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By Taul Kti

Sm4MARY ,.. .

The elementary theories of bending and torsion often do not
describe the stresses In aircraft shell Amuctmes with”adequate
accuracy; more refined ~tress theories have therefore been developed
over a period of years. Theories of this natitiaare applied to the
problem of calculating the i!eflections,particularly of wings.
Bending as well as torsionel deflections are discussed for wings
without or with cut-outs; T%&3neverconvenlentj the formulas are
given h such a form that they yield corrections to be added to the
deflection calculated by me~s of the elementary theories. Em?mples
show that the deflection corrections usually ,ae quite small.;very

. simple approximation formulas are therefore-
purposes when conventional structures under
loading are being considered.

&

INTRODUCTION

The elementary theories of bending mid.

adequate for *sign
a reasonably uniform

torsion are often not
sufficiently accuzzatefor determining the stjjessesin “airplanewings.
The bending s&esses are modified by shear lag and the torsion
stresses, by the so-called bending stresses due b torsion. While
an appreciable amount of literature exists on these subjects, little
attention has been given to the resulting effects on the bending or
tirSional deflections. This relative lack of attention was not
accidental. The deviations of the stresses frti thoes.predi.ctedby
the elementary theories are local, and local disturbances are leveled
off by the integration processes necessary to calculate deflections.?
The deviations of the deflections from those’’yredictedby the elem&-
tsry theories are therefore much smaller than the strem deviations,
and this fact, together with the fact that dtifl~ctionswere only of

.
subordinate titerest in Ih3 pa&t, accounts for the small smount of
attention given to deflection calculations. IioweVer,the rapidly
increasing tiportance of deflection calculations makes it desirable
to give some discussion of the~roblems.
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smBoLs
.

....,,
A unif033nsysteii’ofetibels is use? Bprefn ~ cover torsion as

well as bending problems. Some of the ajmbols differ, therefore,
from those used in the references. Particular attenticm is called
to the fact-that the sym%ol b denotes the’fuld.width of the box,
whereas it denoted the half-width of the box in all the references
dealing with shear lag. .

a

b

c

d

f “

h,

P)9’

r,

9.
~.

lengt@ of bay
!

,..“width of box beam .,

yidth of;net section aiongside cut-out(coaming @tTin&r,-
tO corner flange) ,

;,’

half-length of cut-out; half-length of carry-throughbay

fractions def~nedby equation (15).,
,,.

depth of box tieam
,.

depth of front sp&
.

●

depth of rear spar

torque-divisionfactor (fraction of torque carriedb~
.,,- shear webs ~ cut-out bay)
.,,. .. . .. .
.. . - “.

order-number of any ktation or bw”,. ,:

‘,’co,efficienlmused.in torsion-bending analysis (appendix A)
[

order nwiber of root station or bay
,.”

sheay flow {shear force per ~ch run)

tliickne’ssof sheet (when ~ed. without Wbsoript deno~es
~hickess of.cover bheet of box beam)

,,

%1>“thl)” ‘c see fig+e 5 ~

w’ width of cut-out

$ coefficient used Ih’torsion-bendi.nganalysis(appendixA)

-,-
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coordinates (see fig~. 1 and 2)

area of corner fMnge in cross section of box as
shnplifietlfor toraicm enelysis

cmoss-sectional erea of actual ccmner flange

area of corner flange in cross secticm of box as
simplifie~ for shear-lag analysis

area of longitudinal in cross-section of leem as
stiplified for shear-lag analysis

(AS

.
= * ~ except a~ cut-out)

total cross-sectional area of all stringers on one
cover of box beam, includhg effective widths of sheet

AF + AL

area enclosed by cross-section

see figure 5

Young’s modulus

shear modulus

moment of tnertia

torsion constant

of tcmaion,box

torsion-bending pqrsmeter (equation (12)) or shear-leg
parameter (equation (26)) .

length of boxbesm (root to tip)

bending moment

force or load .

radius of curvature of elastic Itne

sheer force In shear web (equals exkernal shear force
minus vertical ccqonent of flange force)

,,.
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torque
,.

correction force ti corper flang9 at station n

bending deflection of box beam calculated by elementmy

theory
( )
E* deflect@n .

additional bending deflection caused by shear lag in
cover

additional bending deflection caused by ehear defamation.
of shear web . .

structural ysrame%r defined by equation (11)

direct stress

shem stress

~ angle .oftwist of tirsion box

subscripts:

b pertaining to horizontal wall of box beam

*

.

c pertaini~- to net sectton”alongside c.utj-out

e effective

h pertaining to vertical wall of box besm

r root

co cut-out, cut-out hey

Ct c8mry-thrOu@ bay

fb full bay

L pertaining to lon~itudinals

6 aubetitute

Sub-subscripts:

B bottcm

F front

(stringers)

o

.
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R rear .,

T +2”

“..
Superscri@s: .,

T causedby torqtie “ ‘ “. , ‘ ,

x caused %y X-force group
,-

.A tilde ‘“(’”) denotes qu~%ities c@c@ated by element~’ theory of ~
lending or torsion,! ‘ ‘., .-. ,..,., .“. . .

,,, -
,,, ;.,-

. . mEPARmCIRY DISCUSSION “
,.,, ,,

,, .,,,.
312emen&iry*eories. - According to w-e.elementary theory of

torsion, a.torque T applied “h a wipg section such as shorn in
f@ure 1 ~roduces a shedr flow

a

.. ,

. . .’.

. ..

. . (1)

.

in the fkip and an emgle of twist betwe9n
%par.t : ..-

.;
.-. i? dx “ ““:””-“dy=~

.,

two sections ~ ,@ibtance dx

(2)

-..

.

The tilde (-) l.sused ‘%?oughout tie present pa~e~ to indtc.ate.etresses
o& de!fleotionscalculated by the &lementary theory-

,
According to &e elementary ,theoryof bending; a vertical

bending moment M appl~ed to &e section shown in figure 1 produces
.bend.ingstresses

..

.

.’. , ,

.
,.

,,, .
(prdv$ded‘that
ie.obtained..by
of t@ elastic

,- . . . ,. Mz.. 3=7.,., ,L
,,

piin.c~palaxes &e tied)

.. .

(3)

inte-jati~ the fsnr!.liarrelation,bethen the curvature
19? end the.bending moment “
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The bending deflection ~ is increased by the so-called shear
deflection ~ arising from the shear strains in the vertical webs,
The method of calculating this deflection is well known end requires
no comments here.

Advanced theories and their anvl.icationto deflection
calculations.- The elementary theories of torsion and bending are
based on assumptions which are usually violated in actual wing
structures. The elementary tor~ion theory is valid only for a
shell of constant section, sub$ected %o,@ torque at each end in
the fom.uof a shear flow that is distributed along the perimeter
in accordance with the theory and that leaves the end soctibns free
to warp out of their original Tlanes, An actual wing has a variable
section and is sub~ected to distributed torque loads; as a result,
the tendency ta warp differs from section to section, and secondary
etreeses are set up by the resulting interference effects. Simikrly,
the elementary bending theory is =tric’tlyvalid only if the applied
load is a pure bending momexit. In actual wing structures,, the
bending momente are produced by transverse loadB, and the shear
strains in the covers proihacedby these loads tiolate the assumption
that plane cross f3ectionsremain plane. As in the torsion case,
interference effects between adJacent sections produce secondary
stresses,

Stress theories that take these interference effects into
account are unavoidably more complex and less general than the
elementary stress theories, They necesmrilymake use of simplifying
and restrictive asamnptions} particularly regazWng the cross sections,
in order to keep the mathematical”-cdmplexi.tywithin bounds= The.
effect of these amnunptions on the accuracy of the calculations can
be minimized (except in the regions around large cut-outs) by the
following-procedurb:

(1) The elementary stresses are calculated for the actual.
oross sectionsQ

(2) The secondary stresses’ produces.by the interference effects
are calculated using cross sections simplified as ?muchas necessary
or deetiable~

In conventional wing structures with reasonably unifoma loading
(constant sign of bending or toraionel nmmnt alo~ span), adequate
accuracy can often be obtained even when highly simplified cross
sections are used. This remark applies to stress calculations and.
even more forcefully to tleflectioncalculations, becauseany
stipulated accuracy of the deflections can bo achieved with a lower
order of accuraoy in the stres~es. Although this fact is quite well
@om it will be demonstrated later by means of an example for the
torsion case as well as for the bending case.

●

☛

.

“
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Advanced stress theories of torsion end bending in shells have
been developed by a number of authors, striking d3ffere.ntcompromises
between accuracy, complexity, end generality. The stress tieories
selected in the present paper as basis for calculating the deflections
We *ose of references 1 and 2, b references 3 ma 4, these theortes
Have been shown to be reaeonabl.yadequate for stress analysis, and
consequently they are amply accurate for the deflection analysis of
conventional structures,

TORSIONAIU!LYSIS

Discussion of fundamental case,- The structure that will be
discussed as j?undementalexsmple is a box of doubly symmetrical
rectangular crom3 section as shown in figure 2(a), with infinitely
olosely spaced rigid bulkheads, built-ti rl@dly at one end and
subJected to a torque T at’the free end. (E43efig, 2(b)@) Llhe ,
cross section is an idealized one, that is, the walls are as&umed
tm carry only shear stresses.

According to the elementary theory, the shear stresses in
this box woultlbe

T
‘b = 2bh~ (5) g

and

?’h=..a (6)2bh~” . ,
.

,,
and the angleof twist ~Owa be

.,
. where

,

(7)

(8]



According to the theory of.torsion bending (reference1), the
largest deviations from the elementaig theory are Sound at the Toot .
because warping 5.sprevented entirely at this station● The .“shear
stresse~ at the root can be written in we form “ -~

‘T,, b
“=~b(l - q} ‘ (9)

(lo)

where
,.. bh—.—

/b %.” ,., --, ~
J)_

~, (n)
.; t~

. .

..

%

)The terms ?bn (or ?h~ represent

.)added to the streeses.?%(or ?h

in order to obtain the true sbe~eeb.’ In wfng boxes, h/~ is

correction term that must be

computed”by the elmaentary theory

usually much smaller than b/~, and ~ is consequently only little

less than unity. The correction terms are therefore nearly as lar~e
as the etmwses calculated by the ‘elementarytheory and me thus
o%viously important.

The fundamental.relations given in reference 1 peimi.tthe
derivation of a difterenti.al.equation for the anglm.of twist, which
appears as a function of the torsion-bendingparameter

(i2)

Boxes approximating the proportions found in wings have a length L
such that it is permissible to set

tanh lg.% 1
..



u “ For such proportions, the solution of
takes the f’ozm

[’ (
z .1q.~l-=

9

tie differential equ@ton

The angle of twist is plotte~ in figure 3, with q taken as unity
for simplicity., Xtis apparent that the!correction to the elementary
“theory, in regions not close to the root, is approximately a constant.

At the tiy, with e-fi= O,

1

(14)

For conventional vings, ~. is of the order of 10, =a the correction
term that must be added to the tip twist calculated byathe elementary
theory woula therefore amount to about 10 percent if tho wing were
of constant section and if the torque i’ereapplied at the tip. “
Ac.tualwinge are tape~edand csxry a distributed torque, but these
two deviations from the ‘simplecase tend to offset eaoh o%her.in
their inxf’luenceon the twist curve; the calculation ~ustmade.may
therefore serve as a rough indication of the order of magnitude of
the twist cwrection. ‘A stipv.latadmaximum error of 2 percentin
the tip twist - which is about the best &at oan be reasonably
expected - can therefore be achieved with a permis~ible error of
about 20 percent in the twist correction. The.useof high~
simplified cross sections for the calculation of the twist correction
is thus justified in general.

.,

Sixaplificationof cross sections.- The simplifj.ed.cross section
(fig. 2) corresponding to an actual cross sectionsuch as shown in
fi~e’1 is obtained as fol@ws: .“

(1) The thicknesses of the top and bottam cover ~T and %3,

respectively, are avereged by the forgula .,.> ..

,. . .

Thts method of averaging is indicated by the consideratlozathat a
unit length dx of the two covers O? thiclmess ~ shotid absorb
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the same amount of internal work as a unit length @ the two actual
covers with the thicknesses ~

T
and

% ) respectively, or

~“2 ~2‘
2db~=—
% %T%a+qbw

M the Same manner, aVeragt3va@m3 of th, h, AfjTj and ~ are

obtaified●

(2) The cross-sectional area A of the idealized corner flange
is obtained %y the fortiula

. (15)

On the basis of the wual assumption “that”the chordtim distrilmtion
of the lendi~ (nozmal) stresses duo to torsion is linear,

S3ear-lag effect~’producedeviations:from the linear stress dlstri-
Imtions and reduce the factors below the value of tine-sixth. The
theory of these effects is inadequate at present, emd e~erimental
data are scarce. In particul~, little information exjst~ on’”the
effects of taper, whtch appear to %e powerful. Om the b~is of such
experimen~l data as exist, it W tentatively s~ested that th~
following values be used:

. f2 u 0.066+ o.olx2a (2a< loo) $

J .,”

“ Q5a)

f2 u 00166 (2CLs 109)
“,,

,,

where 2a is the to”~l taper ~gle of the cover j.nde~ees.
Formulas (l~a) are probally always sufficiently accvyate for defor-
mation analysis, but may be inadequate sometimes for stress enalysj.s.

J

.

—

,

,.

.
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% Calculation 03?Wist correction.- After simplification of the
cross sections, the torsion box appears in the i’ormshown in
figure k(a). within each bay, the cross secti~ is ass~ed to ye
constant, end the tmrques are assmd to be aPp~ied at the bfik-
heads. The bul~eads ”consideredare those that have an effective
shear stiffness Get of the same order of magnitude qs that of
the cover sheet.

,,
Each.cell of the %OX is subjecte~ to a lmowm torqua and to

constraining fa”ces &vising frcm HW two adjacent cells’. !I!hecon-
“ “strainingforces form self-equilibrated ~oups of four forces X

(fig. h(b)). ‘Themagnitudes of the X-forces at the (bulkhe@
stations are calculated frcma set”of equatims a8 explained.i.n
reference 1 end summarized.for convenience in appendix A.

CelJ n is subsected to the action of WOUP ~-l at We

outboti end and @?OUp Xn at the inboerd end. By the method of
internal work, it can readily be shown (reference ~) that -these
two groups of forces”twist tie outboard b~ead n-1 with
respect to the inboard bulkhead n through an angle

,

.,

●

.

(M)

The quantity @n is the twist correc~ion for cell n; it is
ne=at~ve.,mat ie, It reduces’tie ~st caculated by the elementary
th~ory, ~?hen ~ 5 ~-1,

of twist of bulkhead n

In a wing havhg no

With is the normal case. The final ‘an@.e

with respect to the root bulkhead r is

I
n ri=n+l ... ,,

d~+ ~ @n=,

Ir n=r

,. ,

(17)

cut-outs and carrying no large conceqtiated
torques, the only X-~oup, of qpprec.iabl~=- tude aPPeafisat Me
root station. If all other groups are assuued to be zero, the
syst’em”of equations for detemnining them (apyendix A) degenerates
into the single equation

(18)



u..,

from wh,tch ~ can be found, and the
‘cell is

(

b
A% = 2b:G $

.—. —

The solution of eauation (18) and the

NACA TN No. 2.361

twtst correctionfor the root

h-—
%F

W) .

evaluationof exmessibn (19)
is often e.JJthat-is nece~s~ to obtain an adequate e~timate of ‘tie
twist co@ectlon for winge without large d$scontln~ities of loadtig
or cross section.

Cut-outs in torsion hox,es.-A lar~e cut-out in a tarsion%ox Is
normally closed off %y a bulkhead at each end. The cut-out bay
considered as an independent struc%~e can cmry orql.ya negligible
torque, being an opeh section. However, when the cut-out bay is
supplemented by at.least one fyd.1.bay at each end as indir>’kdin
figue 5(E4),it can carry torques because each of the walls can then
act :s a beam pe~t in its own plane, the ad.~acentfull bays furnishing .
the foundations for these beams.
,.,

By means of sti%able simplifying assmptioris”,the problemof,
. aaalyzingthe three-baystructureof figure~(a) can be reducedto

one with a single statical redundamy as shown in reference 6. The
redundancy chosfinin this reference is a fraction k (’~torque-
division factor ) that gives the part of the to,tiltorque carriedtiy

.

the vertical walls of the c~lt-outbay. me fraction lies between ~e

limits k=~ (no cut-out) an.--.k= 1 (fulJ.-widthcut-out); for

convenience, the fommila for k gtven in reference 6 is reproduced
in appendix B. The followtng formulas given heretn can be deduced

.—

readily from the Yesults ~iven in”ihe”referenc~c. . —

The =itude of the X-Woup acting oneach adjacmt full bay
at the Junction with the cut-outbay is given by

. .

X +@ -1)t (20)

and consequently, by formula (16), each of these bays has a twist
correction

(21)

,
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* where the subscript fb denotes full bay. It should be noted that
the correction is positive, that is, the twl.st of a full bay is
increased by an adjacent cut-out bay,

The relative twist between the end hlltieads of the cut-out hay
can be written In the same form as that for full bays

where the subscripts co

~co ‘?co+.@co (22)

denote cut-out bay. The ‘lelementary;l

twist $Co is the twist that results from tho deformations of the “

members of the cut-out bay when the end bulkheads are prevented from.
warping out of tl.1.eirpl~es; the walls then act as beams restrained
bJ end moments in cuch a manner that the ten.gsntsto the elastic curve
at the two ends of each beam ??.ema’inparallel. The twist correction A%.
is the tvist Vnat would result if @e members of the cut-out bay were
rigid and the end bulkheads were warpo~,out of their planes, the
amount of warping being determined by the tirque T and the X-group
acting between the cut-out bay and the ed,@cent full bay.

, Application of the methoflof internal work tithe stresses
given in reference 6 yields for the elementary twist .

.,

+(l-. k)2@ ; ‘dS ~k’-”~,C(l - kJ2+- [4(21i- 3j2 d3

3EA#lc2 ~~hh L ,3EA3’bh
J.

(23,)
.’ .,

,,, ,

For a full-width cut-out, k = 1, and all the terms containing
(1 -.k) disappear. .

, From the geometry of the”structure,’the twist correction for
one-half ‘oftilecut-~ut bay (from the midpoiat to a bulkhead) is

,

.
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whichmay be written

By Ma.xwelllsreciprocal theorem, or by direct comparison of the
formulas, end by v.seof formula (A3) ora~yendix, A, it can b
seen that

By definition.

TF=px -

where p is the coefficient g~.venby formula (Al) of append.ix,4,
and X is Siven by formula (20). The twist correction for the
entire length of the cut-out bay can therefore be written in the
form

Wco =‘2Aq7fi+x (24)

I~er to Ye consistent with all assumptions made, the torque
used in evaluating formulas (22)+a (24) should be the torque acting
in the cut-out ~ay, The vgJ.ueaof T for the two adjacent full
bays, however, should be calculated.for tie torques actu~lY acting
in these bays. .

When the cut-out 1s small.,no closing bul.kheadeare provided
in general. In this case, the chmges in stress &Lstrib@ionwlll
be confined to the cover area surrounding the cut-out (fig. 6).
For purposes of calculattig deflecti.ems,-the stress distribution
may be approximat’miby assuming tiat the shear flow in the vegions
with dou%le cross-hatching is equal to zero, while the shear flow
h cross-hatched regions is twice me shear flow tiat would exist
If there were no cut-out, The angle of twist between the ond ,
stations B can then %e calculated %Y equating tie exter~l work ‘.
done by the apylied tarque.to the internal yorko The following
equivalent procedure is co~venient for practioal application.

*
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. ‘ The actual sheet thicknem ~ in the regions B-A and A-B of
figure 6 is replaced by ah eftective thickness we, and the

actual sheet of thickness %C In the region A-A 3.sreplacedby en
effective sheet hating a thickneastce ‘and.extending unbroken over

the full w5dth of the section from the front shee. r.webto the rear
one. The “effectivo sheet” cmxries a uniform shear flow because it
contains no cut-out. The effective thiclmxessesare cdc~ated n
from the condition that the iriternalwork absorbedby the fictitious
sheet carrying the uniform shear flow q ‘mustbe equal to the.
internal work absorbed by the actual sheet carrying the nonuniform
shear flow described in the preceding paragraph. For the region”’A-A
of the cut-olltjthe condition is

,

.
For % re@ons 3-A 6?. A-B, an identical

,. ,.
relation results

Tbe”torsion constant J of the box with cut-out can be calculated.
by the standard formula for a box ‘titioutcut-out, using’ke
tiiclmess tCe in the re@on A-A and the thiclmess he in the

regions B-A and A-B. “ ‘

The method descr~bed for small cut-outs can probably be applied*
witimoutserious error as lcmg as neither the width nor the length
of the cut-out exceeds one-htilf”‘thewidth of the box.

Numerical examples for boxes wim and,without cut-outs are
given in appendix C.
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BENDING ANALYSIS *

Discussion of fundamental case.- Vhen a wing .section.such as
that ~~m~figure 1 is subJected to vertical loads producing ,
bending, shear stresses Will”ariae in the cover sheets. The
elementary lending theory negloctm the strains yroduced by these ~
shear stressem; the so-called shear-lag theories are refined
theories of lending flmwhich the eft’ectmof ~ese @trains are taken
into account. The eng~neering theory of shear lag developed in
reference 4 is basedon the u~e of sim@ified cross sections such
as that shown in figure 79 A.%eam with such a cross section may
be used, therefore} as example to illustrate the relative i.mpqrtmnce
01 shear-lag effects on stresses and on def.lectiona- m order to
keep the formulas as simple as yo~sible, the discussion will be
confined to a cantilever beam cd?comtant section, fixed to a ri@.d
abutment and subjected to a vertical ldad. “P.“atthe tip of each
shear web.

Reference 7 shows that the analytical.solutlon of the stress
yroblem for such a beam is chexacterized by the shear-lag parameter

(26)

which plays a Eimilar role in
torsion-bending parameter K’
advanced torei.ontheory. The
in tho flange, in the central
respectively,

the advanced bending meory as the
glvenby expression (X2) in the
analytical formulas for the stresses
atrin~er, and in the cover sheet are,

(Cp%l+

T,
w

=T

)sinh ~
Kx cosh KL

(27)

(28)
.’

cosh Kx——
cosh KL )

(29) ‘
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* with

Mc }4;=
— = rP;I (30)

(31}

where t is the thiclmess

For-conventional wing
simplificatd.onthe stresses at tho root of “’thebom.ncan he written
in the form

. .

OF-( )%=L13. +—
).$.

.
(32)

.

(33)
..-

,..
. .., T = o,,

The “deflectionat the tip can be calculated from the work . ,
eqv~ation -” .. . . . ,,,

fi~ *
1 I I

3L
!?& .& + %*ALd-- +. ~’LT~%et & “‘~P5 = ,~,2E~ 2E

“1
2G ‘> ,, .(34’) ,,

ifo ..
Lo ,“ ,, “..

If (YF as well.as
‘L are assumed to have the value “given .

by the elementary theory, a@ themodulus ,G i~ assumed to be
infinita, consistent with the basic assumption of the elementary
theory that plane sections rem@.n plane, the integration of

< equation (34) yieldsthe famil@r formul.a

,.

. VJ3 ~L3
:=— —3EI = 3Eh2~ “

,.
.

“.. ,

(35):..,

.’,’ ,.

.
.“

,,-
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~f the ~~.ues of OF, dL, and T given by formtias (27), (28),
and (29), respectively are substituted tnto equation (34), the
result of tho integration is

5 =

This expressionshows

(36)

that the shear-lag correction to the elementary

deflectioncontains terms i.n (&~ and. (*Y, whereas the stress

corrections-to ~ and ~ contafi only tew in ~. The deflection

~
correction is therefore of the next higher order in ~ than tie

stresscorrection, a fac’tthat Justifies the use of le~s accurate
stress formulas for deflection analysis than are necessary for stress
analyais*

This conclusion can be corroborate@ by the fo~owing~calculation.
If” ~ and CL are taken td have the elementary value IS, T the
elementary value ?’, and the modulus G is assumed to have its
actual f~ml.tevalue (although thie is strictly speaking lnconsis@nt
with the basic assumption of the elementary theory}, the integration
of equation (34) yields the result

+X’-’*) (37)

This expression differs from the llexacttlexpression (36) only by a

()
3

term in * , or in other words, the work equation (34) will give

()

2
the deflection correctly up to terms in ~ if the stiesses used

are those of the elementary theory instead of those of the shear-lag
theory, provided that shear strain energy is”not neglected as is
done In the elementary theory.

For conventional wing structures, KL is of the order of 10c

.J.f&=l
%’

is then very

the shear-lag correction to the elementary

nearly 3 percent as shorn by formula (36).

tlp deflection

For a

.

.
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uniformly di~trilnztedload,,
or 6 percent. If ~>AL

correction is small and ma..

29

the correction would Ye twice as large,
(heavy spar caps, light stringers), tie

he prgcticall.ynegligible; however, i?.-
the spar caps are light (~ <AL), the correction is of some

practical importance.,..

Simplification of cross sections.- Zn wing structures, Wea-ug——.—-
ac$ion is appreciable only for vertical loads; consequently, the
discussion will be conf’inedto vertical loads.

According to the shear-lag theory given in references,2 and 4,
th:~cross sections are simplified.to We.form indicated ~ figure:7.
Only one cover is analyzed a% a time; this fact is indicated
symbolically in figure 7 by anitting the cover not heir@ analyzed
at the time (lower cover), The cross-sectional areas AF ad AL in

fi”gure7 are definedty

,,,.

L
‘L = 2%T ,,

,.,,,
The width ,bs’ is ~en as-one-fourth of the actual width .~ between

.
spars ● (Note that in preferences2, ~, and ?, the s~bol b” denoted
the half-iridthbetween “8yem.) The cross section is made l@mmetrical
abou~e vertical centerline by using average values of h and ~,

.
Calculation of deflectfti corrections in winm without’6ut-outi*-

The box’ls divided into bays nmnbered as shown in fi~e k(a).
Within each bay, the cross section is assumed ‘tobeconstant$ and
.the,loa~sare assumed ta be,applied at the stations”dividing the bays.
‘The b@kheads play no role .inthe eheex~lagpro~lem, S@ the bays
may therefore be chose~ in any convenient per; It is usually
advantageous to use short bays in the regic)ns near the root and neer
large M.scontinuities of loading or cross section, and long bays in
the remaining’pamt of the box. “Cmacco.tit’of“synmmtry,O- half-.

. sections are con@dered”as indicated by the,.fulllines in figure 7.
,,

As a res~t of interactim’ between baysj self-equilibrated
. groups of X-forces appear (fig. 8). me method of calculating .

these forces is similar to that shown in appendix Afor”~e t@s@n-
bending forces and is summerize~ in reference 26

,. ...

I

.,.. .:-.

,,.. -., :, .,..,
,., ::.
,’..
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,:

The X-forces applfed to tliecorner fkQges cause stresses

&F=& ““
% ,., . ,.. ,

(38)

which constitute the elie-ar-lagstresecorrections to tie..elementary
stresses. At any given station, the stress AOF causes a.curvatum
of the elastic line

(39)

which must be added,to,the curvature l/Rl caused~y the elementary

stresses ~ that ie givenby formula (4). “

One yossible procedure for deflection analysis is, therefore,
~F

to ylot the spanwise curves of ~ for the upper and the lower

cover, add these two curves to the. M/EI curve, and integrate in

the familiar menmr to obtain the total deflections (% + 51). In

AOF
practice, it may be.preferable to plot on.J.ythe mm of ‘ ~~ for ~

the upper and lower.cover and to integrate the.”resultantcurve In
order to obtain eeparatq~y the excess .def..ection5~ Caused ly

shear lag; these-deflectionscan then be added to those”calculated
‘ by the elementary theory. As previously mentioned, the deflections ~

caused by shear @train of,~e webs c,~ recalculated. l$xlependentlyand.. ,....
added as additional corrections when necessary.. ..-

,.

In shell-wings having no large discotitinuitiesQf ctios~section
or loading, the shear-lag.effect is concentrated in the region of the
root and depends chiefly on.the characteristics of the cross section
and the loading in the root bay. Sim@e.approx@eiti~ can then be
used for the stress corrections in the root region, and the corre-
sponding forpulas for the deflection corrections hay be hsod for the
Pqose gf:rnalsinga gulctistimate.. In conventional wing.structures,
the estimate will generally show the deflection corrections to be so
small that a more elaborate calculattoh is-”not’warranted,

A cross section tit.x = ~ from ~e root may be considered as

representative of the root regton, and then-shear-lag~ar~eter K is
computed for this sectionby formula (26). u KL> 6, a condition
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which will be fulfflled in practically all conventional wings, and
if the loading is reasonably uniform, the stress correction can be
written in the fozm

where d is the half-length of

(40)

the carry-through bay and all
uantities appearing in the fraction (exce t x) em measured at the “,
8representative*, &station. The factor e-l gives the decrease
of the correction with increasing distance from the root {X=o);
within the carry-through bay, the correction may be assumed to have a
constant value equal to the root value. Application of formula (39}
and approxtite integration consistent with tho ordel’of accuracy of
fozznula(40) gives the deflection correction for the tip of the beam

(41)

, Because the correction @ small, it willbe sufficiently
accurate to assme that it decreases linearly to zero at the station
lying at a distance IN frcm tho root. X% should be noted that

. formula (41) gives the correction caused by shear-lag action only
for one cover of the box. Also, ~, K, and so foriih,characterize

the half-section; therefore, .% mustbe takenas the shear force
in ~ web.

If the stringers do not carry through at the root, the root
section must be considered as a full-width cut-out, and the method
deecribe~in the next section is.applicable.

Calculation of deflections for winRs with cut-outs.- The stress
in a strir?gerinterrupted by a cut-out Mops to nearly zero at the
edge of the cut-out (fig. 9) unless the cut-out is very small “and
extremely heavily reinforced. It is common practice to c~ute the
stringer stresses near a cut-out by applyi~ the ordfnary bending.
theory to the cross section of the hox after multiplying the cross-
sectional areas of the stringers’ty en effectiveness factor. The
procedure is simple and is well adapted to computing effective.
moments of inertia that are adequate in most cases for a deflection
analysis by the standard procedure of integrating the M/EX ourve.

.,.



The most severe t~e of cut-out is the full-width cut-out at
the root of the wing, which is frequently encountered in yractice
in the form of a zero-lengti cut-out (stl’ingersbroken Qt the root
joint) or in the form of aftilte-length out-out (wheel well or gas
tank bay). Fi~e 10(a) shows a free-body diagram of the section
of the cover”between the outboard edge of the cut-out and a
section A-A some distance farther outi Shear-lag calculations
on typical wings show that the stringer wtreeses at the section A-A ..
are reasonably cloee to those given by the elementary theory when
the distance between the section A-A and the root is a rather small
fraction of the semispan. T3ndorthese circumstances, the problem
can be simplified by removing the edgeshears and.increasing the
total.force MA at the section A-A to equal &he force M/h at
the root. The beam yroblmn is thus reduced to the problem of the
axially loaded panel (fig. 10(b)).

By definition, if the effective stringer erea ~e were

,

attached directly to the spar caps, the 8tress in the flange would
be the same as in the actual struc~e. The equation defining ALe
is therefore

‘FALe = UL~

or

‘Le ‘L

T=G

.
(42)

By the shear-lag

are oomputed for

The formulas for
panel is assumed

theory of reference 4j the values of UF and r3L

a substitute panel as shown in figure 11 (,titlibS =?).

such a panel are given in reference”~. Because the
to be long enou@h to have a reasonably uniform chord-—

wise distribution of stress at station A-A (fi~..J.O(b)),or ~ x dT,
at the corresponding station A-A of the substi”~utepsnel (fig.”,ll),-
the formulas may he simplified by assuming that the ~anel is very
long. The formula for the stringer eftictiveness then becomes

‘J,e. UL ~ . e-tin‘.

~ = G“ “ -J+ %e-ti.
J!?.

where K is the shear-l~,paremeter defined

“(43)

by expression (26).

●

✎

. .

.
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The effectiveness factor is plot-bedin figure 12 against the
puwneter

.

In such a plot, the effectiveness factor depends drilyon..the”
ratio ~/AL, and inspectio~.or the figure-shows that ,veriationof

this ratio che.r@esthe effectiveness appreciably only when ~/AL

drops well below unity. This circumstance is fortunate,”because it
indicates that only small errors will result i~ the factor is
applied to panels in which ‘~ veries ra~idly or Is not accurately

l.alown. The ’firstcontingency ariaes in practice in the structl.re
under,consideration here. The second contingency arises in tie
analysis of p~tial-width cut-outs, which will be discussed latirc,,

At the @d where the load is emplied the edge+member must carry
the entire load. With increasing distance from the’end, however, the
load carried by the edge member decreases rapidly because the stringers
take their share of the load. h edge member of constant ”section
would therefore he Inefficient, end in practice the member is
strohgly tapered. For the ~dea~ tapered-member (q = constant),

the ratio ALe/AL is identical with that shown in figure 12

for. +/~-.+co. In an ac-h.zalstructure, the taperwould~pyobably be..
on~ ~ approximation.to the ideal t~per,’but because the stringer
effectiveness is evidently very insensitive to changes in the
ratio ~/~, “thecurve of AL+/AL for ~/AL5~ ,given in figure 12

is rpcbtin~ei for @neral use.” The formula from which the ctive is
derived is ,

where
.,

,...:

If a cut-out is nearly full
to ccnsider all material
being part of the corner

width, it is obviously yermlssible
continuous over the net section as
that is, shear-lag effects within
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this Yegion are neglected. Formula (h3) cen therefore,be applied
with the understanding that ~ meana the cross-sectional area of

all material not interrupted by the cut-out (upyer part of fig. 13), .
~ mean? the cross”sectional areaof.~e~teri.al interruptodby

the cut-out, and the substitute width bS used to calculate K by

formula (26) is taken as w/4. Alternatively, formula (43a) may bf3
used to eliminate any consideration of ~. The effective area A~je

Is asswed to be attached to the coaming ’stringer@ordering the
cut-out (Iom’erpart of fig: 13) for t@ pvxpose of computi~ tho “
.effectivemoment of inertia. As the cut~’o.utbecomes ~maller and the
‘net sec,tionwlderj the assumption that shear lag in the’continuous
material may be neglected becomos more quo@iona’ble. However, ‘ “
experimental resqlts on axj.allyloaded parmls ha~e shown (reference 8)
that this assumption gives tolerable accuracy, even for stress
analysts, except in very mall cut-outs; it should, thereforo, be
adequate for deflection analysis in au-cases, because the effect
of a very small cut-out,on the dcflocticms is negligible., -“,.

A theoretical di.fficulbyarises when the-out-out is so close
to the ro’otthat there is appreciable ihbrfer6nce between the sti,ess
disturbance producedby thecut-out and the ,disturbancecaused by the
root. Tliiscondition may be.said to exist when the distance x
betieen’’theroot and the inboqrtidge of the cut-out is such
that KxKO.4, where K Zs the shear-lag parameter definedby
formula (24) for a eection halfway between the root and the edge of
me cut-out. .FOP such cases, the following approximate procedure
is SuggQatea: ___ . –.’ .

(1) Make allowance for the effect of $ho cut-outby ‘“’
‘determiningthe effective &@ea AZe of the cut stringers as

described in the preceding paragraph,

(2) Tf the stringers are continuous over the root joint,
calculate the deflection correction for root effect on the
assumptio~ that no cut-~ut--existsby one of the methods given for
wings without cut-outs. Zn view of the uncertatiltyproduced by
the interference between cut-out effect and root effect, an
estinmte by means of formula (41) should be adequate. Multiply

th$s.deflection correctio.n,bythe factor 1 - ~
()

to obtain

the final.correction,

If the s~ingers are brokenatthe root Joint, applythe
method given for Q full-width cut-out to the eu~~tj,tute-structure
shown in the lower part of figure 13. This structur9 consists

.
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0?7
of

of the actual spar flanges, the actual continuous stringers
(ticlud.in.gthe coamlng f3tringers),and the equivalent coaming
stringers that reylace the actual cut stringers. The total
width of the net section (b - w) is substituted for b in
fomnula (ksa), or in the expression for x! when figure 12
is used.

Fuselace analy3ie.-—. In fuselages, the root effects on bending
torsional deflections are ~~obabiy always negligible. !Theeffect
rectangular cut-outs may be dealt with by the same methods as those

for wings-if tile.cut-outs‘we reasonably snkll (windows or hatches).
Special considerations may be necemary if the cut-outs are very
large, particularly in the case of cargo doors in the side of the
fuselage which increase primarily the deflection ~ of +Ae shear

web, @nd thus constitute a problem not treated.herein.,. ,

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Field, Vs.., May 15, 1947

. . .

1

,.

..

- ..,.
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APFENDIX A .

Smma~” of General I?rocedurefor

Analysie of Wing

The wlngis divided Into bays hy the
lml~ead bein~ defined as one which ha~ a
the same order of ma~itu?.e a6 the top OT

Torsion-Bending

a main
G-t of

bottam cover. The torque
is assumedto teappiiod at me lmlkheads. ‘Ihebays me numbered
“asshown in figure-~(a).

Cmnpute for.each bay the

w:=

Coofi?.tcierltm

()

&
%+&$+ th

()-&’&$+k

()

h—.- —
8G:h ;b th

.(Al)

(A2)

(A3)

IrIthese expression~, a is the length of bay n; T is tie
(accumulated)torque in the bay, and the remaining ikbnensional
terms are-defined by figure 2S

The flange forceu X (fig. k(b)) produced by the interaction
between adjacen~bays are calculated fron we set ofiequatlons

.

The positive directions of T and X are defined by the arrows
in figure h(b).
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Detemaination

The constant

of Constent k for Torsion Box with Cut-Out

k appearing in equations (20] to (22), which
determines the division of the torque between t??evertical ~.7~ls
and the horizontal walls, is dete~ned by the formula

where

10.
z Cn ‘

1.—
k “ 11

; Cn
L-.

,1

khcl=—
‘hl

+=%

~2
c3=~

c

= 4bd

C4 “%2

4hdc5=~

.

.

C6 = a% 0
&2

2=1+;

C7 =
G b2d2——

3E @2

2

()
LC2+:

c~ = 3E A2

la a2
C9 = 3E A3

—.

!10 =
32G ad
3E A4

(A5)

cf2‘ = C2

c~ ‘ = C3

(J
11+SC4C4’ =~

C5’=$P+:F5

C6 f = $6

C7 ‘ = CT

b
“8b+2cC81 —

Cp ‘ = C9

Clo‘ “ &~o

.,

The dimensions appearing im these expressions are
defined in figure 5. men the net section is very narrow, the
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te1211SC7 EUld C8, CTt and C~‘ aye replacedfor greatercOn-

venience”of computation 3Y the terms

~%2d2

c7a = 3EI
c -..!
Ta

,,. .
where I is’the”moment of,inertia of the net
the spar cap) consi?mred ak “abeam being bent
cover. then the coefticionts C7> “C8, C71,

an approxtite al.lowence for the stringers in

= C7?%

section (Includine
in .tbeplane oF-the
and. C8t are used,

tie net section
should be made by adding one-sixth of Weir to+al area to the area
of the coeming strl.nge.ras well as to the area of the spar cap in
the cut-out bay.

.,

. .

... ,,

,

*

.
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Numerical Examples

The numerical examples will be based on.the box shown In
figure 14. M the calculation, G/E till be taken a~ 0.38~

and G will be taken as 4 x 106 Tsi.

Examfile1.- The box is loaded with a unifomly distributed
torque of 400 pound-inches per inch. Find the engle of twist of
the box.

The distributed torque loadin~ is replaced by a series of
concentrated torques, applied at the bulkheads and of such magnitude
that the ’torquein each bay is equal to that produced in the m@l.e
of the bay by the distributed loading. The elementary twit3% ~ is
computed by means of formulas(7) and (8) and is plotted in figure 15.

By formulas (15) and (15a}

( )A=2.468+~x 10 XO.O8O+O.O66O.O4O+ ~6Q s2.9c$ Sq in.

Next, the coefficients p, q, and $ am computed.by
formulas (Al), (#Q), and (A3),.respectively* In order to simplify
the numbers, all coefficients are multiplied by G. Because

(‘n+l “ Tn) is constant, only the difference
1
Y#+l - w:

) need be

computed in addition to the la’stcoefficient 1~”



30 N4CA TN No. 2361

0.385x 60 +
(

60 Jo
Pn = 3x2.908 8~~+ )

- = 6.0330.080

9n =“w+h(m%%k) ‘2g06’ ‘

T T= 400 X 60 ( 60
~rni-l- ~~n 8x 60X lo\o.040 - Om#O)

= 6875

T 4 ●s(w:+l. - ~g‘r =W=; ) = 30) 937

dG 25 x 0.385
~ ““ 2 .0$?8

= 3.310

Suleti.tutionof’the foregoing terms into (A4) yields the “
following set of equations

- 12.066x~4 2,06q =-.6875
P.063x1 - 12.066x2 + 2.061X3 =6873
2 .061~ . ~a06~3 +2.06ti4 = 6875

2 .061X3 - 12.066x4 + 2.06~ = 6875

2.061X4 - 9 ● 343x5 = -30,937

The solution of these equations is

xl = -709 pounds

+ = -816
X3=-7.32 ‘.
X4=-134 “ ,
X5 = 3~82 .“ .,

.
—

—

.
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By formula (16)

A(f)l . - 1 ‘ 60
(
—-

)
* i-709 -0)= 203x 10-6 radians

2X60 XIOX4XlOg!”0M

ma=31X1O
-6

fM3 = -24 X 10-6

W& = -171X 10-6

mj = -979 x 10-6

These corrections me added to the elementary twist ~ to obtain
the twist ~ shown Tn figure 15.

By solving equation (18)

30,937
‘5 = 6.033 + 3.310 = 3311 pounds

@Py=-
1 ‘ 60

[
m

)
— - ~~ 333.1 = -948 x 10-6

2X60 X10 X4 Xl~\E040
radians

The twist C$ computed by adding tiiiscorrection to the elementary
twist ~ is also shown in figure 15.

EYmnDls ?.- The box hes a full-width cut-out in the top cover
of bay 3. It is loaded as in ,example1. Find the angle,of twist
of the box considering all %wist corrections to be negligible
except those for the root bay, tilecut-out hey, and the bay on
either side of the cut-out bay.

The torque-division factor, wl~ichmust normally be computed by
means of formula (A~), is k = L for a ~ull-width cut-out.



With the definitions of figure 5(b) *

A3 = 2.908 sq in. (from e-le 1)

& =2.468 + ix I.OX 0.080 = 2.601 sq in.

By formula (21)

60JOOOX30 ( 60—. )*(2-1)=
859x 10-6 radians

‘2 “2X602X lo2x4xlo@@~

By formulas
example 1

(24) and.(20) and by taking the value of p frcm

2x859xlo -6 ~ :,; 30x 69033 ~ 60,000 X 30
k X 106 6OX1O ,

3527 x 10-6 radians

APK = -940 x 10-6 radians
J

By formula (23), takin~ l/G outside the bracket,

60,000
(

4X30
%3 = +_.5x 303x22

3..x 2.601-x.6Qx 106QX 10 X4-X 1060”080x 60 ,

+ 0,385x 4 X 303
)

-6
3x2.9c8x6ox1o = 1046 x 10. radians

.-

The twist of the box obtained by adding the elementary twists snd the
corrections is ~hown in figure 16. For ccmpxrimn, the twist of the
hOX WithOUt CUt-OUt (C3~@0 2) iS GIBO shown,
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Example 4.-
vertical load of
axis. Calculate

33

The beam of figurs14 is,loaded by a distributed
w= 50 pounds per inch applied along the elastic
the tip.deflection including shear-lag correctim.

The simplified cross section is definedby

~=2.468+ @oxo.080=2,601sq in. ..

AL . 1 60X O.o!jo + 14X o.1~) =2.25 Sq ill.#

~ = 4.851 q in.

By fozmnila(26)

~o.385 X O.OkQ~.1 1
1/2

K=
L

15 j‘~ = O.0292.,7[2 ,6c1

m = 0.02917 ; 300 = 8.751
,.

Kd =.O 00~917X 25 = O .7P9

~_%$2 - 4.8q3.x 100
.
4— =.242.55 in.,. 2

.

By elementary theory

.,

1!=-- .x 50 x 7003
2

(XQ+ 2$ = 13.53 in.
2 x 10.4 X 106 x 2k2.Ij5 4 ,.

;

The shear force in one.web at the distance %/2 from tie root is .
., ,-,

~ = $ X 50 X 27o = 6750~CWidS
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,. ,.

BY fO~ti& (41), t&kins illtiOaccount both CO+eT5.” .,....

5.=2 r 6750x 2.27x 300[1 + 0.0729 - o.1143)”’ “1
-1 L100 x 10*4

or 5.7 Qercentof
pointlesub~cause
probable accuracy

1.

2.

3*

k.

5“

,
6.

7*

8,

X 109X 4.851X 2.601x 0JIO0851(1 + 0.729) I

3. A moro ac.cuxal%
the gain in accuracy
of 50
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Figure 3.- Elementary twist @ and actual twist ~ of box

beam with ~lp IOrque.
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(a) Convention for numbering stations and bays.

.
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#@

positive forces acting on a“. bay.

1
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.

(b) Convention for

Figure 4.- Convention “For signs and numbering.
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NACA TN NO. 1361 Fig. 5

.

(d General assembly.

(b) Exploded view of half - structure.

Figure 5.- Three-bay structure with cut-out boy.
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Figwe 6.- Bay with smcd I cut-out.

NATtONAl ADVISORY
wmmmss m JESWAUTICS

Figure T - Cross section of

box idealized for sheor-
Iag calculation.

Figure 8.- Positive X-groups

caused by shear lag acting
m a bay.
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NACA TN No. 1361 Figs. 9,10
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Figure 9.- Stresses in stringers interrupted by cut-out,
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(a) Inboard end

Figure [O,-
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of beam cover. (b) Axially loaded panel.

Introduction of concentrated end loads,



Figs. 11,12 NACA TN No. 1361
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Figure It. - Substitute single-stringer panel.
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Figure 12. - Stringer effectiveness in axially loaded panel,



NACA TN No. 1361 Fig. 13
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Figure 13.- Cut-out in cover of Imx beam.



Figs. 14,15 NACA TN No. 1361
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Figure 14,- Cross section of box beam for numerical examples.
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Figure 15. - Box b6cm fbi numerical ““‘extirnp[e<j
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NACA TN No. 1361 Fig. 16
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(a) Box without cut-out.
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(b) Box with full-width cut-out in bay 3.

Figure- 16.- Twist curves for numerical examples.
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