the saue
accuracy in computing the airfoil shape, this vortex method re-
quires the computation of fewer points than the method of conformal
mapping because these points may be arbitrarily placed on the airfoil.
The method may be applied to isclated airfoils and to airfoils in
cagscade, For the cascade, the inflow and discharge velocities and
a velocity distrivution on the surface of an airfoil are given and
the shape of the airfoil is determined, In some cases, the spacing
of the blades is preassigned, which places a condition on the as-
sumed velocity distribution. Before the airfoil shape has been
evolved, the velocity distribution may be computed for any angle

of attack by the method described in appendix A.

THEORY
Outline of Method

In ref ~rence 5, it is demonstrated that the two-dimensional
rotential flow about a body in a uniform stream can pe represented
by substituting for the body a sheet of vortices along its boundary.
The vortex strength per arc length at any point ig equal to the
magnitude of the velocity at that point. A proof of this relation
for the case of the cascade is given in appendix B. The problem
of finding a shape with a prescribed velocity distribution when placed
in a stream can then be stated: given a vortex distribution, to find
a contour which satisfies the condition that it will be a streamline
in the flow field induced by the uniform flow and the vortices
distributed on the contour.

The nrocedure of finding tlie shape begins by choosing an
approximate ghane and distributing the vortices on it. The strean
function of the flow induced by the vorticses and the uniform strean
is computed at points on the boundary of the assumed sghape. IT
this stream function is constant, the assumed shape is correct.
Variations of the stream function are a measure of the deviation of
the assumed shape from the correct one. These variations are used
to distort the original shape into a new shape whose stream function
is more nearly constant. The process is repeated until the
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variations become negligible. In the process of shape adjustment,
the velocity is altered on the pressure surface.

Derivation of Equations for the Stream Function
Isolated airfoil., - The complex or reflected velocity w'(z)

(which is the derivative of the complex potential function w(z))
induced at the point 2z by a vortex of strength k located at

z is
0
k 1
w'(z) = —
oL Z"'Zo-

A summary of the main symbols used in this report is given in
appendix C. .

The complex velocity, w'(z) induced by a uniform stream with
complex veldocity wu‘ and a distribution of vortex strength per unit

length 7(20) along a curve with coordinates 1z, is

v (z) = w 1 jf 7(Zo)dso‘ : ' (1)

-
u 2mi, z2-2

where ds, 1 the element of arc length along the curve. The complex

potential at the point 2z is the integral of w'(z) with respect
to 'z, namely

w(z) = zw,' + E%; y(z,) log (z-z,) dsg . (2)

From reference 1 (notation modified)

7(25) déo = w'(zo) dzg = aw(zg) = dop(zy) + idY(z,)
where .
P velocity potential, R{w(z)]
¥ - stream function, I[w(z)]

When equation (2) is applied to obtain the complex potential
function at any point 2z in the flow field, the integration must be
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carried out along the boundary of the body. Because this curve is a
Streamline, &y = O and, therefore, equation (2) becomes

w(z) = zw,' + E%;J[‘1031(2~z0) do(zy) (2(a))

The imeginary part of equation (2(a)) is the stream function at the
point 1z,

o= w4V - | log Axex)? 4 (30 dwlzg)  (3)

where

w,' complex velocity of uniform stream for isolated airfoil,
(v - ivy)

Z Qoordinate of »oint where stream function is computed, (x + iy)
zo coordinate of point where vortex is located, (x, + 1yo)

Vyx - X-component of uniform stream velocity V

V. y~component of uniform stream velocity V

It is convenient to use the arc length along the airfoil as a
parameter. If (x, y) is a point on the airfoil boundary, then s
will denote the arc length there; similarly, s, will denote the
arc length at (xo, yo). The vortex at s, on the alrfoil influences
the stream function at the point s on the airfoil. The stream
function induced at (x, y) by a vortex of unit strength at

(%5, Vo) is

- £z, 2) = = &= og | (xx,)? + (y-yo)z:l (4)

A plot in the (x, y) plane of curves for a constant f,(z, z,)
congists of concentric circles with center at (xo, yo).

The velocity at the point s, on the airfoil is the directional
derivative @'(so) of the potential along the streamline. If the

velocity along the airfoil has been specified and an airfoil shape
has ‘been assumed, the resultant stream function along the boundary
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" of the alrf01l can be approx1mated by using the approximate shape in
evaluating the integral :

. yi . ’
U(s) = Wu(s) ijg £1(s, 8o) ®'(s,) dsg (5)
where

V,(8) stream function at (x, y) due to uniform stream,
(-XV& + ¥V,) :

l total arc length of airfoil

All variables are expressed in terms of the arc-length parameters s
and 8o The integral in equation (5) can be evaluated either
numerically or graphically over the entire range of integration
except in the region where a = s-s, 1s small, for in this

region fl(s, So) becomes infinite. This portion of the integral

can be evaluated by approximating the airfoil boundary by a line
segment. Then, '

1
fy(s, 85) = yo log (s-so)2

The prescribed velocity can be given in this region, which may be

defined by s-a < 84 < s+a, by a Taylor expansion as a function .

of sS4 about the point s.

9 (5) = @' (s) + ' (s) (o,78) + B2 (s -0)2 &

where the primes indicate derivatives with respect to s, The
integral is then

~-a

s+a ' -
f fl(s,;so) cp'(so) dSO
8

-a 4

Rl ol 3
b(j ~ log (s, -s) Lm (8) + @ '(8) (so-s) +.. . .J ds

=-Lacp(s) (1oga-) ..M..(loga—-%>+. . J (6)
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In most cases it 18 necessary to use only the first term in equa-
tion (6). The same type of approximation can ve used to evaluate a
portion of the integral if the opposite side of the airfoil comes
in the neighborhood of the point (x, y).

A more general equation applicable to a segment that does not
pass through s is:

p+C

ix p+b lo.gu[(x-xo)z * (y-yo)z} q)l(so) d(so)

="£;~{?'(p) [c‘log;(ﬁ2+¢2)'- 5 1og'(h2+b2) - 2(c-b) + 2h tan~t Eéglhl]
S o n4be

1.,
PR

. +>E¥iﬁgl'[(ﬁ2+cz) log (h2+c?) - (h2+b2) lpg'(h2+b2) - (cz-bz) J

NN , . a ' .
+ . V)”[c? log (h2+¢2) - b2 log (nZ+b2) - % (c2-13)
- 1 N . :.v' . .
4 2nf (o-b). -.2hd tan™t 953191} o 5}- (6(a))
. 7 nBpe 4

where - -h 1is the perpendicular distance from s to the segment,
8, =D ~locates the foot of the segment, (p+b) and (v+c) are the

limits of the integration of 's,, and approximately,
2

' (p) = @ (p+b) - b CP"(p+b):':+:-’%--fc?f*"(p+b)

@ﬂ@)=mL%mb)-b@”'@w)

@ (p) = @1 (piD)

vtvEguation‘(G(a)) may be used when the line segment is not of equal
lengths on either side of ‘the perpendicular foot or when @®'(s) or
its derivatives are discontinuous at either (p+b) or (p+c). If
.a=c==-b and h =0, equation (6(a)) reduces to equation (6),
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The size of a, b, or ¢ 1is determined by the requirements that the
segment in question be nearly straight (the approximation is of the
second degree) and that ®'(s,) be accurately represented by a
Taylor series expansion of few terms.

Airfoils in cagcade. - The expression for the complex potential
for the flow about a cascade of airfoils is derived in appendix B.
The notation is defined in figure 1. The formula, which corresponds
to squation (2(a)) for isolated airfoils, is

w(z) = zwy' + E—Hl—; flog [sin <§-> (z-zo)] dep(z,) (7)

where
d distance between succegsive airfoils in cascade

Wp,' mean stream veloclity, which is one hall the sum of complex
(reflected) velocities upstream and downstream of cascade,
Vi - 1V&
The mean velocity wy' corresponds to the uniform velocity w,' of
the isolated airfoill flow,

The term zw,' 1is the complex potential function resulting
from the mean flow. In the integral, the element d¢ indicates the
“vortex element strength and -log [ein (x/d) (z-2,)] represents

the_complex potential_at_the point_ z caused by an infinite row of

unit vortices at 2z, 4 nd where n =0, 1, 2, . . .. The imaginary
part of equation (7? is the stream function,

1
W (s) =, (s) f PREACENELEN (8)
SO'—"

where

fols, 85) = f; log [sin2 g (x-x,) + ginh? g (y—yo)]
is expressed in arc-length parameters and \bm(s) is the stream
function at (x, y) induced by a mean stream whose complex velocity

is wp'; that is,

Uy = - XVy + yVy
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X- (Y- N
The values of <—§&9 and (Zégg) for various values of fz are

- given in table I. A plot of X-X, and y-y, for constant values
- of fz(Z,.zo) is shown in figure 2. These curves may be interpreted

ag the streamlines of the flow irduced by an infinite row of vortices
of unit strength located at the points (xo:tnd,‘yo), where

n=0,1,2, .. .. In the region of a vortex, the streamlines are
nearly circles; that is, the flow is nearly that induced by an
isolated vortex., At a distance from the vortex row, the streamlines
are parallel lines, as in the flow pattern induced by a continuous
uniform distribution of vorticity along a straight line instead of
a row of discrete vortices. The velocities on the two sides of such
a vortex line are of equal magnitude but opposite direction.

This behavior of f, for large iZ%gEl and also for small

[(y-7)8 + (x-x5)2] X-X,
32 can be described as follows: When both
and T 9o are small,
1 8 2 2
T2(z, 25) & 4= log =z (x=x,)% + (¥-30) (9)

which differs from fl(z, zo) only by a constant., For large values

- : X=X
of inggl, irrespective of and a constant term,
|-¥o |
fr(z, 2.) = 10)
2( 3 o) Zd (

which is the stream function of a uniform streem parallel to the
x-axis.

Equation (8) can be used for computing the stream function along
the boundary of an airfoil in cascade just as equation (5) is used
for the isolated airfoil. The integral over the range in the neighbor-
hood of the point s is obtained by using equation (9) for fy(s, s,5).
The result, derived in the same manner as -equation (6), is
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S+a
Tt J[‘ fz(s, so)cp‘(so) ds,
g-a

={aqﬂ®)[Mg(%a)-l]+a3g%%@l[bg<ga>~% + . ..}
- - (6(b))

The more general equation (6(a)) is modified for cascades by
multiplying the arguuent of all logarithms by the factor nz/dz.

Ad justment of Shape

If the stream function for the assumed airfoil has been computed
and has been found to vary, the shape must then be adjusted to give
a more nearly constant stream function., The shape changes are made
by rotation of the bhody, plus displacement of the individual points
normal to the mean stream. A succession of such changes results in
the most general tyoe of shape distortion. The rctation is used to
place the front stagnation point properly.

Rotation of the airfoil, - In the formula for computing the
stream function of an isolated airfoll, the contribution of a vortex
element at (%,, yo) to the stream function of a point at (x, y)
is dependent merely on the distance between the two points.
Consequently, if the entire airfoil is rotated, the effect of the

boundary—vortices—on—thestream functionat—any point—onthe airfoil
boundary will not change. The effect of the blade rotation on the
gtream function along the boundary ls therefore determined by the
change in relative position of the points in the uniform stream.

The first adjustment in shape is a rigid rotation of the airfoil in
order to obtain a more nearly constant stream function along its
boundary.

If the airfoll is rotated through an angle B, the stream
function is so changed that W(s) is a function of B and s and
may be written VY(s, B). When B =0, VY(s, 0) is the original
stream function before rotation. After rotation the new stream
function WY(s, B) may be expanded in a Taylor series about the
point B = O,

ww,s>=ww,o>+a[éﬂiiﬁ] b
% Jao
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Only the first two terms in this series will be used because it is
assumed that B is small. The angle B 1is to be determined for
the minimum mean-square deviation of the stream function from its
mean value. Because the object of the rotation is-essentially to
ad just the shape of the nose, the rotation might also be made to
reduce the root-mean-square deviation of the stream.function to a 1
mlnimum for a portion of the shape includlng the nose. ' '

'zThe mean value of the stream function at any angle B 1is

fws, b) s = m[ws, * s(s—(s, ) ]as. (11)

The difference between the new stream function W(s, B and its mean .
" value W(B) is squared and integrated to obtain a measure of the
variation of, (s, B) - from the mean value at -thé new angle. The
condiblon for obtaining a minimum root-mean-square dev1atlon by Do
adjustlng B 15 . o

d@/ [\v(s, --w»]' ds_g_/“[q,(s, o> d‘“" ) wa)J .

e[y [<s, or 5 gy 05 ].[dws;m - <s>] )

ap dB

The second integral vanishes by.virtue of equation (11), which may
also be- used to eliminate- W(B) from the remainnné term, ~The -golution

for. B . :
| o U ay |
[W( s) d\,p("‘ ds. - b“_/‘ D’S) GSJ ' d\(SJ‘“‘> ds ]

R A O B
Y ["avls, 0) . | auls, 0)
-M ep O co |- 1|25 0]
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In order to apply equation (14), &y/dﬁ must be known at points
along the boundary of the airfoil. In the case of the isolated air-
foil, the contribution of the vortices is unaffected by the rotation
and therefore, ' '

av
ay u_d . : dx dy
i -3 C o ( XVy + yVy) = Vyas t Vx ap (15)

If the airfoil is rotated about the point (xg5 ¥o), equa-
tion (15) becomes

g% = cos B[:(x-xc) Ve + (yéyc) Vy}

+ 8in B [}x-xc) V& - (y—yc)'Vk] (16)

where (x, y) are the coordinates of the point before rotation.
For small values of B, equation (16) reduces to

= (xxg) Ty + (5y0) Ty (17)

The choice of (x,, y,) will have no effect on the results in this
case,

then the ajrtoil in cascade is rotated, the change-in-theposi-

tion of the vortices of the adjacent blade must be considered. In
the case of the isolated airfoil, it was unnecessary to consider
the change in position of the vortices because the influence of a
vortex (equations (3), (4), and (5)) depended on the function £y,
which is constant on circles. The influence of the vortices on
the airfoil is therefore independent of direction. Because the

Ty contours are not circles, the rotation in cascade-does have an

effect, which is approxinated by considering all closed fo2  curves

(f2<:0) as circles in order that the effect of all vortices

in the region fs<0 may be neglected during rotation. The

effect of all vortices in the region f2>0 1is estimated by -
assuming that all the £ contours for f,>0 are straight lines
uniformly spaced. The flow corresponds to that between two infinite
straight parallel vortex sheets of ‘unifeorm strength per unit length.
This flow induced by the vortices in the region f>;>0 1is in the
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. x-direction, and the direction of the flow induced by-the vortices
for which y, >y 1is opposite in sense to that induced by the vortices
for which y, <v. : '

- As the point being considered is changed, the reglons for
f2>0, ¥yo>y, and f5>0, y,<y will include different sections
of the blades, and hence different vorticity, with the result that
the x-velocity component v, induced by the vortex sheets will vary
with the point under consideration. The algebraic sum of the
x-component of the uniform flow velocity and the variable x-velocity v
induced by the vortices in the region fp>0 is to be used like the
velocity component Vy in rotation of the isolated airfoil (equa-
tion (17)). The quantity V, in equation (17) is replaced by the corre-
sponding Vx,r (= Vy + v¢). The vortex strength per unit length at any
point on the airfoil is equal to '(s,) and, therefore, from equa-
tion (10) the x-component of the velocity induced by the vortices is

1 ,
EEJF ©'(sy) dsy, where the integration is carried out over the portion

of the airfoil where fo(s, 8,)>0." A distinction must be made between

the two regions Yo<y and y,>y Dbecause the induced components have
opposite direction. o '

The computed result of rotating an airfoil in cascade depends upon
the choice of (x5, y,) because dy/dB 1is only approximate. In order
to minimize the error involved, values of @&y/dB are reduced by
choosing (xc, yC) as the centroid of the vortex distribution on the
airfoil. If the improvement in the mean-square deviation of ¢ is
small compared with its original value, it may be preferable to omit
the rotation of the airfoil because of the error inherent in the computa-
tion., The decision should be made chiefly on how VY varies at the air-
foil nose and whether 1t is approaching a constant value in this region
with successive corrections of the shape.

Distortion of the shape. - The stream function computed after the
isolated airfoil has been rotated will, in general, still vary along
the boundary.. This variation can be reduced by distorting the shape of
. the airfoil, If the distortion is small, the change in distance between
any two points on the boundary will be small, although the change in the
direction of a sepment Jjoining those points may be congiderable. The
effect of the distortion on the contribution to the stream function of
the vortices on the boundary. is consequently neglected, The largest
effect of the distortion will be to change the position of the boundary
points in the uniform stream. The airfoil is therefore distorted in such
a manner that the change in the contribution of the uniform stream to the
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Stream function will eliminate the variations in stream function.
For points directly opposite each other on the airfoil, the change
in distance will be of the same order of magnitude as the distor-
tion. Consequently, distortions that result in change of thickness
of the airfoil converge very slowly because of the inaccuracy of the
fundamental assumption on which the correction is based.

Thus, when the stream function along the boundary cf the
isolated airfoil is known, some number is arbitrarily chosen as the
desired constant value of the stream function. If Ay =y - ¥ is
the difference between the computed stream function at a point and
the desired constant, the point is moved a distance AW/V perpen-
dicular to the di rectlon of the mean stream, where the direction of
increaging uniform stream function is taken as positive, The air-
foil in a cascade ig distorted in the same manner, using the varying

~__............._,. - —

resultant local mean stream velocity v«& o+ Vyz, corrections
are made with ¢ equal to the mean value of V¥ on the airfoil.

COMPUTATIONAL, PROCEDURE FOR CASCADES
Choice of Velocity Distribution

Several factors influence the choice of the velocity distribu-
tion for which an airfoil is to be found. Especially in rotors,
sturdy blades are required. Long thin tail sections must be
avoided and where high rotative speeds and stresses occur, overhang
of thin sections is likely to induce blade failure. The radial
distribution of a@irfoil cross-sectional area is also fundamental in
determining the blade-root stresses. Overhang can be reduced
by proper choice of the velocity diagrams for the sections, but the

other factors are influenced chiefly by the thickness of the section.

The desired thickness may be attained by first assuming a blade
shape and spacing and using the stream-filament method of reference g
to compute the velocity distribution over a portion of the airfoil
that determines the thickness. The spacing may be regarded as fixed
but the curvature can be adjusted if local velocities are too high
for the desired thickness., This computed velocity will then serve
as a gulde to the choice of an airfoil velocity distribution, which
should be chozen to avoid high velocity peaks and steep negative
gradients. If the average of the velocities on opposite sides of
the blade camber line is retained in the modification of the velocity
distribution computed from the stream-filament method, the thickness
will also be retained,
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Because of the irrotationality of the fluid motion, the velocity
integral or circulation around the airfoil must be equal to that
around a blade but over a width equal to one blade space. Therefore,

fcp'(s) ds =T = d(vx,l'- Vy,2)

where

Vk,l tangential velocity entering cascade

Vk’z tangential velocity leaving cascade

T circulation about airfoil

This relation places a condition on the aséumed velocity distribution.

If the computations thus far have been made in order to select
a velocity distribution for the airfoil cascade in a compressible
fluid flow, an equivalent velocity distribution for the flow of an
incompressible fluid must be determined before the blade shape can
be computed by any method based on incompressible flow theory. For
subcritical flows the directions of the incoming and discharge
velocities are the same for compressible and incompressible flows,
but for incompressible flow the component normal to cascade axis 1s
the same upstrean and downstream, The Karman-Tsien compressibility
correction (reference 7) or that of Garrick and Kaplen (reference 8)
may be applied to the velocity on the blade surface to estimate
roughly the corresponding incompressible flow velocity distribution.
‘'The resulting velocity distribution in any case must setisfy the
circulation condition. This procedure does not give an exact solu-
tion for compressible flows, but the resultant compressible flow will
have approximately the desired characteristics of low pressure
gradients and no high velocity peaks.

Computation of Airfoil Shape from the
Chosen Velocity Distribution

The numerical computation of the quantities involved in the
preceding analys1s, particularly the function T is extremely .
laborious when tables of LO(S 8o) are used. Mosc of the computations
are therefore executed graphically. In the cascade example, it was
assumed that the air entered the cascade at an angle of 45° from the
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cascade axis and was discharged at an angle of -30° from the cascade
axis. The assumed veloclty distribution is given in figure 3(a).
The value of the 1ift coefficient Tor this airfoil is 3.1. The
ghapes of the isolated airfoil and the airfoil in cascade are
computed by the following steps:

1. Curves for constant f, for the isolated airfoil, or
constant f, (fig. 1) for the airfoil in cascade,are drawn. This
diagram should be made on some transparent material that will neither
change size nor shape. The coordinates of the curves for constant f,
are given in table I.

2. A desired velocity ®'(s) 1is chosen as a function of the
arc length of the airfoil (fig. 3(a)). An airfoil shape having the
desired total arc length is assumed and is drawn to the same scale
as the plot of fy or f,. The drawing is made on grid paper and,
in the case of a cascade, the x-axis 1s taken along the cascade
axis (fig. 4).

3. The velocity distribution ®'(s) 1is integrated to obtain
the velocity potential ofs). This function is plotted on the same
chart as the assumed alrfoil shape for the corresponding y~coordinate,
as shown in figure 4, by plotting both ¢ and the y-coordinate of
the airfoll against s on a supplementary graph. In regions of the
airfoll where y varies little with e, that is, where the airfoil
boundary is parallel to the x-direction, ®© should be plotted
against x 1in the same manner, as shown in figure 4,

4, In order to find the stream function at a point (x, v)

on the airfoil, a plot of fz(s, 8y) as a function of w(s,) must

be obtained to evaluate the quantity Jf fo(s, 8o) d(sy) of equa-

tion (8). If the chart of f5> 1s superimposed on the airfoil with
one vortex center overlaying the point (x, y), the value of fg

may be read at (x,, ¥,) and the corresponding value of ®(x,, Jo)
may also be read from the plot of o(xy, ¥o). The value of fo(s, s,)
is the same as would have been cbtained by centering the chart on

(X5, ¥o) Decause of the symmetry of the function. A succession of
values of ¢ and fz are obtained in this fashion for various posi-

tiong (xo, yo) that intersect the £, contours, and a plot of
these points (f5, ®) may be made for the assumed position (x, y).

This procedure is illustrated in figure 5 for a particular point
(x, ¥) on which the fo chart is centered. The readings for a
particular (xo, yo) are shown by the arrowed lines. The
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points 1 to 6 on the blade are shown on the corresponding f5 curve.
The discontinuity of ¢ between points 1 and 6 is the circulation.
The discontinuity between 4 and 5 represents the region where To
approaches -,

5. The preper method of integration then proceeds from 1 through
6 to 7 and then to the origin, with constant fp from 4 to 5. The
region from 4 to 5 with fp approaching - o is computed by equa-
tion (6) or (6(b)); the constant a 1is assumed to be the radius of
the near-circle, which corresponds to the value of fz where the
dlscontlnuity from 4 to 5 occurs.

The total area 1nclud1ng this small addition is

fcp'(so) fz(s) so) ds ='/$f2(SA} so) do®

o

which is the stream function due to vortices on the entire set of
airfoils in cascade. Whers fp = C at the points A, B, C, and D
(fig. 5), the values of 9 ere noted as ©,(s), Py(s), ©u(s),
and mb(s) These values are used in computing the stream-function
change - caused - by rotating the blade. ‘The stream function at the-
point (x, y) may now be computed from equation (8) or (5), and

W= VX + Vi

A plot of the stream function (variation from the mean value)
1s shown in Tigure 6 for the initially assumed shape. Corresponding
points on adjacent airfoils have a difference of Aw/Vyd equal to 1.0.

6. When VY (s) is known at a sufficient number of points, the
airfoil may be rotated as previously described. TFor the isolated air-
foil, equations (14) and (17) may be used directly. For the airfoil
in cascade, the coordinates of the centroid of the airfoil must first
be computed by

Xg = -%—,f]r»'x o' (85) dsg
1

Vo = T 9V o' (s,) dsg
Sd
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Before equation (17) can be used to compute dy/dB, the variable
quantity Vi must be computed. The vortices in the region f2>'0
are cons 1de"ed to be vniformly distributed along the cascade axis
and the velocity induced by such a distribution.is

_+2
Vy _iz

where 7y 1is the vortex strength per unit length along the cascade
axis for f;>0. Therefore,

1/
%)

where the integral is to be taken over the regions f5>0. The
region f2>-0, Yo> ¥ contributes a positive component to Vys
whereas the region- f5>0, y,<y contributes a negative component.
The computation is simply carried out by making use ‘of the fact that .
the integral for v, is the difference between values of ¢ at
points where f, = 0. The values of ®p(s,), ¥p(s,), @ (sy),

and wD(so) from step (5) are used at this point to obtain

14
Vy = ©0'{s,) dsg

~
2v,d ij w'(s,) dsgy = Pp = @Pp +T - (wc -<PB) (18)

where T is introduced because of the discontinuity in ©® at_the

trailing edge. The term ®p -®Pp + I' gives the effect of the
vorticity in the region fo(s, s,)>0 near the trailing edge, and
the term Oo =Py glves the effect of the vorticity in the

region fz(s, so)> 0 near the leading edge. If either the leading
edge or the trailing edge lies in the region fz(s, so)<:0, only
two points of intersection will remain and one of the two groups of

2d
is added to the x-component of the original uniform stream velocity
and the quantity dy/df of equation (17) may be computed for a
number of points and the angle B computed from equation (14), using
the values of (x,, y,) Just determined. After these computations

have been made, the airfoil is rotated through the angle B, and the

terms in equation (18) will vanish. The quantity E;Q['QI(SO) dsg

value ¥ + B E% is assigned as the value of the stream function of

the point after rotation.
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7. A value of VY(s) is known at points along the airfoil boundary.
The mean value over the airfoil V¥ is subtracted from V¥ leaving AV,
For the isolated airfoil, no subtraction is necessary. Each point is

moved a distance - — Aw_ in the direction perpendicular to
' v 2 v 2
xr tVy
the veloclty computed in step 6. The curve Jjoining the points in their
new positions is the adjusted airfoil.

8. The total arc length of the adjusted alrfoll will be different
from the original one, in general, although local changes in length
will be negligible. The airfoil is so scaled that the length of the
suction side is the same length as it had been before distortion
because this surface ig the critical surface of the airfoil. This
process will result in a change in length of the pressure side. The
velocity over the pressure side m'(s) must then be altered in such
a manner that the difference in potential between the two stagnation
points remains the same. As a result, the quantities that retain
specified values are the length and the velocity distribution on the
suction side and the circulation around the airfoil. The entire
procedure is repeated with the adjusted shape until the variations
in the stream function result in very little change in the shape of
the airfoil. '

Discussion of Examples and Techniques

For the example being computed, the stream functions obtained
for the initially assumed shape and the first and seventh approxima-
tions are plotted against the arc length (fig. 6), which is taken as
zero at the trailing edge and proceeds counterclockwise around the
airfoil as shown in figwre 7. The fact that Ay for the initial:
shape is positive over the first half of the arc length and negative
over the second half indicates that it is too thick because the
required distortion in shape will make it thinner. The change in’
thickness results in a change in velocity distribution over the pres-
sure side of the airfoil in order to maintain the desired circulation.
The velocity that was originally assumed, which is equal to the
vorticity per unit length distributed on the initial airfoil, is
shown in figure 3(a) and the velocity over the-:final shape in fig-
‘ure 3(b). The length of the pressure side has increased and the
velocity has decreased in the proportion of 1:1.1.

Over the section of the airfoil that has collapsed to zero thick-
ness, the surface velocities of figure 3(bj may not have been obtained,
but the loading (circulation per unit arc length), which is the
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difference in the velocities on opposite sides, has been realized.,
In practice, this collapse is prevented by increasing the assumed
velocity on the airfoil surface.

If the initially assumed airfoil shape has a thickness that
differs considerably from the correct one, the process of shape
ad justment will converge rather slowly. The labor can be reduced,
however, by computing the stream function at a few points on the
airfoil and locating these points to determine the thickness. This
procedure is followed for the first few approximations until the
thickness of the airfoil is fairly accurate. The stream function
ig then computed at & largér number of points, particularly near
the leading edge, in order to get more detail of the shape.

If a velocity distribution is arbitrarily specified, the
resulting shape wmay not be a physically real airfoil but may result
in a Tigure~0 or a collapsed shape (zero thickness over a portion
of the blade). It is then necegsary to modify the velocity
distribution to obtain a real shape; these modifications should be
selected to keep the desirable properties of the original distribu-
tion. Velocity pealis and steep velocity gradients, which tend to
occur on the suction side of an airfoil, are to be avoided. If the
alrfoil collapses, the vorticities of the two sides tend to cancel
each other and the remaining vorticity represents the difference in
velocity across the thin airfoil rather than the velocity along the
boundary.

The method was also applied to the design of a thin airfoil
(camber line) in a cascade. The vortex distribution is equivalent
to load distribution (difference—in velocity acrossthe—airfoil) -

rather than velocity as in the case of a thick airfoil., The
velocity diagram for the cascade and the desired velocity difference
are shown in Tigure 8. The value of the lift coefficient of the
resultant airfoil 1z 4.1, The initial shape was obtained by
assuming zero spacing between the airfoils. The initial shape and
the first and third approximations to the airfoil shave are shown

in figure 2. There is very little difference between the second

and third approximations. The third approximation is redrawn in
this diagram to show the spacing between airfoils., The convergence
of the method is shown graphically in figure 10. The varia-

tion Ay of the stream function from its mean is divided by Vd to
make 1t dimensionless and is plotted against the arc length along
the airfoil where = = O at the trailing edge. The stream function
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computed on the second aprroximation is nearly constant, which gives
the third approximation almost the same shape as the second one.

The rapid adjustment of camber contrasts with the slow adjustment

of thickness. : : '

Flight Propulsion Research Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohlo, March 4, 1947,
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APPENDIX A

VELOCITY DISTRIBUTION ON THE DERIVED AIRFOIL
AT DIFFERENT FLOW ANGLES

Conformael mapping. - When an airfoil is given, the velocity
distribution over its surface mist frequently be found at different
angles of attack. This problem mway be solved by the method of con-
formal wapping, which consists of wapping the region exterior to
the airfoll on the exterior of a circle. The velocity around the
airfoil is obtained from the known velocity around the circle.
Procedures for finding the function that maps a given airfoil into
a circle are »resented in references 1 and @ for the isolated
airfoil and references 3 and 10 for the airfoil in cascade.

In general, the procedure for finding the mapping function
of an airfoil is a laborious one. But when, as in the present
cage, the velocity distribution over the airfoil at a particular
angle ol attack is kmown, the .correspondence between points on
the airfoil and on the circle, and hence the flow velocity at
other angles of attack, can be obtained very easily. Indeed,
the corresnondence of points and the velocities for various
angles of attack can be obtained by the method of Weinig and
Gebelein (reference 11) from the initial data without knowing
the airfoil shape, because the complex nmotentials of the airfoil
plane and the mapping circle plane are equal. Before the airfoil
is designed, therefore, it is wnossible to check whether the air-
_foll to be computed will-be--satisfactory—under—conditions different
from the design condition.

Isolated airioil. - The flow about any airfoil shape can be
mapped on the flow about a unit circle in such a way that corre-
sponding points have the same potential. The flow about the air-
foil is given and the potential function ©(s) at each point is
computed. If the potential function on the airfoil is computed
by integrating the velocity from the stagnation point at the
trailing edge in a counterclockwise direction around the airfoil
oriented like the one in figure 1, the potential will be zero at
the trailing edge, decrease to a minimum ©min at the stagnation
point at the leading edge, and then increase to a value equal to
the circulation I' at the trailing edge. The corresponding Tlow
about the circle is determined by the conditions that it must
have the same values of @y, and I' for a correspondence to
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exist between all airfoil and circle points. If 6p is the central

angle of the stagnation point on the circle that corresponds to th
trailing edge of the airfoil,

WPpyin
T

= —(cot Op + O + n/2) (A1)

Equation (Al) can be solved numerically for 65 because all the
other quantities are known. The velocity at infinity in the circle
plane V, can then be determined from the Kutta-Joukowsky condition,
which requires that GT be a stagnation point; that is,

T
Vo= = Hamoy (22)
The velocity potential at points on the circle is
| o T 4 ]
P, = -zvc‘oos 0 + =t 2V, cos O - é}'GT A (A3)

The quantity 2V, cos €q - EE-GT is a constant that is subtracted

in order to make @, = O at the stagnation voint corresponding to
the trailing edge.

The corresvondence of points on the airfoil with points on the
circle is obtained by associating points where ©(8) = P,. The

velocity on the circle at a uniform stream flow angle o 18

- . o

ve (0,0) = 2V, i 8in(8 + @) - sin (Op + al{} (a4)

The nature of the conformal transformation is such that the ratio

of the velocity at a point on the airfoil to the velocity at the
corresponding point on the circle is independent of angle of attack.
Therefore, the velocity qi'(s) on the airfoil at flow angle a; 1is

w'(s) - @' (8)

= \(AS)
Vc(e)a'l) VC(Q.JO)
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where the design flow angle is taken as zero. ZEquation (AS) cen

be used to compute the velocity distribution on the airfoil except
at the two points that were stagnotion points at the design angle

of attack.

Airfoils in cascade. - The flow about a cascade of airfoils
can be manwped conformally into the flow about a unit circle with
two singular points located on the real axis symmetrically with
respect to the center of the circle. These singular points cor-
respond to the points at infinity in front of and behind the
cascade, respectively. In a cascade of airfoils, the distance
of these points from the center of the circle is uniguely deter-
mined by the same conditions that determine the flow about the
circle in the isolated case; namely, the circulation per airfoil,
the velocity potential at the leading edge, the blade svacing,
and the upstream and downstream flow angles.

The distance from the singvlar points to the ceanter of the
circle is denoted by eX. The flow about the circle is such
that the location of the stagnation points Op is determined
by the relation

T gin 6 cos 6
- = T cos A+ —= gin A (A6)
2vd sinh K cosh K

vhere A is the angle of inclination of the mean stream to the
normal to the cascade axis.  (See reference 6 for details). The
quantities I'y, V, 4, and A are known from the flow in the
cascade vlane and therefore equation {(A€) provides a relation

————between K and tlic Iocation of tlie  stagnation points.

The velocity potentlal at any point on the circle is

va/s oL -1 8in 6 A -1 cos 6 ‘\
Pc,c — i 8in tan P cos A tanh b & K/
| Cva S gin O cos .0
+ EL tan™t tan 6 V4, sin A tan~l — L cos A tanh™t ——~—%§>
2n tanh K L n \ sinh K cosh
tan Oq |
+ I tan™t - -C-I-J (A7)
an tanh K
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The expression in brackets is a -consbant so chosen that the potential
will vanish at the stagnation point corresponding to the trailing
edge -of the airfoil. In order to map the cascade on the circle, it
is required to find K so that the velue of P, c at By, the
stagnation point corresponding to the leading edge of the airfoil,

is equal to ®py,, the value of the velocity potential there. In

successive approximations, a value of K 18 assumed and equation (A6)
is solved simultaneously with the identity

4 “»2 ‘
sin ] co ] 9
\smh K/ sinh® K + oosnr K cosh K= 1

- . sin © o cos 6
for : —— e 1
or the variables Sinh K and ‘Gosh & The solutions of these
equations are
sin 6, é% cosh2K sin A #cos A,\,/costh- cosZ\ <__P.. cosh?K sinhlK
sinh K ' coshé K - cos? )
cos ©
and -——— obtained from equation (A6) . These solutions,
cosh K

s8in 8y cos Oy sin Grf cos QT\ . .

K , and ) ), are substituted in equa-
sinh K cosh K sinh K cosh K/

tion (A7) to find the value of Pc,c at 6 = 6. If cPc,c(eN) is

nou equal to pi,, another value of K 1is chosen, on the premise
that @ o(By) will decrease as K is decreased. When @ o(0y)

is evaluated, care should be taken to use consistent values Of the

inverse tangents. After two values of K and Pe, c(By) are deter-

mined, interpolation or extrapolation may be used for new values
of K.

Wwhen K has been found, it is used in equation {(A7) to eval-
uate Pc,c at values of 6 all around the circle. A point on the

circle corresponds to the point on the airfoill where w(s) = CPC e’
The velocity at the point O on the circle is

va __ sinh 2K cos 6 €08 07\
v (9 a) = - \
c,C 1 cosh 2K - cos 26 cosh K cosh K/

gin 6  sin O ' %
+ sin A&mnh K ~ sinh K £40)
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and the velocity on the airfoil at any other mean flow angle Al
is

@' (s8) = VC’C(G,Al) ;j?ifgf : (A-9)

as in the cage of the isolated airfoil.

The designed airfoil was mapped on the unit circle by the
method described. The constant 'K, the natural logarithm of the
distance from the singular points to the center of the unit circle,
is 0.075. The correspondence of points on the airfoil with those
on the circle is plotted in figure 11, which shows the arc length
of the airfoil as a function of the central angle of the circle.
The velocity at any point on the airfoil for any angle of attack
may be obtained from equations ({A8) and (AS), using the velocity
distribution as in figure 3(b) and the relation between s and 6

3 o 5 1] Th ati _SEL.(E).._. 2 al 1 g‘ﬁ. di )
as 1in Ilgul"b Lol e ravio VC C(G,?\) 18 egual ©o ds (I'a. ians

and need be comwuted only once for any given airfoil.
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APPENDIX B

DERIVATION OF THE CASCADE EQUATION

An equation is to be developed for the -complex velocity at any
point in the field of flow of a fluid past a row of equally gpaced,
congruent bodies. Coordinate axes are chosen with the origin inside
one of the bodies and the x-axis in the direction of the row.

(Ses fig. 12.) The body containing the origin is denoted by Bg,
bodies along the positive direction of the x-axis by By, By, etc.,
and along the negative direction of the x-axis by B_;, B.p, etc. .
A circle A of small radius is drawn about the point =z where the
velocity is to be determined. A rectangle R 1is drawn with its
center at the origin-and its sides parallel to the axes of length
(2N+1)d and width 2t, which ccntains the bodies B.y . . . By,

Bg, By -+ - BN, and the circle A. If a side of the rectangle

intersects one of the bodies, the side may be distorted to go
around the body with no essential change in the proof. The func-
tion w (zo)/zo-z is an analytical function of 2z in the region

inside the rectangle R but outside the bodies Bp and the
circle A.

Therefore
. Y [ N. N )
w'(z,) w'(z,) O™ v'(z ,
°- dz, - | L) g - [T 2% dzy = 0  ({Bl)
J %o -z J %o -2 / R
R A n = -N By

The first integral can be broken up into four integrals, one
along each side of the rectangle, namely,

f(N+1/2)d “t
w'(zo) w'(xo-it) w'[(N+l/2)d+iyO]
— dz, = o AX_ + e 1dy
/ z.-%Z o X -it-z o N+1/2 )d+iy,-~2 o
.0 J-(N+l/2)d ®) J -t T 7—) Jo
-(N+1/2)a -t
w' (x +it) w'[-(N+1/2)d+iy,]
+ ————dx. + | 3 idy,
X +it-z o , -(N+1/2)d+iy, -2 o
(N+1/2)a @ t ©
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In an evaluation of these integrals, the function w'(zo) is
periodic, with reriod d, and approaches a constant value
infinitely far from the cascade; that is,

w'(x, + iyo)--—-ﬂ-rz' ag yo—r®
and
' (X0 + 1iyo) —wy' as yo— -

From the last of these conditions, it follows that

w'(x, -it) = 3" (xy «~ 1t) + wy'

f 4 : - -
Wy (xQ - it) =90 as t S
Therefore, the first integral on the right side of equation {(B2))
ig

4

~A(N+1/2)d /{N+1/2)d
/ w'(xy-1t) , .dx,
THgoitoy o =W Xoitz
\j—(N+l/2)d \l—(N+1/2)d
AMN+1/2)a
/ w3 (%, -1t)
+ '; - -~ 4x "{B3)

Xgp-it-z o]
-(N+1/2)a

The first of these integrals is

i (N+1/2)
i
' ax
v o [(N+1/2)d-1t-2]
L %otz - 1 leep (W 1/2)d-1t-2] ALY
—(N+1/2)a

. t ,
as N-—® and t-— o, provided that g{-—o. The last integral
in equation (B3};is
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(N1/2)a N (n+l/2)a
/ wz' (Xy-it) N \ \ ( wz' (Xo-it)
/ Xn-it -2 o - _'/__J i Xo-it-z ©
J -(N+1/2)d n=-Nv(n-1/2)d
N ~l/fea
\_‘ ; W3 (Xo"it) a '
= zﬁi_J i X, +nd-it-z 0
n=-Ni: -1/2(1
/24 N pljed :
/ Yé_ﬂxo-wt) . " l 2(xo-it-z)ws' (x,-1t)dx,
Xo-it-z © gid I (xo-it-2)2 -n2 a2

J
v-1/24

’
If t 1is chosen sufficiently large so that st“(xo-it)|< €, where ¢

is any preassigned positive nuuwber, the integrals are less than or

t

equal to
rl/2d N pl/fed
ey x| 2 |xy-it-z | ax,
; -it-z i(x -it-z)2 -n2 42
J-1/24 1% | CaTid-1fea 1O g
- r1/24 1/28. _
3= TR
ax N 2 (o -x) 2 (76 -t-y) 2axg
Se =t -
Mx %23, 402 [, ,‘ (%, -%)8+(y ,~t-y) & -nfal
v -1/24 _ n=1-1/2d

When N-—<, this qaantity approaches

L %4
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This integral is finite and, because ¢ can be made arbitrarily

small as t—> o, the last integral in equation (B3) approaches
zero. Therefore,

‘/'\ (N+l/2 ) d
/
;

J-(m.l/z)d'

w'(x5-1t) oy
Xtz o i

ag N-—>® and t-—® yhile % ~—20. In the same way and under
the same conditions,

AN-(N+1/2)d

{ w’(xo+it) '

I e dx_ 3 wiw

[ X +it-z © z

v/(N+1/2)d

The second and Tourth integrals on the right side of equa-

tion [B2) can be evaluated by combining them. Because w' is
nerliodic,

w' [(W1/2)a+iy, ] = w' [ -(1e1/2)d+1y, ]

and thererfore,

/-t

"t
/ w' [(M+1/2)d+iy,] w'[-(N+1/2)a+1y,] .
i " Jo + - 1dy,
/ (N+l/2)d+*go-z -(N+l/2)d+1yo-z
{ _t .

/Yt
[oo-e(mel/e)a W' [(Wl/2)d+iy, ]

3 2 2 2
i 1Y -Z N+l 2 d

The velocity w' [(N+l/2)d+iyo] is bounded for all values of yg;
that is, there is a constant W such that Iw' [(N+1/2)d+iy ]{<W.
The absolute value of the integral is less than
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dyo v
| (1y,-2)2 - (m+1/2)2 42|

2a(N+1/2) W

dyo

(75-7)2 + (W1/2)2 aZ-x2

_23(N+1/2) W tan-1 t-y —tant— t2Y
zﬂN+1/2)2 42 -x /\/(N+l/2)2 42 -x2 /V/(N+l/2)2 42 -x2

As N-—= and t-—9w, this guantity approaches zero. It has been
shown, therefore, that when t-—3® and %-—-}0, ‘

W'(zo) ) ‘
f -~ dz —yni (w2‘+ wl’) [B4)
R ,

By the residue theorem,

fwl(zo) iz = Zniw'(z) "&55)
z (o]

The periodicity of w'(z) implies thet
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<L r
w(z) v'(z,)
S fre Z/
A.____,/ 2o z*ndz
n:*N\.

pe 3

rp',\ —-“ia,{\ fﬂ

wi(z,) w‘(z ) 2(z -2}
= - o JI 2. dz ) w "(zo) cot - (z -z)dz,
Zg 4 ; \J z -z)2 -n2 g2
BO ’ =1 BO
~as  N—pow,

When equations (B4), ((®5), and -(B6) are substituted into
equation (Bl), the expression for the complex velocity is obtained:

, 1 [ .
v'(z) = %’-\Wl'ﬂrz’) - 5T %w' (z5) cot :;f (zo-2) dzg
130

(427)

The cowplex potential is obtained from equation (B?)) by integrating
with respect to 2z and reglecting the arbitrary constant,

l 1] /= fa)
w(z) = 2 w,' + ==y fW (z5) log SJI - (z-2) dz | {%B8)
B
G
wl’ + wz' . '
where wp' = —— is the mean stream velocity.

2
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APPENDIX C

SYMBOLS

The main symbols used throughout the report are listed here
for convenience of reference.

d distance between succcssive airfoils in cascade
1= i% log iL(x-xO)2 + (y-yo)Zj
£y = L 1og i-sin2 T (x-x;) + sinh? T (y-yo):
= a |
K natural logarithm of distance from singular point to
center of cirqle corresponding to cascade airfoils
1 total arc length of_airfoil
8 arc-length paramcter corresponding to z
S5 arc-length parameter correspondong to zg
Ve local velocity on circle corresponding to isolated airfoil
Ve,c local velocity on circle corresponding to airfoil in cascade
Vy velocity induced by vortices in region fp >0
v magnitude of uniform or mean stream velocity in airfoil or
cascade plane (fig. 1)
Ve magnitude of uniform stream velocity in circle plane
Vi x-component of uniform or mean stream velocity V
Vi,r resultant local mean stream x-component of velocity V
Vy y-component of uniform or mean stream &elocity v
W complex potential function, (om+ iVy)
w ' complex velocity of uniform stream for isolated airfoil,

(Vy-1Vy) '
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W complex veloclity of mean stream for airfojil in cascade
g . 1 ’ v »
(v * = %Wl' + WZ') =Vy - 1Vy)

X.;¥e coordinates of point about which airfoil is rotated (centroid
of vortex distribution for cascade airfoils)

z coordinate of point where stream function is computed,

(x + iy)
Zg coordinate of point where vortex is located, (xo + 1yo)
o angle of inclination of uniform stream velocity to x-axis
B angle through which airfoil is rotated

7(z0)  vortex strength per unit arc length at 1z,

T circulation about ailrfoil

] central angle of circle

GN angle of stagnation point on circle corresponding to leading
edge of airfoil

QT angle of stagnation point on circle corresponding to trailing
edge of airfoil

A angle of inclination of mean flow to normal to cascade axis
(fig. 1)

o) velocity potential on airfoil, R [w(z)]

De velocity potential on circle corresponding to isolated airfoil

D velocity potential on circle corresponding to airfoil in

cascade

©Op Pp, values of ¢ at points A, B, C, D, respectively, where
5 Qp ’ the curve of quo) intersects f(s,s,) = 0 (see fig-
C,D ure 5.)

Pmin velocity potential at the leading edge of the airfoil

U stream function, I [w(z)]
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Ayﬁ stream function of mean stream of cascade flow

\Uu stream function of uniform stream flowing about isolated
airfoil

\ mean value of stream function over airfoil
AV variation of stream function, (V - V)

Subscripts 1 and 2 when appended to w', V, and Vy indicate entrance
and discharge values, respectively.
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TABLE 1. COORDINATES OF fylx-xg,y=yy)

y-y
(a) Values of-—;rQ

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

XX
3

0 0.05 [o0.10 [0.15 [0.20 {0.25 [0.30 Jo.35 |o0.40 [0.45 |o0.50
f2
0,40 [0,0257] - - - - - - - - - -
- .38 | .0202| - - - - - - - - - -
- .36 | .0331] - - - - - - - - - -
- .34 ].0375 - - - - - - - - - -
- .32].0425] - - - - - - - - - -
- .30 | .0481 - - - - - - - - - -
- .28 | .0545/0.0229| - - - - - - - - -
- .26 |.0618].0371] - - - - - - - - -
- .24 | .0699].0497] - - - - - - - - -
- .22 .0791|.0621| - - - - - - - - -
- .20 | .0894[.0750] - - - - - - - - -
- .18 |.1010].0887 [0.0296] - - - - - - - -
- .16 | .1140[.1035] .0620 - - - - - - - -
- .14].1286].1195] 0871 - '.. - -2 - -
= .12 ] .1447]. 1369 | . 1107)0.0392] - - - - - - -
- .10 |.1626].1560| . 1344 .0881] - - - - - - -

- .08 | .1824]|.1768] .1%88| . 1241 0.0453 - - - - - -
~ .06 | .2041]. 1993 . 1844 . 15721 110} - - - - - -
- .06 |.2277|.2236 | .2113). 1896 .15560.1014] - | - | - - | -
- .02 | .2532|. 2498 | . 2396 .2222| . 1966 . 1608, 1096| - | - -1 -
0 |.2805|.2778 | .2694|.2553 | .2354|.2096].1777 bo. 1400p.0969 b.049 6 0.0000
-02 |.3097 . 3074 | .3006].2892 | .2737] .2542].2318 | . 2081] . 1858 . 1692]. 1629
.08 |.3405 |.3386 |,3331(.3239 | ,3117|.2968|.2804 | . 2638] . 2491 ] 2380 | 235,
=06 {.3728 1. 3713 | ,3668|,3595 | , 3498| .3384], 3260 | . 3139 . 3036 |. 2965 | 2040

-08_1.4064 1.4052 | .4016/.3058 | ,3061),3793|,3698 | .3608| . 3533 ], 3482/, 3464
.10 1.4412),4402 | 4373, 4327 . L4126 |, 4058] . 4001 1. 3964|395

-12 |.47 4761 1.,47391,4702 ] .4655|.4601],4545 |, 4493! . 4451 4423 24443
214 |.51351.5129 | .5111].5082| . 5045 .5003{. 4960 .4920| , 4888]. 4867}, 4859

- 16_|. 5508 |.5503 | .5488|.5466 | .5437|,5404).5371 | .5340].5316 .5299].5294

.18 1.2866 1,5682 | ,88711.5853 | ,5830].5805|.5779 | .5755] ,57361.5724].5720
220 |.6269 |.6266 | .6257].6243 | .6225|.6205|.6185 .6167] .61521,6143 |,6140

22 |.6655 L6653 |.6646].6635 | .6621]|.6606[.6590 |.6576 -6565 |, 6557 |.6555
.24 1.7044 [7043 -70371.7029 | .7018].7006 |.6994 | .6983}:6974 |.6968 1. 6966
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TABLE I. COORDINATES OF fylx-Xg,y-yy) - CONTINUED.'

(a) Vvalues of Z:_dh - Conc luded.
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COMMITTEE FOR AERONAUTICS

X=X
d

0 0.05 f0.10 |0.15 |0.20 | 0.25| 0.30{0.35 [0.40 |0.45 {0.50
f .
2

D.26 0.7436[0.7434 J0.7430f0.74240.74150.7406}0.7396 jo_7388lp. 738 100. 7377]a.7375
.28 |.7829|.7828 | .7825|.7820| 7813 .7806].7798| .7792 ,7787|.7783|.7782]
.30 |.8224|.8223 | .8221]|.8217| .,8211] .8206| .8200] .8195 .8191|.8188].8187
.32 }.86201.8619 | .8617|.8614] .8610} ,8606].8601| .8597| .8594].8592| .8592
.34 1.90171.9016| .9015].9012] .9009| .9006]|.9002| ,8999] ,8997].8995].8995
-36 |.9415(.9414] .9413|.9411| .9409| .9406]|.9403]| .9401| .9399].9398].9397
.38 |.9813].9812] .981i] .9810] ,9808l..9806| 9804 9802 ,9800!,9800(,9799
.40 |y 921411.0211{1.0210{1.0209]1,0207|1.0206i.0204|1.0203{1.0201{1.020 [1.02014
«42 |1.0610]1.0610[1,0609{1.0608| 1.0607{i.0606|1 .0604]1.0603|i,0602]1.06021.0602
.44 |1.1009]1. 1009]1. 10081 . 1008| 1. 1007|1. 1006]1. 1005] . 1004l1. 1003]1. 1003}, 1003
.46 |1.1408|1. 1408]). 1408]1. 1407 1. 1407|1. 1406]i . 1405]i. 1404|1. 1404]i. 14031 . 1403
.48 |1. 1808, 1a071, 1807}t, 1807]1, 1806l1. 1806)i . 18051, 1805]1_1analt. 1804i. 1804
250 1 22070, 220711.220701, 220611, 2206(1. 22061, 220611, 2205; _2204]1 2204]1.2204}
52 11.260701 2607{1,2607)), 2606 {1, 2606!1.2606)i. 260511, 2605{1. 26061 . 260512605
|54 [1,3007]1.3006]1.3006)1, 3006 | 1, 30061, 30061, 3005]1. 30051, 3005)1 . 3005]1. 3005}
56 |1,3406|1.3406|1.34061.3406]1.3406(i.3406}i. 3405]1.3405/1.3405]1, 3405l1. 340
| .58 1. 38061. 38061 . 3806)l. 3806 | 1, 3806]1. 3806 1. 3805 1. 38081, 38051, 380511. 3805
.60 |1.4206)1,4206]1.4206]), 4206 | 1.4206)i,42061. 4205|1. 4205]1.4205]1, 4205)1. 4205
.62 |1.4606|1.4606|), 4606} . 4606 | 1:4606|1. 4606 |1 . 4605 1. 4605]1 . 4605|1. 46051 . 4605
.64 ]1.50061.5006]1.5006) - 5006 | |, 50061 . 5006 |! . 5005 |1 . 5005]; 5005l . 500! . 5005
.66 1. 54061.5406]1.54061.5406 |, 5406154061 . 5406 1. 5408]1. 54051. 5205)1. 5405
.68 |1.5806/1.5806/),5806!!1.5806]1, 5806|! . 58061 . 5806 ||, 5g05|1. 5805]i . 5805]1 . 5805
.70__|), 6206)1. 6206 1.6206]1 .6206| 1. 62061, 6206 1. 6206 l.620j]|_‘_§_m5|.6205l.6205

!
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TABLE I. COORDINATES OF f,lx-xg,y-y,} - CONCLUDED.

X=X
X=Xg
NAT IONAL aDVISory (D1 Values of —
COMMITTEE FOR AERONAUT ICS

Y-Yq
d
0 10.025 p.050 p.075 [0.100 0. 125 [0.150 0. 175 J0.200 k225 | o. 250
2
-0.40 p.0258 [0. 0060 - - - - - - - - -
- .38 | .0293| 0150 - - - - - - _ - -
- .36 ].0332] .0217 - - - - - - - - -
L .34 | .0377] 0281 - - - - - - - - -
- .32 | .0428] .034d - - - - - - - - -
- .30 |.0485] .0414 - - - - - - - - -
- .28 |.0551] .o4adl0.0219] - | - - | - -0 T T
- .26 |1.0625]| .0574 .0367| - - - - - - - -
- .24 1.0710] .0663 .0496] - - - - - - - -
- .22 |.0808 | .0766| .0625/0,0256 | - - - - - - -
- -20 |.0918 .0882 .0761].0500| - - - - - - -
- .18 |.1046] . 1013 .0908].0700 Joo 148 | - - - - - -
- .16 . 1192 L1163 . 1071].0807].0571 | - - - - - -
- .14 ].1362 "BsiiL1254 . 1105].0854 0.0317] - - - - -
- 12 1,155 . 1535 .1462].1330].1125 | .0782] - = - - =
- -10 ]. 17911 . 1769] . 1702|.1585].1405 | . 11370685 | - - - -
- +08 1.2068| .2047| . 1985|. 1877 . 1747 | . 1490]. 1160 0.0574 - - -
- 006 |.2406 | .2386| .2326|.2225|.2076 | .1873|. 1508 | . 12040.0463| - -
04 1.2837 | .2816| .2756|.2654 |.2509 | .2317|.2068 | . 1743 . 1200)0.040d -
- 02 1.3437| .3414] .3344].3229|.3072 | .2871].2624 | .2321] . 1942]. 1432]0.0487




NACA TN No. 1308

NATIONAL ADVISORY ' v

COMMITYEE FOR AERONAUTICS X |—..
| ' '
ps— V :
1 i
vx 2 | !
g2 | !
N
V‘y V2 ’ | |
\' V'

Exit velocity diagram

Complete velocity diagram

Entrance velocity diagram Reflected velocity diagram

Figure I. — Notation for cascade flow.
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Figure 4, - Plot of airfoil and velocity potential for use in computation,
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Figure 5. - Superposition of figures 2 and 4 to obtain plot of fo against ¢.
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— ———1Initiat airfoitl
Final airfoil

Figure 7. - Initial shape and final approximation of thick air-
foil showing cascade spacing.
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————— Initial airfoil
——— " " First approximation
Third approximation

— d -

Figure 9. - Assumed shape and first and third approximations
of thin airfoil showing cascade spacing.
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L i : 1 1 " Il

A A - ‘
-150 -100 -50 0 50 100 150 200
: Central angle of circie, 9, deg

Figure 11..- Correspondence between points on airfoil and points on unit circle
’ by conformal transformation.
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