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SUMMARY

The effect of varying the design of supersonic bip18neS has been
theoretically investigated to determine the configuration required
for optimum aerodynamic performance. The investigation was chiefly
concerned with biplanes having lower and upper airfoils of equal chord
length and of triangular cross section. For such biplanes the changes
in aerodynamic performance.resulting from varying the edge angles
stiultaneously and in pairs were calculated. Lift and drag coeffi-
cients were also calculated for a biplane having convex sections and
for a configuration employing a small shock-reflecting surface in
place of the lower airfoil.

The theoretical aerodynamic coefficients of the biplanes inves-
tigated are compared with those of an airfoil with diamond profile
and with those of a thin flat plate. The variation of the center of
pressure with angle of attack and the relative loading of the airfoils
was also investigated for several biplanes. For one biplane of
triangular cross section, the variation of the aerodynamic coefficients
with flight Mach number was calculated. A discussion of the effects
of friction dra~ on the relative perfo~~ce of biplanee and single
airfoils is included.

The calculations show that, in a frictfonless
streaml biplanes of triangular cross section yield
ratios than diamond airfoils of the same thickness
for high lift coefficients, unsymmetrical biplanes

supersonic air
higher lift-drag
ratio and that,
yield hi@er lift-

drag ratios than symmetrical biplanes. When-fricti& drag is con-
sidered, the calculations show that biplanes with the lower airfoils
thicker than the upper atifoils should have higher lift-drag ratios
than symmetrical biplanes.

For each of the biplanes an optimum spacing was found at each
Mach number. Although the performance of the biplanes for this optimum

●

spacing was found to be improved Wer that of a diamond airfoil, the
calculations showed that with a constant biplane spacing this improve-
ment was maintained over only a ltiited range of Mach numbers near the
optimum.
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INTROIXJCTION

At supersonic speeds in a frictionl~~s fluid the aerodynamic
shape with the least drag and the greatest lift-dreg ratto is the
thl.nflat plate. Practical airfoils, however, must have finite
thickness and consequently will have lower lift-drag ratios than the
thin flat plate, For a given finite thicknese ratio the lowest drag
and the greatest lift-drag ratio are obtained w:th ah’fo:l 8ections
havingadl.amend profile (fig. l(a)). The aerodynamic performance
of a diamond airfoil, however, may theoretically be exceeded by means
of a proper superposition of twu airfoils a- triangular cross section
(fig. l(b)). The possibility of using such arranfpmmta iO aPProx-
imate the aerodynamic ChUaC’GOriStiCS of a thus flat plate was sug-
gested by Busemann in reference 1. h analy8is of such biplanes was
undertaken by Walchrierin reference 2. As a first approximation,
the pressures on the inner surfaces of ce~’tafnproperly shaped
biplanes were shown to te mutually canceled and onl~ the outer two
surfaces were shown to contribute to the wave drag. These two sur-
faces are equivalent to those of a thin flat plate, Bueemann:5
approxhna~ion, however, aasumes”that the expamion around the inner
corners (fig. l(b)) takes place across a sip.glediscontinuity plane;

t=

whereas the expansions actually occur through a wedge-shared region.
A part of the expansion wave from each of the &er corners is thus
tnterce:jtedbythe rear mmface of the opposite a:rfoil and the rest

b

pasege outej,_dethe bipiane. (See fig. 2.) The pressurae are there-
fore not equalized internally and transition to free-~tream condi-
tions must take -placeexternally by means of compression ehockst
These traneitio~ represent energy losses th@ appear as ~ncreases
in the drag of the biplane arrangements.

Walchner (refeiwnce 2) showed that the expagsion yayep.c~be
completely contained within a biplane if the trailing-gdge contours
are so curved that the rarefaction waves are not--reflectedfrom the
surfaces. The required contour, which has zero trailing-edge angles,
“isincompatiblewith the strength requirement of practical wings.
Walchner integrated the.theoretical pressures over tha surfaces of
two possible biplane arrangemefitsto determlge the extent “t~which.
the drag and lift coeffjci6nts are altered when nonzem edge an@e~
are maintained. He concluded that when fr:.ctiondrag was considered
these biplanes were app”~@mate.,lyequal in drag to a bicanvex airfoil
of the same thickness as one of the airfoils of tliebiplane.

An experimental investigation of a symmetrical supersonic biplane
was reyzrted by Ferri (reference 3). The optical observ~ttans reported
indicate that the starting charactori@ics of supersonic biplanes are
in many ways similar to those of a convergent supersmic diffuser.

?

Whea the speed of the airetream past the biplane was increased from

b.
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subsonic to supersonic valuesj ~fth the Bpacin$ bet~~en the two air-
foils set at the theoretical optti~ value, the theoretical shock
configurate.onwas not obtained. Instead, fluctuating shcck conf@ur-
ations were observed until the design velocity was reached; then a
shock wave cmved inward from the leading edges was observed to span
the entrance between the two airfoils. When the spacing between the
airfoila ma sl!ghtl.yincreased the expected intersecting oblique
shock ~attern appeared and remained when the spacing was again reduced
to Optimuml. Ferri found that when the curved-shock configuration was
present the drag of the biplane was about six times as great as when
the theoreticall~ expected shock configuration was attained. A
probable solution to the problem of reaching optbmm operating condi-
tions iS ~ st~tj~ mket tO accelerate the aircraft to or beyond
its design Mach number. For wind-tunnel fl.nvestigatio~,N coursej
the spacing may be made variable and tiJusted to its optimum value
only after the design Mach number is attained.

The present theoretical investigation was undertaken to deter-
mine the effect of design v~-tations and operating variables on the
aerodynamic performance of biplanes. The design vsxiations for
triangular-section biplanes”included (3) var:ation of all edge angles
s?mmltaneously, (Z) variation of the edge angles of tilelower and
upper airfoils separately, and (3) separate variation & the trailing-
edge angles. Lift and drag coefficients were also calculated for a
biplane having circular convex sections anrifor a configuration
having a ~11 shcck-reflecting surfaoe in place of the lower airfoil.
The calculated aerc@nsmic coefficients are compared with those of a
dismond airfoil anilwith a thin flat plate. The variation of the
center of pressure with eagle of attack was investigated for a
symmetrical and an urisymmtrical biplane, and the loading of these
biplams was ccmpared wtth that @ a diamond airfoil. For one
biplane, the variation of aerodynsmtc coefficient with N&h number
was also determined. TLe effect of frict:oa drag on the relative
performance of the biplanes an~ single airfoils is discussed.

DESCRIPTION OF BELANE ARRANGEMENTS

The biplanes investigated are chiefly of the type shown in fig-
ure l(b), that is, biplanes consisting of two triangular-section
airfoils of equal chcrd len.gt~. Tha term used i.adiscussing such
biplanes a% deftned in the figw~e. The mxrrespmding tin.. for
ccmparieon with the diamond airfoil EWa defined in figcre l(a). From
the Leflnition of thicknfise-ratio, a diemm:d airfoil with the same “
edge engle as the thinner of the airf~ils of the biplane has the same
thickness ratio as that biplane.
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For optimwn ymformance, the spacing between the two airfoils
of a triangular-sectionbiplane (d/c]mt is detemined by the
requirement that the shocks frmn the la&ding ed~es Hhall iutel*sect
the eurface of’the opposite airfoil at the .lnnerturning corner.
This optimum spacing varies with free-stream Mach number ~ and
with leading-edge-angle 81, as shown ‘infigure 3. The variation
of optimum s~yacingwith angle of attack was “f.x.mdto be slj.ghtand
is not indicated on this figure. O@im spacing was assumed through-
out the calculations with the exception of three reported in the dis-
cussion of the effect of varying the Mach number with conetant spacing.

_-

—

—
>-.—
<

Whether the biplane was rotated as a whole about a fixed axis or
each airfail was eeperately rotated about its leading edge, as :.ni’:.:-
ure l(b)} was found to be immaterial in determining the effect of angle
of attack on tlplane pmfmmance. The conf@uration with leading edges
on a common vertical line was assumed Ja the calculations.

—

METEOD C@’CALCULATION
*

and the figures:The following eymbols are used in the discussion

-.

flow

—.

.chord

drag coefficient for nonviscous

friction-drag coefficient

lift coefficient

c

CD

CD,f

CL

cm

‘P

d

d/c

e

k=

M

P

pi.tghlng-momentcoefficient around leading edge

ceutel*-oi’-pre8surecoefficicnb, e/c
.

—

distance between airfoils of a biplane

biplane spacing

distance frca pitching-moment axis to center of pressure

b“

P

Mach number

total pressure
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P

t

t/c

a

P

7

e

A

T

Y

static pressure

maximum thickness (of thinner airfoil for biplanes)

thickness ratio

angle of attack

Mach angle

ratio of speoific heats “

edge angle

angle between 100al flow direction and free-stresm flow
direction

angle between shook and flow direction ahead of shock

angle through which flow is turned (Prandtl-Meyer theory)

“’Subscripts:
●

u upper

L lower

o free-streem

1 leading

2 trailing

Qpt opttium values

●

An analys& of the flow through triangular-eeotion supersonic
biplanes is presented in the appendix. Such an analysis shows tkat
as the air passes between the ah’foils it is first abruptly com-
pressed by the deflection due to the leading edges and then expanded
around the inner turning corners. The aerodynamic coefficients of
the biplane are obtained by determining the pressure distribution on
the surfaces resulting frcm compression and exp~sion. The expansion
prooess is readily followed with the help of the Prandtl-Meyer theory
of flow around corners (referenoe 4). This theory gives the ratio of
static to total pressure p/P, Mach number M, and Mach angle P
as functions of the angle through @ich the flow 1s turned ~. These
relations, where Y is taken equal to O for M = 1.0, are plotted
in figure 4.
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The ccmpreseive turning at the leading edges takes place through
nblique shocks; the directiou of these shocke is detemuinod by the
Mach number of the free stream and by the angle of inclination of the.
biplane surfaces to the free-stream direction. Tho pressure resulting
from such compressive turning may be determined from obllque-shock
rolaticms. The Prandtl-Meyer’relations, however, give sufficiently
good approximations to pressure resulting from compressive turning if
the shocks are not too intense; that is, if the process is approxi-

—

mately isentropic. For the singlesof inclination and the Mach numbers
considered in the present investigation, errors resulting from the uee
of the Prandtl-Meyer theo~ in place of gx.~toblique-shock relatlons
to determine pressures resulting from compressive turning were found
to be insignificant. This theory was therefore utilized for conven-
ience in calculat?.onto determine all pressures as well as Mach lines.

.—

The angles between the shocks and the flow directions, wh!ch determine
the optimum distance between the airfoils, differed considerably from
the Mach angles assumed by the P~landtl-Meyertheory and were therefore
obtained from exact oblique-shock relations.

The pressure distribution on the biplane surfaces may be obtained %
either by gxE@Jical or by analytical integration. Because the inte-
gration process is rather laborious, an analytical method suitable for
solution with computing machines was developed. This method is des- ,
cribed in the appendix.

h example of the graphical detemnation of premur.e distribu-.
ticms is given in figure 2. The angle !2#hat determines the pres-
sure ratio p/P, the Mach number M, and the Mach angle ~ Is
indicated in each region together with the.mgle between the local
flow and the free-stream flow X. The continuous-expansion regions
have been replaced by successions of Mach lines, each of which turns
the flow through an angle of 1°,

“T-
he expressions giving the inter-

cepts of these Mach lines on the bfplane surfaces in terms of local
Mach angles are given in the appendix.

In the calculation of the aerodynamic.coefficients,the following
simplifying assumptions were made: (1) The centinuous-ewansion
regions can be replaced by a succession of:~ach waves, each of which
expands the flow through an angle of 1°; (2) these Mach waves ar~
abruptly deflected at a definite point in the interaction region
(see appendix); smd (3) additional drags due to viscosity wII1 be
additive. With regard to the first twa assumptions, it was felt that

--

tho small additional accuracy to be expected from aastuningsmaller
expansion intervals or plotting the interaction region nerd carefully
did not warrant the additional labor required. The third assumption
implies that the calculated values of

h

CL -are correct for v!13c9u8,

,
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as well as nonviscous, air flow and that the friction-drag coefficient
CD f =y be experhuentally determined from the difference between the
to&l drag coefficient and the drag coefficient calculated for non-
viscou8 flow CD.

At hi@ Mach numbers the ratio of etatic to total pressure p/P
becomes very mall (fig. 4) and the differences between p/P on the
front snd rear or the top and lottan surfaces of an airfoil, which
determine the aerad~namic coefficients, are of the order 10‘3 for
Mach numbers greater than about 3.5. For high Mach numbers, there-
fore, the accuracy of calculated aerfiGyn&miccoefficients is chieYly
l~imitedby the low values of p/P, For this reason, few calculations
were mad9 for 1~>3.O.

If the thickness ratio of the airfoils is very small (values
of 9<4°), the variation of CL and CD of a supersonic biplane

*

8

.

9

with LMachnumber and angle of attack may be determined approximately
by means of eimple equations given in reference 5. These equations
were derived on the assumption tliatthe expansion armmd the inner
corners takes place across a single clisccurtfnuityplane, that the
vaxis.tionof pressure with flow angle is linear, and that there is
no d~lection of the compression and expansion waves at thgir inter-
section points. If the biplane spacing is optimum, the equations
reduce to those obtained for a thin flat plate.

The effect on

edge angles e Of

EFFECT CIFVARYING 3ZXHIANGLES

drag and lift-drag ratio C~CD of varying the
triangul=’-section biplanes is .ahownin figure 5.

The values shown are for the optimum spacings (d/c)opt presented
in figure 3. Figure 5(a) shows the effect of simultaneously varying
all edge an@es. Calculations were made for three free-stream Mach
numbers ~ and for angles of attack a of 0° and 3°. For b = 1“6
the calculations were carried out only for e<7° because the flow
between the airfoils becomes subsonic when tl>7.3° and the
supersonic-biplane theory no longer applies. ‘Thelift-drag ratio
CL/C!D is seen to be almost indcpsndent of Mach number for the optimum
spacings assumed.

The effect of vaxying only ~ while. eL is held constant at

10° is shown in figure 5(b). Curves are shown for values of ~

of 2.0 anri3.0at an a of O”andforan~ of3.0at an a of3° “
For these conditions CL/CD reac~es an optimum for a ~ of about
so ● Lift is obtained at an a of 0° when ~ is samewhat smaller
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than eL beCaUSe an unsymmetrical flow exists between the airfOilS,
which results in a ~eater average pressure on the upper airfoil than
on the lower airfoil. As 6U is reduced “belowthe optimum, the drag
begins to increase more ~api~ly than the lift and CL,/CD ag~~lndrops.

The effect of increasing GL while holding ~ C.OUS%antiE!
shown in figure 5(c) for a f3u of 7°. Curves are drawzzfor an M?
of 3.”0and for an m of 0° and 3°. For a = ~o, &u/~ remains
a~OSt COD.St~t fOr eL <10°, and decreases for larger ~. For
a= 0°, CL/CD rapidly increasee as the value of 13 increases to
8.5.0and then drope slightly for lergfi~angles.

The effect of varying the value of 62 while 81 Is held con-
stant at 10° is shown in figure 5(d). The optimum value in this case
again is the result of opposing tendencies: As Q2 decreases, the
expansion around the inner corners becomes less and the average preal-
sures on the rear inner surfaces tend to increase. The expansion
waves from the inner corners, however, are intercepted by increasingly
larger portione of the inner rear surface~j and lcwor pressures toward
the trailing edgee result. Because the”flrat tendency lowers drag and
the second tendency increases drag, an optimum value of f3z results.

COMPARISON OF POLK! DIAGIVJ5

For comparison with the diamond airfoil.and with the thin flat
plate, two biplanes were chosen from figure 5 and their drag and lift
coefficients were calculated for several additional angles of attack.
The results are plotted in figure 6.. Comparisons are made at free-
stream Mach numbers ~ of.2.0,“3,0, arid4.,0in figwes 6(a), 6(b),
and 6(c), respectively. The biplanes selected were-a symmetrical
biplane with all edge angles .8= 7° and afl’’unsymmetr’loalbiplane
with ~ = 7°- and @L = 10°. The curyee show that both biplanes
give greater lift for a given drag than a diamond airfoil of the same
thfckness ratio for all values of a and MO conslderwl. For the
biplanes, the Symmetrical configuration gives greater lift for a given
drag over...thelower range of C!L;whereas for high values of CL the
unsymmetrical configuration has lower &rag than all o+ders including
the thin flat plate. (For an Yfi of 4.0 it was considered unnecessary
to calculate the polar diagram for the symmetrical biplane, inasmuch as
the relative position of the four configurations considered seems to be
insensitive to Mach number.)

_<

_.

—
—

f

.

.-

—
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The ccmqaarisma presented in ffgure 6 indicate that the unsym-
metrical biplane has lower drag than the symmetrical biplane for high
values of ~. The maxj.mumvalue of CL/CD obtainable (slope of a
straight line from the origin tangent to the polar curve), howsver,
is sa.uewhatless for the unsymmetrical biplane. A polar curve for a
biphne with a ~ of 7° and a ~ of 13° was calculated to deter-
mine whether this maxhnun value a= ~/CD is reduced or increased
by further increases in the values of ~ (fig. 7). The trend towerd
greater values of CL/CD at high values of ~ is continued but the

=hUUVah.Ze Of ~/CD iS reduced as the VdUe Of ~ fB increaaed,

The same three biqlanes are compared in figure 8 with diamond
airfoils of three thickness ratios and with a thin flat plate. In
this figure CL/CD (Vhfch is substantially independent of ~) is
plotted against a. The symmetrical biplane and the biplane with a
~ of 102 have maximum values of ~/@ greater than the sytmuetrtcal-
diemond airfoil with values of G of 3’3;that is, for a given value
of t/c the biplanes in frictlonless flow have considerably greater
Iift-di-agratios tlnanthe symmetrical-diamond airfoil.

,

VARIATION OF CENTER OF PRISSURE

In order to determine the center of pressure of the biplanes
compared in figure 6, their pitching-moment coefficients about ths
midpoint between the two leadlng edges were calculated. The center-
~f-pressure coefficient was then obtained frcm the relation
Cp = e/c = (&/CL, where c is the chord length and e is the dis-
tance frcxnthe pitching-moment axis X to the center of pressure.
(See flg. 9.) This ratio is plotted against a for the two biplanes
of figure 6 end for the diamond airfoil of the ssme thickness ratio.
The valuee of

2
were found to be substantially independent of Mach

number for the b planes as well as for the diamnd airfoil. The value
of CD veries widely with a for the uneynmetrical ti~lane but is
almost constant for the symmetrical biplane and for the diamond airfoil.

EEWEUT OF VARYINGMACE NUWERWITH CONSZM.NTBIPUNE SPACING

The results presented thus far have dealt with biplanes of opth!nun
spacing, which varies only sl.~ghtlywith angle of attack but quite
widely with free-stream Mach number. Ferrf (reference 3) found that,
when the biplane spacing was less than or greater than optimum, the
observed flow patterns dtifered greatly frcm those theoretically pre-
dictei. The high pressure bey~nd the intersection of the oblique
shocks (fig. 2) was apparently transmitted through the boundary layer
and resulted in a flow separation either ehead of or after the inner
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turning corners, depending on whether the spating
greater than optimum. The oblique shocks did not

*
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was leBs than m’
strtie the wing sur-

~acee hut were-reflected as exp&sion waves from the separated f~uid
layer near the surfaces. The experimentally determined lift and drag

;

coefficients were nevertheless found to vary with biplane epaoing much ~
in the manner predicted by theory (see fig. 55, reference 3) althou@
the experimental variations were less than the theoretical.

Calculations were made to determine, at least qualitatively, the
effect of varying the value of ~ while a constant value of d/c
wa~ maintained.. The biplane selscted was the unsymmetrical one with
~.70 and ~ = 10°. (The analytical integration method described
in the appendix applies only when the shocks intemect the biplane
sun-aces at the inner turning corners

:
; consequently, the pressure dis-

tributions for nonovtimum spacl~gs had to be determined graphically.)
The variation of drag coefficient CD, center-of-pressure coefficient

Cp? and lift-drag ratio CL/CD with Mach number for this biplane is
shown in flgue 10. The biplane spmtng &/c was held constant at
a value of 0.15, which is optimum for this biplane at a value of

-—

Mo of 3.0. (See fig. .3.) Calculatim.s w:ro madtifor values of a #–

of 3° and 5°. The curves show that, for these values of a, ~/c~
remains greater than that of the diamond awoil of the samo thickness

.

ratio for a range of Mach numbers between 2.’7and 3,4. Inasmuch as
#--.

experimental variations were less than themetical (reference 3), the
actual range of kh numbers for which ~/CD remains greater for the
biplane than for the diamond airfoil will probably be wider than that
,indicated in figure 10,

RELATIV13LOADING OF BIPLANES AND DIAMOND-PROFIIX AIRFOIIJ!3

Because the internal pressure in a biplane Is considerably
greater than atmospheric, the upper airfoil of a biplane may be —

expected, for a given lift, to be more heavily loaded than a ahgle
airfoil. The relative loading is shown in figure 11. The lcadlng
factor A(p/P) plotted in this figure Is the difference be~ween the

—

avesage ratio of static to total pressure on the upper and lwwer ..

surfaces of the airfoils. This faator is plotted against lift coef-
ficient CL for a s~mmetrical biplane, em unsymmetrical biplane,
and a diamond airfoil for free-stream Mach numbers ~ of 2.0 and
3.0. At the lower vduo of ~, theun ~ymmetrical biplane is more

heavily loaded; whereas at an ~ of 3.0 the two biplanes are about
equally loaded. Both blplancs are more heavily loaded than the diamond %
airfoil of equal thickness ratio except at very high lift coeff’icimts. .—

.
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The heavier loading of the biplanes, however, is probably no serious
disadvantage; it should be feasible in practice
biplanes hy fastening the two airfoils together

EWZiICTOF FRICTION

to strengthen the
in some manner.

Inclusion of friction effacts should somewhat reduce the rela-
tively greater lift-drag ratio of biplanes as compared with single
airfoils, Inasmuch ae the additional drag due .tofriction will he
about ’twiceas great for the biplanes. No adaquate data on friction-

. drag coef~icients CD f a% SUFOrSOZdC speeds are yet available. The
magnitude o: tine CD ~ that will reduce the lift-drag ratio of the
biplane to that of the fliamond-profileairfoil may be estimated. If
~,f is assumed to be twice as Great for biplanes as for single
airfoils, the diemoad airfoil will have a lift-drag ratio equal to
that of a bzplane when

%,b = cL,d —
cD,~ + a~~,f ~,d + CD,f

or when

cL,b %,d - CL,d CD,b
cD,f =

2CL,d - %,b

where subscripts b and d indicate the biplane
airfoil, respectively. A Few ltiiting values of

and the diamond
cD.f were cahU-

lated from the curves of figures 6 and 7. Lift coef~icient ~ and
drag coefficient for frictionlese flow CD were calculated for the
points of maximum CL/CD for waiuee of Mo -of 2.0 and 3.0. The
results appear in the following table:
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% w% CD CDT>
(deg)

‘~
Biplane, ~= 7° 1(1 14.0 .0092 ,0063

M. = 3.0
——

T1

— .—
Diamond airfoil, 8.15

B&&i; ~= ~~ 7 14,2
BIplane, 10 13.2
Biplane, ~~7° 13 10.5 -I

0.0111

.0034 0.0017

.0072 .0042

.0142 .0330

An examination of this table shows that a greater value of c~,f is
allowable for low values of ~ and for large values of ~. These

*

results Indicate that, for a given valuo of t/G, the unsyRRuetryof
the biplane shotildbe increased the higher the friction coefficient
encountered.

A

Similar calculations may be made to detezzuinethe ltiiting values
of CD,f above which the unsymmetrical biplane has a lift-drag ratio
higher than that of the symmetrical biplane. Calculations using the
seinevaluee of ~ and CD as in the table show that for an ~

Of 2.()the biplane with eL = 10* will yield a lift-drag ratio equal

to that of the biplane with all edge angles _7.0when. Cn f equal.s
0.00024. At an MO of 3,0, the biplanes with valUe6 0$ eL of 100

and 13° will equal the lift-drag ratio of the symmetrical biplane when
Cnf is 0.00018 and 0.00041, respectively. Theso low values of CD.f
i~~~cato that under
ation will probably
cal configuration.

actual test conditions the unsymmetrical configu&
attain a higher lift-drag ratio than the symotri-

OTHER TYPES OF BIPLANE

The use of circular convex sections in place of the triangular-
sectlon airfoils greatly increased the drag for a given thioknoss
ratio t/c. For an ~ of 3.0, an a of 0°, and a t/c of 0.088,
for example, the drag coefficient CD with cfrcuhr convex seotions
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was found to be 0.0443
‘section biplane of the

as compared with 0.0048 for the triangular-
same thickness ratio. Abiconvex single airfoil

of the same thickness ratio has a CD of 0.0146, No further calcu-

lations for curved-section biplanes were undertaken.

Another method of obtaining a partial pressure cancellation con-
sisted in replacing the lower airfoil with a small shock-reflecting
surface, (See fig. 12.) For this arrangement, ~ and CD were

estimated by means of graphical integration for an ~ of 2.0, an
a of 30, and edge angles e of 7°. As expected, the results are
dependent on the ratio of the chord of the shock-reflecting surface
to the chord of the airfoil I,/c. The valu:jsobtained are:

L/c CD cL/c~

0.25 0.031 4.67
.15 .029 5.58
*10 .028 5.69
.05 ,027 5.58

Comparison with figure 8 shows that CL/CR does not approach the
value obtaihe,blewith a diamond-profile airfoil. The drag coeffi-
cient, moreover, is about twice as great as for two symmetrical air-
foils. For these reasons and because of its structural disadvantages,
this scheme is probably of no practical
of fig. 12 without the shook-reflecting
CL/CD iS 5.20.)

CONCLUSIONS

.Interest. (For the airfoil
surface, CD is 0.028 and

From calculations of the aerodynamic coefficients of biplanes
in a frictionless supersonic air etream, the following conclusions
may be drawn:

1. For any given lift coefficient, a triangular-section biplane
has lower drag than a diamond airfoil of the same thickness.ratio.

2. When all edge angles are simultaneously varied, the lift-d-
ratio increases as the angles are decreased.

3, With an upper airfoil of constant thickness, the maximum lift-
drag ratio obtainable decreases as the thickness of the lower airfoil
is increased. For low angles OY attack, however, the lift-drag ratio
of a biplane may be increased by making the lower airfoil thicker t-n
the upper airfoil, If the lower-edge angles are too greatly increased,
an optimum value is passed and the lift-drag ratio drops.
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4. The.lift-drag ratio of biplanes may be slightly tiproved by
making the trailing-edge angles somewhat smaller thamthe leadhg-
edge angles,

5, The variation of center of pressure with angle of attack is
considerably greater for unsymmetrical than for symmetrical biplanes,

Inclusion of friotion effects scm.ewhatmodifies the foregoing
conclusions because the eddttional dreg due to friction will be about
twice as great for biplanes as for shgle a&rfoila, Calculations
indicate that, au friction-dragcoeffJcient_.increase8,the thickness
ratio of the lower airfoil of a biplane should be @cTeased to main=
tain lift-drag ratios higher than those of symmetrical-diamondairfoils
and that unsLymmetr3_calliplanes will probably yield greater lift-drag
ratios than symmetrical biplanes In frictional flows.

Certain practical disadvantages connected with biplaneu ehould
be considered in evaluating their practioal usefulness, The syaci~g
between the airfoils must be made variable if optimum performance is
desired over a wide range of flight velocities. Over a certain
limited range of flight Mach numbers, however, the biplane would
maintain a higher lift-drag ratio than the diamond aiyf.oilOf the .
same thicknes~ ratio. ..Thegreater loading.of.biplanesfol’a given
lift can probably be dismissed as unimportant because it should be
feasible to increase their strength by fastening the two airfoils
together.

Flight Propulsion Research Laboratory,
National Advisory Committee for Aeronautics,

Cleveland, Ohio, December 10, 1946.

,

.
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APPENDIX - DETERMINATION OF AERODYNAMIC

CO133FICIE2iTSOF SUPERSONIC BIPLANES

By use of the notation of figure 13, the pressure distributions
over the biplane surfaces may be determine~ aa follows: Upon enter;.ng
field (1, U) the air stream is turned through an angle (81,U + a]
from the f~~e.-streamd~rec~i~n, The transition to field (1, ~) takes
place through a compression shck. The angle cpl

7
that this shock

makes with the free-strean direction WV be &eter& ned from oblique-
shock relations, Similarly, upon enteri~ field (1, L) the flow is
turned through an”angle {~l,L - a); also in a cmipressive sense,

and the oblique shock makes en angle cpl,L with the free-st~eem
direction. The resulting pressures in fields (1, u) y;l:l;~] may
be obtained either from oblique-shack relations or,,if
is fairly small} they may be closel~-approxtmwted by the Pr&ndtl-Meyer
~elatlons for flow armmd a earner. “ThePrandtl-Meyer relatians a~e
~lotted in figure 4, Thus, for example, if ~ is 2.0, % u is 70,
and a is 3°, PI u/P h obtaine~ by subtracting 10° frcm ~he turning
angle ~ corresp&ding”to an ~ of 2.0; thai is,

% ,U = 26.5° - 10° = 16.3°; p, ~/P = 0.218.

At the intersection of the two shooks from the leaditi edges,
both shock~ are deflected S?X3the flow passes into a conmon field
(U, L). The Wle q2jU that the akck makes with the flow direction
t.nfield (1, U) is now detemnined frcsnthe known Ml u and tfle Eiz@3

of deflection through the shcck. The ahgle of deflec~~on, in turn,
3s determined ly the requirement of a cannon flow direction in
field (U, L). This o-on dfrectton can be attained on~ ~ tie sum
of the deflections through the two upper shocks eq~l~ tha sum of the
deflections through the two lower shocks. The deflecti.anthrough the
second upper shock is therefore (9~,L ‘~) degrees and through ths
secc&d lower shock is (el,u +a) degrees. The fl~w infield (U, L)
has been turned (“l,u + a + el,L - a, degrees in a compressive sense
and the conditions in field (U, L) can now be road from figure 4.
Although the turning is cmpresa~ve through b~th shocks} its direction
IS reversed and the actual flow direction in field (U, L) is
hU,L = (e~,u + ~) - (81,L - ~) = (61,U - el,L + 2u) degrees from the
free-stream directicm.

In passing into field (2, U) the flow is expanded:
(@2,U - ~ +AQ) degrees from its direction infie:d (U, ,L). The.
flow infield (2, L) is exp&ndti (e2L +9 -huL) degrees. The
expansions take place through”a wedga-shpsd regio~ ‘tithlimits

●

.-—— --— —
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determined by the values of 13 corresponding to the conditions before
and titer the expaneion. The conditions are again obtainable from
Ylgure 4 because the turning angles are known.

The expansion waves are mutually deflected in the region of inter-
section. The angles that the boundhgMach lines beyond the inter-
action zone make with the flow direction are again determined by the
conditions before and ef’terthe expansions.

clcssfngoff field (2, U), for exemple, ie $~;%~~;:;~i~a}].
The angle of the line terminating the upper expansion r&gion is)deter-
mined by the number of degrees from ffeld (2, U) that tineflow Is
turned by the expansion wave. Each expansion wave is reflected from
the stiace and passes outside the airfoils. The four shocks ema-
nating frcm the two trailing gdges bring the entire flow pattern back
to free-stream conditions at Infinity, The angles of these shocks
can be determined from this requirement (that is, free-stream condi-
tions at infinity), but this determination is unnecessary to find the

.-

aerodynamic coefficients, for conditions beyond the trailing cdgeai
have no effect on the biplane. *

In order to integrate the pressures over the airfoil surfaces,
the continuous expansion waves are replaced with a succession ofJ4ach ‘
waves, each of which turns the flow through a small angle Ae.

4

Throughout this investigationthe value Ae was fixed at 1°. The
problem of integration is obviously ~imple except over the portions
of the hner rear surfaces that intercept the expansion waves from
the opposfte airfoil. This region may be treated analytically, by
obtaining expressions giving the point at which each of the succession
of Mach waves intersects the opposite surface. A sumation process
can then he made to determine the drag and lift forces contributed
by these regions.

The relations between the angles of the Mach lines and tllelr
intercepts’on the airfoil surfaces may he deduced from the sine law.
‘Theamumption is made that the bending of each Mach line through the
interaction region takes place.entirely at the point where it inter-
sects the correspondingMach line emanating from the opposite airfoil,
The following expressions are obtained by using the notation of flg-
Ure 14:

Cl,u sin (~u-elu-a) sin (qo2u-Olu-a)
%= (1)

COS 81,u Sh (~l,u ~~z,u - 61,U - .)

C1,L sin (Vl L ‘elL+~)sin(~2L-GIL +.)
%= coe el,L .

(2]
sin (~,L +~2,L - ‘I,L + a,

.

.—
*
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where

D dzstance

F distance
corner

L. distance

sin (J31U + ~2 U)

%3 = ‘U sin B1,U sin (p2,u - e2,u + a)

17

(3)

(4)

(5)

(6)

from

from

from

shock intersection to inner turning corner

intersection of expa.hsionwaves to inner turning

inner turning cower to intersection of expansion
wave with biplane surface

In each case P is the angle that the Mach lines ~~e with the free-
stream direction; that is, it is the Mach angle plus the angle which
the local flcnJmakee with the free-stream direction. Because the
flow-direction changes 10 through each Mach ltiej the expansion proceee
must be follGwSd quite carefully to determine the correct values of j3
to use in equations (3) to (6). When mora Mach linee aanate from one
of the airfoile, supplementary Mach lj.nesmay be assumed to emanate
fra.uthe opposit~ airfoil in order that the bending points of the
excess linee mqv be dete-rminedfrom squations (3) to (6).

When the intercepts of the Mach lines on the airfoil eurfacee are
known, the aerodynamic codficients per mit epan are obtained by a
summation of pressures over the surfaces.

The course of the expaneion may be clarified by studying the
e~ple of figure 2. Hare the values of ~ to bo ueed in figure 4
and tho direction of the flow A are indicated in each re ion.

5
The

conditions l.%= 2.0, el u = e2,U . 70, 91 ~ . e2 ~ = lo , d“
a=

J )
3° were asm.unedfor ~his sketch.
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The analytical method just described is useful only when the
shocks from the leading edges intersect the opposite airfoil at the
inner turning corner, If the coefficients for other cases are
desired, a graphical integrationmuet be made or some other analytical
expressions derived. Graphical @tegration. was used in the present
investigation to determine the effect ot varying the Mach numtierwhile
a fixed biplane spacing was maintained and to detemine the coeffi-
cients for the convex-sectionbiplane and for the single airfoil with
shock-reflecting surface,
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(a) Airfell with diamond

<

Snner turning corners ‘= $

(b) Blplme with triangular seetlons.

Fi@re 1.- Geometry of diamond airfoil and trian@lar biplme~

.Definitions of symbols:

e
with

u
L
1
2

a

edge angle
subscripts $
Upper
lower

leading edge
traillng edge
angle of attack

t IMXtmUIUthichess (of thinner
airfoil for biplane)

a chord of airfoil
d shortest distance between air-

foils in biplane
t~c thicbess rat%o
d~c btplane spacing

,

.
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Figure 13.- Notation for analysis of flow through biplanes.
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