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TECHWICAL NOTE NO. 1321

AN IMPROVED METHOD FOR CALCULATING THE DYNAMIC
IESPONSE OF FLEXTBLE ATIRPLANES TO GUSTS

By Abbott A. Putnam
SUMMARY

A set of equations baded on the first mods of wing bending is
presented for determining the dynamic responses of an alrplane wing
structure as lnduced by gusts. The repréesentation of the alrplane is
such that the asrodynsmic damping of the vibratory motion of the wing
is separate frcm that of the vertical motion of the alrplane as &
whole. £&n easily evaeluated solutlion of the equations for a unit--Jump
forcing function is also presented which may be bullt up to determmine
the response to any forcing function. A chart is included by which,
for a conventlonal alrplane, a typical forcing function for any
gradient gust may be chosen.guickiy.

Satisfactory agreement within the 1limits of accuracy of the datsa
was found 1n a comparison of calculated response of a semirigld test
model with experimental results.

INTRODUCTION

Tre dyncmic respenss of ailrplane wings to gusts has becoms of
greeter rnterest as the size and spsed of transport and bomber type
airplares has increased. XKisener {reference 1) sets forth the general
equatlions for determining this response, but the complexity of the
solution of these equations has led most investigators to maeke
simplifying sssumptions in order to reduce ths equations to a fom
which is more readily solved. In reference 2, the assumptions made
reduce the equations to those for a biplane equivalent which simulates
the fundamental mode of bLending of the wing of the actual alrpiane.

A comparison of calculations with test results in reference 2
indicates that the method used ylelds maximum values which are in
good agreement with the test results but that the calcuiated time
histories of the responses do not agree well., The reason for the
disagreement was found to be that, with the blplane eguivalent, the
aerodynamic—~damping coefficlents of the wing bending and the airplane
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as a whole, which vary in relative importance, are approximated by
a single constant in each damping term,

In view of the limitations of the method of reference 2, the
method presented herein was devised to provide sercdynamic damping
that is more reprssentatlive of the actual case. Although 1% was
derlived independently from thée concepts of the effects of stabillty
and unsteady 1lift used in reference 2, the flexural system was
congidered in much the same way as it was considesred by Williams
and Hanson in reference 3,

Solutions of the equations of the present method for a unit--
Jump forcing function ere also presented. These solutions mey be
built up lnto the response to arbitrary forcing funotlons with much
less labor then when, as in reference 2, a direct sclution for esach
foroing function ls performed.

Also presented 1s a comparison of teat results for the semi--
rigid model of reference 2 with results caloulated by the present
method, In addition, a chart is presented to éensble s typical
forcing function for any gust gradient distance to be chosen gulickly
for a conventional alrplans.

SYMBOLS .
t time, seconds
) alr density, slugs per cubic foot
dcy,
i slope of 1lift curve, per rasdian
v forwerd velocity, feset per second
] gross wing area including area Ilntercepted by

fuselage, square feet

Sy net wing area, square feet ) _ —
S¢ intercepted fuselage area, square feet i
¥y coordinate along span of wing, feet

n(y) mass of wing per unilt span, slugs per foot

c(y) wing chord as a function of wing spanwise gtation, feet
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Fy

Fp

Ate~bt
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root chord of wing, feet

tip chord of wing, feet (tapered wing)

6 - 8
normalized deflection curve of wing, 85 i)
absolute displacement of fuselage, positive upward, feet-

deflection of wing tip with respect to fuselags from steady
flight condition, positive upward, feet

absolute displacement of any station on wing, positive
upward, feet : .

total mass of alrplsne, slugs

fuselage mass, slugs

wing mass, slugs B
equivalent wing mass, slugs

demping coefficient of alrplane, pound-seconds per foot
fuselage damping coefficient, pound-seconds per foot

wing damping coefflcient, pound-seconds per foot'

equivalent wing damping coefficient, pound-seconds per foot
natural frequency of wing, fuselage fixed, cycles per second

natural frequency of wing-fuselege system about nodes, cycles
per second

spring constant, the wpward force on fuselage due to both
wings when in assumed deflection shape, per unit tip
deflection, pounds per foot

fractlon of forcing function acting on wing

fraction of forcing function acting on fuselage

forcing function assumed for conventionsl airplane

An W

A==

te-bt

at bpt=1 or A = Wbe Ana
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Ang arbitrary load-factor increment that the alrplane would
experience 1f it had no vertical motion as it traversed
the gust, g :

W total weight of sirplane, pounds

1

b= &

'bB‘ time to reach forcing function pesk from entry, seconds

ta time to reach gust peak from entry, seconds

1 unit- jump wing forcipg function (:[ =0 for t<O
1= 1 for + > 03 '

n = wae

XMke
M
B = L
AMgp
I‘mw
£ = Ao
2
M\~ KM
7= ()
M.
g

Z real root of equation z3 + (g + 8)z2 + (y +nBlz + 7 =0

¥ real part of complex roots of foregoing egquation (xy = - ?t_j'%"'_ﬁ_)

Q ‘imaginary part of complex root of equation represcnted by 2Z

()
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I =322 4 2(n + B)Z + (7 + n8)
p I

Mp

FeMn
Q=—M§-

E P2.2+QZ+7

O sl
Myo M My,

g TwMe FeMlyy o
Mg Mp My '

B=1Z2 + N

METHOD OF ANALYSIS

Equations

In the derivation of the present equations for the dynamic
response of airplene wings to gusts, certain of the initial assump-—-
tions are the same as those of reference 2, namely:

(a) The loading is symmetrical
(v) Only the first mode of bending is important

{c) The deflection at any point on the wing msy be expressed
with the necessary accuracy as g(y) times the tip
deflection Prelative to the fuselage where g(y) is
variable with span but independent of time

(d) Demping varies linearly with vertical velocity

Instead of the biplane equivalent of reference 2, however, the air-
plane is considered as shown in figure 1. With this representation,
the equation for the summation of the vertical forces on the fuselage
under the unit~Jump~type forcing function Ff_Z 192
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4% e 1

Mp =35 + M ~ K 8 = Fp (1)
- at

and the equation for the summation of the vertical forces %ver ‘the

entlre wing under the corrvesponding forecing function. Fy is:
328 1
eftip n(y)ay 5z + zf P 2oy )d.yé-%+K5d=Fw] (2e)
root root *w

When the indicated integrations are performed, equation (2a) reduces
to:

2
a8 e
—f 4 f

I
5 as

2 + Yoo dt; * Mg TG%'+ o = ¥/ (2b)
at

The advantage of using the present concept of the alrplanse as
shown in figure 1 over the blplane equivalent of refersnce 2 is
immediately apparent when the damping terms of equations (1)} and
(2b) are examined. The damping of the vertical motion of the sirw
plane as g whole 1a now separated from the demping of the vibratory
motion of the wing, which thus eliminates the necessity for the
compromlise mads to represent the damping when the biplane equivalent
is used, This result is achleved by redefinition of the mass and
mass distribution and by basing the dapping of the equilvalent wing
mass on the vibrational velocity rather then on lts absolute verticsl
velocity.

The solutions of eguations (1) and (2b) under action of the
unit~Jjump forcing functlon for the fuselage aoceleration increment,
wing-~tip acceleration increment relative to the fuselage increment,
end the wing-tip displacement relative to the fuselage with the

. : ad )
initlal conditions of steady flight, when Op = B3 = -a-;cf = %._td = 0 are:
‘2 ¥l
5 t *t E A
Sl P { :12 KP"T cosEOt
e

+5<P\V+PZ+-Q+§‘E)sin%ﬂt1} 7 (3)
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2 A A
d.5d =7t =¥t
— % _ 1 /ZB T M _ZB M
22 = M {I‘ + g K — cos -Hgt
VI  yoB QB} M os ] |
+ —= in2
- +91"+I‘- snMQ-b]f_Z (4)
A A i
M [x Mt MWl /g N
=5 =;:§ :)7-!- 718 + & —\ZT+'1§'/ GOSAQt

o wn A
+ TV + ;ﬁ'/ gin ﬁﬂt]}'] (5)

The acceleration increment of any point on the wing relative %o
the ground, which is of interest in certain design problems, may be
found from the equation

d2s 5_25f d-2§d_
ErirrcRi (6)

If the applied gust is assumed to be uniform across the span of
the airplane so that the distribution of forcing function is similiar
to that of the damping of the vertical motion, that is, if

1 Fe By '
SR equations (4) and (5) may be simplified to:
2 , A A
4=p [ 52 =32t =Yt 2
_.._._g‘-_:_L.«i-_z_'_ eM +eM [(l'——z— GOB-&Q'{"
a2 M LT r M
v ¥ 20 n
+ g + 5t T sin Mﬂt -7 (7)

» A
=Zt TAAY N _
5d_=M %[SM +eM <_cos-§9t+%sinﬁﬂtj]z (8)

If, in a given case, it is felt that torsiom of the wing
would invelidate the results, a first approximation to the response
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of the first combined bending-torsion mode may be obtained by the
redefinltion of the spring constent, the equivalent wing mass, snd
the wing damping coefficlent to teke into account the added degree
of freedom. Terms which contain the redeflned constants then merely
replace the terms previously used. when equations (3), (4), and (5)
are evaluated.

Evaluation of Constants

Damping coefficients.- The damping coefficients are evaluated

a .
from the relation A = 0.75 ag; % SV vhere 55; % SV 1is the term

for the steady 1ift per unit vertical velocity increment. An
effective damping factor of 0.75 18 ilnserted to take care of the lag
In 1ift end variable damping of the actual case. The simplifying
agaumption of a constant effective dsmping factor rather than the
variable factor of the exact theory is Justifled by s series of tesis
end computations reported in reference 2. The damping coefficients
are therefors - . . S = -

a
xw=o.7555-CLgvsw _ _ g = 0475 CLgvsf

ac 1p |
Mig = 2(0.75 a-&-]'f & V) ‘*.[:/':ot c(y) &(y) dy

The coefficient Mg Includes the varistion of wing velocity

relative to the fuselage in accordance with the assumed wing deflec-
tion curve. If the deflection of the wing is assumed tohvary with

square of the distence from the root, Mg will equal 1? for

LW Cq + Jey
elliptical wings, and ~— { ———2} for tapered wings.
6 C+Ct

8
Spring constent and equivalent wing massg.- When the equivalent
ving mass M, 1s determined from the definition
i

» o
MWé = 2 gét m(y) aly) dy, the spring constant K wmay be computed
oot

from My,  and either of the natural frequenciés fy or fpe IF the




NACA TN No. 1321 . )

fuselege 1s fixed and no damping is present, the solution for ‘the

natural frequency of the wing leads to £y = =55 VFMW “In the

case where the wing-fuselage combination i free to vibrate sbout the

' 4 KM
netural nodes, the solution gives the frequenoy fo=r§§'VT§;TET .
)

Forcing function,— The forcins—function ratlos Fp and Fy

may be evaluated frcm the assumption that the forcing~function forces

Mo

are distriduted proportionally to the damping forces; thus Fp = <

A
and Fy = j? and, although this assumption may not be exactly correct,
it allows Fr and Fy to remaein constant throughout the time history.

Solution for roots of auxiliary equation.~ In order to
determine the solution of the differential equabions, the cubic

23 4 (n+8)22+ (y + 4Bz + 7 =

must be solved for the thres roots, Z, ¥ + 1, and ¥ - iR. For
typical cases, the value of Z has been found to be betwsen —1.000
and -1.020, and can be determined with sufficient accuracy by
stralght line interpolation of the value of the cubic at

z = ~1,000 and z = —=1,010, The value of ¥ 1s then -—-2 t_’L_@

and Q 1is \/—% -2,

Determination of Response to Gusts

In order to determine the response of the flexible airplans to
a given gust, a forcing function representing the forces on the ainr-
Plane when considered to be rigid is combined with the response of
the flexible airplane to the unit—Jjump forcing function by use of
Duhamel's integral. Since equations (1) and (2b) contain terms
representing the demping of the verticatl motion of the alrplane as
& whole, the forcing function representing the gust need only contain
the effects of the imposed gust and of the pitching stability of the
airplane. Although the function may be computed for each gust shaps
and for each alrplane, it was found (reference 2) that for most
conventional airplanes the forcin% function could be reprosented by
a curve of the general form Ate™ In order that, for a given
elrplane, the functlon represent a specific gust shape, a relation
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must be sstablished between 1t and the shape of the gust. It has
been found that if a rigid alrplane model is flowrn through a gust of
& standaxd shape (that 1s, one having & linear increase of gust
veloolty to a maximum value which is maintained), reaching the
maximum at the time. tg after entering the gust, the acceleration

record of the alrplene will show a maximm at approximately the
time tg (reference 4)., The desired relstion 1s, thersfore, one for

which the maximum acceleratlon of the flexible alrplane, if considered
riglid, occure at tg. The equation contelning this relation

Ao X b
A 2 (M e A M _ A
(ﬂ“‘) S -t ° =2th+z‘,;;‘l..“M’°G (10)
M

may be obtained from the equation for the reaction of the rigid
alrplans to the impressed forelng function

2 5 _
M 88 Ly B2 | age Pt (11)
202 at

by solving for the acceleration and determmining the time tg to

peak acceleration. If the dimensionless values %tF and ﬁtg are

used, the solutions of equation (10) may be expressed as the single
curve in figure 2. Thus, values of ty, which are the inverse of

b, may be obtained directly frem g,

APPLICATION OF METHOD

Since the absolute values of the response of an alrplane to a
known true gust velocity cannot be determined at present, the arbitrary
multiplying constant A 1is used in the forcing~function equation,

By spplication of ths methods outlined in reference 2, howsvelr, the
retlos of the dynamic responses to the responses under so-called
static conditlons may be computed. These ratios, which are inde-~
pendent of the arbitrary constant, are then used as multiplying
Tactors to the corvesponding stresses and acceleration increments
determined by normal static deslign procedure to determine these
responses under dynamlc condliticna,
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COMPARISON OF THEORY AND TESTS

As & mecasure of the accuracy which might be sexpected frcm this
theory, responses have besn occmputed for the semirigid model reported
in reference 2 and are compered hereln with test results, The
quallity of the test results and the factors which may ceuse differences
between theory and test results have been dlscussed in couslderable
detall in refersence 2 and will not be mentioned further,

A linear deflection curve was used for g(y), the deflection of
the wing, and it was assumed that the lift and dsmping forces on the
fuselage were negligible and could be set egual to zero. The spring
constants for the two frequencies tested and other cocefficients were
eveluated from the original test date but may be obtained from the
equlvalent values given in reference 2.

In figure 3 are shown the theoretical curves for the variation
with gust gradient distance of the ratio of the maximuwm wing tip
deflection to the maximum fuseliage acceleration for two wing
frequencles, and the test results are plotted thereon for comparison.
It should be noted that the straight horizontal lines obtained are
for the test hinged wing with no fuselage 1ift and damping. In the
general case, the llne would have some curvature, the direction and
megnitude of which would depend on all the airplane and gust-shape
parametoers.

At the higher frequencies in figurs 3 there seems to be a
tendency for the curves to fall e little low for both wings. This
result could indicats that the actual frequency of the wings was
not quite so high as 26.1 cyoles per second but, bscause of the ssatter
of the points, nothing definite can be concluded. Consider only
the left wing, which according to reference 2 produced the set of
wing data mors likely to be correct. The points ars noted to fit
a stralght horizontal line., In the cese of curves for the lower
wing frequency, the scatter sppears larger but, on a percentage
basglis, 1s not, The tendency is for the data for the right wing to
fall high and that for the left wing to fall low. Since it appears
(reference 2) that the right wing hinge tended to buckle, the
indicated differences would be expected. Agaln, no definite con~-
clusions can be drawn, although the straight horizontal line seems to
be a good fit to the test points.

Sample test wing-tip-deflection curves are compared with the
calculated ourves for three gust gradient distances for a wing
frequency of 13.5 cyoles per second in figure 4, and for & wing
frequency of 26.1 cycles per second in figure 5. It will be noted
that in all the cwives the data are plotted as the ratio "83/83
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so that prediction of the magnitude of the forcing function from
the gust veloclity 1s not necessary.

The agreement between the shapes of the calculated and the
experimental curves 1s satisfsctory in every case, especially when
it is considered that tke general forcing function Ate-Pt was
used in the calculations and that msny unimown factors can cause the
test results to deviate from those for the assumed condition. The -
timing of the peaks, which depends largely on the natural freguency
of the wings, is good, except for the sharp-edge guet, where the
use of an average effective 4.6-chprd gradient distance, as suggested
in reference 2, for computing all responses for the test model would
affect the results. The amount of damping of the various curvos,
however, seems to be somewhat underestimated in the computation.
Since the fuselage-acceleration curves of the tests show even more
demping present then the calculations, it appears that a small
amownt of fuselage demping should be included. In the case of the
conventional airplane, this fuselage dempling has been allowed for in
the theory by use of the intercepted wing srea, and deviations
between theory and test from this cause should be minor.

Comparison of the results shown in figures & _and 5 with similar
results given in flgures 13 and 1li of reference 2 indicates that the
method of accounting for the damping distribution in the present
paper ylelds calculated time histories of results that are more in
conformity with actual conditions. Although the two methods yield
about the same results for the maximum responses to single guats, the
time historles determined for single gusts by ile present method
are belleved to be more accurste for use in building up the reactions
to repesgted guets. _ o .

CONCLUDING REMARKS

A comparison of test results on a semirigid model with the
results of calculations made by the method presented indicates
thet an Improvement has been made in the calculation of the time
histories of wing deflection and acceleration increments wilthout
impairing the accuracy of the calculation of maximm values. In
addition, the solution of the baslc equations for the unit- jump
forcing function, together with the presentation of a chart for
determining a sultable forcing function for a given:guet, has
materlally reduced the time necessary for making a set of
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celculations of the dynemlc response of the wings of a conventlonal
airplane to z gust,.

Langley Memoriel Aeronsutlcal Laborsatory
Natlonal Advisory Committee for Aeronautics
Langley Field, Va. January 22, 1947
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(b) Gust with 7.8-chord gradient distarnce.
Figure 4.— Continued.
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