VER LOADS BRANCH COBY

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

TECHNICAL NOTE

No. 1378

PRELIMINARY INVESTIGATION AT LOW SPEED OF DOWNWASH
CHARACTERISTICS OF SMALL-SCALE SWEPTBACK WINGS
By Paul E. Purser, M. Leroy Spearman, and William R. Bates

Langley Memorial Aeronautical Laboratory
Langley Field, Va.

R

Washington
July 1947







NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1378

FRELIMINARY INVESTIGATION AT LOW SPEED OF DOWNWASH
CHARACTERISIICS OF SMALL-SCALE SWEPTBACK WINGS

By Paul E. Purser, M. Leroy Spearman, and William R. Bates
SUMMARY

A preliminary investigation has been made at low speed of the
downwash behind various small-scale sweptback wings. The wing con-
figurations for which data were obtained covered aspect ratios
from 2.5 to 4.0, sweepback angles from 32.5° to 40°, and ratios of
root chord to tip chord from 0.62 to 2.06.

The data showed that for the higher tails and shorter tail
lengths behind each of the wings in the wing-tail combinations
.tested fairly large variations occurred in the rate of change of
downwash angle with angle of attack de/da at high angles of attack
- with resulting large changes in the longitudinal stability of the
wing-tail combinations. In general, lowering the tail to a position
near the extended chord line of the wing and increasing the tail
length caused improvement of the stability as characterized by
decreases in de¢/da and by decreases in the variation of de/da
with angle of attack.

Increasing the wing aspect ratio caused a reduction in de/da
and improved the tail contribution to the stability. Increasing,
the ratio of wing root chord to tip chord caused increases in the
rate of change of downwash angle with angle of attack for the low
1lift range.

The use of trailing-edge flaps caused a slight increase in
de/da and caused an increment of downwash angle at low angles of
attack about the same as would be expected for unswept wings.
Leading-edge slats reduced the variation of de/da at high lift
coefficients and generally resulted in improvement of the stability.

Values of downwash angle computed from design charts for unswept
wings given in NACA Reports No. 648 and 711 agreed fairly well with
experimental data at low 1lift coefficients provided the computations
were based on the aspect ratio and span of an unswept wing having the
same panels as the sweptback wing. : - .
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TNTRODUCTION

The analysis of reference 1 shows that the use of sweptback
wings for high-speed aircraft can greatly extend the range of flight
Mach number attainable before the onset of serious compressibility
effects on the wings. The National Advisory Committee for Aeronautics
is therefore attempting to supply design data on the characteristics
of swept wings. For the low-speed range in which the disedvantages
inherent in the use of high degrees of sweep appear to be greatest,
the Langley Laboratory of the NACA has supplied such data on the
low-speed stability and control characteristics of sweptback wings in
references 2 and 3 and has provided a collection and enalysis of
static longitudinal stability characteristics of sweptback wings in
reference L.

The analysis of reference ! shows that the static longitudinal
stability of 1solated wings, particularly near the stall, is
greatly dependent upon the aspect ratio and sweepback angle. A
summary chart based on these two parameters is presented in reference 4
for use in determining stable and unstable combinations of sweep
and aspect ratio. Other data presented in reference 4 indicate, how-
ever, that the problem of obtaining adequate longitudinal stability
for wing-tail combinations is more complex than that for wings alone
because of apparently large and uvnpredictable downwash changes in the
region. of the tail surfaces.

As an extension to the work of reference h, the present paper
provides a collection and brief analysis of downwash measuvrements
made behind various sweptback wings. The data were obtained from
tuft observations and force tests of wing-tail combinations in the
Langley 7- by 10-foot tunnel.

COEFFICIENTS AND SYMBOLS

Cr, 1ift coefficient (Lift/qs)

CLt 1solated-tall 1ift coefficient (Lift of isoléted tail/qst)
-CD drag coefficient (Drag/aS):
: Cﬁ '_ pltching-moment coefficient about guarter chord of w*ng

mean aerodynamic chord (Pitching moment /qSc ')

q dynamic pressure, povnds per square foot ( p——j)
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.mass density of air, slugs per cubic foot

air veioéity, feet per second
wing area, square feet
tall area, square feet

airfoil section chord, feet

rb/z

alrfoll mean aerodynamic chord, feet ng c? dy
- ) 0

airfoil root chord, feet
alrfoil tilp chord, feet

angle of sweepback of line of quarter-chord points of airfoil,
degrees

~wing aspect ratio (ve/s)

tail aspect ratio (Pte/st)

wing span, feet

- tail span, feet

angie of attacktdf wing chord’line,'degrees
angle of attack of tail chord line, degrees 44. i

angle of downwash, determined from tuft surveys, degrees

effective angle of downwash, determined from force-test
data, degrees

tail setting with respect to wing chord Tline positive

when trailing edge moves down, degrees
effective dynemic pressure at tail, pounds perfsqﬁare foot

tail length, distance in chord plane from guarter-chord
voint of wing mean aerodynamic chord to quarter-chord
point of tail mean aerodynamic chord or to a poilnt in
survey plane equivelent to quarter-chord point of tail
mean serodynamic chord, feet
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h¢ tail height, vertical distance from wing chord plane to
tail chord plane or to point in survey plane, feet

Yy spanvise distance from plane of symmetry, feet

n, neutral point

MODELS AND APPARATUS

Models

Details of the models tested are shown in figures 1 to 7. All
the wings and tails were made of laminated mahogany. The tails of
models A to D were mounted on a 2- by L-inch pine fuselage by means
of the fittings shown in figure 8.

Survey Apparatus

Dowvnwash surveys for models D, E, and F were made with the
tuft apparatus shown in figure 9. For models B and C the wixes
extended from the tunnel floor to the ceiling and from E%E =0

to %15 = 1.0, The row 6f wires supporting the tufts was swept

back 40° and photographs (see fig. 10) were taken from the side of
the tunnel at an angle of 90° to the alr stream. The photographs
were enlarged to approximately one-half full-size and the tuft
angles were read by using the vernier protractor of a drafting
machine.

TESTS AND RESULTS
Test Conditions

The following table summarizes the test conditions for the various

models in the Langley 7- by 10-foot tunnel:

Dynamic pressure Turbulence‘-
I Model (lb/sq ) 4 Test Reynolds number e
A, B,and C 17.16 . 0.834 x 106 5.5
B 16.37 : 820 1.6
Isolated i ¥ h > 6
tails 16,37 10 i
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’ - .~ Corrections: . i e s e A sl e
Tares.~ The model force-test data have not been corrected for
tares. The data for the isolated tails of models A; B, C, and D . ..
( have been approx1mately corrected for tares by adjusting the angle -
of zero 1lift to -3.8 + This angle i3 a corrected value based on ..
tests date for unswept Clark Y alrfoils multiplied by the cosine- of
4o® to account approximately for sweep effects. :

The downwash angles determined from tuft surveys for the
symmetrical airfoils (models B and C) were approximuuely corrected
for tares by subtracting the downwash angles measured at an angle
of attack of zero from the downwash angles measured at all angles
of attack. For the cambered airfoils (models D, E, and F) the
tare downwash angles were determined from tuft measurements made
with the models removed but with the médel support strut installed
in the tunnel.

Jdet-boundary effects.~ The various Jet-boundary corrections
applied to the force-test data are presented in table I. These
corrections are standard values developed for unswept wings (see
reference 5) and for the present tests were based on the actual
agpect ratio and area of each sweptback wing. :

Within the limits of applicability of the jet-boundary
corrections developed for unswept wings to tests of swept wings,
the effective dovnwash angles determined from the corrected force-
test data are also corrected for jet-boundary effects.

No Jet-boundary corrections have been applied to the dowmwash
angles measured by tufts for any models, but the angles of attack.
presented with the tuft-survey data are also uncorrected in order
that the values of de¢/do obtained from these data might be more
nearly correcth.

Tests and Presentation of Results

Force tests.- Force tests of all modeld Were made through the
angle-of -attack range from sbout =-4° to the stall angle. For models A
to D tests were made with the tail removed and with the tail set at
approximately 0° and -6° relative to the wing chord line at each. of ‘-
the positlons shown in figures 1 to 4. :

For models A to D the values of etfectlve dowansh angle e'
and dynamic-pressure ratio were computed from tail- off, tail-on,-
and isolated-tall tests by a method of succesaive approx1mations which

takes into account the nonlinearity of the isolated-tail 1ift curve.
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Downwash surveys.- The downwash surveys behind models B and C
with the tall removed and behind the wings of models D, E, and F
were made through the angle-of-attack range from 0° to 20° in the
survey planes shown in figures 2, 3, L4, 6, and 7. Since the groups
of tufts were fixed in space, the swrvey planes werc located
differently with respect to the model for each angle of attack, as
shown in figure 11. The data are shown located with respect to the
chord plane, and the fact that the survey planes did not remain
perpendicular to the chord plane was ignored because of the relatively
small variation of downwash with longitudinal location in the gurvey
region.

Pregentation of results.- The data are presented in figures 12
to 30 in three general mroups: force-test data, tuft surveys, and
analysis plots and are indexed in +able IT.

DYSCUSSION
General

The force-test data, particularly data in figures 12(a), 13(2),
1h(a), and 15(a), and the tuft surveys (figs. 20 to 24) indicate
that for high tails and short tail lengths behind each of the wings
tested for the present investigation, the variation of downwash angle
with angle of attack undergoes rather large changes at high values
of 1ift coefficient (Cp > 0.6). These chenges in & /da usually
occur at angles of attack near the angles at which changes occur
also in the wing lif%t, pitching=-moment, and drag characteristics.
Tuft observations of the flow at the wing surface show maerked changes
in the flow pattern at these same angles of attack and indicate &
general shift of 1ift load toward the root section. That such a shift
of load occurs for sweptback wings is shown by the data of reference 6
and in tests made in the Langley S~foot high-speed tunnel. The changes
in 4a¢/da  that occur at high 1ift coefficients therefore are probably
& result of the increased load carried by the root section.

Data obtained in the Langley 19-~foot pressure tunnel show that
the changes in air flow, lift, pitching moment, and drag that occur
at low Reynolds numbers at values of 1lift coefficient of 0.6 and
higher are reduced or delayed to higher angles of attack by increases
in the Reynolds number. It is to be expected, therefore, that the
data presented herein, which were all obteined in tests at low
Reynolds numbers, may tend to overemphasize the changes in d¢/da.

- The actual changes occurring on full-size aircraft probably would be

less marked and would occur at higher values of 1ift coefficient
than do the changes presented in the present paper. The data obtained
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in the 19-foot pressure tunnel, however, show relatively small
effects of Reynolds number at low lif't coefficients; therefore the
low Reynolds number of the present tests should have little effect
on the validity of the present data at low 1lift coefficients.

Since analysis of the data involves a discussion of both force-
test measurements and tuft surveys, a comparison of the resgults
obtained by these two methods is shown in figures 25 and 26, An
incremental difference exists between the values of downwash angle
obtained by the two methods that is probably caused by tares;
however, the slopes of the curves are very nearly the same. The
tuft-survey data presented are values for a station at the midpoint
of the tall semispan and no attempt was made to account for spanwise
varilations of dowvnwash angle and tail 1ift distribution. As noted
in the section entitled 'Corrections' neither the downwash angles
nor the angles of attack from the tuft tests have been corrected.
The corrections to both downwash angle and angle of attack are
of the same sense and order of magnitude, however, and as shown
by table I the corrections to angle of attack are relatively small
for all the models tested.

Effect of Aspect Ratio

The effect of wing aspect ratio on the effective downwagh
angle behind sweptback wings is shown in figure 27. The aspect
ratlos of the wing and tall were reduced by the same smount so that
the tail for each model would be affected by relatively the same
portion of the wing. The physical positions of the wing and tall
remained unchanged when the aspect ratio was changed. The data of
figure 27 indicate that a reduction in aspect ratio produces an
increase in the valus of d¢/da, with the effect being less marked
for the longer tail lengths.

For all the wings tested the changes in de'/da resulting from
a change in aspect ratio are of the order of magnitude obtained
for unswept wings from the charts of references 7 and 8. The
measured values of ds'/da for a given sweptback wing, however, are
less than would be calculated for an unswept wing of the same
aspect ratio and more nearly approach the values calculated for
an unswept wing having the same panels as the swept wing. This
result is illustrated in figure 30 in which measured values of de'/im
for the low lift-coefficient range are compared with values computed
from the charts of references 7 and 8 by three different methods:

(1) Actual values of A and b obtained on the swept wings were
used in the charts
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(2) Actual value of b was used but value of A vas multiplied

by the factor .
Cos~A c/k

il
(3) Value of b was multiplied by ———— and value of A
cos Ac/h

wvas multiplied by

e
COos“A C/Ll'

Method (3) 1s equivalent to basing the computations on an
unswept wing having the same panels as the swept wings. This method,
although strictly empiricel and having no theoretical basis, gave
the closest agreement between experimental and computed values
of dé¢'/da. Computations of de'/do made by method (3) for four
complete models have also shown good agreement with experimental
values obtalned in the Langley 300 MPH 7- by 10-foot tunnel.

Effect of Taper Ratio
The only directly comparable data on the effects of taper

ratio were obtained for models D and E. These data are compared
in figure 28, which showe that for the low 1ift range the model

C -
with conventional taper <:§ = 24%9 has greater downwash angle
o1 _
i A T
than the wing with inverseé taper K:~ = 0,617) as would be expected
ciy :

from the design charts of references 7 and 8. The data of figure 28
indicate that in general a more uniform variation of ¢ with angle
of attack is obtalned for the model with conventional taper. At
o.eg above the chord line, for example, the model of conventional
taper shows a falrly uniform increase in downwash angle with angle
of attack, whereas the wing of inverse taper shows a particularly
rapid increase in downwash angle between angles of attack of 12° and
16°, This result might be expected since the force-test data

(figs. 16 and 17) also show smaller departures from linearity for
the 1ift end pitching-moment curves for the conventional-taper model
as compared with the curves for the inverse-taper wing. ' i

Effect of Tall Span and Position

Tail span.- The downwash date for‘the wing of model D (inverse
taper) indicate that in general the average value of de¢/de increases
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as fhé tail span increases. (See fig. 21.) This condition ig
probably a result of an increased 1ift load carried by the tips of
the sweptback inverse-taper wing as the angle of atbtack increnses.
For the wings with conventional taper - models E and F shown in
figures 23 and’24,respectively - & similar increuase in the average
value of d¢/da occurs at low angles of attack for tail spans
as large as about 0.52. For higher angles of -attack and for tail
' b
gpans greater than about 0.55, the data generally indicate a
decrease in de¢/da with increasing tail span, becavse at high
angles of attack the tip stalling tendencies of sweptback wings -
reduce the tip lift losd and because at all angled of attack
conventionzl taper has & relleving effeet cn tho 1ift load at tho.
tip. ' v ‘

For.the untapered wings (models B and C) the spanwise variation
of de/da is emall until angles of attack approaching the stall
angle are reached. (See figs. 20 and 2G.) A%t these high angles of
attack, the data for by = 0.50b indicate an increase in de [da,

whereas the data for bt = 0.80b indicate a decrease (fig. 29).
The difference in effective downwash angle for the two tail spans

is again probably caused by an inboard shift.of the 1if% load for
sweptback wings-at high angles of attack when the tips stall.

Tail position.- Both the tuft-survey and force-test cata indicate
the large effect of both the vertical and longitudinal positions of
the tail on the variation of downwach angle with angle of attack in
the moderate to high lift-coefficient range. For example, figures 12
to 14 show for models' A, B, and C with the short tail length (position 1)
an increase in dc’/dm and a corresnonding unstable change in slope
of the pitchingz moment near maximm 1ift. UWhen the tall length is
increased (vposition 2 for models £ rnd B and position 3 for model C)
the unstable changes in d¢'/da and aC,, /ACr, near meximum 1ift are

eliminated. A similar comparison of the pitching-moment and down-
wash data for positions 1 and 2 of models ¢ and D (figs. 14 and 15)
shows that lowsring the tail to a posltion nearer the extended chord
line of the wing tends to eliminate unstable changes in de'fda and -
de/ﬁCL near maximum lift. The tuft data (figs. 20 to 24) indicate
that for high tail positions the value of d¢/da. tends to increase
at high angles of attack, whereas for low tail positions the oppoeite
is true.

In general, the tail positions that are lowest and farthest
rearwvard provide the most favorable downwash; that is, in such
positione the values of de/da  either remain constant or show a
gtabllizing decrease with Increased 1ift coefficient. This result
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tends to explain the data of reference L4 wherein the presence of a
tail was shown to improve the longitudinal stability characteristics
of an unstable wing and to impair the characteristics of a stable wing.

Effect of High-Lift Devices

Trailing-edee flaps.- As shown by the data in figure 22 half-
span flaps on the tralling edge of the wing of model D have the
usual effect of producing an initial positive value of downwash
angle at zoro angle of attack and generally cause 2 glight increase
in de/da, as is indicated in reference 9. Computations made by
the method of reference 7, based on an unswept wing having the same

panels as the sweptback wing of medel D, indicate that at 0.038

above the extended chord line tho inczement of downwash angle at a =0
caused by flap deflection should be about 50, whereas the data of
figure 22 indicate an increment of about 5.8°. Computations based on
the actual gpen and aspect ratio of the sweptback wing indicated

an incremont of only 3.8°, ,

Wing-tip leading-edge slats.- The data of figure 22 show little
effect on dé/&a of the addition of half-span slats at the leading
edge of the wing tip of model D in the low lift-coefficient range.
At higher 1lifts, however, the presence of the glats reduced ds¢/da
over the inner 50 percent of the span for tail positions lower than

about 0.3 3 acove the extended chord line and increased de/da for
tail p081blons higher than about O, 3—

CONCLUSIONS

The results of tests at low gpeed to determine downwash charac-
teristics behind various small-scale sweptback wings indicated the
following conclugions:

1. Rather lerge variations in the rate of change of downwash
angle witr. on:ls of attack ds/da occurred Tor the higher tails
and shorter toll lengths behind sach of the wings in the wing-tail
combinations tegtel aib high sngles of attack with resulting large
changes in longitudinal stapility of the wing-tail combinations.

2. Extending the tail length and lowering the tail to a
position near the extended checrd line generally caused a decrease
in de/ dao and improved the stab*l:ty at high llft coefficients.,
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3. Increasing the wing aspect ratio caused a reduction in
de/da and improved the tail contributicn to the stability.:

L. Increasing the ratio of wing root chord to tip chord caused
an increase in de€/da for the low 1lift range.

5. The use of trailing—edge flaps caused a slight increase in
de/da and caused an increment in the angles of downwash at low
angles of attack about the same as would be expected on an unswept
wing. Leading-edge glats caused slight decreases in de¢/do at
high liftes and improved the stability,

6. Values of downwash angle computed from design charts for
unswept wings given in NACA Reports No. 648 and 71l sgreed fairly
well with experimental data at low 1lift coefficients provided the
computations were based on the aspect ratio and span of an unswept
wing having the same panels as the sweptback wing.

Langley Memcrial Aeronautical Laboratory
National Advisory Committee for Aercnautics
Langley Field, Va., April 9, 1947
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TABLE I

JET-BOUNDARY CORRECTIONS APPLIED TO FORCE-TEST DATA

T

Jet~boundary corrections
e ACp/Cy,
Model BafCp aCp/C;?
Short tail Long tail
length length
A 0.l 0.0076 0.0072 0.0146
B .28 0049 0080 0130
g - .28 0049 0030 0080
D 53 0093 0069 0117
E 32 0057 I S e
F 33 0058 w e et e e
Isolated
tails?

8o corrections applied because of small size of tails.

NATTIONAL ADVISORY
COMMITTEE FOR AFRONAUTICS
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TABLE IT
INDEX TO DATA FIGURES
i Tell positicn| _lt TR e
Model configuration number /2 b/2 number
Force-test data
A, with and without 1 30 0.18 12(a)
tail ' 2 1.5 .18 12(b)
B, with and without ' 16 .29 13(a)
tail 2 2.4 .29 13(b)
o 1 3 1.5 .29 14(a)
C, with and without 2 105! .03 1h4(p)
tail 3 2.3 s o g 1h(c)
L 2.3 .03 14(q)
1 1436 43 15(a)
2 1.36 21 15(v)
D, with and without 3 1.36 .03 15(c)
tail L 1.91 43 15(a)
5 1.91 22 15(e)
6 1.91 Kol g g
D, wing alone, with and
without high-1ift
devices - - - - - - - - - 16
E - - - =R - - - 7
F - - - o - - - 18
Isolated tails - - - s - - - 19
' = Tuf't-survey data
B, C, without tail - - - 15,23 - - - 20
D, wing alone- - - - 1.36,291 1 - - - 21
D, wing alone, equipped
with flap and slat - - - 1.91 - - - 22
E - - - 136,203 - - - 23
F el g 1025,1186 I N 2)4'
b
Analysis plots
Comparison of force and tuft data 25 and 26
Effect of aspect ratio 29
Effect of taper ratio 28
Effect of tail span 29
Comparison of measured and computed values of d¢'/da 30

COMMITTEE FOR AERONAUTICS

NATTIONAL ADVISORY




e
///0\*7# Clark Y airfoil section

T

$ line of tails

Position 1, Position 2
SN G s e
| e =

g = = - Rl
=

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

e
R
Figure 1.- Details of model A showing wing-tail combinations tested. Wing: o4 = 1.0; A = 4,03
e T
- 40° s i : - e — 400
Ac/4 - 40 . Tallo 1.0, At 4.0, Ac/4 40 .
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c
Figure 2.- Details of model B showing wing-tail combinations tested, Wing: _cﬁ = 1,0; A = 2.5;
o} CR 'Ic‘)
Ac/4=40 . Tail: = = 1.0; At=4.0;A = 40",
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Figure 3.- Details of model C showing wing-tail combinations tested. Wing: T = 1.0; A = 2.5;

T

e
0 . R
Aojg = 40°. Tail: = = 1.0; A = 2554, = 40°,
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Figure 4.- Details of model D showing wing-tail combinations tested. Wing: = = 0.617; A = 3.0; =
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Figure 5.- Details of flap and slat on wing of model D,

A
ORDINATES FOR NACA 22 AIRFOIL
[Stations and ordinates in percent of wing chord)
Station |Upper surface * Lower surface
0 | 288 288
Flap 125| 540 | .09
60° 25 | 648 65
.eL" 50 | 802 .28
/})5 911 .08
9.96 0
Section A-A 20 | /229 44
30" |V13385 146
40 1342 308
= ﬁ Slat 50 | 1260 | 478
" : 60 .12 563
-Sre— 4 i _53_ 70 | 905 | 579
airfoil section /88 }3.9; 267
. 5 /o)
47, -
%90 : Section B-8
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Figure 6.- Details of model E showing tuft-survey planes. — = 2.04; A = 3; A
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Figure 7.- Details of model F showing tuft-survey planes. = 2,06; A = 3,3; A

Q
|

c/4

= 32.5°.
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Figure 21.- Tuft surveys behind wing of model D.
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Figure 22.- Tuft surveys behind wing of model D equipped with high-lift devices. 1—)-/—2 = 1.91.
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Figure 23.- Tuft surveys bohind model E.
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8LET "ON NI VOVN

¥2 "3



Fig. 25 - NACA TN No. 1378
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Figure 25.- Comparison of values of downwash angles determined by
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tuft and force tests, g = 1.0; A = 2.5; A /4 = 40°. Model C.
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NACA TN No. 1378 Fig. 26
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Fig. 27 NACA TN No. 1378
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Figure 27.- Effect of wing aspect ratio on effective downwash angle
c
R
behind sweptback wings. Models A and C. G =150 Ac o 40°,
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Fig. 29 NACA TN No. 1378
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