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EFFECT OF COMPRESSIBILITY AT HIGH SUBSONIC VELOCITIES
ON THE MOMENT ACTING ON AN‘ELLfPPIC.CYLINﬁER

By Carl Keplan

5 :

An extended form of the Ackeret iteration process is utilized
galculate the compressible flow at high subsonic velocities

past an elliptic cylinder. The angle of attack with respect to
the direction of the undisturbed stream is assumed smell and the”
circulation is fixed by the condition that the trailing end of the
major axis be a stagnation point. The expression for the moment
acting on the elliptic cylinder is derived and shows a first-step
improvement of the Prandtl-Glauert approximation. In addition, a
second-step improvement is obtained in the Prandtl-Glauert approxi-
mation for the lifting Fforce. acting on thé elliptic cylinder. - By
means of ‘these two results it is possible to calculate the effect
of compressibility on the position of the center of pressure as-
a function of the thickness coefficient and of the stream Mach
number. Tables and corresponding graphs are included to illustrate
numericelly the theoretical results derived. For example, it is
found that, for an elliptic profile of thickness coefficient 0.15
and stream.Mach aumber 0.80, the center of pressure moves rearward
a distance 2.6 percent of the chord from its position in the
incompressible flow. )

. INFRODUCTION

The present paper is concerned mainly with the calculation of
the effect of compressibility at high subsonic velocities on the
moment acting on an elliptic cylinder. The method used is an
iteration procedure, credited to Ackeret, which proceeds from the
Prandtl-Glavert approximation as the first step and successeively
improves it in a systematic manner. . The deteils of the Ackerst
iteration process have been described in reference 1 and, -thereforse,.
only material essential to the present paper will be repsated.

The main purpose of the Ackeret iteration method is %o
linearize the nonlinear partial differential equation (for the
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velocity potential or the stredm function) that governs the steady
two-dimensional flow of & perfect compreseidle fluld. This
linesrization is accomplished by essuming the d.eveloment of the
stream i‘unction \!!, say, to be of the form

\lf = U + \Ifl(X,Y) + WE{X)Y) + ¢3(X’Y) F e o o (1)

vhere U is the velocity of the undlsturbed stream and X and Y
ars the rectangular Cartesien coordinates of the physical flow
plane. Equation (1) is essentially a development of the stresm
function around a uniform streem In the negative direction of+the
X-axis. For the purpose of defining or controlling the iteration
procedure, the function \y 1 18 regarded as small compared with

the preceding function \;n. and the derivatives have a gimilar *
relati onship‘ r"*11e>n the total index decides 'bhe crder of tho turm,
for exam_'gle, 1113 :I.s of the same order es \jfl or 11/1\,;2 _ The

accuracy of this iteration method clea»ly depends .on the degres to
which the assumptions are eatisfied. In the case of slender bodies
without stagnation points, the first few steps may be oxpected_to
yleld a good result. In the case of bodics with stagnation points,
the accuracy of the calculatiocns obviously depends on the number
of terms Y, - derived, cach new term reducing the extent of tho

rogion of inaccuracy in tHe neighborhbod.-of the stagnation poinﬁ'.

"In the trestment of the verious! eq_uations that result. frcm o
the “linearizetion of the Pundamental differential equation by
means of the Ackeret itération process, it is convenient to i;rb,r-o- .
duce an affine transformation of the’ physical flow plane. Thils
affine transformatlicn reduces the differential equations to beo
solved to a Laplace equetion and to Palsson equations. In the
berformance of this simplifica‘oion, the statement of thoe boundsry
conditlon at tho solid ¥y moans of the veloclty potontial bocomos
very complicated. Fortunately, howover, the stabtement of—tho
boundary coniition by means of the stream function, namely, ¥ = 0
at the s0lid, 1s invariant for tho affine. transformation; thore- .
fore, the " use of the streesm functlon throughout the gnalysis of
the present paper i1s 46 be pa:'eferrod.n Tho choice of the ellipso
as theé 8olid boundary 1s d:ictated. by, the “proporty . 'bhat ar. affinc .,
distortioh’ Of an ellipse lsads to anothur ell:Lpse, thorefore, the .
analysis can bo conducSed entirely ‘in the affinely distortod plane -
-and the résnlis thus obbained’ linked. to the ac'bual olliptic profilo
by means of simple correspondonce relations.
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MOMENT FORMULA

Specifically, the problem treated herein 1s Yo obtain an
improvement of the Prandtl-Glauert approximation of the effect of
compreasibility on the moment acting on an elliptic cylinder set
at a small angle of attack in a uniform stream. Tet Z denote
the physical flow plane, 2z the affinely transformed planse,
and z' +the plane of the cilrcle into which the affinely distorted
profile is mapped by a conformal transformation. (See fig. 1.)

Ag in the calculation of the resultant lifting force glven in
reference 1, it is a great labor saving devlice to choose a large
¢ircle in the z'-plane to correspond to the control conbour in the
Physical Z~plane during the calculatlon of the moment and also to

choose &8s independent variables the polar coordinates Ren -g
of the z'~plane, with

27 =Re F S (2) .

where § = &+ in and R is the radius of the conformal circle.
(See fig. 1(c).)

Since the large circle in the z'-plane corresponds to a largs
control ellipse in the physical flow plane 2, +the expression for
the moment mmet contain, in addition to the usual momentum integral,
8 term involving the integration of the pressures around the conbrol
ellipse. This additional term is necessary because the normal
vector to an ellipse does not pass through its center. The general
vector expression for the moment im & compressible fluid Mc with

respect to the origin, obtained from reference 2, is

- Sgp[ﬁ](aﬁ) as + Sg[sﬁ]p ds | (3)

where brackets and parentheses denote vector and scalar products,
regpsctively, and

r radius vector from origin
n unit normal vettor :
q velocity vector of fluid
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ds element of length along control contour
he] pressure of fluld
o} density of fluid

The positive direction of the unit normel vector n is from the
control contowr toward the orligin, and the line integrals are taken
positively cownterclockwise around the control conbour In the

physical flow p],ane. The unlt tangent vector t and the unit
normal vector T +thus form a right-hand frame; hence, a positive
w(ralue f?r)the moment corresponds to a counberclockwise rotation
fig. 1{a

It is easy to verify that eq_uation ( 3} can be rewritten in

the form
_-éq 3&,(11 - iv)%z az + —{5@ + -—pq ()

where u and v are the camponents of the velocity vector along
the ZX-axis snd Y-axis, respectively, and

ZeZXway | |
rz';z Xa 5!2
2 2 2

¢ =u +v

Note that if the fluid is inccmpressible
302 S
P + qu. = Congtant

according to Bernoulli's eq_uation, therefore, the secohd integral _
venishes identically and yields the usual Blasius forzmﬂ.a for the
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7
moment. By use.of the sdiabatic relation % = (E-> , equation (i)

1 P
becomes .
p \"7’ .-
1 [ e 1
= - L2 ED——{u - 1iv Zd.Z+"-
Yo TR 55 P T ‘ﬁ‘f
2
1 P1/ea z L o :
N dr .. _
53 (F’lU) (5)

where the subscript 1 refers to the sterting conditions at infinity
and

U velocity of undlsturbed fluld at infinity

Ml Mach number of undisturbed stream at infinity (U /°l>

° veloclty of sound in wndisturbed £luid

v ratio of speciflc heats et constant pressure and constant
volume, for air 7 = 1.k

For the purpose of calculating the line inbtegrals indicated
in equation (5), 1% is necessary to express the in‘begrand.s as
functions of the independent varilables &,n of the z'-plane.

In the case of the elliptic profile in the z-plane, the conformal
transformation to a circle of radlus R with center at the origin
is

z = ¢ cos(f + 1A) (6)

where ¢ 13 the semifocal disbtance and A is defined by any one
of the followlng geometric characteristlcs of the ellipse:
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a =0 cogh A

b =c¢ ginh A
1
B=-2'ce7"

where a, b, and R are, respectively, semimajor axis of ellipse,
semiminor axis of ellipse, and radius of conformal circle. Now,
the affine transformation used in connecitlon with the Ackeret
iteration process is

where

It follows thab

and

where a ber indicates cénJuga-be-cdnplex guantltles, 8Since the
control contour 1s a large circle in the z’-pla:;e, n = Constant
and df = df = 4& Then, by uge of equations (2) and (6) and the
relation R = —%'-ce’", the expressions for Z and JdZ on the control

ellipse beoome
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and

vhere 2! = e"ié
Similarly,

2 2
- 1~ 1 - — 1
r2=ZZ.-.~. h“z.?+ ’4!122_'_

and on the control ellipse, 1 = Constant,

2n+2
023 n+2N

' 2
2 /2 1 .2 2 _ 1z
ar =3 (% -1) (Z 2t " ® >+(” 1) (z B elmmx)

Y T dz?
s 2(u® 4 1)o7 2)"<z'2 - J-) = (8)
Z'e 4 .

Expressions for E%(u - iv) and oy /p as functions of the
1

variable 2z '(: e"lg) expanded in powers of l/en, are given by
equations (46) and f1-7) » respectively, of xreference 1. By the use
of these equations, together with equations (7) amd (8), it is easy
to evaluate ths right-hand member of equation {5) by noting that
only terms involving dz'/z' contribute to the line integrals.

The result thus obtained is
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2
ol P (e e o))

where o 1is the angle of attack in the affinely distorted plane =

end o = (7 + :1.)(;42 - l). If the quahtities &, b, ¢, and o

are replaced by a', b', c¢', and o' of the actual profile in

the Z-plane according to the correspondence equations of refer-—

ence 1, namely, -—

axa'
1
b= ~b!
]
> (9)
@ o B | | )
2
i
1,
o =
H J

the moment about the orilgin on the actual elllpse becomes

-1

M. = nplueoa'c"gp - %ﬂperdl"ﬁ ‘2(6 + h)M (10)

Wow, for an Incompressible fluid,

Mi:tO'

or
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Therefore,

M 1 L —— '2__-
M"'—i = 4§ - &1(0' + h)(}-l 3-)1 - 52 (11)

vhere +t' 1s the thickness coefficlent b'/a' of the actual
elliptic profile in the physical flow plane.

_ Egquation (11) represents a first-step improvement of the
Prandtl-Glavert approximation and reduces to that result in- the
limiting case t'--90. This improvement, however, is incomplets,
for, as can be observed from equation (105, the second term on the
right-hand side is of the third order (that is, proportional

to a'd 2 and terms of that order are contribubted mainly by x|/3.
Since only the first two terms 11!1 and 1[:2 were derived in refer-
ence 1, it is necessary to determine the third term \Lf3 in order

to obtain the camplete first-step improvement of the Pranditl-Glauert
approximation for Mc /M:L

DETERMINATION OF W 3

In order to obtaln the third bterm \Lr3 in the expansion for the
gtream function " -

w:-ur'+wl+w2+w3+--- (12)

it 1s first necessary to obtain the expression for Py /05 inclusive

of third order terms, in the neighborhood of the mmdisburbed stresm.
Analogous to equation (19) of reference 1, this sxpression is



- Y ;¥
-Z—_=1~(g2~1')-1-!?- ue-l)@ir— = +¢H 161 1)2[7+l+)+(7+1)6.|2 1}]—-—

7 : ,“3. ..
-2( - 1)3 {15 + (7 + 1’)|4 [(27 + 15) + 3(7‘ + l)(p - 1)J%_}_¥__ + .o . ) (13)

Whén the expressidns far ¢ eml pl}'é- given by equations<(12) end (13) are substituted imto the
besic differentlsl equation 1 s ST e ~ :

&,IGI e 'a Ak

/91341\ 3 /5 ;ﬂ,\ 0 - ' )\

and tq;ms of the third order in the derivailvee of \Lrn are collected, +he following differential
equation far \|13 iz obbained: '

0T

gTaT 'oN NI YOVK




2
¥1x¥ory + Yaxy¥ 2 WP ol
2] 2 21y X 1 o ") 1} ¥1X
'*' = 2( - 1) — l ( - l) -
3xx + K ¥y = 2\p - + 2(7+ I\ ol gt

B

(- Yo rem e TN o sy e - ]I
2. 2. 2 .33
+ Q 2 1+(u2'421) &57*‘7) - (7+l)( ° 1\:}4-(” 21} J;.fr-t- (7+l)i12[2}'+151-3{7+1}(|42 =l}}
. 2
I , r p A\ 11:,]_?2
R ECERH O | R R 1)_”)?2—*13 (15)

This differential equation can be expressed In a convenlent form far sclution by making use of the
affine transformation

X=X

y ==X

"

T

and by introducing a new stream function ¥, whers

¥ = uoy*

gTeT “ON NI VOVN




Then equation (15) becomss

2T

Vgt Wy = 2(u2- 1)(‘1’*3iﬂf’€aw+ m\l:*_g_x) 3 ([.!.2 -1 [—1 + %G £ )22 - 1)]1&*1;\;*13

£2 Nl o oo
AN lx‘l'rlywln o

* %6%6‘2‘1)&57 +7)=(r+ _l)(ue - 1)] +-§_—6§ - J.)2 {15 + (j+ 1’ an», 15) + 307 + 1 (u® - 1)]

i

' I | -F N\ . ) -
_ 'E?’ )+ (7 + l)(ug - l)_”j + 2(y + 1)(;1.2 - l) ‘}‘)\Iﬁflyalll*m (1§)

Bgain, ag in reference 1. 1t will be found that the mathemsticel analysis will be considerably
eimplified by working with a nonanalytic cammlex potential w*3(_z_,:'.") insteod of its imaginary

art \!1“*3. As shown in reference 1, ‘!-‘*l is the Imaginary part of an analytic function “*l(z)’

vharasa V%, <@g tha fmesinewr nart of 5 nonanalvbie fimetion w¥ (g z). T+ ™mat ha amhanized
8 ¥y - AmagineXy part or o nonanalytic functlon WW,LZ,Z) t a smmha

what the real parta of these complex fumctlions ave notr to DPe interpreted as velocity potentials but
anly ae fumctione thet remder the enalysis elegant end simple. The following identitles can be
eanlly verified:

g1t oM NI VOVH
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Vig = 'el?(wlz ity
1 -
\lfly = E(le + Wl§>
Vo == %
lxy ~ 2 (wlzz + l'z'i')
‘ 1 —~
¥y = 53 (zs ~ Tazz)

sz = -é—i-(wzz + Vg < Wo, = -ﬁ‘22>

= I.P.(w:az + wzz)
Yoy = %(sz - Vo " Vo + Vo)
= I.P.i(wez - W‘EE)

1 - -
! =£ - Wam= - -
Voxy T S\"2zz T YezE T Yezz * 222)

I.P.1 Yoog w2§i>

1 e — -
Vore = 'QE(WEZZ + 2¥pyF + Vogz T Vogg T 2¥pgz ~ WEEz’)

= TI.P. Wgy + 2w2zE + WEEZ)

13



14 NACA TN No. 1218

where the asterisk has been dropped. Then
)
le lxx = ""(W - WZLZz') (lez B leE)

o 'E(le - ﬁlE)QI P *Wigo

2 1 —
wly Vg = EI(W:L + le) ( lzz wl'if)
= }j_;(wlz.. + le)eI.P.wlzz
\I’lx\pry + wlw\"ex = %I.P-(le - Wl"’/( Cog T WEEE)

é(wlzz + *lEE)I'P'(WEz + W—P.Z)

1 —
leWExx + “’lxx}l’Ey = E(wlz + le)I‘P '<w’£zz + BWpys + wEE'z')

# STB (Wgy = Figg)(Vag - voz)

\EI\P\I/ (lz lz)
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By means of these identities and by substituting for Vo, from
equation (29) of reference 1, equation (16) cen be written as

28 L 328 ~(0+2) (W, = W) (W12p = izz) * 2(wog + ¥25)(Vizz + 157)
'_L - .

7

- (c+2) (w’azz + w2§£> <wlz + Trl.z—) +2 (W2zz - W2EE) (wlz. - 1"512)
+ %l-u [:r(ug + l) + {0+ 3}(1.12 - 1)]w1z2w1zz

+ .f': {8(c+ 1) + 0'2(;42 + l)+(p.‘% - l) [o’ + (o +_2)(° + l‘)]} -ﬁliawlzz

+ i [(cr +'2)2(p2 - l) +a(o+3) (@2 + l)]wlzwl'z'wlzz (x7)

where \!f3 is the imaginary pert of wp. From eguation (33) of

reference 1
l‘ - ; l - [
WQ = -—g(p,a - 1)[50'ZW122 + (U' + ,'(') Vlwlz +. F(Z)]

where F(z) is a .fumction, the form of which is decided by the
boundary conditions but need not be given éxplicitly at this point.
When the expressions for the derivetives of Wy are inserted into

equation (17), then



8

+E%tﬂ(2-l/ ﬁ) Mh(ﬂ -1)¥5F +U+h“ (- 2)5 v

2 (.2 1)5("1142“’]12)2 +%6;2 -1) (wlez) U(U 23 Aot 3 (2.a 1) (v, Y122} \

——W, —=
pﬁ_l 3zz 8

lze 2z iz 2z

i
) ), 2N

2 (cam)2 :
L c+8 2—1) 1'z'z utiu)ua_l)(zwlz (122) u{c+3) 2—12 "’1z2)
. _
R 1) (3,55) gy ¢ h{“’“”’* 2+ 2)s oo 03 \](“2'1)}?22"122

' %F(ga DIEEE cr(p.2+l)] (wh?)g - (18)

This difforential equation can be integrated by inspectlon without difficulty. Thus the general

polubtion is

gt

gTST 'ON NI VOVN



2
8 o f2_.y.2. 2 gf2_ . oflo+l) 7o RCEONE- = 2
p2-1“3=l6 l)z wlz_‘,"lzz_*’g(“_' B 1)"“"le2-+"' ) 6‘ "l)zwllz. Nee* g (“' "l)wlwli

“méﬁ_ )-_F+”+"L@‘3-1)GF +_(gi_g+_)f(;2__l)ﬁew- E.@.ﬂ‘_(E 1)2"- 2

1 "lzz lz

QT2T “ON NI VOYX

olo+3) 2. 2 (6+M)%/2 N 1 [ 5
+-——E—-—p ¥, --(-—'—"r(u 'l)wlwlﬁwlz"'"l_g“{égﬂ"'h)(” -l)

+ U‘(p. +1)]zwlz3-.i_6 8(s +2)° + I; +2(30 + 8) (v +2)]( )} o [lee dz
. 1
¢ (z) + Gy(E) | : (19)

vhere (4(z) and G (Z) are arbitrery englytic functions, respectively, of only % and =

to be determined by the boundary conditions. The boundary conditions to be satisfied are thab
at the surface of the ellipse, 75 = 0,

V.=0 - L (20a)

It
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and at infinidty, 1 = w,

3$3 U
a3 a0 £0(D)
ox oy

and that the tralling end of the major axis be a stagnation point.
It may be noted that the result represented by eguation (19) is

not restricted to an elliptic profile but ls valid for an arbitrary
golld boundary.

Again, as in reference 1, the most direct way to impose the

boundary condition, \If3 = I.P.w3 = 0 at the surface of the solid,

18 to utilize the “polar" variable { of the z'-plane. Thus, for
the elliptic profile according to equation (39) of reference 1,

W, = ¢ cos (€ +1A) - 2R cos { - 2R (s1n £ + {) ]

s (21)
v o iﬁ__ _ 2R sin § +—2—li;x, cos § + 1
1z 1laz ¢ sin ({ +1) © sin (£ + 1) |

where, from equation (6)

z=ccos ({ + 1)
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Just as in reference 1, it is a simple matber to supply the
functions of { needed to satisfy the boundary condition at the
gurface of 'bhe ellipse In the z-plane. For example, at the surface
where q cos (%ﬁ in) = cos (€ ~ N}, By use of equations (21)
equation (195 then becomes

+ 202 - 1)c [oon (- 1) - cos (¢ - ) w7,

+ l(léfﬂ(p?- 1jc2 {c.os (€ - ) [cos (€ -2\ - 2% cos §
_-2§m (sian,E)} - cos (g-n){cos (¢ - 1) -2% cos §
- 2% (sin ¢ + I’?)]}Vlzwlzz

-|:%-°E+(G+ 3) + (30+ 8)(1.;2-1)] E:os (€ - 1) "? cos

- i—Rﬁ (sin ﬁ-}j) -cog ({ -ik.)+-?- cos +-§3;z (_sin §+§)]w122

+U+11-6_L2 l“l sin { __@&_cos_f%i_
¢ gin (E~-10) © ‘sin (¢~ 1)
_ =R gin ¢ +-2-§u. c:<:’s§’,+l]F

c gin (¢-4A) ¢ sin (¢ -iA)

(equation continued on next page)
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+ 08-1-4(;;2- l)c [cos(f-' i) -?i cos f--?;a, (sin £+ )

- cos ({ - 1)\.)+Z:R- cos § +§B<-z. (gin £ + Q)}Fz. )
+ %";6&)3(“2* 1)02 {E:os_ (€ -1n) --?; cos ¢ - %—3«, (sin 54,5)]2
- [E:;os (¢ -~1n) - %3 coB ﬁ--éajm (si_n-{, -li-ﬁ)]e}wlzz

olosm) (2. ). [ ¢ o[, @® _ einl
4 gl.6._._..(l_|. l)C {COS. (g n)[ ]+ ¢ pin (C_' 1%) .

_ R cos-f—c-l'_ ' ; _‘:@ sin ¢
:“m] cos (¢ m[ T am (€ oy

- _@3_“ cos £+ 1 }%wlz2+gc+8h)3(pg_l),-:'__’_ng?______si t

¢ sin (C~12) ¢ gin (:t: - 1))

4

L B, cos§+l LR sin { _2R, cos § + 1 0,
¢ ein ({-1r) © sin ({-32) ©  sin (¢ -4n)

+ %—g [80' + (70‘ + 8) (p.2 - l)] [cos_ (£ -'j_)\.) - cos (¢ - i)")]wlz3

16 ¢ sin (£ -1n)

+ L r8(<:f+2)2+ 02+2(o+2)(35+ 8):]<“2"l)} [% ____B_in_i_,__

2R cos {+1 SR gin £
—— R ——m
¢ sin ({-1) © sin (§-10)

S S -
2R cos + 1 2 dz
Rty oyl L mt (22



where
2
r! - . >
3 ' 2 (t+1a) -1 |
2 4z ! IR i} 2R 2 cos (f + 3
— df= n)- gin -~~~ co8 {4+ ginh )\ log
Wy S &t choﬂ(§+ ) E—os( t+£) — co ¢ > e (L3 D)1 .
is.P. _ _ :
' | I
IR? RS i cog ({+2) -1 @
_— - —l2 gin ( ~10) + 28 cosh X ~= ginh 2\ log
+.02 coe (¢ jM-Pce [ oin (¢ ) +24 2 cos (L+1) +1
log ein (t +1A) e A+ B (- 1) B Py 1gg SOSM 2
- 21 ainh A log & £+ +C £CO . 2 —
3 ha+l
LB o n2Bolor otnh b 25 cosh b - L einh 2 log 2ERXEL
(_*,2 . 2 cosh A -1

- 21 sinh A log (-1 ainh x)]}

and S.P., the lower limit of inmtegretion, denotes the stagnation point. By means of the followlng
formila ?,equat:‘;m (L%} of reference 1) ft,:xr the camplex velocity (with regard to 1{:3 only) in the

¥ a3 -
p 1 at W3 4 _
E'lTIG’a } E"a) =B 'ﬁaz ot "t‘az 3t = ) _(2”)

T2
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equation (22) can be shown to fulfill the boundery conditions, not
only at the solid surface, 7 = 0, Dbut also at Infinity, n = m;
morsover, the tralling end of the maJor axis (g:: X, N = 0) 1s a
stagnation point. In order to satisfy the boundary conditions,
however, a number of singularities of the natuwre of doublebts have
been introduced into the fleld of flow. These unwelcame singu-
larities are caused by the factor 1l/sin (g - iA) and are located

at the exterior points z' = Re" or Ql = iM and ([, = x4+ i),

They are removed by the addition of doublets in such a mammer that
the sum of the reslidues at a pole is zero. The lmages, moreover,
of these superimposed. singularities in the conformal circle of
radius R must be included in order to insure that the boundary
conditlons are preserved. As an example, consider the expression

2L - (25)
sin (¢ - 12)

where the function H({) is regular everyvwhere in the finite region
extorior to the circle of radius R (n=0). Then; in order to cancel
the residues at the poles §l = iA and §2 = % +IX and to preserve

the boundery conditions at the solid and at infinity, the following
expression must be added to the right-hand side of equation (22):

s oo ) e (o 58 2

By means of thie expression the additional terms can be casily
obtained in order that W3 be regular evorywheore in the finite

reglon exterior to the conformal circle of.radius R in the z'-plane
or ko the elliptic profiles in the z~plane and Z~plance. An
exemination of squation (22)immediately yields the following equa-
tion for H({)s : '
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R() =42 ) |- etn e (oos £ D] [E0)+ 52 oom (2o 20,

- (o+ h)wlwlZ]*"i_:g {8(G+ 2)2 . Er2+ 2(o+ 2)(30‘4; 8)](142 - 1)}[' sin {

¢

+ @ (cos _t,+l):[e)" wlze &z at (7
S.P. ag

whore, from equation (43) of reference 1,

F(¢) = -%’ac cos (€ - ix)wize 2o + k)ic sinh A sin {wy, - (T+1)wywy,

+ 2b(g + 1) (sin L+ {) (28)

Now, the introduction of the foregoing singularities induces

a finite velocity at the trailling ond of the maJor axls of the
o1lliptic boundary. This velocity, obtained by means of equation (24)

and exprossion (26), 1s

-\-9-—- - i = l (- l
91U613 TB)S.P- hic sinh A [H(%) + 5 n)]coshz-%
+ [E(x + ) + Fx - 2] —F— (29)
sinh 5

Then, by means of eguatlons (27) enda (28), with terms of higher
order than the third neglected
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Ll oL _ o 22 _ .\ b
pU U3 :v3)s‘?. - Eh(a-l-h) (p l) a+b

- -i—;-’-s-(3 - log 1&)(;.:.2 - l) {8(0’ + 2)2

+ [02 + 2(c + 2)}(30 + 8)](y.e - l)} L

a+b

In order to meintain (Z= x, n = 0) a stagnatlon point, the
following expression, the imeginary pert of which vanishes
for =0 and for 1 =,

(%(c + h)z(ue - l) - :—lL-é(3 - log k) {8(0' ¥ 2)?

+ [0‘2 +2(0 + 2)(30 + 8)_](!*2 - l)}) B - al (30)

a +

must be added to the right-hand side of equation (22). Finally
then, the complets expression for -re-—e--—-'w3 is given by the right-

: . NCRREY
hend side of equation (22) end the expressions (26) and (30).

’,

. _
EQUATIONS FOR (—95) AND pl[p
U

The oomponents u3 and V3 of the veloclty of the com-

pressible fluid in the physical flow plane Z are calculated by
means of equation (24). Since, for the purpose of the present
paper, calculations are performed along an ultimately infinitely
large contour, the developments for u3. and V3 in the neighbor-

hood of infinity are sufficlent. Thus, by use of the complete
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expression for w3, the development of the complex velocity

pU B

2 : ‘-
o 1 b 1 'b) b \° _1
- =V l=~ich - + la{B; +Bo log — ———
plUG3 B 3> (a+o z 'eN (l 2 963 (a+'b) v 262N
2
= 1ol
(a-;«b) , a+b Z,b, ‘-TI g\a"‘

6( )31 1 (31)
- —_ e L S R
a+b 2 ,2ean

_.‘?-6,13 - —i-v3> in the meighborhood of infinity is given by

A= -21—1-;(0 + )-l-)e(l-!-i2 - 1)2 +%‘I(3 - log 4) (ug - l) {8(0'.-!'-'2)2
+ [c2 + 2(o + 2)(30 + 8)](u.2'f l)}

2, -2 - )l e 1)+ (2 - 3) (? v+ 3]

32=__2-1){8(g+2) +c+2(c+2)(3a+8)](u -¢>} ‘

C = _%:'6"(0 + 1) (o + 8)(;.12 - 1)2
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g
]

—;—(U + 1&-)(“2'- 1)2

i
{

= —i‘:-é(o' + h)e.(p.e - 1)2

From equation (31), it follows easily that

P 2 1 b\ N2/ 1\ 1
2 u3=1ccA b z‘-}---—--iccB +By log —+C L. z'a--—-;'—;—
Ay a+b, z'/en 1 & a+b 2%/ 2N,

r(32)

s
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Then _
-HY AR A o PR P 1
-p—lﬁ(.l?’ iv3} =3 ACa. = 'b) [(l wiz! - (1 + p) ]eﬂ

i TG 2 141
2 o - = o (1 A
5-\Bp+ B 1og 3)(&+b) [(l Bz ( +p.)212] 7

1
M fre
Q
o
o
=
W
+
-
L —
[ ]

I

[]
™

-

1
=
N’

AL
|
=3

to b N M a1
2 D(e. + b) {El k)2 (1 + u)z ,l;]SEn

; 1
&+b} a+'b> |'(l vz’ +<l+u)—_];é;]-+. .
(33)

+
s
3 :

From equation (46) of reference 1 and equation (33), therefore, tho
development in the neighborhood of infinity of the complete complex
velocity, inclusive of terms of the third order, is given by

il-(a+'b ][(1 -n)z!

w5 o [

';:C]'{;b_i_b)?_}El p.)Z -(l+u)-—-——J— [(L-L - a+b
2

C(Eb)]éle .2/ [(2 a+b

1/ o b
.._ i = =1 = foushuns -
DJ_ (u v ium+en¥.+ (u l>(c+h)a+'b+

+
o

/

rd

1./ \ B 1§ 1 o
o) oot
+ B—;( e )(c + 4)
2
+ %E(xm-%}i‘[(aib>} [(l-p)z'2+ (l+g)—z—];-2-] F oo e oo

{34)
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From equation (34),

£ \? v
CRCI

21|/ 2 b b\
+e£nl>-("l -l)a +D ED(a"'b)]
1/ 2 s N2l s A\ 2 [» [
+IIG* -1)(“4)(;:5) J(z -Zl>-62n {a+b+ _;;(ua-l)(cm)
+ JE e - 6-——-

a+b a+'D }( z'2 e 2

Now, by definition

pu 1
plU - U\!IY
and _
LA
U U X
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Hence

o 2

! |

Yy *V¥y /e \?
i ;U

. 04
and. by means of eguation {(17) of reference 1 for -‘-3- and egua-~
tion (35),
Py hXe A

-p—-=l-—- ua— l) [l+-— ;:.2-1)(0'4-}-1-)

) (3

- 3-:‘-’-;)- f-l) {aa+b- [(1-12"1)"‘%514' %32 log-z'

2
)

) e -2t 0 [ -0
o) ) O
+%@2-1)(c+h)(§5)2]<Z’2'—3%>'“ 2-1) a+'b

[(u -l)(cr+l|—)+lEG: a+bjab+b)2}<z'2+;l‘—)+ R

CATCULATION OF THE LIFT

no

L

In a comprossible flow as in an incompressible flow, the 1lift
is glven by :

L. = plUT‘C
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where I' 1s the circulation round the profile and vhere, by

c
. . ", i
I, =‘9§(u X + v aY) = R.P.?S(u - iv) a2
f

definition,
Now, 47 1is glven by equation (7b), and from equations (34) emnd (36)

1 ic 1/ 2 b
E(u iv) = -1 i“a+eﬂE+4(p .l)(°+h)a.+'b

+ %A(-é%—b-)g] [(l-p.)z’- (l+p.)%,4:(u2"l>(z'-i—;)]+ o v .

Then, because only terms that-involve dz'/z' contribute to the
line integral, it follows that

2 16V
T, = haRUp mE. + %(“2 - l)(o + 11-)% + ‘é‘*(%)]

or if A 1is replaced by its definlition (see squation (31)), it
follows that

l" 4 7RUL or,;}+ (p. -l)(o'+ll-)§+-6—£< (o4 15)2(1_,, -

/ 2
+ -%(3 - log L) (p.z - l) {8(0' + 2)2 + to° +2{c+2){(30+ 8)] (;,Le - 1)}) 2;]
8 ;.
(37)
If, according to the correspondence squations (9}, b, e, and R

1 -
are replaced by 2-‘b’, -';or.’, and R' + l—g——'*b’, respectively, then
p B
for the actual ellipse in the physlcal flow planse,
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. X o
Pc= LR Ve'y + 210D [(l- ) +%L6.12 - l)(ct+ L) +}-'3-2-(13'(6 +’+)2(p.2 - l)

* -Jé'(3 - log k) (u.2 - 1) {8(0' +2)2 4 [02 + ?(c +2)(30 + 8)] (uz - 1)}) ‘.E‘];‘T]

Since the circulation in the case of incompressible flow is

I‘i = 4R 'Ua

the ratio T, ffy o Lc]Li is given by

Lo _Zo_ .. ! 2_ 2] ,
Li=l"i_“+1+t'gl(u l)+l¥(7+l)(u l)

2 2
L op -1t Nyif2, 2,10, 8(qg +2)°
* Tz " Cl-s-t’) G(p. 1)(0‘+1+) +8(3 log L) {(a+ )

+ (p.2 - l) E‘a +2{c+2)(30+ 8)]}) (38)

vhere +t'!' 1is the thickness coefficient b'/fa' of the actual
elliptic profile in the physical flow plane. Equation (38)
represents a second-step improvement of the Prandil-Glauert
aspproximation and reduces to thet result vhen t'-—3$0. In refer-
ence 1 a first-step improvement of the Prandtl-Glauert approxi-
mation for the ratio L, F"i wag calculated and is represented by

the first two terms on the right-hand side of equation (38).
Table I shows values of the ratio Lc [I"i for the first-step and

second-step lmprovements, for verious values of the thilckness
coefficlent +' and the stream Mach number M; (with 7 = 1.k

for air). Tigure 2 shows the corresponding graphs with Ml as
absclsga and Lc fLi as ordinate. An examinatlon of these graphs
shows that below the critical stream Mach number M., the main
effect of campressibility is already given by the Prandtl-Glauert
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term and the first-sbep improvement and that large differences
between the finst-step and second-step improvements do not appear
until well above the critical stream Mach number. -

In reference 2 the ratio L, /Li was calculated for an ellipiic

cylinder by the method of Poggli. This result, restated in the nota-
tion of the present paper, is

L a ! 1 o Y
_.9.==l+1‘l\4:|_2;l+213 4-'21+t' log 2 - 2 t'glosl‘;
Ly 2 P1-t! 1-% 1+ % (L -~%") t
1L+%' 2 V1 + ' + YL - &7
_V - 'log - - + e 9 e (39)
l"JG 1-% Vl+t' _vl_tl

and must agree with equation ( 38) insofar as the terms common to
the two developments are concerned.. If; then, equation (38) is
expanded according to powers of Ml and equatlion: (39) 1ls expanded

according to powers of t', the two oxpansions are found_to agree
and yleld

I’C
I; 2r P

R R VR -]-'Mlzt' + -,:_L-L-(.l - log M)Mlet"?' o

CATCULATION OF THE MOMENT

For the purpose of calculating 'bhe moment ‘Lhe following two
equations are needed. From eguations (7)

N .
c 21 2\ dz'
_-__..l.. — 4 ——
8( W)TE Z
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and from equations (34) and (36)

gil;_;-r(u-iV)Je:-% {aa+b [(p’ -l) lB +lB los—
| %C](-a%lg)z} El -u)2z % - (14 u)e-z—l'-z-}
e o) 6 )
- %f* W2 - 1) Lb+ =+ {62~ Lo+ n){gl’:g)a] [(1+ 1)z ~°-
+ (1~ u)zl'e]- Zgnu[ab+b
+ % - 1)(a+h)(;%)'2] El- w222 -

o 1
+(l+u)d—]+ ¢ & &
i

By means of these equations and equations (8), (35), and (36),
equation (5) for the moment M. eabout the origin ylelds the
following result:

M, = 7P Uzc:,(a"'sb)2 2ach. {(ﬂ -l)[8+(14 +l,(cr+h)]

bl £ D 2\
+ 4B, + 4By log a}<a+b>j
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Agaln, replacin c, and o according to the correspond-

ence equatioans ?9) yields

. A 2
Pate'2y -2 > -1 2_L po-1 2
My=npyU a'lc! - Py o'k (o +4)p"" =~ 3570 at " <\‘8(0’+2)

e Festonerre0](2-) } ros2e Blestaros)

6.302 + ’-&llq + 32} (1.:.2 - l)])b =

where B; and BQ have been replaced by their 'definitions.
equation 31.) Now, for an incompressible fluid,

(See

My = npy

The ratio Mc!Mi for the actual elliptic profile in the physical
Flow plene therefore becomes .

M 2 _ . _. S
T l(lscc c2)24 (12 1) [Py 1200 22 - {s(c +2)2
My 32w S . ! .

(y. -l) [o‘ +2(0‘+2)(30’+8)J} logy—)

(ko)

l'b'

Equation (40) represents: the complete first-step improvement
of the Prandtl-Glauert approximation for the ratio of moments M /Mi

and reduces to that result in the limiting case +'—> 0. Agaln,
as in the case of the 1ift, the ratio MQ/M:L was calculated for

an elliptic cylinder by the method of Poggi (reference 2). This
result, restated in the notation of the present paper, 1is

i 1+ %! 'El c
—E—l+lM & ﬂ/ ‘log—,-2M1d+... (1)
M (l - t:)ékl_ - % 't .

[X
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Just ag in the case of the 1lift, equations (40) and (L41) must agree
ingsofar as the terms common to the two results are concgrned.. Thus,_
if equation (40) is expended according to powers of M;~ and equa-
tion (41) 1s expanded according ‘o powers of +t', +the expansions
are found to agree and yield

Mo 2 _ g 2412 2, .2 1 -
E=l+§4l "4M1t‘ +Mlt'.log~€-;+-... . o

Table IT shows valuss of the ratilo .Mc [Mi calculated by means

of equation (40) for various values of the thickness coefficieqt 5!
and the stream Mach number M,, and figure 2 shows the corresponding

grephs with M; as abacissa and Mc lMi as ordinate.

Contrary to the 1ift, which is a localized vector, the moment
is a nonlocallzed vector, the magnitude of which depends on the
point about which it is teken. In the present paper, this point
is the origin of coordinates. If, now, the moment about the
origin O is denoted.by M,., the moment about any other point 2

in the plane of flow ls then glven by
MCP = :MCO - rlllc

vhere r is the length of the pérpendlcilar dropped from the
origin 0 %o 'bhg iine of action of the 1ift vechor I'c through

the point P. IFf this expression for the moment 18 examined in
rolation to the moment sbout the same point P in an Incompressible
£luid, it will be seen that the ratioc of moments M /MiP again

begins with the Prandtl-Glauert approximation bub that the higher
terms of the approximation depend on the point P about which

the moments are taken. Figure 2, consequently, should not be

used to compere the wvarious momsnt curves with the Pranditl-Glauert
approximation; rather, the significant result is the compressibllity
effect on the movemsnt of the center of pressure from its position
in an incompressible fluid - a guantlity that is independent of the
point about which moments are taken. -
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EFFECT. OF COMPRESSIBILITY ON POSITION OF CENTER OF PRESSURE

Is '-"CC' and Gi' denote the distance of the center of pressure

from the center of the sllipse in the compressible end lncompressible
fluids, respectively, then

cc Mc L:!.
————— e —— S——
¢, M I,

Also, C4 = .—Z-(l - t')3 therefore,

-

cc”ci___l-.t'fgf_c_;_}_i_-_l R (h2)
2a 3 \M;;_I'c

By means of this formula and equations (38) and {40) it is possidle
to calculate the effect of compressibility on the position of the
center of pressure for various thickness coeffliclents and stream
_ : . . C. - C
Mach nuwbers. Teble ITI shows values of the ratio —9-2———-1;, the
: a

negative values indicating movement toward the center of the elliptic
profile. Figure 2.shows the corresponding graphs with the stream
S "G
' 28 . .
chord as ordinate.. Note that in each case at same high subgonic
gtream Mach number, the movement of the center of pressure roverses.

(See teble IIT where sign changes from negative to positive.) This
peculiar behavior of the cenber of pressure 1s probably caussed by

Mach number . MJ: a8 abacissa and the ratlo in percent

the term log -‘-;—;- in the equation for the moment M, and indicates
the need for additional terms in the expansion for the strean



function ¢ to insure greater accuracy in the range of high sub- L
sonic stream Mach numbers.

Langley Memorilal Aeronsutical Laboratory
Natlonsl Advisory Committee for Asronautics
Lengley ¥ield, Va., October 2L, 1946 -
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M B LofTy {first-step improvemsnt) L, /I'i {second-step lmprovement)
£'=0.05 %' = 0,10 [ %' = 0.15 %' = 0.20 [ ' = 0.05 [%' = 0.0 {%' = 0.15 |%* = 0.20
.10 {1.0050 | 1.0053 1.0055 1.0057 1.0059 1.0053 1.0056 1.0058 1.0060
.20 [1.0206 | 1.0217 1.0226 1.0235 1.0243 1.0217 1.0228 1.0238 1.0248
.30 |1.0483 | 1.0510 1.0534 1.0557 1.0577 1.0511 1.0539 1.0566 1.0562
-bo 11,0011 | 1.0960 1.1021 1.1069 1.1113 1.0972 1.1032 1.1093 1.1152
A5 11,1398 | 1.128 1.1355 1.1423 1.1%8 1.128 1.1373 1.1%60 1.25k7
.50 {1.1547 | 1.1664 1.1770 1.1.867 1.15956 1.1672 1.1799 1.1926 1.2052
.55 11.197h | 1.21k40 1.2291 1.242% 1.2556 1.2153 1.2337 1.2524 1.2711
.60 }1.2500 | 1.2739 1.2957 1.3155 1.3337 1.2760 1.3033 1.3312 1.359%
65 |1.3159 | 1.3510 1.3830 1.4321 1.4388 1.35L6 1.3961 1.h3g2 1.4831
70 11,5003 | 1.453% 1.5016 1.5456 1.5860 1.4600 1.5259 1.5957 1.66T7
75 {1.5119 | 1.5955 1.6715. 1.7509 1.8%k6 1.609k 1.7212 1.8427 1.970%
.80 11.6667 | 1.8099 1.94%01 2.058 2.1679 1.8h07 2.0524 2.2901 2.5455
85 11,8083 | 21732 2.4231 2.6513 2, 8605 2.261k 2.74h0 3.3121 3.9397
.90 {2.2942 | 2.9548 35554 L. 1042 k. 6064 3.332T 4.9304 6.9353 9.2308 -
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TABIE II

RATIO OF MOMENTS FOR COMPRESSIBLE AND INCOMPRESSIBLE FLOWS

NACA TN No.

M, B Mc/Mi
t’ = O-O5 'b’ = 0-10 'b' = 0'15 t1 = 0'20
0.10 1.0050 1.0051 1.0051 1.0050 1.0049
.20 1.0206 1.0207 1.0208 1.0206 1.0202
30 1.0483 1.0486 1.0488 1.0478 1.0467
Lo 1.0911 1.0920 1.0925 1.091k 1.0880
45 1.1198 1.1212 1,1222 1.1208 1.1158
<50 1.1547 1.1570 1.1587 1.1570 1.1499
55 1.1974 1.2012 1.20Lk 1.2023 1.1923
60 1.2500 1.256L 1.2625 1.2605 1.2461
.65 1.3159 1.327h 1.3392 1.3385 1.3177
70 1.4003 1.h022 1.4469 1.h1511 1.h211
5 1.5119 1.55€0 1.6147 1.6358 1.5946
1.6667 1.7789 1.9294 2.0135 1.9707
& 1.8983 2.2438 2.7h99 3.1211 3.1895
90 2.2042 3.9315 6.57h1 8.9709 10.4271
TABLIE IIT
MOVEMENT OF CENTER OF PRESSURE AS FUNCTION OF STREAM
MACH KUMBER AND THICKNESS COEFFICIENT
c.~-C
c i
¥ B o
5! = 0,05 t' = 0.10 t' = 0.15 t' = 0.20
0.10 1.0050 -0.0001 ~0.0001 -0 .0002 -0.0002
.20 1.0206 -.0002 -.000k -.000 -.0009
.30 1.0483 - .0006 ~.0011 - 001 -.0024
1o 1.0911 -.001L ~-.0022 -.003% -.00Lk9
45 1.1198 -.0015 -.0030 -.00kT - .0067
.50 1.1547 -.0021 -.0040 - .0063 -.0092
55 1.1974 -.0028 -.0054 -.0085 -.012h
.60 1.2500 -.0039 -.0071 -.0113 -.0167
.65 | 1.3159 -.0048 -.0092 -.01k9 -.0223
.70 1.4003 - .0062 -.0117 ~.0193 -.0296
T5 1.5119 -.0076 -.0139 -.0239 -.038
.80 1.6667 -.0080 -.0135 -.0257 -.0L52
.8 1 8913 -.0019 0005 ~.0123 -.0381
<90 2.2042 Noll=gd 0750 0624 .0259

NATTONAL ADVISORY
COMMITTEE FOR AERONAUTICS
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Figure 2,= Ratlo of 1lifts and ratioc of moments in compresslble
and incompreeslble flows and movement of center of pressure
in percent chord as functlions of stream Mach number, Center
of pressure movement rearward with increaslng stream Mach
number, }
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