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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECENICAL NOTE NO. 1351

COMPARISON BETWEEN THE MEASURED AND THEORETICAL
SPAN LOADINGS ON A MODERATELY SWEFT-FORWARD
AND A MCDERATELY SWEPT--BACK SEMTSPAN WING

By Robert A. Mendelsohn and Jack D. Brewer
SUMMARY

An investigation has been conducted in the Langley stability
tunnel on two semispon swept-wing models — one swept forward 12°
and the other swept back 23° at the guarter-chord line — in order
to determine experiment:lly the span—iond distributions and to
compare the experimental with theoretical results. In addition, 1ift,
drag, pitching moment, and stalling characteristics were determined.
In order to check the validity of the semispan tests, the full—gpan
swept-back wing from which the .semispsn model was made was first
tested in the Langley propellor-regearch tunnol. A comparison
between span loadings obtained from the dats of the two wind tunnels
and those calculated by lifting-line and 1ifting-surface theory
indicated that differences between the results from the two wind
tunnels, though small, were as great as the differences between
the results from the lifting-line and lifting-surface calculations,
The theoretical curves approximated the experimental curves within
the accuracy necessary for englneering calculations,

The experimental results indicated that a small loss in load,
. presumably caused by the tunncl-wall boundary layer, occurred near
the root for both semispan wings. Because of this loss in load and
because of distortions in the chordwise londing near the root, semispan
tests of highly swept wings may give errors in pitching moment., The
aerodynamic centers of both semispan wings were found to move forward
at high 1ift coefficients, A tallless swept-wing airplesne, similar
to the wing used for these tests, may therefore becows longitudinally
ungtable at high 1ift coefiicients. Profile-drag measurements
indicated an appreciasble outflow of the boundary layer on the swept—
back wing.
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INTRODUCTION

A great amount of work has been done to determine span—loading
characteristics of swept wings from purely theoretical considerations,
and many computation methods are now available, some based on lifting—
line theory and some based on lifting-surface theory. These methods
glve the span loading teo various degrees of accuracy, depending on
the assumptions made, which in turn govern the amount of labor
expended to obtain a solution, The purpose of this investigation was,
therefore, to compare theoretical span—loading results with measured
values to determine the practicability of using the simpler computation
methods on wings having moderate amounts of sweepn.

Tests were conducted in the 6 by 6-foot section of the Langley
stability tunnel on two models - a semispan wing swept forward
12° and a semispan wing swept back 23° — in order to determine
span loading, 1lift, drag, pitching moment, and stalling charac—
teristics. The semigpan swept-back wing was the left panel of a
full-span swept—back wing that had previously been tested in the
Langley propeller-resgearch tunnel. (See appendix.) The tests
described in the appendix wers conducted on the swept—back wing alone.
and on the same wing with a center plate and spoiler which simulated
the boundary layer on the tunnel wall for the semispan tests. The
purpose of the full-gpan tests was to determine the effect of the
tunnel-wall boundary laysr on the span loading of the semispan model.
The spanwise variation of profile drag was also determined in the
full-span tests. Data from the tests described in the appendix are
included herein for comparison.

The test models had no elevons but, by integration of pressures,
generalized curves of the variation of hinge-moment coefficient with
angle of attack were calculated for several assumed elevon plan forms.

SYMBOLS

The coefficients and symbols used are defined as follows:

Gy, wing lift coefficient (L/qS)
) 1ift coefficient at a section (1/qc)
Cla additional 1ift coefficient at a section

Clp basic 1ift coefficient at a section (FL = O)
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Cp
Cdo
Cn
Cm

h

Ji

wing drag coefficient (D/qS)

profile-drag coefficient at a section (d/qc)
wing pitching-moment coefficient (M/gSc')
pltching-moment coefficient at a section (m/qc?)

elevon hinge-moment coefficient at o section
L &t &
e Jﬂ P(x ~x) dx
cg® X1 v

S Yo
elevon hinge-moment coefficient (:{%;— Jﬂ cagch dy)
ea” a i)

rate of change of slevon hinge-meoment coefficient with
angle of attack (aCp/da)

i
pregsure coefficient (:_mqfsh

rate of change of pressure coefficient with angle of
attack (oP/3a)

pressure-coofficient increment resulting frém an
angle—of-attack change from 0° divided by the
angle—of—attack changs

wing 1ift

1ift at a section

wing drag

profile drag at a §ection :

wing pitching moment about &/h

pitching moment about c¢/4 at 2 section

wing area

‘spanwise distance normal to plane of gymmetry

spanwice distance from plare of symmetry to inboard
end of elsvon ' ‘
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spanwise distance from plane of symmetry to outboard
end of elevon

wing span normal to plane of symmetry
elevon span hormal to plane of symmetry
distance from leading edge élong chord line

distance from leading edge of wing to chord line of
agsumed elevon hinge axis 1

local wing chord parallel to plane ofvsymmetry

‘mean aerodynamic wing chord

wing root chord

local chord of assumed elevon parallel to plane of
symmetry

root-mean—square chord of assumed elevon
frée—stream dynémic pressure '<%QV2>
local static pressure

free—stream static pressure

free—stream velocity

density of air

angle of attack, measured at root section
APPARATUS AND METHODS

Models .

Two semispan tapered wing models were used for the tests, one

having 12° sweepforward of the quarter—chord line with no geometric
twist and the other having 23° sweepback of the quarter—chord line
with -4° uniform gecmetric twist. Both models were constructed of
laminated mahosany and had 25 pressure orifices spaced at constant
percentages of tias local chord for each of nine spanwise stations.
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(See fig. 1.) The swept~back wing is the left panel of the model used
for the tests described in the appendix, except that an additional row
of orifices was installed 1 inch from the root section, and the model

was completely refinished.

Some geometric constants for the modelsrare:

Swept~forward wing Swept—back wing

Ared of full-—span wing, sq £t « + « o« v 16,72 13.95
Witle span, £t (full span) ¢ « » « » « & 10.10 10.10
Mean aerodynamic chord, ft .« ¢ « « « & 1.83 1.52
BRI " x5 s a0 s Em e e 6.10 .
FREEED o o o o % s % e 8 BN § .y 0.327 0.243
Sweep of quarter—chord line,.deg . . , ~12 : .23
Uniform geometric twist (washout),deg 0 : L
Root airfoll section + s o« « « » « « » NACA 4415 NACA 4418

Tip aB0ROI) gection » « -+ o ¢ & + ¢ & » NACA hli12 NACA 4418

Installation and Tests

Each model waa mounted horizontally (with zero dihedral) on the
side support of the tunnel balence frame, completely free from the
tunnel wall except for a flexible seal used to vrevent flow through
the gap between the tunnel wall and the wing support block., (See fig. 2.)

In order to allow movement of the part of the wing that extended
beyond the tunnel disk, the swept-forward wing had a gap of approximately

é% inch left unsealed between the tunnel wall end the rcot section behind

the 6T7-percent—chord point. TFor the swept—back wing, a similar gap was
left unsealed forward of the l7-percent—chord point, Check tests were
made on the swept-back wing to determine whether the fabric seal and
open gap affected the loading near the root cection, For theso tests,
plasteline was used to seal all gaps and to continue the wing contour
to the tunnel wall,

Because the wings were expected to deflect under load, a determina-—
tion of the wing twist was made. For ths gwept—forward wing, the twist
was calculated by a method using the measured span loading and the known
wing rigidity as determined from stetic tests. For the swept-back wing,
the spanwise variation of twist of the wing under. load was determined
by measuring the displacement of beams of light rei'lected from mirrors
mounted on the wing.

Span—loading, force, and tuft tests were made for this investi-—
gation at a dynamic pressure of 98,3 pounds per square foot for angles
of attack up to and including 90, and at a dynamic pressure of 39,7
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pounds per square foot for angles of attack from 9° through the stall.
These dynamic pressures correspond to airspeeds of 196 miles per hour
and 124.6 miles per hour, respectively, under standard sea—level
atmospheric conditions, TFor the same speeds, Reynolds numbers for the
swept—forward wing, based on the mean asrodynamic chord of the model,

were 3,31 X 10° and 2,10 X 10° and Reynolds numbers for the swept—back
wing, based on the mean aerodynamic chord of the model, were 2.77 X 10

and 1,76 X 106, No turbulence factor was used in the calculation of
Reynolds numbers because the turbulence lsvel in the stability tunnel
is very low.

CORRECTIONS

The force and moment coefficisnts and the angle of attack were
corrected for the effects of the tunnel Jet voundaries by the general
method given in reference 1. In addition, corrections were applied
to the angle of attack for model deflections. Because the angle—of—
attack correction for Jet boundaries and model twist varied along the
span, the coefficients at each section were corrected for conditions
at each section. For the force tests of the wing, the angle of attack
was corrected by an average value, weighted according to the chord.
The angles of attack shown on the pressure~distribution plots are the
average wing angles of attack, because the pressure distributions are
presented as measured and are for the nonrigid models. No corrections
were applied for the effects of the tummel-wall boundary layer or for
the clearance gaps between the root section and the tunnel wall.

The equations used in correcting the force data for jJet boundary
and model deflections were: S0 i

Swept—~forward wing:

o= oy + l.Tl7CLU - 0.02; q = 39.7 1b/sq ft

a = oy + 1.863CLU - 0.05; q = 98.3 1b/sq ft
5 3

Cp = CDU + O.Ol76CLU

Cp = ch + 0.0013Cr,;
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Swept—back wing:

a = ag + 1.1320LU - 0.02; q = 39.7 1b/sq ft
= a + O.923CLU — 0.04%; q = 98.3 1b/sq ft
CL=CI:U

¥’ 2
Op = Cpy + 0.0173Cr,
Cn = Cmy

where the subscript U denotes uncorrected values.

The maximum twist correction near the tip at a dynamic pressure
of 98.3 pounds per square foot and at an angle of attack of 9° was
0,540 for the swept—forward wing and 0.77° for the swept-back wing.

PRESENTATTION OF RESULTS

Pressure distributions.— The measured section pressure distri-
butions are presented in figures 3 and 4, In order to obtain a better
estimate of the pressure distributions corresponding to a rigid wing
in free air, cross plots of pressure coefficients at several chordwise
locations for each spanwise station were made against corrected angle
of attack., From these plots, the parameters P, and AP/Aa were
determined. (See figs. 5 and 6.) These pressure distributions deviate
slightly from free—air conditions since, although the chordwise load
was corrected for the effect of Jet boundaries, there was no correction
for the distortion in the load caused by induced camber. Except for
this approximation, iree—air pressure dlstributlons can be egtimated
from figures 5 end 6 for angles of atback up to 1a¥ by the following
relations:

P = afP,) + P(g=0)

Az) * Pa0)

Span loading.— The pressure distributions at each section were
integrated to obtain normal-force coefficients, chord-force coefficients,
and pltching-moment coefficients. The 1ift coefficients at each section
were calculated and, together with the pitching-moment coefficients at
each section, are plotted against corrected angle of attack in
figures 7 and 8.

or
g

i
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Loading diagrams corresponding to a rigid wing in free air were
obtained by cross-plotting the 1ift curves at each section at constant
angles of attack. (See fig. 9.)

The parameter representing the rate of change of additional
loading with 1ift coefficient (ccz /CLCs was obtained from a plot
a,

of cey /Cs against Cyp. Figure 10 shows this additional loading
a

and the basic (or zero 1ift) loading. For the linear renge of 1lift
coefficient up to Cp = 0.8, the total loading on either wing may be

obtained by the equation

ccC cC ce
1
Cg Cg CLcS

The basic and additional loads for the swept-back wing, as deter—
mined from the Langley stability and propeller-research tunnels, are
compared in figure 10(b). Included in this figure are theoretical
basic and additional loadings computed by the lifting-line theories
described in references 2 and 3, respectively, neither of which
accounts for sweep, and also an additional loading computed by the
lifting-surface theory described in reference 4, which takes sweep
into account,

~ Elevon characteristics.~ The elevon hinge-moment coefficient at
each section Cp Was computed by integration of the measured pressures.

"The valuss of Cp Wwere then plotted ageinst spanwise location and
itegrated to determine Cy for two typical elevons, The constant—

chord elevon (c, = 0.1683) extends from the 36.4—percent section

‘to the Tl-percent section. On the swept-back model, this elsvon
closely regemblesg that currently used on a tailless airplane’. The
constant-percentage—chord elevon (cqg = 0.200c) extends from the
4O-percent—span section to the tip. (See fig. 11.) The elevon hinge—
moment parameter Chm wag determined for various elevon spans and

locations (see fig. 12) by appropriately integrating the P—curves
(figs. 5 and 6). '

Force tests.— Force and moment—-coefficient data from the wind—

tunnel balance readings are given in figure 13 for the swept—back and
- swept—forward wings. The dota are plotted ageinst corrected angle of
attack, - :

Profile—drag characteristics.~ The spanwise variation of section
profile-drag coefficient for the swept-back wing, measured in the
Langley propeller-research~tunnel tests (see appendix), is shown in
figure 1hL,
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Stall patterns.— The flow conditions over the wing at various
angles of attack are shown by figure 15. The stall patterns were
determined from photographs of tufts attached to the upper surface of
the wings.

DISCUSSION

Pressure distribution.,~ The pressure distributions of figure &
show irregular results for the original tests of sections H and I
for the swept-back wing. After the tests had been completed, photo—
graphs taken to record stall patterns revealed that tho fabric seal,
which was used to prevent leakage between the model and the tunnel
wall, had bulged inward; hence the local velocities near the root
region were presumably changed. Check tests on the swept—back wing
having plasteline to fair the wing contour to the tunnel wall indicated
that, although the chordwise pressure distribution was distorted by
the seal, the total load remained the same. The check tests also
indicated that very little lose in loading was caused by the %—inch

clearance gap between a part of the wing root and the tunnel wall and
that a distortion of the inboard load occurred with a fabric seal
regardless of whether it bulged into the air stream,

Span loading.— For the swept—forward wing, a comparison of the
measured additional loading with the lifting-line locading, as
calculated from reference 3, shows very good agreement except near
the root section where a loss in load is indicated by the test data.
(See fig. 10(a).) Inasmuch as the wing had constant camber and no
geometric twist, theory would indicate a zero basic loading; however,

a small basic loading was indicated by the msasurements. This apparent
basic loading may be caused by construction irregularities, boundary—
layer effects, and errors in correcting for twist due to load.

The results for the swept—back wing show a loss in additional load
near the root similar to that found for the swept~forward wing. This
loss was not shown by the full-span data of the tests described in
the appendix, even when the tunnel wall was simulated by a center plate
but, since no measurements were made for S¥3 stations less than 0.10
in that investigation, it is possible that the loss in load occurred but
was not measured., For highly swept wings, semispan tests may give errors
in pitching momsnt about the aerodynamic center because of distortions
in chordwise loading near the wing root and because of changes in span
loading caused by tunnel-wall boundary-—layer effects. Unpublished data
of the span loading over a two-dimensional wing completely spanning a
tunnel test section indicate that a loss in load of approximately
5 percent may have been caused at section I by tunnel-wall boundary—
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layer effects. The present swept-back-wing tests indicate a higher
outboard loading than is shown by the tests described in the appendix

or by lifting--line or lifting-surface theory. This apparent discrepancy
is partly caused by the necessary vertical shift in the load curve to
obtain a uniform total area even though a loss in load occurs near the
root. The differences between the two test results are as great as the
differences between the theoretical curves. The theoretical curves
approximate the experimental ones within the accuracy necessary for
engineering calculations. The induced drag corresponding to the various
loadings are all. very similar as shown in the following table:

Source ' Induced—-drag coefficlient caused
of span loading by additional loading

Progent "ewept=baclc-wing data’y '« s o« ¢ 2 o 's 26 0.0 s » .o 0.042701,2
Appendix tes-t data ¥ e e e e i e La Tel 8 e it @ eiaie e 8. 8 s @ 0'0“320];2
AT TR T AR S UM L U R SR T
TAP gt aee: BRAOET. o « o5 vy o wow s ot oo o e 0u082G0L
The difference in the results of the two sets of tests may bhe
attributed to differences in tunnel—correction methods, possible
tunnel-wall boundary-layer effect, changes caused by refinishing
the model after the tests described in the appendix, the accuracy

with which a span loading can be determined from pressure measure—
ments, and differences in air—stream angularity.

| The basic loading camputed by lifting-line theory indicates a
‘ greater load due to geometric twist than is shown by measurements.

‘ Elevon characteristics.— The variation of elevon hinge moment
with angle of attack (fig., 11) shows that, for both wing models, there

‘ is a large increase in the tendency of the elevon to float with the

wind at angles of attack above 4°, Stick-force reversal may there—
fore occur on a tailless swept-wing airplane with elevons having the
assumed dimensions,

The thicker boundary layer near the tip, the large trailing—edge
angle, and the sweep cause a reversal of the P,— curves near the

trailing edge. (See figs. 5 and 6.) Plain elevon characteristics
estimated from pressure integrations thus indicate that small-chord
elevons on this swept-—forward or swept—back wing have a positive Ch@’

(See fig. 12,) With an increase in elevon chord, Cha becomes more
- negative, but with an increase in elevon span, Cha changes little.
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Balance data.— From the force end moment data (fig. 13), it was
found that 'the aerodynamic center of the swept—forward wing remained
at 22,1 percent of the mean aerodynemic chord for 1ift coefficlents
up to 0,80 and moved forward for higher lift coefficients. TFor the
swept-back wing, the asrodynamic center remained at 28,2 percent of
the mean aerodynamic chord for 1lift coefficients-up to 0.28 and moved
forward for higher 1lift coefiicients. Thus, a swept-back tailless:
airplane of this plan form may become longitudinally unstable at high
1ift coefficients. This characteristic is also shown by the stalling
patterns of figure 15. Because of the sweepback, stalling begins near
the tip reglon and progresses inward. Inasmuch as the tip region is
behind the moment center, decreases in losding produce more positive
pitching moments. : : :

Included in figure 13(b) 1s a comparison between the 1ift curve
taken from the date of the tests described in the oppendix and the
present swept—back semispan wing tests. Good agreement 1s shown.
Pressure integration for wing forces and moments gave results which
compared very well with balance readings.

Profile—drag charscterigtics.— As shown in figure 14, the
measured section profile~drag coefficients for the swept—back wing
are lowest necr the center of the wing and increase as the distance
from the center increases. If the variation in local angle of attack
caused by wing twist and the spanwise variation in Reynolds number
were taken intc sccount, an increase in profile drag toward the tip
would be expected, but the magnitude of the increage shovn by the
tests indicates zn appreciable outflow of the boundary layer.

Stell patterns.— Figure 15 shows that there is an inflow of air
over the swept—forward wing, causing inboard stall, and an outboard
flow over the swept—back wing, causing outboard stall. The progression
of stall shown by these diagrams are probably influenced to some extent
by Jet-boundary effects, constriction effects, and model twist.

CONCLUSIONS

An investigation has been conducted in the Langley stability
tunnel on two semispan swept-wing models, one swept forward 15°
and the other swept back 23° at the quarter—chord line, in order
to determine the span—load distributions and to compare the oxperi—
mental and theoretical results. The full-span swept—back-wing
model from which the semispan model was made was first tested
in the Langley propellsr-research tunnel in order to check the
validity of the semispan tests,
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The results of these tests indicate the following conclusionss

1. Although the differences between span loadings determined
from tests in two wind tunnels were small, they were as great as
the differences between span loadings determined from a 1lifting-
line and lifting-surface theory. The theoretical curves approxi-
mated the experimental ones within the accuracy required for
engineering calculations,

2, A small loss in load, presumably caused by the tunnel-wall
boundary layer, occurred near the root for both semispan wings.
Because of this loss in load and because of distortions in the chord-
wise loading near the root, semispan tests of highly swept wings may
give errors in pitching moment.

3. The aerodynamic center of both semlspan wings moved forward
at high lift coefficients., A tailless swept-wing airplane, similar
to the wing used for these tests, may therefore become longltudinally
unstable at high 1ift coefficients.’

4, Profile-drag measurements indicated an appreciable outflow
of the boundary layer on the swept~back wing.

Langley Memorial Aeronautical Labdratdry
National Advisory Committee for Aeromautics
Langley Field, Va., August 8, 1946




NACA TN No, 1351 ' 13

APPENDIX
WIND-TUNNEL INVESTIGATION OF THE LOAD DISTRIBUTION ON A FULL-
SPAN SWEPT-BACK-WING MODEL

By Carl A. Sandahl

Because several semispan wings that were large with respect to
the tunnel throat were to be tested, and because of the possibility
that a tunnel-wall boundary layer would affect the span loading, one
of the models was tested in a larger tunnel to obtain data which
could be compared with the semispan data to show possible changes
caused by testing methods, This preliminary investigation was
conducted in the 20-foot Langley propeller-research tunnel with a
10.1-foot full-span swept—back-wing model. 'Tests were made with
and without a center-plate spoiler arrangement attached to the wing
in the plane of symmetry. A spoiler deflection which simulated the
boundary-—-layer displacement thickness for the semispan tests was
used. A photograph of the test arrangsment 1s shown in figure 16.

The left panel of the wing model was completely refinished and
equipped with an additional row of orifices 1 inch from the model
center line for the swept-back wing semispan tests.

The tests in the Langley propeller-research tunnel were run at
approximately 100 miles per hour, which corresponds to ? Reynolds
number based on the mean asrodynamic chord of 1.30 x 10¥, The wing
angle of attack and the drag coefficients were corrected for Jet—
boundary interference; the variation in Jet—boundsry induced angle
across the span was small enough to be neglected. A determination
of the section profile drag was made from wake profiles at a number
of spanwise stations 2C percent of the local wing chord behind the
trailing edge.

The span loadings for the wing alone and for the wing equipped
with center plate and spoiler were determined for various angles
of attack. It was found that the spoiler extension which most
closely simulated the boundary layer for the semispan tests had very
little effect on the basic or additional-load distribution. It is
noted that no pressure measuvurements were made on the inboard 10 percent
of the span and thaet the load curve was extrapclated to zero slope
at the center of the wing.
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(a) Swept-forward wing. Front view.

Figure 2.- View of sweptwing models in the 6- by 6-foot
section of the Langley stability tunnel.
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(d) Swept-back wing. Rear view.

Figure 2.- Concluded.
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Figure 3.- Measured chordwise pressure distributions over a swept-forward-wing model.
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Figure 4.- Measured chordwise pressure distributions over swept-back-wing model.
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FPigure 10.- Comparison of computed and test curves of basic
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Figure 11.- Variation of elevon hinge-moment coefficient
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(a) Swept-forward wing.

Figure 13.- Force and moment coefficient data

for the sweptwing models.
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Figure 13.- Concluded.
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(a) Swept-forward wing.

Figure 15.- Stall patterns of the sweptwing models.
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Figure 16.- View of full-span swept-back-wing model
installed in the Langley propeller-research tunnel.
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