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INTERACTION BEIWEEN THE SPARS OF SEMTMONOCOQUE WINGS WITH CUTOUTS

By N. J. Hoff, Harry Kase, and Harold Liebowitz
SUMMAKY

The stresses in the two spars of a model of a wing having three
rectangular cutouts were calculated by the PIBAL method, a modification
of Southwell®s method of systematic relaxations. The model was built
and tested in the Polytechnic Institute of Brooklyn Aeronautical
Laboratories and the deflections and strains measured were compared
with calculated values. The agreement was found to be satisfactory.

INTRODUCTION

Many modern airplene wings are built with two spars rather than ac—
cording to the true monocoque principle. Spars are provided because the
full utilization for load-—carrying purposes of the skin and its rein—
forcements is not possible when there are many cutouts for retracting
landing gear, wing tanks, armement, and so forth near the rcot. The
calculation of the interaction between the spars is a difficult task if
the rigorous methods of the theory of elasticity are used. To disregard
it, however, is wasteful since the ribs and the skin provide a compar-
atively strong elastic connection between the spars which relieves the
more highly loaded spar at the expense of the less highly loaded one.
The interaction between the spars of fabric—covered wooden wings was
investigated by many authors. The earliest attempt appears to be con—
tained in a paper by L. Ballenstedt ﬁref°rence 1) published in 1918,
while in the late twenties Th. von Karman's group at Aachen develored
and verified a rigorous and comparatively simple method of calculation
(references 2 and Bk L Tn England, D, Williams and H. Roxbee Cox worked
out an interesting solution in 1933 (reference 4). All these papers
dealt with wing structures without a load-carrying skin since at the
time of their publication stressed—skin wings were seldom if ever used.
However, in 1935 Paul Kuhn showed that the Friedrichs—Kérman equations
can also be applied to the interaction problem of the more modern types
of wing  (reference 8). More recently, a theoretical solution was given
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erence ).

The writers belleve that there is a need for a procedure which can
take into account variable cross sections, stressed skin, and cut-—
outs, and at the same time is simple enough to be used by little—trained
personnel, It appears that the PIBAL method developed in reference. 1
for the caliculation of the stresses in reinforced flat and curved panels,
rings and frames, and reinforced monocogue cylinders is well suited for
the solution of the interaction problem with an accuracy sufficient for
engineering purposes. 1t is based on the Southwell relaxation method
(reference 8). The structure is assumed to be composed of several beam
elements having bending, shearing, and torsional rigidity determined
from the geometry of the wing structure and the mechanical properties of
its materials of construction. The forces and moments corresponding to
presciribed displacements of the end points of these elements are deter—
mined, and the conditions of equilibrium at these polnts are expressed
in terms of the displacements. The result is a system of linear equa—
tions which in the present report is solved by matrix methods. In the
Southwell method a solution is obtsined by a systematic procedure of
step-by-step approximations. The solution yields the displacements at
the end points of the elements from which the stresses in any part of
the structure can be easily calculated.

|
|
by W. J. Goodey, who used strain-energy methods in his analysis (ref—
|

The results of the calculations were checked by experiments carried
out with a model of a two—sper wing under various conditions of loading
and end fixation. The agreement was found to be satisfactory.

The authors are much indebted to Dr. Bruno A. Boley and Mr.
Bertram Klein for their advice and help during the construction and
testing of the specimen and in the calculations, to Edo Aircraft
Corporation, and to Mr. R. Ries of Edo Aircraft Corporation for con—
tributing the formed rib flanges. The investigation was sponsored by
and conducted with the financial assistance of the National Advisory
Committee for Aeronautics.,

SYMBOLS
A cross—sectional area of upper or lower flange
A, cross—sectional area of compression flange
Ag - area included by the thin wall of a closed section
A, A cross—sectional area of uprights, of tension flange
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Ay, A

AB, BA, BB,
G A T

area of cross section of an interspar element

subscriptsused with influence coefficients, in which the
first letter or number refers to the point at which
the force or moment exerted upon the bar is acting
and the second to the point at which the displacement
or rotation occurs

wall thickness

deflection at end of beam element; distance between spar
uprights (web stiffeners)

Young®s modulus

bending stress in curved sheet of front spar
maximum normal stress in element 3-5 at its midpoint
normal stress in compression flange due to fyy

normal stress in compression flange of front spar
element due to bending resulting from T and P

normal stress in compression flange due to bending
resulting from T

shear stress in curved sheet of front spar element
normal stress in tension flange due to fwt

normal stress in tension flange of front spar element
due to bending resulting from T and P,

normal stress in tension flange due to bending resulting
from T

compressive stress in the uprights

tensile stress in the web parallel to the direction of
wrinkles

shear modulus

distance between centroids of spar flanges

-
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vhy total length of uprights in a spar element
I moment of inertia
I, monent of inertia of curved sheet and flanges:oflfront
; spar
IF -~ moment of inertia of interspar element at front spar webd
I moment of inertia of intersyar element between spar webs

at distance x forward of rsar spar

I moment of inertia of interspar element between web and
shear center of front spar, at distance x' aft of
shear center

K constant used in equations (9)
S8 v length of beam element
m : rotation at end of beam element
m, | influence coefficients
VPR _ end moment acting on beam element; bending moment at any

section of front spar element due to T and Py

MB bending moment at the midpoint of element 3-5
Mg noment acting on elementv =5 at Joint |3
nn . . influence coefficient

o, Nz, 03,

n,, D, N4 rotations at ends of beam elemsnts

Ny, N, Ng,

N,, N5, Ng end moments

2 total vertical load at end of front spar beam element

P _ perimeter of the cross section of an interspar elenent
*  between the web and shear center of front spar

Py vertical load taken by curved sheet of front spar beam

element
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Ps

R.H.S.g,
R.H~S.II
S

t

t, tl) t2)

gy Bgs Bg

tt,

T) Tl; T2:

oo N R

U, Utotal

U

Uflanges

Uﬁprights

Uﬁeb

curved sheet

vertical load on element 3-5 at joint 3

perimeter of the cross section of an interspar element
between spar webs, at distence x forward of rear
spaxr

static moment of area used in shear-stress formula
fg = PQ/It

right-hand sides of equations of equilibrium, in which
the subscripts refer to the condition of loading and
end fixation

perimetric coordinate

web thickness

rotations at ends of beam elements

influence coefficients

end moments

total strain energy in a beam element

strain energy in curved sheet of front spar element
strain eﬁergy in flanges of front spar element
strain energy in uprights of front spar element
strain energy in flat web of front spar element

vertical displacement

influence coefficients
shear force; volume

horizontal coordinates
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y vertical coordinate

Yy Y1y Y2, Jg

Jas Y55 s vertical displacements
¥, y% influence coefficients

YJ Yl: YZ) YGJ

s e LI 4 shear forces
s G
o angle of folds of spar webs
0, ¢ angular cocrdinates
w rotation

METHOD OF ANALYSIS

Figure 1 shows the wing structure that was analyzed and tested, ard
figures 2 and 3 are photographs of the wing on the test stand. TFor pur—
vposes of the analysis the actual structure was replaced by the assembly
of bars shown in figure 4. The boxes consisting of two adjacent ribs,
as well as the wing covering between them in the actual structure, are
replaced in this figure by bars 1-2, 3-4, and 5-6. These bars are
located at the chordwise center lines of the boxes and extend from the
shear center of the D-shape front spar to the plane of the web of the
rear spar. The spar elements extend spanwise from the center of one
box to the center of the adjacent box and ars located at the locus of
the shear center of the front spar and at the web of the rear spar.

Fach element is isolated and its ends are alternately assumed to
be rigidly fixed. Calculations are then made of the forces and moments
acting on the element at its free and fixed ends necessary to cause a
unit vertical displacement without rotation or twist, a unit rotation
in the plane of bending without vertical displacement or twist, and a
unit twist without displacement or rotation in the plane of bending.
These forces and moments at the ends of the elements are termed "influ—
ence coefficients.”

Because of the principle of superposition, the sum of the products
of the influence coefficients and the corresponding vertical and angular
displacements must equal the externmal load on the structure at any one
point. As many such equations may be written as there are unknown diis—
placements. The matrix of the constant coefficients of the displacement

~
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guantities in these equations in their final form is known as the "op—
erations table." The solution of these simultaneocus equations gives the
displacenente at the ends of the assumed elements for the given load
condition, From these displacements and the influvence coefficients the
stresses at any point of the structure may be calculated.

In the calculation of the influence coefficients the spar elements
were first assumed to have shear—resistant webs. Consequently, the mo-
ment of inertia of the rear spar section was computed considering the
four flange sngles and the entire section of the web as fully effective
in bending. In the front spsr the semiclrcular leading--edge skin was
also included in the effective cross-sectional area, Solution of the
resulting equations gave smaller deflectlons for the front spar than
those observed in the experiments, while in the case of the rear spar
the agreement was satisfactory. For this reason the calculations were
repeated on the assvmption that the shear webs acted as diagonal—tension
fields, and the angle of the diagonals was teken as 30o gince the folds
observed in the test appeared to subtend approximately this angle. Cal-—
culations showed little effect of this angle on the displacements. This
assumption resulted in good agreement between calculated and observed
deflections in the case of the front spar, but in slightly exaggerated
calculated deflections in the case of the rear spar. It might be men—
tioned here that the agreement between calculated and measured strains
wag generally better than that between calculated and observed deflec—
tions.

In the calculation of the influence coefficients of the interspar
elements, namely, the boxes conmecting the front spar with the rear
gspar, the variation in the height of the cross section was duly consid-
exed.

CALCUIATION OF THE INFLUENCE COEFFICIENTS

Upon the beam of figure 5 a shear force V and an end moment M
are acting. It is known that the displacement v and the rotation m
at the end can be calculated from the following formulas:

v = (1/3)VI®/EI + (1/2)ML°/EI (1)
nm = (1/2)VI®/EI + ML/EI (2)

As was stated earlier, in the Southwell and in the PIBAL methods
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onlr one displacement quantity at a time is considered different from
zero. For instance, it may be stipulated that the free end be displaced
a unit distance in the verticsl divrection (downward) while the rotation
1s prevented by the comstraints. Then with v =1 and m =0 equa-
tions (1) and (2) can be solved for M and V:

M = —(ET/12 (3)

<
[t}

1281 /1.° ()

These equations can be interpreted as expressing the values of the mo—
ment M aud the force V exerted by the constraints upon the free end
of the bar when this end is displaced downward and is prevented from
rotating. By the definition given earlier, these are influence coeffi-.
cients,

The influence coefficiente corresponding to a unit rotation and
zero vertical displacement can be obtained in a cimilar menner, if in
equations (1) and (2) v is set equal to zero and m equal to unity.
The solution is

M = LEI/L \ (5)

V = -6EI/12 (6)

Influence coefficients are designated by two lower—case letters
connected by an arc. The first letter refers to the force (or moment)
exerted upon the bar, the second to the displacement (or rotation) that
caused it; consequently, mv is the moment caused by a unit vertical
displacement, while ¥V 1s the force caused by a unit vertical dis—
placement. In order to indicate the points at which the force is act-—-
ing and the displacement is taking place, two subscripts are used. The
first subscript refers to the first lower-case letter in the symbol for
the influence coefficient, and the second subscript to the second let—
ter. With this convention equations (3) to (6) may be written in the
form
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YPAR

rotations.

It may be noted that mvpy = vy,
Maxwell's reciprocal theorem,

fvpp = ~6BI/12 »
Ty = 1281/1°

&
mmg = MEI/L
gy = —601/1°

gy = —6EL/1?
~TVpp = ~1281 /1.3
omp, = 2EI/L

= ~VDgp = 6EI/i2

(7)

which equality is a consequence of

The forces and moments exerted upon the fixed end of the beam of
figure 5 as rigid end reactions cen be calculated from the requirenents
of static equilibrium. They can be expressed with the aid of the
influence—~coefficient notation as follows:

(8)

The -sign convention used in these equatlons coneiders as positive down—
ward forces and displacements as well as counterclockwise moments and

As iswell known, equetions (1) and (2) are valid only for beaums
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of constant moment of inertia. When the moment of inertia varies, as in
the interspar members, the deflecticns and rotations muet be obtained by
integration, Numerical examples are given in appendix A. The torsiomal
rigidity of the rear spar is small because of the nature of the construc--
tion. Advantage was taken of this fact in the calculation of the
influence coefficients by assmming this torsional rigidity equal to zero.
Accordingly, the rear spar cannot exert any end mcments upon the inter—
spar wembers, so that it becomes unmnecessary tc consider the effect of a
prescribed rotation at the rear spar in a vertical plane containing the
interspar member.  When the vertical displacement of the interspar mem-
ber ie prescribed at its end at the rear spar, the member deflects ae a
cantilever with a concentrated load at its free end. When a vertical
displecement or a rotation is stipulated at ite front spar end, its rear
spar end is considered as simply supported.

In appendix B influence coefficients of Wagner beams are developed
using strain-energy methods. With the notation of figure 6 the results
are:

e

typp = §EBB = E/[ (23/m?®) - (x/1) ]
T¥gp = 2B/ (K — 1°/an®) (9a)
iy = (AEn"/2) [(1/1) - 1%/(L° - n®aK)]

where

K = (8L/ht sin®2a) + (41.%/3a0%) + (L cot®a/A)

+ (232 tan®a/n®A)) > hy (ob)

et

where A is the upper flange area, equal to that of the lower flange in
this case. The influence coefficients at the fixed end can be calcu—
lated from the following equations:
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E}AB = E}BB . 1
¥9a5 = -F¥sp s (10)
thyp = w(ttBB % [thB]L)

-

~—
—

The expressions for tyaps §§BB’ tipp, and §%BB are given in equa-—

tions (9). The influence coefficients of a twisted thin-walled bar can
be calculated from Bredt's formula

ey g (as/b)
o .._.f_f__.ﬁ_m (11)

)
)'}LQi G‘

where t 1s the relative angle of twist between the two ends of the bar
anéd T 1is the torque. The integration must be carried out around the
entire perimeter. ©Setting t =1 and solving for T yields

) LAZ G
Pk ER = - (12)

5 j[ (as/b)

It is easy to see that the influence coefficients for the fixed and free
ends differ only in sign. When the cross section varies, the influence
coefficients must be obtained by integration. For the interspar members
this was done in appendix C. In view of the assumption that the torsion—
al rigidity of the rear spar is zero, it is unnecessary to calculate
influence coefficients corresponding to torsion of the rear spar.

The calculation of the influence coefficients of the D-shape front
spar under shear force and bending moment leads to some complications
wvhen the flat web develops diagonal tension. Obviously, part of the
shear force is transmitted by the diagonal-tension field and the rest by
the curved leading-edge covering. The leading-edge covering did not
develop wrinkles in the experiments. The normal stress is carried by :
the flanges and the curved sheet. The distribution of the shear force
between the two elements was determined with the aid of Castigliano's
second theorem. Of the total shear force P the part teken by the flat
web was P — P;. The total strain energy stored in curved sheet,
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flanges, web, and uprights, was calculated and its differsntial coeffi-—
cient with respect to P; wes set equal to zero. This yielded an
expression for P; in terms of the load P, the end moment T, and
the geometric and mechanical properties of the structure.

Substitution of P; in the expression for the total strain energy
and differentiation with respect to P and T led to the end deflec—
tion and the end rotation, respectively, by virtue of Castigliano's
first theorem. The influence coefficiente could then be calculated as
was done in the case of the beam with shear-resistant web. Details of
the calculations are given in appendix D. Numerical values of the in-—
flvence coefficients are collected in tables I to III.

THE OPERATIONS TABLE

In the operations table are listed the forces and moments exerted
upon each of the joints of the structure as a result of linear and
angular displacements at the joints. The symbols used to denote forces,
moments as well as linear and angular displacements, and the sign con—
vention adopted, are shown in figure 7.

In order to explain how the entries in this table are calculated,
let it be assumed that a pesitive unit rotation in the t-direction is
undertaken at joint 3. (See fig. 8.) For convenience the unit chosen
is 10 * radian. The effect of this rotation upon all the Joints cf the
structure must next be determined. However, as was stated earlier,
whenever a displacement is undertaken, all the other possible displace—
ments of the structure are assumed to be zero., In other words, the far
ends of the members Jjoined at 3 are considered to be rigidly fixed: The
effect of a rotation at joint 3 is felt, therefore, only in members
1-3, 3-k4, and 3-5.

It is apparent that the rotation stipulated will cause torsion in
element 3-U4. The moment that must be exerted upon this element to

cause the prescribed rotation is the influence ccefficient tt shown
in figure 8. In addition, moments 5333 are needed to rotate elements
1-3 and 3-5 so that altogether a moment equal to 25333 + tt is re-
quired. If the properties of bars 1-3 and 3-5 were not the same,
the moment ERSS required to rotate each bar would be different. This
is the case at Joint 5, since the length of element 3-5 1is 24 inches
while that of element 5-7 is 12 inches. As may be seen from figure 8

the vertical forces that must act upon elements 1-3 and 35 at
Joint 3 are equal in magnitude and opposite in sense. They add up to a
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zero resultant force. The forces and moments needed at the far ends of
the elements are also indicated in figure 8. The numerical values of
all these influence coefficients are listed in tables I and ITI.

The operations table corresponding to the assumption cf shear—
resistant spar webs is presented as table IV. Each of its columms
contains the forces and moments at all the Joints of the structure
corresponding to the disvlacement indicated at the top of the columm.
The location and the nature of the force (whether a force, a moment in
the n-direction, or a moment in the t-direction) are shown at the
left end of each row. In the operations table are listed the reactions
of the forces and moments which act upon the bars. Hence the entries
in the operations teble are the quentities calculated earlier multiplied
by —=1. In other words, the operations table contains the forces and
moment§ exerted by the bars upon the assumed geometric constraints (the
Joints

In the cclumn headed tg the entries in the first five rows are

zeros. Tais corresponds to the fact that a rotation in the t—direction
at Joint 3 has no effect upon jo¢nt 2 because of the assumption of rigid
end fixation at the far ends of ths bars. (See figs. 4 and 8.) More—
over, t5 docs not introduce a vertical force or a moment in the

n-direction at Joint 4, The next item is T,, which is equal to

112.86580 inch-pounds when the webs are assumed to be shear resistant.

The positive sign correeponds to the sign convention of figure T and to
the fact that the operations table contains the forces and moments ex—
erted upon the Joints (or constraints). Eight digite are given, since

little additional work is involved in keeping a large number of digits

when a calculating machine is used and since it it desirable to have a

great accuracy for checking purposes.

The next three rows refer to the effect of +ts upon joint 6. Three
zeros are listed since ts does not affect joint 6, At Joint 3, Ta

1s equal to —(2tfss + tt), as was explained earlier. The numerical

value is —407.42580 inch-pounds, which can be checked easily with the
aid of tables I and III. Again, as in this entire discussion of table
IV, the numerical values are those corresponding to shear-resistant
mebs In row 11 a zero is entered because the vertical forces at Joint
3 cancel, as was shown in the discussion of figure 8. In rows 12 to 15
are entered the influence coefficients for the fixed ends 1 and 5 mul-—
tiplied by -1.

The entries in the other columns of the operations table are ob—
tained in a similar manner. In addition to the operations. table propsr
the so—called right-hand—side members are also listed in table IV.
These represent the applied forces and moments acting on each of the
Joints.
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In the calculations, as well as in the exveriments, four conditions
of end fixation and loading were consideved. They ave:

Condition I,— Both spars are rigidly fixed to the test rig at their

ends (joints 7 and 8 in fig. 4) and a 500-pound load is acting downward
on the rear spar 5 inches outboard of joint 1. Thus, for this condition
the extermal vertical losd on Jjoint 1 is 500 pounds and the external
moment in the t-direction 1is 2500 inch-pounds. The loads at all tke
other jointe are zero. The overatiouns takle corresponding to these end
conditions ia presented in table IV, and the external loads are shown
in the column headed ~~'PI_H.E.I.

Qondition IT.—- The end fivation is the samz as in condition I. A

500--povnd. load is acting downward on the rear spar at joint 3. Eence
the externmal load at 3 is 500 pounds, whils the extermal moment at 3,
as well as the external loads at all the otiaer joints, ie zero. The
operations tablile is contained in table IV and the external loads are
listed in the column headed —R.H.S.II.

Condition III,— The front spar is rigidly fixed at joint 8 as be—

— e o

fore, but the attééhment of the rear spar to the test rig at Joint T is
removed., The operations table is, of course, modified because of this
changs in the end conditions, but only the operations involving a ver—
tical displacement y. and a rotation ts at joint 5 are affected. The
quantities listed in table IV in the rows designated Tg; and Yg as
well as in the columns headed t5; &and yg must be replaced by the fol-

lowing entries:

ts Is
i -260,145798 -9.20500
Y ~9.20500 ~3.0818933

The loading terms are the same as in condition I.

Condition IV.~ The end fixation is the same as in condition ITII ard
the loading is the same as in condition IT.
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Table IV represents 2 sets of equaticns each containing 15 linear
eguations with 15 urknowns corresponding to conditions I and II. For
example, row 1 can be read as follows:

~1325.907732ny — 54.560072y5 + 39.926835n, + 54.560072y; = 0 (13)

Row 13 represents the following equation if condition I (corresponding
to R.H.S.y) is considered:

54.560072n, + 2.31481y, + 9.20500t5 + 0.7670833y4
+ 9.20500t; - 3,0818933y; = ~ 500 (1)

The operations table based on the assumption of fully developed
tension diagonal field action is presentsd as teble V. It was con—
structed in exactly the same manner as table IV, taking, however, from
tables I and IIT the influence coefficients corresponding to Wagner
beams.

The systems oflinear equations were solved by metrix methods. Of these,
Crout's procedure appsars to be most advantageous (reference 9). The
displacement quantities obtained by solving the systems of linear equa-—
tions are listed in tables VI and VII for both assumptions of spar-web
action.

CALCULATION OF THE STRESSES

When the displacements and rotations are known at each joint, the

forces and moments exerted upon the bars at the joints can be calculated

easily with the aid of the influence coefficients, Thse shear force, the
bending moment, and the torque at any point alonug the element can then
be determined without difficulty from the laws of statics.

As an example, the normal stress will be computed in the flange at
the midpoint of element 3-5 for condition I on the assumption of
shear-resistant webs. The displacement quantities needed are taken
from table VI:
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¥4 = 0.39023 inch

Vs = 0.054731 inch
ty = 0.015918 radian
tg = 0.0078959 radian

The influence coefficients of element 3~5 are rewritten from table i

| J¥as = 7670.8 pounds per inch
l
‘ Jti5 = 92,050 pounds per radian
£8,5 = 1,472,800 inch-pounds per radian
§§35 = --7670.5 pounds per inch
‘ ¥tas = ~92,050 pounds per radian
%%35 = 736,400 inch pounds per radian

The shear force on element 3-5 at Joint 3 is:
Py = ys(ﬁas) S tg(ﬁas) + ys(ﬁss) ¥ ts(ﬁas) (15)
The moment acting upon the element at joint 3 is:

My = ta(ttgs) + ya(tyas) + tg(ttas) + ys(tyss) (16)

Substitution of the numerical values ylelds:
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g
il

381 pounds

Mg 1624 inch-pounds

i

Consequently, the bending moment Mp at the midpoint of element 3-5
16

.

Mg = 381 x 12 ~ 1624k = 295 inch-pounds

Since the momsnt of inertia of the rear spar is 0.8416 inch® when the
web is considered fully effective, the maximum stress fB in the flange
ig:

fg = 2(2954)/(0.4208) = 7020 psi

DESCRIPTION OF THE EXPERTIMENTS

In order to verify the theory, the aluminum-allcy model of a wing
ghown in figure 1 was designed, constructed, and tested. The wing com—
prised two spars, each having a thin-sheet web and four angle—section
flanges formed on a bending brake. The curved leading—edge covering was
attached to the flanges of the front spar so as to form a D-shape con—
struction. The webs were stiffened by means of uprights riveted to them.
Every third upright was part of a wing rib and was attached to the spar
flanges as well as to the web. Tension diagonals de veloped in the web
under comparatively low loads, probably because the stiffening effect of
the shorter uprights was slight.

The curved portions of the flanges of the ribs were manufactured on
a hydraulic press and were obtained through the courtesy ol Edo Aircraft
Corporation. The rib webs as well as the upper and lower cover plates
of the wing were also stiffened by light angle sections which, however,
geemed to be sufficiently rigid to prevent buckling. At least no waves,
diagonals, or wrinkles could be obgerved in the webs of the ribs and in
the cover plates during the experiments.

Three of the spaces between adjacent ribs were covered with skin,
while the other three were left open to simulate cutouts., To the ends
of the spars heavy machined steel fittings were riveted in order to pro-
vide attachments to the test rig strong enough to represent rigid end




18 _ NACA TN No. 1324

fixation. Of the two end atlachments the one at the froni spar was al--
ways bolted to the test rig, while the one at the rear sper was boited in
test conditions I and II, and free in conditions II1 and IV.

Details of the construction and test arrangement may be seen in the
photographs in figures 2 and 3. In crder to provide for a suitable ap—
plication of the concentrated loads, steel channels were riveted to both
sides of the spar at locations corresponding to joint 3 and to a point
5 inches cutboard of joint 1. (fee fig. L4.) The external loads were
applied to the steel channels by plecing welghts into a frame suspended
from fittings attached to them,

Straine were measured by means of Baldwin Southwark SR-L4 type A-1
metalectric strain gages cemented in peirs to the ai't flanges {upper
and lowe1) of the front spar and the forward flanges of the rear spar.
Gages were located at the cutout sections of the wing at peints A, B,
C, D, E, and F in figure 4. The pairs of gages were connected in
series in order to obtain the average value of the normal strain in each
flange. An SR-4 control box was used for measuring the strain, and a
brass plug and tapered sccket arrangement was euployed for switching.
The accuracy of the strain measurements was checked by tests made with
a cantilever beam to which pairs of gages were cemented. The maximum
error in strain was found to be about *10 X 107°,

The absolute values of the strains measured in upper and lower
flanges at the same location were found to be very much the same. As an
example, the strains observed in the rear spar in loading condition I
are shown in figure 9. Figure 10 demonstrates that the variation with
load of the average absolute value of the strain at any location was
linear. Similarly, the deflections increased proportionally to the
loads, as may be seen in figure 11.

The deflections were measured at points 1, 2, 3, 4, 5, and 6
(fig. 1) by means of Ames dial gages placed on a sturdy steel frame
rigidly attached to the test rig.

COMPARISON OF THE RESULTS OF EXPERIMENT AND THECRY

The final results of the experiments are presented in figures 12 to
19, which contain the experimental curves of deflection and strain for
the four conditions of loading. The values obtained by calculation are
also shown in the same figures reduced to corresyond to a load of 150
pounds in ordsr to facilitate comparison with the experimental results.
From such a comparison the following conclusions can be drawn:
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Calculated strains azree well with the experimental values for both
spars in all the four conditions of loading when diagonal-tension action
is assumed in the spar webe. The only case in which there is appre—
ciable disagreement is the strain in the rear spar for condition IV.
However, in this case the strains ave very small (at the point of great—
est deviation 13 X 147 corresponding to about 136-psi stress) and
congequently herd to measure and uvnimportant for engineering purposes.
When the webs are assumed to be shear resistant, the agreement is less
satisfactory for the front spar and not much different from that ob—
tained by the diagonal—tension assumption in the case of the rear spar.

As far ass dellections are concerned, the diagonal-~tension assump—
tion gives good agreement for the front spar but not quite so good
agreenent for the rear spar for all conditions of loading. The shear—
resistant-web assumption is better for the rear spar and less satisfac—
tory for the front spar.

CONCLUSICNS

The calculation of the strains in and the deflections of the spars
of stressed—ckin-type wings having cutouts can be carried out with a
veasonable amount of work if the PIBAL method is used. Most of this

. work may be done by little-trained persornel. Time may be saved if use

is made of the formulas developed in this report for the influence co-—-
efficients. Experiments with a model wing gave satisfactory agreement
with the theory for four dirfferent conditicnse of loading and end fixa—
tion.

Polytechnic Institute of Brooklyn,
Brooklyn, N. Y., August 23, 1946,
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APPINDIX A
DEFIECTIONS AND ROTATLONS OF BEAM EIEMENT WITH VARIABLE MOMENT OF INERTLA

In calculating the vertical displacement at the aft end of the in—
terspar element for a unit load at this end, the variable moment of
inertia of the element (rid flanges, rib web, wing covering) between
the vear spar and the front epar webs was calculated to be

I = 0.000016x" + 0.0062kx" + 0.2400x + 21416 (A1)

where x 1is measured from the rear spar. In the analysis based upon
the assumption of shear-vesistant spai webs, the moment of inertia was
assumed to vary hyperbolically between the front spar web and the shear
center of the D-section, being infinite at the latter point, and may be
written as

B v =3 Syt

where x' is measured from the shear center; 3.57 inches is the dis—
tance between the shear center and the front spar web, and Iy 1is the

moment of inertia of the interspar element at the front spar web.

By making use of the unit—load method, the total displacement at
the aft end for unit load at this end is expressed by

20 8.57

d = 1/E /P xZ ax/Iy + (1/3.57IpE) /p x'(23.57 — x')? ax' (A2)
(o)

o)

The first integration was performed numerically by Simpson's rule, which
is explained in reference 10. The numerical value of the vertical dis—
placement is

d = 43.20 X 10™° in./unit load
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To calculate the rotation at the forward end due to a unit moment
in a vertical plene containing the interspar element, the unit-—load
method s aga’n employed. For the assumptions.of shear—resistant spar
webs and zero. torsiohal rigidity 6f the rear spar,

23.57 2 : _
®w=1/E [ (1~ =¥ /23.97)%. dgl /Bs
e 57 .
3.57
+ (1/3.5TixE) f % 1r=xt/23.57) ax" (A3)

Q

where o 1is the angle of rotation at the front spar in radians. The
numerical valuve is

-8
® = 0,07776 X 10" radian /unit moment

It may be mentioned here that in the analysis for the assumption of
Wagner beam action the interspar elements were assumed to have infinite
rigidity between the front spar wet and the shear center of the front
spar.

Because orf the assumption of no torsional rigidity for the rear
spar, for a typical interspar element 3-4 the influence coefficients

—~ —~ —~~ —~ —~ —~ ~~ . . 3
NNgg, NWgs,; Yhas; Wags Jgg, MNgy, Myug are zero, The remaining in—

influence coef{icients may be obtained from the values of 4 and
with the aid of formulas (Ak).

— o — —~ Sae
Y88 = ~JJVa8 = Va4 = JVa4 T 1/a
I,m\44 = 1/0.)
\(ab)
iy, = By g, = 1/(23.57)
Mgy = BY,45 = -23.57/4 » ; J

e
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APPENDIX B

WAGNER BEAM INFLUENCE COEFFICIENTS

The total strain energy in the Wagner beam spar element shown in
fizure 6 may be expressed as

L
= 2
U = (l/?E) {fw,t htl + j[‘ (ft + fto) At dx
y 4
L
P -
PEE e AT R LS T - 8 hl-} (B1)
J o) 2
4 :

vhere t is the web thickness. It may be stated that

By = 2Y/(ht sin 2a) ) .
fy = (Y/At)[(x/h) - (1/2) cot a] ¢
£y = »(Y/Ac)[(x/h) + (1/2) cot a]

> (B2)
£, =7Ya ten Ob/(hAs)
fto = T/(A.h)
fco = -T/(A.h) g

The expressions for fwt’ ft’ fc, and fv are derived in the theory

of tension field webs developed by H. Wagner and summarized by
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Panl Kuhu in refevence 11, In the expression for f d 1is the distance
betwesn uprights.

On svbstituting these expressions in equatlon (B1) and integrating,
the totel strain energy becones

gad | ML 3 ronfrty 192 cotPyy pymP
2E 'pt sin®2a 3Ah2 i An®

A2 YE2 T =
2r°L | ¥°a° tan® o _1_1_1} (33)

Ah® Agh® .

In this equation A = A = Ag.

By virtue of Castigliano's first theorem the partial derivative of
U with respect to Y yields the total vertical displacement d due
to Y and T, and the partial derivative of U with respect to T
yields the total rotation t due to Y and T, & and E being meas—
ured at the free end of the element.

QU k. S e RN
N . a=(1/m) i + b
Y "ht(sln 2@) 3AK® A Ah®
s |
2Yd= tan<a & h, |
+ — = SE
Agh®

P ol -
ot ARR2 »

Then with 4 =1 and t =0, as in the case of equations (1) and
(2), equations (BL4) are solved for T and Y. In the notation of the

inTluence coefficients T = %}BB and Y = §}BB-
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In order to obtain the influence coefficients corresponding to a
unit rotation and zero vertical displacement, equations (BY4) are solved
d=0 and t =1. In the notation of the influence coefficients

T = Tipgg and Y = yipp = tymp. The values of the influence coeffi-
ciente are given in equations (9).

APPENDIX C

INFIUENCE COEFFICIENT FOR TORSION OF BEAM ELEMENT

WITH VARTABLE MOMENT OF INERTIA

For the interspar members’;n this analysis, the wall thickness of

a cross section is constent, ? ds 1is replaced by Py, and A Dby Ays

P, and A, ave the perimeter and area of a cross section, respectively,

at a distance x forward of the rear spar, for x less than 20 inches.
In the notation of figure 20,

d
i

4(0.1x + 8)
(c1)

Ay = 43(1 + 0.05x)

For x greater than 20 inches, again in the notation of figure 20, the
rerimeter and area of a cross section of the member are given by

o(2y + 12) 1
(c2)

oky J

Consequently, equation (12) vecomes

P'

Ai

e} Al A2 l"\ A|2
¥t = LUGo / = ax + WGb j — ax (C3)
‘"O PX & P )
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The mmmerical value obtained is
Tt = 1.1285%8 x 10° in,-1b/radian
APPENDIX D
FRONT--SPAR INFTUENCE COEFFICIENTS

Figure 21 shows a sketch of the curved sheet and the flanges of the
D-ghape front spar, which carry the part P; of the total vertical load
P, and the end moment T. If £, represents the shear stress and Ty

the bending stress, the strain ensrgy stored in the curved sheet is

N g2 oo
- 8 i STt
Ucurved sheet = M/ = v + . o av (1)
v v

the integration being performed over the entire volume. Or, in the no—
tation of Tigure 21,

T
2 =
T g Ba
U 8 SN e H o— } I‘tL d.
curved shest G b \ IE ./ )
1 i
\ i 7 \
o %_ ; / ( Mr cos O ) tr dp ax
2B /O f6) \ 1

where
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+r°t sin @ (D2)

Lo
v
||
E
|
+
R
=
h=g
—

It will be noted that the flanges carry an additional normal stress
due to Wagner beam action, To calculate the strain energy stored in the
Wagner beam a procedure similar to that given in appendix B is used. The
strain energy in the web is

A o(P - 21)°L
i | 2 = =1
U,y == | f = (D3
web o V/ wt Eht(sin 2a)® )
The total strain energy stored in the flanges is
L
e doo [ %
Ufla.nges = -2—-:6: | j ft+ fi‘l A dx
0
L
/ e
+ / \i‘c+fcl> A dx (Dk)
0

where f, 1is the normal stress in the tension flange due to Wagner beam
action, ftl the normal stress in the tension flange due to bending re—
sulting from (T + P;x) of figure 21, and f; and f¢, have corre—

sponding meanings for the compression flange. From the discussion in
appendix B it follows that
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P—-P, /x cota >
fo = = === oS ks W
A h 2
> (D3)
p (T + Pyx)n
_.-b 55 1 Ssriest—a s p——
1 o1,
g o (T +Pix)h
C1 2T,
-

Substituting these values in equation (D4) and integrating yields

3
ke T i - T e Rl

+ ————— e
AT, 200 3

4 P12L2

o B ( IRy (A ] (D6)
2I12 -

The strain energy stored in the uprights of the Wagner beam is
(P ~2)°'8% zhy tan a
Uuprights " > (D7)
2Eh™Ag

The total vertical displacement d and rotation t at the free
end resulting from T and P are found from




|
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3 ' > S
s ”Utotal _ 8Ucurved. sheet bUweb anlanges CUuprights A
d = - = o : - #. ity
dP oP oP oP oP
S (08)
3 fUtotqy k Woyrved sheet i Wb ; anlanges y aUuprights
or cT T or or 5

However, it will be noted that the expression for Ug,i,; contains Py,

the wndetermined part of the total vertical load taken by the curved
sheet. By Castigliano's second theorem,

QU A
total

e S D
3, (9)

Wken P; is determined from equation (D9) and the result substituted in
the expression for Uggiay, oquations (D8) yield 4 and t. Then pro-
ceeding as in appendix B and substituting the numerical constants for
the element under consideration yield

yygp = 13,767.55 1b/in.

tygg = —163,210.65 in.-1b/in.
ttpg = 4,378,361.09 in.-1b/radian
BB E5’}313

ti,p = —(2bytay + tipp)

= —413,305.439 in.-1b/radian
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The numerical constants used

T by

29

to obtain these results are:

= 24 in,

0..020 4n.

i an,

%30°

0.06 8q in.

0.12 sq in.

1

Meaciim

5.4762 in.*

(53 ,
10.5 X 10 psi

3.9 % 10° psi
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TABLE 1.~ REAR-SPAR INFLUENCE COEFFICIENTS

Tltl;

Tats

Taty

Sheai— igtant
Influence coefficients z:gls o wggz;?
S,
Element l—Ba
Tivus Yobs 7,670.833 2,172.291
Tiy1, Yity, Tarz, Yits -92,050.000 —26,067.488

1,472,800

736, 400.000

653,009.833

-27,390.169

B Yok e, Tty 92,050,000 26,067.468
Yory, Yi¥a ~7,670.833 -2,172,291
I G Hlement 5~T7
Yors 61,366.66 6,135.8718
Tes, Ysts, Tos ~368, 200,000 -36,815.231

2,945,600

~61,366.66

1,472,800

368,200

901,291.383

-6,135.8718

-459,508.615

-36,815.231

8psy element 3—5 the influence coefficients are

jdentical with the corresponding ones given for element 1-3.

NATIONAL ADVISCRY
COMMITTEE FOR AERONAUTICS
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TABIE IT.~ FRONT-SPAR INFIUENCE COEFFICIENTS

Lt iuone cootrisionts | HOOEIOStstent | Vagoer
e Element e—ué
Yoye, Yayo [ 62,065.211 13,767.5543
Toyo, Yobs, Tavs, Yaba ~Thh, 794,531 165,210.6517
Tobay Tabe 11,916,712,50 4,378,361.087
kg, T 5,958, 356,25 ~1413,305.439
Wihay Tgke, Tohsy T ol Thh, 794,531 165,210.651
Yoya, Yoya —62,066.211 ~13,767.5543
i =F Element 6-8
Y’va ” 496,529.59 41,561.5189
W etes Yol Tare -2,979,178.12 249,369,114
e 23,833,425 6,287,872.293
¥k 11,916,712.5 -3,295, 442,925
Ye -496,529.69 ~11,561.5189
ok, 2,979,178.12 249,369,114

8oy element LG

the influence coefficients are iden—
tical with the corresponding ones given for element 2-U4,

NATIONAL ADVISORY

COUMITTEE FOR AERONAUTICS



TABIE ITI.— INFLUENCE COEFFICIENTS FOR THE INTERSPAR ELEMENTS

Shear—resgistant—

VWagner-beam

Infliuence coeff icientsl web assumption agsumption Unit
Trr = ¥¥ef 23,148.10 34,319.578 1b/in.
Thpp = —Eh,p = B = B2, 1,128,658.0 1,260,652.5 in.—lb/in.
Mhpe = Di., 12,859,809 17,613,632.5 in.lb/radian
Jhyp = —Fhpe 545,600.72 732,132.04 ib/radian

lSub.excript f ryefers to front spar; subscript r refers to rear spar.

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

its
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SOIUTION OF MATRICES FOR TEE ASSUMPTION OF SHEAR-RESTSTANT WEBS

[Lineer and Angular Displacements times 10%]

Condition

if
(500-1b load
at end; both
spars fixed)

T1
(500-1b load at
joint 3; both

spars fixed)

i
(500-1b load
at end; rear

spar free)

v
(500--1b
load at
Joint 3;
rear
spar free)

n, radians
Yo inches
t, radians
ng radians
Y4 inches
t4 radians
ng radians
ye inches
te radians

ts radians

| y5 inches

t, radians
yi1 inches
ts radians

ys inches

160.2k4
LW619.7

124,65

1019.4
98.647
1k,.3k2

239.49

39.751

159.13

O
o

179.
8h52.1
78.959
547.31

13.141
103 51

18.435

3681.2

h‘Oln 39

310.98
5,232.9
136.52

233.83

49.509
1725
T,767.:3
191.69
12,619
108.13

3,938.3

227.89
2325.0
47.401
211 .41
1016.2
Ly, 628
147.58
163,13
25.174

T4.151

[O)

6033.
51.752

7508.5
68,645

3808.8

NATIONAL ADVISORY

COMIITTEE FOR AERONAUTICS
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TABLE VII
SOLUTION OF MATRICES FOR WAGNER-BEAM ASSUMPTION
[Linear and Angular Displacements times 10" ]
I 1 y 111 (5%2—1b
T M el Mmoo M T
spars fixed) | epars fixed) spexr “‘ree) ”spa;’f§::§

_____ R e L AT
'n; radians 0.02330% I 0.013069 0.036220 0.025316
¥ inches 59731 .22769 67828 .28398
tp radians 0154k4E .00L80GT .016833 .0059L464
n, radians 013153 .012013 025987 .021016
y 4 inches 25218 JAdasy 29998 14094
t, radians 012297 0046496 013664 .0055%11
n, radians 0033627 .0032997 015053 .015008
¥ inches .032725 .01 6546 048969 .030393
tg radians .0050065 .0023852 0061564 .0030680
t 4 redians .00170180 .0065400 018568 .0078L26
ys inches 56867 .L0506 92556 L6LTLT
t, radians .019828 ,0051996 021238 .0060373
¥y, inches 1.1635 54267 1.5552 .89538
ts radians .0081012 .0052501 .011183 .0067089
¥ inches .11195 095177 42183 LOLSkL
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Fig. 2

Figure 3.- Front view of wing model and test apparatus.
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Fig. 3

Figure 3.- Rear view of wing model and test apparatus.
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Figs. 4,5,6

NACA TN No. 1324
Locus of front-spar shear center

2 D /: &, 6 F [§\

2 > > L\ 8
L
/7/?@75,0:17 web

B g g
b N A 13 5 l& :

‘—-j G == /2 l-—/Z—'— —’-“\3 |—'—

24 24 (2

12,3456, indicate location of Ames gages
Lellers indicate location of strain gages

Foint of load application

o fests [ and IV
o tests I ond II7 COMM

Figure 4.- Simplified structure assumed in analysis.
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Figure 5.- Beam element for calculation of influence coefficients.
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Figure 6.- Wagner beam element




Figs. 7,8 NACA TN No. 1324

FRONT SPAR

Figure 7.- S8ign convention of forces, moments, linear and angular displacements.

(A1l directions shown are positive; upper-case letters
represent forces and moments; lower-case letters repre-
sent vertical and angular displacements.)
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Figure 8.- Effect of a unit rotation at joint 3 in the t-direction.

(The influence coefficients shown represent the
absolute values of the forces and moments exerted
upon the structural elements by the constraints;
the arrows indicate the directions in which they
act.
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Figure 12.- Experimental and theoretical strains, front
spar. Conditions I and IIjy load, 150 pounds.
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Figure 13.- Experimental and theoretical strains,
rear spar. Conditions I and II;
load, 150 pounds.
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Figure 14.- Experimental and theoretical strains,
front spar. Conditions III and IV;
load, 150 pounds,
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Figure 17.- Experimental and theoretical vertical
displacements, rear spar. Conditions
I and II; load, 150 pounds.
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displacements, front spar. Conditions
III and IV, load, 150 pounds.
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Figure 19.- Experimental and theoretical vertical

displacements, rear spar. Conditions
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Figure 20.- Sketch of interspar member. (For assumption of shear-resistant web.)
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Figure 21.- Curved sheet and flanges of D-shape front spar.
(Vertical loads and displacements as well as moments and rotations
are positive as shown.
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