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NATION{~ ADVISORY COMMITTEE FOR AERONAUTICS 

TECIINICAL NarE NO. 1381 

, ' 

NUMERICAL EVALUATION OF MASS-FLOW COEFJHCIENT AND ASSOCIATED 

PARAMETERS FROM WAKE~SURVEY EQUATIONS 

:By Norman F. Smith 

SUMMARY 

A methorl, is presented, for the determina tion by use of charts of 
masri-flow coefficient and associated flow parameters from pressure ' 
surveys in internal-flow systems . For isoenergic flows the point 
mass-flow coefficient is shown to be an explicit function of the 
free - stream Mach number and of the staUc-pressure and total-pressure
loss coefficient.s a.t the measurement station. These parameters are 
easily determined, from the test da,ta j hence, t heir use provides a 
convenient method of eValuat ion of the point mass-flow coefficient. 
The charts presented Gover a wiele range of these parameters through 
the complete range of subsonic Mach numbers. 

The equations haye also been evaluated fpr flows wherein 
mechani cal or thermal energy is adued, such as flows behind r adiators 
or propellers. The fundamental princlples may be applied to the 
measurement of flow from jet -propuleion un1tsj however, under t hese 
condi tioris the mass of the fuel ,and the change in the value of the 
ratio of specific heats must be considered.. 

nrrROIUCTION 

In the determination of the characteristics and flow quanti ties 
in aircraft internal sys tems , to t al- and static-pressure surveys have 
been used extensively. The precise evaluation of the internal drag, 
the mass-flow, and the flow parameters a ssociated with mass flow must 
include consideration of the variation in air density. Because this 
variation in the density complicates t he solution of 'the equations 
involved, a large number of s;teps is required for each point computed. 
A method for the numerical evalua-tion of the wake -survey equations, 
by means of which the values of point drag coeff~cient can be easily 
obtained from tables or charts, is presented ' in reference 1. The 
i temB necessary for the determina Mon of point drag coefficient from 
these charts are the measureQ·values of static ~pressure coefficient~ 
total-pressure-loss coefficien-t, ' and free-stream lv1ach number'. 

J 
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The present paper presents a method with charts by means of 
which the mass-flow coefficlent, Inlet-veloqity ratio, and mass-flovT 
rate can be quickly evaluated in a few steps by use of measured values 
of static-pressure coefficient, total-pressure-19ss coefficient, and 
free-stream Mach number~ The equations have been evaluated for both 
isoenergic flows and floW'S wherein mechanical or thermal energy is 
added . The fundamental principles may be applied to tho measurement 
of flow from jet-propulsion units; however, under these conditions 
the mass of the fuel and the change in the value of the ratio of 
specific heats must be considered. 
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SYMBOLS 

speed of sound, feet 'per second 

velocity, feet, per second 

Macn number (V I a ) 

mass density, slugs per cubic foot 

' .. dynamlc pressure, pounds per square foot (~v2) 
static pressure, pounds per 

static-pressure coefficient 

total ~r~ssure, pounds v,er square foot 

total-pressure loss (Ho - H) 
total-pressure-loss coefficient 

area, square feet 

frontal area, square feet 

mass-flow rate, slugs per seconq (pAV) 

mass-flow coefficient, ( m \ 
:o~Vol " 

point mass-flow coefficient r-p~ \ \::oV 0) 
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T' 

t:.T' 

inlet-velocity ratio 

static temperature, ~ absolute 

stagnation temperature, ~ absolute 

stagr..ation-temperature rise; of (T 1
' - T'n) 

ra tio of specific heats j ' fO.r air "/':= 1 .40 

specific heat at constant pressurej for 
aircp = 6010· foot-pounds per slug of 

E energy input, foot-pounds per second 

K energy-input factor ( . ~ -) 
. . Cp 0 

F c compr~ssibili ty factor (H ~ p) 

Subacr'ipts: 

o free-stream station 

1 entrance station 

s tation in wake where P2:= Po 

K W~~h energy added 

3 

Symbol without subscript indicates local value at measurement station. 

THEORY AND METHODS ' 

Mass-Flow Coefficient 

Basic relations.- The mass-flow coefficient is defined as 

C:::: m 
PQFVo 

(1) 



. 4 NACA TN No. 1381 

For convenience in discussing the solution of equation (1), 
the integrand is defined as the pOint .mass-flqw coefficient c': 

(2) 

The numerical eoluti'on of equation ' (1) l"equiresan extensive compu
tation for direct use. The terms of this equation can be expressed 
by the following relations: 

definition) 

. . . (3) 

and from the general energy equation, as shown in appendix .B of 
reference 2 

where K is the energy-input factor 

K = 

(4) 

(6) 

Examination of equa tions (2) to (5) shows that for isoenergic 
flows, the pOint mass -flow coefficient is. an explicit function of 
the free-stream Mach number Me, the sta tic-pressure coefficient P, 
and the total-pressure-loss coefficient ' 6H(<lo at t he measurement 
station. For flows wher~in energy is added, the additional term K 
in equation (5) mus t be evaluated . . The pressure coeffi cients used 

__ J 
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aremerelyenexpressionofthemeasureddataincoefficientform.
Theseparameterscanbeeasilydeterminedfromthetestdata;hence,
theiruseprovidesa convenientmewo~forevaluationofthepoint
mass-flowcoefficient.Althoughtheexpressionforthe point
reads-flowcoefficientin terms of these parametersiscomplicated,
thecoefficientcanbereadilycomputedforgivenvaluesofthese
parameters.

$soeneruicflows.-Valuesofpointmass-flowcoefficienthave
beencomputedfora widerangeofvaluesof P and @q. for
givenvaluesoffree-streamwchnutiqrsandareplottedinfigure1.
(SeeappendixB ofrefereqce1 fordetailsofcomputingprocedure.)
Therangeoftatal-pressure-losscoefficienthasbeenextendedinto
thenegativeregion(whichindicatesanincreaseintotalpressure)
topermitdevaluationunderconditionsofnetlowener~input
approachingisoenergicflow.Forconditionsdnderwhichenergyis
added,a correctionfactormnz!tbeapplied“tovalues ofpoint,nviss-
flowcoefficientreadfromfigure1<

Thepointscorresponding’totheattainmentofsonicveioiityat
themeasuringstationhavebeendeei’gna$edbyawws onthecurves
forthevarious values ofstatic-preseurecoefficient.Atvalues
oftotal-pressure-lossgoeffici,entlessthanthoseindicatedbythe

. arrows,supersonicflowexists.Inordertoavoidcon@tionthe
curveshavenotbeenextendedinto$’hesupersonicregion.The
equations’presentedareapplicablet&supersonicflow;however,it

. shouldbenotedthatspecial.methods,maybenecessarytoobtain.
..total- andstatic-pressureeurveysinsupersonicfloti.

,. Theplotsoffig&e1 areforvaluesofMachnuniberinincrements
of0s10.Figure2 presentsthevariaticmofpointmass-flow
coefficient,with~ch num~erforvariousvaluesof P and AH/q
andshowsthatforintermediatevalues‘oftheMachnumber,a“linear
interpolationcanbeusedwithsufficientaccuracyformostpurposes.

~lQwswhereinenerzyisadded.-Equation(1)iscorrectforthe
evaluationofthemass-flowcoefficientforflowstowhichenergy
hasbeenadded,suchasflowsthroughradiatorsorpropellers.The

()

,p21/2
evaluationofthedensityratio (equation(~))underthese

g
conditionsIncludesa term(equation(6)) whichIsa functionofthe ‘

energyinput.
()
p 1/2 ma

Theremainingte~ ~
()
q 1/2

,’ ~“ (equations(3)
. .

and(4))areunaffectedby energyaddition.Theexpressionforthe
● ratiobetweenthepointmass-flowcoefficientwithendwithoutaddition

ofehergyisthen .. !.. ..
..
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(

1 + 0 .20Mo 2 )1/2 

::: 1-+-O-·-20-Mo-2-'--+-~ 

This ratio is thus a fWlction only of the free-stream Mach number Me 
and the energy-input factor K. A plot of this ratio is given for a 
range of values of K for various values of Mo in figure 3. The 
value of point mass-flow coefficient for the energy-added condition 
can be found by multiplying the value of point mass-flow ·coefficient 
obtained from figure 1 by the appropriate value of the energy-addition 
factor obtained f rom figure 3 . 

The energy-input parameter K can be calculated directly for 
flow conditions where the energy input i s known; the mass flow is 
measureable and both are uniform across the survey plane. For flow 
conditions where the energ~ input is not known wld where the energy 
input and elemental mass flow are not uniform, an evaluation of 
the energy parameter can be made experimentally with relative ease. 

As is shown in reference 1, the energy paramet er (equat ion (6) 
can be written 

T' - T' 
K 

0 
= 

To 

L:.T' 
:::--

To 

where the prime refers to stagnation conditions. 
is, then, the ratio of the stagnation-temperature 
stream-static temperature. Beference 1 discusses 
these items. 

The ene~gy parameter 
rise to the absolute 
methods for measuring 

Integration teclLDigues.- Evaluation of the total mass-flow coeff1-
cient requires the llltegration of the point mass-flaw-coefficient 
profile. Inasmuch as the evaluation of c' is independent of the 

I 
I 

\ 
I 
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integration process, choice of Jnt egratlon technique can be made from 
consideration of the wake profile and the manner in which the wake 
is surveyed. By use of values of point tnas8-flm. coefficient ob tained 
from the charts presented herein, the value of total mass -flm" coeffi
cient is 

c = ~ r c IdA 
F JA 

(8) 

where F is the area upon .Thieh the mass -flm. coefficient is based 
(1n this case taken as the frontal , ~rea). 

Mass ]'16w 

The mass -flow rate Crul be obtained simply from ~te , mass-flow 
coefficient: , 

" 

The itA~3 ' Po, F, and Vo are normally known f or given test or 
operating conditions. 

I nle t -Velocity Ratio 

(9 ) 

The inlet-velocity ratio Vl/Vo can be evaluat ed from the mass-

flow coefficient 
m 

the free -stream l~ch number Mo ' 

ir~et area AI' From Bernoulli 's ' equation, 

Vo
2 

1 PD Vi
2 

1 Pl 
-2- + 1 - 1 Po = ~ +-.y:-y PI 

the continuity equation 

the relation 

, , 
-~~ 

and the 
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and the isentropic relation 

the following relation is obtained: 

1 -+ 2 
(r - l)Mo 

2 

The solution of this equation is 
stream Mach number in figure 4. 
coefficient based on the entrance 
mass-flow coefficient as follows : 

Ao -.- ::: 
11.1 

= 

(10 ) 

presented for fixed values of free
The rat i o Ao/Al is the mass-flow 
area Al and is obtained from the 

m 
P~A1Vo 

cE-
Al 

(11) 

where F and Al are known areas dependen~ upon the geometry bf 

the installation. Using values of Ao/Al thus obtained permits 
the corresponding value of inlet-velocity ratio Vl/Vo to be read 
from figure 4 a t any value of Mo. 

It should be noted that equation (10) includes the assumption 
of isentropic one-dimensional flow between the two stations involved. 
Isentropic flow c~ ordinarily be expected between the free stream 
and the entrance of an air inlet located at the leading edge of a 
body, such as a nose inlet or wing inlet. However, for entrance 
conditions where appreciable energy losses exist (due to uncontrolled 
boundary layer, for example) , equation (10) is not s trictly applicable 
because the density does not· vary according to the isentropic relation. 
Also, if under such conditions the veloci ty distribution at the inlet 
becomes nonuniform, the parameter Vl/Vo tends to lose its 
significance. For this case, measurement of flow conditions at the 
entrance may be necessary. 

Duct cross-sectional areas at stations other than entrance can 
be used in equation (10) (and in the application of fig. 4) to obtain 
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\ 
\ihe veJ.oci ty at such statlOl'l8) prcv1ded that the flow between the 
frGe stream and the ~tion under cons1~ration is approximately 
isentropic. 

NUMERiCAL EXAMPLES 

9 

Isoene~ic flow.- The use of the charts is illustrated he~ln 
by means of examples. The following condi tiona for the flow through 
an, airplane duct are assumed: 

Po = 0.0020 slug per cubic foot 

Al = I sg~are foot 

Vo = 750 feet per second 

F - 3 square . feet 

At the measuring station 

A ::: 2.5 square feet 

p ;: 0·75 

6H = 0.25 
qo 

From figure 1 the value of point mass-flow coefficient is ob~ined: 

If, for the purposes of the examplei this value 1a assumed to represent 
the averago value of point mass-flow coefficient in ' the duct, the 
total mass-flow coefficient becomes 

m A 
C::: poFV 0 == C I ]' 

= 0 .383 )( . ..0.-
3 

= 0·319 
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The mass ·'flow !illS ' . '~~~ .. 

m = 0.3l9PoFVo 

= 0.319 x 0.002 x 150 x 3 

= 1.436 slugs per second 
.~ . . .. 

'The .- :i.nle.t-veloci ty ratio· is obtained" from the msa -flo-w coeff'i
cient .C in two steps: 

Ao m F 

Al == poFVo Ai 
= 0.319 x :1 

1 

= 0·951 

and from figure 4, for the value of Ao/Al' 

Vl 
- = 0 ·922 
Vo 

Flow wherein enerRY has been added.- Assume, in addition to the 
conditions in the preceding example, that 

Then 

6T' = 20 0 F 

To = 5000 F absolute 

20 
.K = 500 

= 0.04 

From figure 3 for this value of K 

c 'K 
-, = 0.982 c 

The point mass-flow coefficient is 

.. , 

e'K = 0.3 83 x 0·982 

= 0·376 

<. 
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Tb~ proceilitre for determining the rem~ining items is the same as 
for the isoenergic case calculated previously. TheIl, 

C = 0 ·313 

m = 1.410 slugs per aecond 

Ao 
- = 0 ·939 
Al 

V 
..:J:. = 0 .893 
Vo 

The internal drag can be obtained from charts or tables In 
reference 1 by using the same initial values of the parameters. 

L'3..l1gley Memorial Aeronaut iC<:lJ. Labora.-tory 
Natio::1al Adv.isory Committee- for Aeronautics 

Langley Field , V~') ~~ 13, 1947 
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Figure 2. - Variation of point mass-flow coefficient with Mach number To r yorious values 
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Figure 3 .-Ener9y-addition correction factor for point moss-flow coefficient. 
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Figure 4 . - Chart for converting mass- flow coeffic ient to inlet-velocity ratio. Broken line indicates 

supe rsonic flow at station I . 
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