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TECUIICAL NOTE NO. 1383 

TEEORETICAL STUDY OF AIR FORCES ON AN OSCILLATING OR 

• STEADY THIN WING IN A SUPERSONIC MAIN STREAM 

•	 By I.. E. Garrick and S. I. Rubinow 

SUMMARY 

A. theoretical study; based pnthe linearized equations of' motion 
for small disturbances,..is ado,of the air forces on wings of general 
plan forms moving forward at a constant supersonic speed. The 
boundary problem.is set up for both the harmonIcally oscillating and. 
the.steady condi.tIQns. Two typos of'. boundary.conditionsare 
distinquished, which are designated "pur9iy supersonic' t and "mixed. 
supersonic". The purely supersonic case.involves independenc.e of 
.action.of the upper and lower surfaced of' he airfoil and the present 
analysis. Is mainly concerned with this case. A discussion is first 
given of the fundamental or elementary solution . corrospbndlng to a 
moving source. The solutions for the velocity potential are then 
synthesized by means of' integration of the. fundamental solution for 
the moving source. The method is illustrated by applicatIons to.a 
• number qf examples for both the steady and the oscillating cases and 
for various plan forms, Including swept wings and.rectanguiar and 
triangular plan forms. The special results- of' a number of' authors 
are shown to be included In the analysis. 

INTRODUCTION . 

This paper constitutes a theoretical study of the aerodynamic 
forces on an oscillating or steady wing of finite span moving forward 
at a uniform supersonic speed.. The treatment is based on the 
linearized theory obtained by considering only small disturbances In 
an ideal fluid. The-wing is therefore considered to be a nearly flat 
thin surface at .a small angle of attac1,c and the flowIs considered 
nonviscous and free of strong shocks:. The theory in this case Is 
equivalentto finding certain solutions of the. wave equation in three 
dimensions with respect to. -a moving coordInate system. 

For the case of steady motion there exist a.number of interesting 
solutions and methods. Among these may be mentioned the von Karmnan and 
Moore. linearized treatnent of slender- bodies of revolution (reference 1), 
the .Prandtl acceleration—potential method emploed by Schlicting . - 
(references 2 and 3), the Busemann.-me.thod of "linearized.conIcal flows"
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(reference 11. ), studies of Jones, Puckvtt, Stewart, Brown, 'and. 
Gurevich (references 5 to 9); and. a method of von ICrinn employing 
Fourier; integral solutions of the two -dimens'ionl wave equation and. 
described by him as "acoustic oscillator method" (Wright Brothers 
Memorial lecture, Dec. 17, 19146). 

The corresponding unsteady or nonstationary problem for two-
dimensional flow (infinite aspect ratio) may be considered to be 
solved. In this connection there may beinentioned. the work of Possio, 
von Borbely, Temple and Jaim, and the present authors (refQrences 10 
to 13). Of -intest also are two wartime German papers by Schwarz 
slid. Wonl (refe'rences 114. arid 15). The corresponding steady plane 
case to which the nonstationary problem may be' reduced is that 
treated by Ackeret. 

Results f or the nonstationary or oscillatIng cas are of great 
interest in the invostigatió of aircraft instability. The , two - 
dinensional results havebeen applied to a study of flutter at 
supersonic speeds. in references 12 end..13. Of more direct interest 
for this application axe the three-dimonIonal results, especially 
for wings of swept plan form. 	 '	 . 

The method used. In the present study Is. to build up solutions of 
the equation satisfied by the 'velobity potentIal by superposition of 
the ftndainentai ave'potential solution for a spherical, source. These 
solutions re also made to satisfy certiin required boundary conditions 
on the a1rfIl. surface. in the two-dimensional supersonic nontatIonary 
case., which appears her.n as a special limiting case, •.t can be 
proved that the . proQed.ure leads' to a' solution that. Is .th unique 
solution of the g.iven,bound.ary prolem. (For the problem of subsonic' 
flow past a thin wing reference iiay. be made to the gozioral treatment 
and. method. of Kü,ssner (reference 16) which' also Involves solutions of 
the wave equatIon.)	 .	 ''	 .	 , .	 . - 

Some qualitative featt.res of the nature of the boundary problem 
may be mentioned here,. : Further remarks may be found in reference 17 
and in von Karznan 's Wright Brothers Memorial 'lecture. In the case of 
subsonic flow past an airfoil the whole field 'is influenced by the 
body. The concept of circulation has proved. to 'be very use±u1 and the 
Icutta condition' has been used. to specify the. circulation by requiring 
smooth flow leaving the trailing edge.' Thus, ad.eflected aileron In 
subsonic flow influences the flow pattern ' over the whole wing even 
more importazitly than over the aileron itself. 	 . . 

In the case 'of supersonic flow the' In1üence of the body Is
limited, to only certain parts' of the field of flow 'aid generally the 
wake does not influence the upstream flow. The bdun4ary problem for.
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a three -dimensional surface moving at a suersonic speed. can be 
classified, into two typec referred to herein as "purely suprsoitLc" 
and nrLxed supersonic ". The definition of these terms is given in 
the analysis according to the parts of the field influenced by the 
airfoil, the purely:supersoiilc case involving independence of action 
of the top and bottom surfaces and. no reflecting surfaces in the field. 
Thus, in the purely supersonic case, a deflection of the aileron 
would. produce only a local ?ffect at the aileron; in the mixed 
supersonic case, it may have a decided influence on the part of the 
wing adjacent to the aileron or on other parts of the 'wing. For • a 
given wing both types of problems may be involved. 

The treal2nent used for the purely supersonic cases, involving 
source and sink distributions to account for the action of 'the body, 
is believed to be exact within the framework of the linèarlze& theory. 
The upper and lower, surfaces of the airfoil are regarded. as ating 
indeendontly, each surface being 'unaware H of the presence of the 
other. The treatment is thus ena3.ogous to that of sound in a moving 
medium generated by the motIon of pistons imbedded in an infinite 

• plane. This flow.pictureI obviously Incomplete int1e mixed. case 
and more complicated distributions (doublets) axe also required. 
However, for aoms purposes, the sImple' treatment may still be used 
in conjun.ctlon with appropriate correction factors. Also, for 
steady flow a3t a syietrical airfoil at zero lift, the simpler 
treathen1 c be employed for tudy of the wave drag. - - -
	 The object of the present paper is to develop the expression for -
the velocity potential in the purely supersonic case, based on the' 
elementary solution for the sound source moving uniformly at a 
supersonic speed, end.' to indicate Its apJ.icatibn by a number of 
special examples.' 	 "	 '•.

ANALYSIS

Wave ' Equation aM' Source Solutions 

In 'the. linearized theory--based. on snail disturbances.- the equation 
satisfied by the velodity'poteniial for the propagation df sound waves 
of small amplitude is the wave equation 

1.	 =	 +' !i. ^ g',	 (1) 2 t 2	 y'2	 z'2
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Symbols are dfined in apend1x A. I The fluId edIUm is onsidéréd 
at rest at iiffinity. 

In the. treatpent of linear partia3 differential euatIons the 
so-called elementary or fundamental solution Is of great importance 
since general solutions can be built up by distributions of 
elementary solutions. From a physic1 point of view the &lementary 
solution may correspond to a source A discussion of the nature of 
elementary soiUtiOflb for hyperbolic differential eqt1ations of a 
geneial type has been given b Hadamard (reference 18), who makes 
the cardinal statement that "every result of the theory can be and 
has to.b deduced from the consideration of the elementary solution 
only

A funainntal soltion of eqaatior (3) from which general 
solutions may be formed is that of a source of sound fixed in the 
nied1uii

f(t' --)
	

(2) 

where

-	 + (yt -	 !)2 + (z' 

In equation (2) the fixed. source i located at the point (', ri', Y), 
the strength of the eource is A( ', ri ',	 )f(t t), and. the minu 
sign indicates that the spherIcal waves are diverging from the 
center of the disturbance. 

Another closely related solution of eq.uatIon (1) is that of a 
fixed point source for hI sdh the heHcal waiaa. are converging onto 
the source	 -

(3) 

The wave potential In equation (2) is often designated "retarded" 
and that in equation (3) '"advanced". 

It is intended to consider thin lifting surfaces of small curva-
ture which are moving forward at a constant supers9nic velocity v 
and which may be performing small oscillations normal to the direction 
of v. The direction of v will be that o the negative x-axls and.
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the surface will be replaced by a distribution of moving sources 
in the plane .x, z (fig. 1). 

Consider a source moving in the negative x directIon with 
wilform velocity v end. a rectangular coordinate system attached 
to the moving source. If the new coordinates are desiated 
by x, y, z, t, where x =	 + vt', y = y ' , z = z', t = t', the 
equation satisfied by the potential is 

i.	
(1k) 

c2 \t	 ?T/	 x2•	 y2	 z2 

or

1	 2v	 (v2 -	 - 
-- -p; + -	 1	 11 —7-.	 2 - c2 t'	 c2 xt \c	 /	 y	 z 

This equation is satisfied by the potential of sources of sound in 
motion through the medium with uniform velocity v in 'the negative 
x direction. It is also the equation atisf1ed by the disturbance 
velocity potential for a fixed body creating small perturbations 
from an oncoming main stream of velocity v in the x direction. 
A brief derivation from hydro&yriami. cal principles is given in 
appendix B.	 .	 . 

It is 1iown from the classical study of he wave equation 
(reference 16) and. can be verified by direct substitution that a 
solution of equation (1) is transformed to a solution of equation (14.) 
by means of the following àubstitutlons, corresponding to a combination 
of the Lorentz transformation and. a Galilean transformation: 

• 	 .	 •1 y'y 
tttVlM2+yX	

... 

where M, the Mach number of.the in flow, is v/c.'
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For the purpose of etudyin the supersonic case (M > 1), It 
is more convenient to employ modifications of transformation (5) 
obtained_by multiplyi the rieht hand. side by the constant 

1/ ViM2, or

x 

lM2 

V1-

ZI- _____

	

- ____	
(5a) 

d4 

	

c(i	 2) 

The particular solution of equation (14.) that corresponds to a 
moving source will be seen In the fo1lown discussion to be analogous 
to a solution of equation (1) gIven by the sum of potentials in 
equatiors (2) end (3), namely to

- -) +f(t' +	
....	 (6) 

The desired solution of equation ( ii. ) corresponding to equation. ();. 
Is obtained with the aid of the subtitutiôns (5a) as ....... 

where 

•	 r	
•	

/(	
)2	 .2 -
	 [(y.-.	 (z :)21 

(The term.	 in equations .... (5a .) cai.thes no difficulty since 
only the squares of the space coordinates are needed.)
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This solution for	 ' nay be expressed in the form 

Ar / 

rL\ - 2) f(t - 
T1)]	 (7a)=Hf gt T 

where

M ___ r 

M ___ r 
T
l C M _l. C 

and. where r is defined as ir equation (8). The constant A( ,, r, ) 
could of course have been included in the functional symbol f but has 
been separated-for cOnvenience. itbe considered. to re present the 
space variation, of the source strength as distinguished from the time 
variation of strength. For a moving source of constant strength the 
time function may be considered equal to unity and. the potential 
exresod as (reference 2): 	 - 

• 2A 
r 

It will, be recoaized that the-eolution, equation (7a), Is valid in 
a conical region, the so-called "Ivlach conett, openIng aft- of the 
-moving sourôe. Outside of this conical region, defined by the 
equation r = 0, the flow Is undisturbed. 

The result expressed. by equation (7)' ma be considered phyCically 
from two -points of view. In one, as considered by Prandti- (reference 2), 
a source bf variable 'strength moving along a certain path is replaced. 
by a continuou succession of fixed. source-pulses distributed along 
Its path acting consecutiveiy one after the other. Each pulse, 
considered fixed in an absolute coordinate system, emits a spherical 
wave traveling at sound speed, and. the coordinates of th center Of 
the spherIcal surface are 	 + Vt, , . The radius vector B ' -of a 
point • x, y, z with respect to this center is 

-.	 = [x -	 + vt)j 2 ± (y - )2 .+ -(z - )2
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The time at which the spherical wave passes the point X, y, z is 

t=-
C 

Eliminating B between the preceding two relations results in 

	

c2t2 - (x --v)2	
- )2 - (z -	 = o 

The rOots of this quadratic equation in t are precisely the 
quantities 'T1 and	 defined In equation (7a). That is, the 

field point (x, y, z) is Influenced at time t by two waves which 
originated, at tinies 	 and.	 earlier. It is of interest to 

observe that, in the supersonic flow., both roots are real and, positive 
and have physical significance; whereas, in the subsonic flow, only 
one root is positive and of physical siificance. In the supersonic 
case the field of influence of a csource is the' particular Mach cone. 
with vertex at the source and, hrough each point in this region at 
Instant t, there pass two sphexical surfaces representing the waves 
originating at times	 and.	 earlier (fIg. 2). 

Froni the other point of view of the result (equation (7)), a 
single diverging spherical wave-pulse is considered. Let this wave 
originate at the point (f,, , ) at a time T (fig. 3) and consider 
its effect at a point (x, y, z) (within the Mach cone whose vertex is 
at (, n, )) moving with a velocity greater than that of sound. 
Clearly at a later time (T 1- T1) the moving point :penetrates the wave 

front and at' a still later time ..(T - T2) It emerges from .the 'wave front. 

The potential at. x, y, z changes only on entering and on leaving 
the wave front and. the two tet'zns In equAtion (7) correspond to these 
two effects. The factor 2 appearing in the potential , for a constant 
source 'moving at a supersonic 'speed alsO has Ite origin in this 
physical fact, In contrast to that for 'a source moving at a subsonic 
speed, where the field. poInt penetrates the wave front but, never 
emerges and where the corresponding factor is unity. The two-
dimensional supersonic case involves cylindrical waves and the potential 
of 'the point x, y Is continuously changing from the time the point 
enters' to the time it emerges from the 'wave (reference 13). Observe 
the interestIng geometrical property of r (equation (8)), namely 2r Is 
the difference of the radii of the spherical wave at time 	 and. at 

time T1, that Is, 'r = ( T .- T) (Observe also that the potential
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which formally appears in'equation (6) as the si of potentials, 
half-advanced and ha reard?d, transforms in the moving 
coordinates to a sum of retarded potentials in which t1e original 
retarded part is associated with the diverging 3pherical concave, 
wave from which the point is emerging and the original advanced. 
part is .assdciated with a diverging convex wave into which the 
point is penetrating.) Recent papers of interest in connection with 
moving acoiistica]. sources are references 19 arid 20., 

Surface Distribution of Sources 

Sources and sinks of the type: Ø will now be distributed to 
represent the upper and lower surfaces of a thin airfoil. The 
procedure to be followed, is that used ' ix the two-dimensional case 
.(eferencos 10 to 13) where' the' upper and. lower surfaces 'are 
considered separately. Also: the total effect may be separated into 
an effect of ths mean camber àurface and an additive effect due 'to 
thicithess alone. In most of the applications. unles stated to' the 
contrary, the mean camber surface is'considered. ' 

Let a' continuous 'dj'atributio of sources be given over the mean-
camber surface. 'The airfoil ' is considered so thin and fiat that the 
source distribution may be treated in the x, z p1no (fig. 1). The 
airfoir surface may be consIdered moving at a constant speCd v in 
the negative x direction (or fixed in a stream moving in the 
x direction). The effecat a point' x, ' . y, z at time t "of a 
distribution of sources of position magnitude A(, 0, ') j: given by 
an appropriate integratIon over a regiOn of the'	 plane of the 
fori	 '	 '	 ' 

y,	 , t) .	 d d	 '	 (9) 

where 00 represents the functIon given in'equation (7) with r = 0. 

'The total effect at the point (x, y, z) is the eum'of'the effects 
of all disturbances having their origin within the Mach cone with 
vertex at x, y, z and opening III. the upstream direction. This 
conical region need not extend into the undisturbed part of the flow, 
that is, it need not extend beyond the most foxia'd Curfaco' envelop of 
the Mach cones of influence of the body. There are essentially two 
types of boundary conditions that need to be ' distinguished, designated 
by the terms urely supersonic t' and 'ixed supersonic". A point of 
the bo'und.ary belongs tea purely supersonic case if the upstream facing
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Mach cone' contains, in the part of the x, z plane not considered. 
occupied by the body, rio d.iturbed fluid having 'a component normal 
to thi 'surface. Otherwise the oint belongs to the mixed supersonic 
case. A sufficient (but notnec'essay) criterion for.the purely 
supersonic case is that the component of the main sbrea normal to 
any edgd or contour of the plan form in the x, z piano (contained 
within the upatream facing Mach cone of the give point) shall be 
supersonic. There Is no d.ownwaeh ahead of the body, no holes are 
In the body, no spilling of fluid. occurs around edges, and no 
reflecting surfaces are in the flow, field.. , In this case the upper 
and lower surfaces of the airfoil are considered to act independently 
of each other; a disturbance created on one side does not affect.the 
opposite side.. The..±'low can be considered. to arise from the 
appropriate movement of smali'stons acting at the regulating or 
generating urface. This. condItion Is in contrast to that of the 
mixed supersonic cas&, for which . the effect of ' the disturbance , spills 
over the. edges or sides, and a disturbed fluid region (d.owash) 
mayecist ahead of the body. Thus, points cf a triangular surface, 
moving vertex foremost 'and completely outside of the Mach cone 
associated dth the vertex, belong to the purely supersOnic case. 
If tho triangular surface, is inside the Mach cone associated with 
the vertex, the points belcpg to the mixed supersonic case. Of course, 
for a given surface, both cases may be involved.. A few examples are 
shown- in figure 1g..' 	 '	 .	 . . 

In the purely supersonic case the circulation concept playc no 
particular role and the drag . associated with lift or' thIc1iesc may 
properly be denoted. as wave drag. In the mixed Oase the ,f low retains 
subsonic features 'and the drag associated with the lift is sOmet±ms 
denoted. as induced drag. 

Although the treatment givei for the purely supersonic case Is 
belIeved exact within the limitations of • linearized theory, an 
exact treatment of the m.xêd. supersonic case is not available. These 
problems involve greater difficulties in the boundary conditions, 'for 
the flow to a certain extent acquires features of a subsonic flow In 
that the fluid: field. "senses the approach of the body." Thus, In 
certain cases conditions at the leading edge, at th,e trailing edge, 
and. In the.wak must be specially taken into account.' Eow9ver, for.. 
some purposes and in certain problems it may be useful 'to treat the, 
mixed. supersonlO case in th Came manner as . the purely supe'sorIc case 
arid to introduce 'appropriate corre6tion factors'. 	 " '. 

The region of Integration in eqution (9) is the prtof the 
body (.n the ', plane) cut but by thQ upstream opon1n Mach cone, 
with vertex at (x,	 z). This réglonin general d.ope21s on the plan 
form of the bod.y as well as oi (x, y, ). With the udetanding
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that the leading point of the. bod.y is at 	 = 0, the integration 
may be written

A' it 

0	 Ø(x, y, z,t)	
/	 /	 00 d	 (10) 

0	
0	 0	 0	

IJ1 

where

0	

0	

-0•	 0 

0	

: 	
: 	

0	

0 

0	

0	 ./(x	
)2	

0	 - 

= x - Y tfM - 1 

The limits of integration	 eM	 in equatIon (10) may be 

recogni.zed as the distances from the c-axis to the near and. far 
sides, respectively, of the hyerbo1a defined by the Intersection 
of the cone r = 0 and. the plane 	 = 0. Thus, from equation (8), 
With	 = ,	 .	 are recoiized as the roots of the 

equation 

0 0

	 (r)	
= 2j V	 - . ) ( 2	 ) = 0	 : (U) 

The limit	 in equation (10) represents the , coordinate of the 

vertex of the hmerbo1a and 	 defined by the cond±tion	
= 

that is by	 = 0. The point (, z) is the farthermost downetream 0 

point which can affect th,e point (x, y, z). 	 0
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Boundary Condition 

The strength of the ditribution of singularities in equation (10) 
will now be determined by the boundary cond.ition of tangential flow 
along the airfoil surface. The boundary condition may be expressed as 

=	 z, t) 

\ Y4

(12) 

where the airfoil shape is defined by y g(x, z, t) and where the 
two terms represent the norinalvelocity induced by the airfoil shape 
and. by its own proper motion. It is s-iown in appendix C and can also 
be made clear by physical reasoning that as y approaches zero from 
the positive side (y + 0) 

= -2(!	 - 1) A(x, 0, z) f(t) 

or, briefly,	 '. 

•	 A(x, z) f(t) = -	 w(x, z, t)	 (13) 
2it(M - i) 

As y approaches zero in 'the negative h1f pian ., au equal arid 
opposite result is obtained. Equal source distributions on the upper 
and lower surfaces therefore result in a discontinii.ous vertical 
velocity distribution' near the plane y . = 0 and may be used. to 
represent syimietrica1. thickness distributions. 'The source distribution 
representing a thin bod. with arbItrary thickness distribution is in 
general unequal oi ''the two surfaces. The effect of thicknes Is 
discussed in a separate section. A representation of the mean-camber 
surface alone may be obtained by placing equal and. opposite sources on 
the under surface in proximity to the sources on the unper surface. 
The potential	 is to be understood in the subsequent analysis to 
be prefixed by a sian, plus for the upper surface and minus for the 
lower surface. The vertical velocity will in general be measured 
positive upward.
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It is onven1e't to express the 'ert1ca1 velocity in equation (13) 
in opated form

w(x, z, t) = W(x, z) w(t) 

where

W(x, z) = 2rt(M2 - 1) A(x, z) 

'w(t) = f(t) 

Sfae Potential 

The total potential for y 0 may ncw:bo ex esséd. by' irans of 
eqation' (10) and (11. ) as 

z, t)	
/x/2 Ø0d 

1 
PX r2	 (t - T,) + w(t - T 

-	 J j	
w(,,	 d d , (15) 

where, for y 0, (see equations (7a). (10), and (11)) 

- i(x	 ,)	 - 

.-	 c.. 

2	
(;- 1)(2 -) 

= z - 

_x-
so-- 

f3= VM21
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that W(,, ) = 0 at sny point off the 
body or where the interand is not real 

Eqiition (15) y be put Into a simpler fo by substitutIon 
of a new variable 0 instead of , which is àbined from the 
relatlon (see append.Ix C) 	 ..	 ....: 

2 
= (2 -	

COB 0 +	 ^ 

or

•	 =0cos0+z 

The urfaco. potential (equation (15)) may then be written as 

(x, z, t) = -	 f J w[, (e )i [w(t -	 + w(t -	 dO d 

(15a). 

where	 . •	 .x-
•	

=	
2 .(M	 sin °)	 .'	 S

c 

•	
=	 (M+sinO) 2 

: 5 , 	 ___ 

	

0=cos	 •.. .•• 

Equntlon (15) represents the central result of the analysis end. 
within the lImitations already discussed may be applied to winSs of 
any plan form in steady motiOn or performing mal] oscillations. In 
the stationary or steady case,	 does not pen& on time and the 
function (t) is to be rp1aced by unity... Then, in equation (15), 
w(t - i) + w(t - 2) Is to be replaced by 2.
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-.	 •.:	 O551	 Be1ati 

For the sake of reference, re1atioiu for the prossure and the 
lift and. drag forces are given here. The disturbance presum 
(local i.t1c prèasure minuo the pressure In the inidleturbed stream) 
may be ritten as

p =

	

d.t	 -	 -

(16) 
t-	 x 

Thepressure difference (oItiye if acting do4rwaH) at any pôixit 
z ).: may be exresse. as

	

LPj	 L 

where the subscripts U	 and.	 L refer to the upper and lower surfaces. 
For the mean camber surface.	 p, rnj ..and 

= + v .	 (17) 

The tota) forces on the airfoil in the y	 and	 x	 directj.ns are 
given by

YLift;	 p:ac dz 

x = ag	 dz 

where the Integration is to be taken bver. the conipiete irfoii surface. 
Expressed as integrations over the plan form 

Y=Jf( )dxdz 

P 
fi[(4Y)	

()J. 
,z 
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it is often convenientto separate the..slope terms as.follows 

Id.y\
U 

dXJL	
L 

where a. is the conventional d.lrection of the main stream with 
respect to a reference chord., and.	 are the local slopes 
of the airfoil surfaces neasvred. with respect to the ±'eferenôe chord. 
and. positive in the same sense as a.. 

APPLICATIONS 

Wing of Ithnite Span axid. Zero Sweep 

For the first application of equation (15) the results for both 
the oscillating and. stead.y two-imens±ona1 case will be d.erived.. For 
the harmonically oscillating wing having identical motion in every 
chorthriso section, thoerticai velocIty can be written in the 
coinpLox form

w(x, t) =W(x) et 

Then

w(t - T1) + w(t - T2 
= 8t0-iaT2 ^ 

/	 T2+T1 
• 	 • 	 •'•	

•: . -i . • 	
. 	 T2	 Ti\ 

• 	 . 	 = 0	 . . \2e	 ....... COS U)	
.. 

Equation (l5a) becomes	 ..	 • •	

• . .. 

e t	 x, ...
	 1U)M(x) ..	

• 	 /x -	 \ 
(x, t) =	 :	 w() e	 o - sin e) dO d 

(].9)• 

where	 =Vi.
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The intèation with respect to 0 nay be readily perforied 
with the aid of the relation 

I
cos (X sin 9) dO = J0(x) 

Finally	 .:	 .	 .	 . 

et x 
•	 .(x, t) = - --j — 1	 w() I(, x) d	 .	 (20.) 

do 

where

fx\. 
- I,(.	 x).. e.	 j0.—'	

-;;V	
(21) 

This result for the velocity potential is identical wIth equation (ii) 
of reference 13 and. is used therein as a basis for calculation of the 
nonstationary two -d.imensional case. 

In the steady case. u'= 0 and. I( , , x) = 1. The expreesionfor 
the velocity potential is

= --	 w() d	 (22) 

where w() = v . This formula Or the pressure relation 
dx

väy 
p = -pv - = p - 

	

x°	 d.x 

applied to both the upper and. lower surfaces of the airfoil leads to 
all the results of the Ackeret theory. 

Wingofin.finIt&Spn withnle of Sweep 

Consider an izifinite ving rith an€le of sveep A (fig 5), and ase	 that all sections In the fiiht direction are identical In 
shape and. that the wing is undergoing harmonic motion In general
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the vertical velocity w can be itten in the ccnplex form 

w(x, z, t) = W(x, z) •elWt 

If each section normal io the leaã.in edge is performing the same 
mOtion the farm of W(x, z) is W(x - z tan A). :L the wing is 
assumed. to perform pure vertical motion alone, then W(x, z) is 
a constant;. If the wing is asstned to rotate about an axis 
x = constant, then W(x, z): is of the form W(x) 

The potential 1 of the form(fig. 5) 

PX f)lt	 f-'li. P0i 

	

z, t) =
	 j	 /. r d.e d: - j	 j	

F d d	 (23) 

Li 3 L1 O	 tJ.	 0 

where

F(, e, t)	 -	 , (0))[1(tui)	 e(2j 

and. where

x - - 

1-cotA 

- x+71 

l+cot.A 

1(cotA-z \ 
G1cos \Xi3) 

The values of the limIts	 and.	 are found by solving for 

in therelations	 cot A and	 = cot A whichrepresent 

the intersections of the Mach lines through x with theleading edge. 
The limit e	 dorrespond.s to	 = cot A, the lading-ed.ge line.
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When W(, z) is a constant or a fur ction of 	 only, the 
velocity potential can be expressed as 

e t 1 X 	
V 

z, t) = - :

	
() I(, x) d. j

	

w() i, x, z) 

	

-3	 (21k) 

where I(?L. x) is as defined, previously and 

I, x, z)	
J	

cos(	 .s1n) o, (2) 

Observe that the integral involved in equation (27) for I , reduces 

to the Bessel function of zero order when 	 = it as In equation (18). 

This interesting integral may. therefore be caj.led an "incomplete 
Bessel function of zero order. Systematic investigation of its 
properties would. apear to be decirable. 

For the infinite swept wing in the steady case the frequency c 
may be made equal to zero in equatIon (23). Consider as a simple 
example the case of a thin wing at a small constant angle of attack a., 

dy 
that. is, - -a. Let the angle of sweep be less than the comp1ment 

of the Mach angle, that is,	 cot A >1 •(othrwise the cas Involves 
the mixed-supersonic flow conditions). From equation (2!.) with u = 0, 

V 	 V 

I( ,, x.) = 1, end. 
I l( ,,  

x,z) =-,	 V.	

V 

-V h4 
cosi(ot A	

) .
d] 

V 	
V. ; .:. 	 xcotZ	 V 	

-. 

V 	

: 	

V 	

:. 	
V 	 V..	 (26).
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The local pressure difference is gIven by

	

2v2	 p cotA 
/	 2	 -	

(27) 

	

f3	 V13 cot A-i 

This equation red.uces, for A= 0, to the Ackéret result 

- 2pv2a, 
po-

Let the index n refer to quantities, measured normal to the leading 
edge. Then

%=secA 

=vcosA 

II	 C 

2pv 2a	 0 

2 

a result similar in form to the expression for p0 and already 

stated by Luémann (reference 17) in 1935. (See also reference 6) 

The harmonically oscillating case with 'W(x, z) assi.uned. to be 
of the form W(x - z tan A) leads. in a similar manner to a result 
analogous to equation (20). 

1ectangu1ar Wing of PinIteSpan (Zero Sweep) 

Consider a harmonically oscillating rectangular 'wing of finite 
span as in fiu.re 6. Iegion I is described as purely supersonic and 
region II as mixed supersonic. The higher the aspect ratio and the 
stream Mach number, the relatively smaller the region II becomes.
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The potential for region I for identical notion of each chord-
wise section is exactly that given for the Infinite wine In 
equation (20). However, more general types of motion Involving 
spanwise variatldn may also be treated. For example, let.the wing 
perform harmonic osciflations in vertical bending and. In torsion 
about a spanwise axis x = x0 in certain prescribed spanwise 

modes. Than, with a. and. h used. to describe angle of attack 
and vertical position (fIg. 7)	 . 

a aj (z.) a2(t)	
(28) 

b = lli( z ) h2(t)	 J 

where cx1 (z) and. h.(z) represent spanwise modes and 

iwt 

h2(t) = h-COt 

and. a0 and. h0 are constant ccniplex amplitudes. The vertical 

velocity (w measmed positive upward, h positive downward) may 
be expressed as

w(x, z, t)= _[va.+.+(x -x0)&]
	

(29) 

Letthe potential (eq .uatIon (i)) be separated into the form

(30). -	 + h 

where the various 'a are : associated with the corresponding 
variables in equation (29).
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With the use of equ.ti	 (15a), these poténtial .s ay be. 
expressed. as 

= -

	 f 
e	 h1() 008	 sin e) de d	 (3l) 

where 

end, expressed as a function of 0, 

	

=a(z +	 cog e) 

	

h1 () = h1 (z+	 cos o) 

If the modal functions in equationth(31) . 'aré '	 = h= 1, the 

potential corrêspond.c to that given by equation (20) for the two-
dimensional case (see also equation (l Li.) of referonôe 13). It is 
of interest to consider modal firnctôts foi a 1 and h3 of the 
types (/8)n 

where s is the se1span. For modal functions of 
this form the. t3'picl integral involved in eqution (31) riiay be. 
expressed. as

p , =.f(z 
.^	

cos	 cos (in e) de	 (32)



NACA TN No. 1383	
23 

With the substitution of -- - e for 0, F may be written as 2	 - 

2	
q 

	

= (0 ( +	
sin e) cos (-cos e) & 

	

+ f(z -	 sin	 cos	 cos	 dO 

The further reduction of	 is made Tith the aid. of the fo13.owjn 
relation (reference 21) 

f \k 
2X) 

i'€+ )r() Jo

2i 
cos ( cos e) sin 0 dO 

For example, the case n = 0 corresponds to constant modes and. yield 
for the potential the result already- given by equation (20). The 
case n = 1 corresponds to linear thodes and the function F1 becomes 

F =zJ. 1	 . 

This relation utilized in the equation for the potential yield.s•a 
result that is the two -dimensional-case result ' rrlultiplled by the 
factor z/s. The case n = 2 cdrrèeponds to 'parabolld modes and. 
the function F2 becomes.'

:	 •. 

When F2 is used. In equations (31), the Jo term yield.s an integral 
of the type given by equation (20). With, the use of the relation 
J1 (x) = -J0 '(x), the J1 term also yields an integral of the same 
form. Thi type of red.uctlon to the form of equation (20) may be 
made in general for any Integral index n by means of the recurrence
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formulas for Bessel functions, and thus use may.. be made of the 
numerical procedures med ±'or equation (3O) . '(See reference 13.) 

It may be of interest to treat the potential for the mixed 
supersonic region II (fig. 6) as. though it were part of a purely 
supersonic regloil.. The euatioris corresponding to equations (31) 
are

và2	
—Ic! 

i10	 J	
(Xj() 009	 sin 0) dO 

-	 )	 (33) 

and sImIla,r equations for 'j and The limit	
2	

is found as 

the value of	 for which = : OX'

The limit 0 = 0 corresponds to	
=	

and. the limit. 0 

correspod.s to... =	 .. or, from equation (15a), 

-ils-z\ 0,..,	 coB	 1---- 131 C 

The last term in equation (33) leads to integrals of the TTincoiplete". 
Bessel function type as mentioned for the case of the infinite wing 
with angle of sweep.	 . ..:	 -, 

The foregoing results for the oscillting rctangulaz' wing w111• 
now be specialized to the steady case (w = 0, q . = 0, a2 ( = 1.? 

a2 (t) a,, the constant angle of attack) Then, from equations (31), 

the velocity potential for region I is

(314.) 
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The .ctual inteation inequation''(35) maybe eapei'±ormned 
but is noi required for the purpose oi obtaining the local pressure 

The local pressure difference is directly obtaai'.ed. for reione I 
é.±id II. fromèquations (314.) and (35) as 

2. 
:	 '..:	 2pv	 .	 .	 ,. 

P	 ='.... .	 '.
I

>	 (36) •2	 r	 ..	 . 
______	 •l	 -i fe - z 

p	 I1--'cos	 -	 13 
"	 L 

It may be observed that p is constant along rays from the 

tip	 = Constant. Along the ray corrsponding to the Mach line 

from the tip	 =1 and p takes on the cOnstant value p1.' 

Along the ray correspondIng to the tip z : 3, h3.1f f ...his valu... 
is o.btined. This edge condition is physically incorrect since the 
assumption of the independence of 'the two surfaces of the airfoil Is 
not cor'ect' near the tip.. 	 :.. 

This particular problem has been treated by.. Busernann (reference 14.) 
by his method of conical or erspeótive snxmietry. The condition 
along the ray corresponding to the tip is p 0 and. Busemann' 
result for region 11:18 •. . 	 . . . 

•	 . ..	
2v2a 1 '• -1 f•	 2(	 z) 

• .	 Prr	 ---cos	 l-	 13, .1..i.	 3	 t	 .	 .	 X	 / 

The total. lift over cegIon II is one-half of thatof an equal area 
of region I. A cparièon of this result and equations (36) is 
shown in figi.re 8. This comparison giveC an indication of the 
errors involved, in the assumption of ixideoendence of the two surfaces
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near the rectangular tip and conversely It gives an Indication of the 
appropriate correction factors reciulred to allow for the tip effect. 
It appears that equations (36) overestimate the lift over all of 
region II by a factor 1 	 or by approxImately 36 percent. 

ThIcIQless Distribution 

It has already been remarked that the treatnent employed in 
the ana.lysis mainly for the tnean-camber surface can also be applied.. 
to obtain the effect of thIcIuiess.' In equation (15) the vertical 
velocity W(, ,) may be specified for both the upper arid the lower 
surface. 

As an example, consider a plan form such as that shown in 
figure 9 in steady supersonic flow. Let the airfoil section shape, 
for convenience chosen syetrical and independent of span, be 
defined, in the center: section by y =g(x) (and. in any other section 
by y = g(x - z tan A)). Then, for the upper surface, 

W(x, z) = vq. +vg' 

arid, for the lower surface, 

W(x, z) = vn - vg' 

where g' Is, the derivative of g with respect to its argtent.. 

The velocity potentials in the various reiois . in fIgure 9 are 
of the form

px: t,	 'íA 
L/ Pd- /	 /. Faea 

r
F	 + J:	

J'	
F dO 

-	 0 'ic	 '	
i'6 Pt. 

If 
F dO d +	 F dO 

Lv 3	 l	 0	 ,.

(37)
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The lImits in the fcreioing Integrals are as follows: the
limits	 and. 9	 correspond respectively to the- ieadIn-

ed€e lines	 =cotA and. t,	 -!. cotA; e= o and 9	 it 
correspond respectively to the r4ach lines 	

=	 = 
and.	 are obtained, respectively, from the relations 

	

= cot A and.	 = - cot A; 0 = 02 corresponds to	 = 
is obtained from the relation	 2 = s;	 i obtained from 

	

2 °, cot A; and.	 is the value of	 for the leading edge 
of the tip. Then

1 (cotA-z \ 
0 =cos t	 ---6 1	 \ 

-i /- cotA Z \ 
0 = cos t--	 -----11.	 :-

-1 5 - Z 
O2=co 

x-z	 -	 x±Z	 x-zj3 

1-A'	 .l+A'	 6i•+A 

2_ L(5	 r=stanA; A=cotA. 

If, for example, the d.lstributioxi function F is a constant K 

-	 xc0tA-

2 A--i 

-	 - 
011 01 - J	

O d +
	

0 d 

=	 -	 d +	 (	 Oh) d.
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The corresponding local pressures are

	

pvK	 A 

	

pVK	 A	 ( i	 —l1l^AB 
p	 ___ l--cos	 - 

	

\JA1"	
A+B 

	

- pvK	 A	 ( _j 1 + AC	 i 1 

	

p111 - -- _____ - cos	 + cos
A—C 

A2tl/l 

A-1 

where

A=cotA 

	

B=	
(s-.-z)13 

x—e tan A 

The constant K may be interpreted. as va associated. with 
constant angle of attack. In this case. region II is to be regard.ed. 
as a mixed. supersonic region and. the result given is not the 
appropriate solution for this region. If the constant K is 
interpreted. s' gt = Constant, the results are applicable to a thin 
symmetrical wed.ge of half vertex angle K and. may be emp1oed to 

yield. the wave drag according to the linarized treatment. 

Jones (reference 5).treats symmetrical airfoils of various plan 

forms at zero lift by use of pressure potential. The use of velocity 
potential leads to the same results as given in referenc.e 6. Thus, 
equations (13) and. (l ii. ) of reference 5 for a wedge correspond to the 
preceding reaults. The velocity potential In general is more useful 
to treat pressure distributions for a given body whereas the pressure 
potential may be more readily adapted to treat airfoil shapes and 
plan forms associated, with desired. types of distributions of pressure.
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Trian€ular Plan FOImI 

The triangular wing (fig. 10) extending across the Mach lines 
from the vertex may serve 'as a final exa3nplé For the steady case 
of a venishingly thin surface at angle of attack a., the velocity 
potentials and pressure relations for regions . 1 and III are 
equivalent to those just discussed in the precedIng section. The 
lift .L on a strip & of the triangle located at abscissa x 
from the vertex is given by 

px cotA 
AL=& I	 .pdz 

)-x cotA 

	

= [v2a AVA - :L +
	 A	

- i)] 

A ' ^l	 A+]. 

where the two teris correspond to the integrations over regions I 
and. III, resective1y. Then,

'2
Ax x 

H2 

• The area of the strip is 2x & cot A and. hence the lift coefficient 
is independent of x and. equal to

2X2A&) 

'l.a. 

Gurevich (reference 9) treato this case and his relations can be 
shon to 'o equivalent to the foregoing ones. The pressure 
distribution is illustrated in figure 10, ihere p0 , the reference 
pressure, is 2pv2a./f3. Observe that the pressure area above the 
unit ordinate cancels the area of pressure deficiency below the unit 
ordInate. Also shown in figure 10 is the distrIbution of pressure
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as the half vertex aügle of the triangle approaches the Mach 
angle

The triangular 1ng inside the Mach coxie frc$m the vertex 
reguires a more elaborate treatmeit(refe'onces 7, 8, and 9). 

Langley Memorial Aeronautical Laboratory 
National Advisory Coiittee for AeronautIcs 

Langley Field, Va, Jine 1, l97
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APPEIWIX A 

sY1oIs, 

disturbance-velocity potential 

$Q	 potenti1 function defined in equation (7) 

x', y', z'	 rectangular coordinates for fixed system 

x, y, z rectanu1ar coordinates attached to source movinc 
in negative x direction; also represents field 
point being influenced 

t ii', '	 rectangular 000rdinate6 used, to represent space 
coordinates n fixed. system 

, i',	 rectangular coordinates used to represent space 
location t source distributIon A(, r, 

t,. T, t'	 tiliie 

v	 velocity of main stream 

c	 velocity of sound 

M	 Mach number (v/c) 

r	 distance defined by equatIon (8) 

Tl 12	 tIne function defined In equatior (7a) 

A	 In applicatIons, f3 cotA 

g	 function defIning airfoil surface (y = (x, z, t)) 

	

,	 .,	
. limits defined in equation (10) 

9	 variable used. instead of	 defined by relation
preceding equation (l5a) 

p	 pressure
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p	 reference pressure 

p	 density 

a.	 an1e of attack 

&	 tine derivative of a. 

w	 anu1ar frequency 

q	 relation defined in equation (31) 

w(x, z, t)	 vertical velocity factored in equation (1 14. ) as a 
space function W(x, z) and. time function w(t) 

A	 an1e of sweep 

h	 vertical displacement 

time derivative of h
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APDIX B 

DIFFERENTIAL EQUATION FOB TUE . VELOC[T1 POTENTIAL 

A derivation of equation (t) is Civen briefly here. The 
condition f or irrotational flow is 

cur1=Q	 (Bi) 

and. this relation imiDlies that a scalar velocity potential 0 
exists, such that

.=grad	 (B2) 

The general equation of continuity 

^ div pV = 0 

may be iritten as

lDp'	 •2 	 - —+VØo.	 (B3) 

where differentiation fo.1owinf the particle is denoted by. 

D - +	 . grad) 

and.	 = dlv grad is the Làplaclan operator. 

From Euler s equations, or from the general Bei'noulli relation, 

?	 v2'1d 

	

+ / —=o	 (Bl) 
t 2 

where a space constant function of time has been included in , and 
where it has been assumed that p is a function of p only. 
With the use of equation () and the acoustic relations 

= .
dp
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where c is the local variable speed of soi.md, it follows that 

f4. v2'\	 1 grad	
.	 = - 

—rad p 

c2•	 - = --ad p 

and.

1(	 •• 

t\t2	 pt

e. 
p t 

With the aid. of these two relations the first terni in equation (B3) 
becomes

1 i	 1 (2
	 6v2 

--i — +—^v .
p Dt	 c2\t2	 t	 2 

For small perturbations fromthe main stream of velocity v in the 
x direction, c ay be coisdered. equal to the constant speed of 
eoimd in the und.isturbe& medium and, in comparison with v, v. = 0, 

and. v±=v. Then

	

•	 2 

p Dt	 c2 \t2	 a t 

With this relation used. in equation (B3) the equation fo the 
velocity potential may be put in the form given in equation (ii.) 
of the analysis.
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APPE1'D3 C 

EVA.LUATION OF () 

In order to determine the limit of -. as y-3 0, It Is 

convenient to make use of the following substitution 

2 
= ( -	 +	 1	 (ci) 

The expression for	 (equatiori(1b)) may be written with the aid. 
of the fo11oiina relations (see equation (11)): 

r =

12 -_1. 
2 

=jO 

= j	 f A( 0, z	 cos e)(fj +	 dO d	 (C2) 

where

fi = f(t T1)=	
- M(:- ) 

+	

5) 

r = r(t - T = f(t- M(x - ) -	
sin e 

2	 2/
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By the rule for d.!fferont.atcn of a d.efinite integral 

(hT	 \ I	 My\. 

y JO	 (' 
o, z)ft - 

	

i1 )1 !t/	 \ 
4. I	 I. (fi + f2)	 d.c d 

, LJQ	 (10

It 

+ J	
A	 + f2) dO	 (03) 

Make uco of the followirg relations: 

+ O• 

( ^ 

= - -- cos e 

+ t2)	 r1	 ?(t T)	 3f2	 (t - T2) 

?	 - T,)	 . ( - T) 

is	 /	 .	 -' =---f, -f2p--sLn& 
\ L	 / 

Thcn, by int9;iaAoL by parts, the next to the last intera1 in. 

equation ((3') :co:ies (with eQs 0 dO	 dv ; -. -	 + f) = u) 
?Zy 

flr	 . 
I	 A r'>	 .	 F 

I	 I	 + f2)	 n 0 
J0	 L° . c. Y '	 .	 -	 JO 

-y

 f

jl t

	

JO 
[(r1 + f2)'_.sin2e	

:	 !--(. - f2) 31fl 0 005 0] dO 

where the first term vanishes because sin El = 0 at 0 0 - and 9 = it.
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Simi1rly, (with sin e .ae 

the last integral in equat 

	

• j.	 I 

	

,,J	 t_

= dv -. .._2_ (f - f ' = u) 

	

1	 2, 

ion (C3) becomes 

(f1 -	 e] 

ri	 P[ 1 	 •.	 .•.•.• 
+.: . y J:	 I- :1	 -(	 -	

in &	 o Jr	 Jo L C	 t	 . -,	 .	 . 

-	 A2	 ...21	
:.

. 

-where the first term vanishes because f 1 = f2 at 0 =0 arid. 0 = it. 

men;'as y approaches zero frOm the poitive.siotere 
results in. the. :Iit a bntribution only front the first intgra1 in 
equation .(C3).,:...	 .	 •	 .	 .. 	 .. .. 

(-)..... = .22i) A(x, 0, z).f(t)	 (Ct) 

Since. -.-- ciianés sian- s y chn6es si. it follows that 
-	 .• 

as y aproaches zcro frorthneative.side an equal and..opposite 
result -is: obtained. 	 .
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Figure 10.- Triangular wing in a supersonic stream and pressure 
distribution. Case sketched corresponds to A = 300, M =
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