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An extended form of the Ackeret iteration yrocess is utilized
to alc~te the compressible flow @ high subsonic velocities . .,

Ipas an elllptic cylinder. The angle of attack tith respect to
the direction of.the undisturbed strean’is assumed small andthe””
circulation ie fixed by the condition that tho trailing end of the
major axfs.be a stagnation yoint. The expression for the moment
acting on the elliptic cylinder is derived and shows a first:’s”tei
improvement of the 2randtl-GLauert approximation, In ailditionJa
second-step improvement ,3sobtaine’din the Prandti-Glaue”rtap’pr’oxi-
mation for the lifting force.aotfng on%hd.’blliptic “cylinder.By
means of,.thesetwo results it”is possibl.bto caldulate the eff~ct
of compressibility on the position of the center of pressures .
a function of tho thickness coefficient and of the stream Mcli
nt?mber. Tables and corresponding graphs are included to illustrate
numerically the theoretical results derived. For example, it is
found that,,for an elliptic profile of thfckness coefficient O*15
and stream Mach number O.&J, the center of Pressure moves rearward
a di&tance”2.6
incompressible

percent of the chord from it; yosition in the
flow*

,.,.
,.
,.. INTRODUCT~ON... .,.. ,.

The present paper is concerned mainly with the calculation of
the effect of compressibility’at hi& subsonic velocities on the
moment acting on an elliptic cylinder. The method used is.an
iteration procedure, credited to Ackeret, which proceeds from the
l?randtl-GJ+uertapproximation as the first step and successively
improves it in a ‘systematicmanner. The details of the Ackeret
iteration process have been deswibed in referenc~l and,therefore,.
only material essential to the present paper till be repeated.

The main purpose of the Ackeret iteration method is to
linearize the nonlinear partial differential equation (for the
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velocity potential or the
two-dimensional flow of a

IiACATN NO. 1218
:.”- .,. . . . .

etr+kiiifunction) that pwrns the steady
mrfect mmureseible KLtid. This

linearization is aucanrplis~d by a&&& the development of the
‘9treamfunction $, say, to be of‘“the”form

. . . . .
. . . . .. . . .

*= -~ +- llqv) + W2{X,Y) + II+,Y) + ● ● ‘ (1)
.

where U is the velocity of the undisturbed stream and X and Y
are the rectangular Carteshn coordinates of the physical flow
plane. Equation (1) is essentially a developmmxt of the strearil
function around a unifcrn stream in the negative Urection 05+ko
x-axis ● For the purpose of definhg or controlling the i.’teration
procedure, the function ~n+l Is regarded as small cqed tith

the preceding function ~. and the derivatives have a similar ~.

relatf.onship. Then the total index decides the ‘m”derof th ttirm;

for ‘e.-le,, 1“”~3is ,ofthe s& order as V13 or W1$2 ● The
,.. . .. .

acctiacy OS thts iteration method clewly depends.on“thodegree to
which the assumptions are satisfied. lb the auie of slender bodieo
without stqp.ation points, the first few steps may be o~ectbd=to
yield a good result. 3% the case of I.xxiioswith Stagnation pointb;
the accuracy of the calculatichs obviously dopmits on the number
of tams $n derived, each new term reducing the extknt of the

region of inaccuracy in the neighborhood of %@ stq@tion point: .

.,. ,
3+1the tre~tment of the. T&ioi.+s;eqiaakiom that rgstit.f’rcm“~-.”

the‘llne-k!iz!.k~trioti:of tlm,fru%kmen%al @3.fferent@L.equation”hy”
Wans- of th~ Acketiet:‘i-&bYatironprocess, it is Conyeni.efittp ifig- .
duce an affine transformation of the’phjwical flow @ane... TII:”B .
affine tmansfcmmatidn reduces the differential w@Liions to bo
solved to a Laplace qmtion ad to PQi EWOI-Leqyations. Tn tho
performmce of this simplificatio~} the statement of the hour.day
conditicm at the solld ~y moans.of the voloclty potonttal bocomw
verY com@Lcated o Fortunately, howover, tho ~tshmmnt of-tho
boundary condition by moans of ~g -&.rean fpnchion, naqmly, ~ = O
at the.solid,.is “fivariant.for the affho. tranqfamrat$on; thoro-
fore, th(3“Ustiof tho StiearafUnctioq tJ3rm@otit ’50 “qllalysisof
the ~resen-t pgper is td “be~efk~@O Tho choii%~~f.tie o~psb
as th~ ilolid’boundary is dictated ~y.-t&~~opo@j .tJmt“an.affi.mo..,.
dist-ortiotibf an elfips6”leads to ancthqr dlipm; ~orafore~ the .
analysis caa ho condud!md entirel$,“in*M-O&Mf&ely distcrtcd plane :
and t~e r6sults thus obtain~ “li~ed ..tothe Ac$L@” ol.lipti.cprol?ilo
bY IMans of simplo corrospondoncOielations. .’
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Specifically, the problem treated herein is to obtain an
improvement of the Prandtl-Glauert approxhnation of the effect of
c~ressibiklty on the moment acting cm ti elliptic cylinder set
at a small angle of attack in a uniform stream. Let Z denote
the physical flow plane, z the affinely transfomned plane,
and 21 the plane of the circle into which the affi.nelydistorted
profile is mapped by a conformal transformation. (See fig. 1.)
As in the calculation of the resultant lifting force @ven in
reference 1, it is a seat labor saving device to choose a large
cficle in the z!-plane to correspond to the control contour in the
physical Z-plane during the calculation of the moment and also to

choose as independent variables the polar coord-tes Req,-~
of the zl-plane, with

-i ~
.. z’ =Re!., (~) ~.... . .,. ““,

where t
?
+ iq end. R is the radius of the conformal circle.

(See fige=l c)●)

Since the large circle in the z’-plane corresponds to a large

coxkrol ellipse in the physical flow plane Z, the expression for
the moment nnmt contain, in addition to the usuaLma.nentum integral.,
a term involving the integration of the pressures around the control
ellipse. This additional term is necessary because the normal
vector to an ellipse does not pass through its center, The general
vector e~ressi,on t’orthe moment in a ccsnpressiblefluid ~ with

respect to the origin, obtained &cm reference 2, is

where brackets and parentheses denote vector and.scalar products,
respectively, and

F radius vecto~ ficm origin

E unit normal vebtor -

(3)

5 velocity vector of fluid
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as element of length

?? premure of fluid

P density of fMid
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along control Contom

The positive direction of the unit
control cantour tOWa the ortgin,
positively counterclockwisearound

nomal veutor ii is frcmthe
and the line integrals are taken
the control oontoVr in the

phywoal flow p&ne ● The unit tangent veotor F and the unit
normal vector ii thus form a right-hand frame; henoe, a positive
value for the moment corresponds to a counterclockwiserotatian
(fig. l(a)).

It iseasy to verify
the form

that equation (3) oan be remitten in

- iv,% az+g~+$,.,)tiz

u

components of the velocity vector alongwhere u and v are the
the X-axis snd Y&axts, respectively, @l

., Z.=x+j.y ‘
..

,,

r2;=:i?i=i?’’i..$”“ .., ,.-. -,... ,. ...

.i

.

(4)

Note that tf the fluid is ino”-essible

,,

P + #@12 = Const&t

,,

acccaxlingto Bernoulli’s equation; therefore, the secohd integral .
vanishes identically and yields the usual.Blaslus formul.afor the
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(}-~ ~y
moment. By use.of the Wiabattc relation . = - , equation (4)

becomes
‘h [“1/

(5)

where the subscript 1 refers to the starting conditions at infinity
and

u velocity of undisturbed fluid at ird%nity

% Mach number of undisturbed stream at inf3nity (U/cl~

c1
velocity of sound in undisturbed fluid

Y ratio of specific heats at const~t pressure and constant
volume,for air y . 1.4

For the purpose of calculating the ltie integrals indicated
in equation (~), it is necessary to emress the inte~ands as
functions of the independent variables ~,q cf the z’-@qne.
In the case of the elliptic profile in the z-plane, the ccmfo~l
transformation to a circle of radius I? with center a.tthe origin
is

z = c cos(~ + m) (6)

where c fathe samifocal
of the followtig geometric

CWtance and X Is deftned by any one
characteristics of the ellipse:
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where a, b, and B are, respectively, smhna$or axis of ellipse,
semiminm axis of ellipse, and radius of conformal circleg Now,
the affine transformation used
iteration ~rocese is

in connection with the Ackeret -

where

x

.

P,=-

Ir‘“%’
It follows that

and

‘1+~” l-~
dz= y-dz+--y-dz

I

!

where a ‘barindioatoe conJug@e-cbmplex quantities, Since the
control conto~- is a large circle in the zf-pl.a?e, q = Constant
an& at = d~= d~o Then, by use of equations (2) and (6)andthe .

lh
relation R . -ce ,

2
the e~ressions for Z and dz .on the control ‘

ellipse hemme
i

1
m
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and

(’n)

where z’. e-Ig

Similarly,
. .

~2 l- f.1*2
=Zz=l -z-+ ~~a + L&&

and on the control

*2 _ ~ze%+,~
-—

8
[

(P2

4 4 2

eld.ipse, q = Constant,

01.,42+Je-%-2~z12+ :
z

Expressions for $#LZ - iv) md Pi/P as functions of the
1

(8)

Variable z ‘(=e-iz) expanded in powers of 1/eq, are @ven by
equations (k6)SM -&7),respectively, of reference 1. By the use
of these equations, together with equations (7) and (8), it is easy
to evaluate ths right-hand member of eqwction (!5)by noting that
only terms involving dz 1/2‘ contccibuteto the line integrals.
!l%eresult thus ObtainOd is
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.

“.

where a la the angle of attack in the affinely distorted plane

ma d = (7 -1-1)(M* -1
)

. H the quantities a, b, C, afi ~
are replaced by a ‘, b , c}, and u’ of the actual profile in

equations of refer-the Z-plane according to the correspondence
ence 1, namely~

1
.1

(9).“.

the‘momentabout the origin on the aotual elliyse beccmes

.“:., ,“

.,,..

Now, for an incompressible fluid,

?ii= o’” “ ..”

or

and ,

.. . .

v,=1’.
.,

.,.- . . .

(lo)

.

.-
.

—.
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Therefore,

Ifc

<“p - & + 4)(W4 - J-

9

(u)

where t’ is the thickness coefficient bl/a’ of the actual
elliptic profile in the physical flow plane.

Eq~tion (n) represents a first-step improvement of the
Prakdtl-Glauert a~ro~tion and reduces to that result i~the
limiting case t:—-+ O. This improvement however, is incomplete,
for, as can be observed from eqmticm (10\, the second term on the
right-han~ side is of the thira oraer (that 1s, proportional

to a’b”~ and terms of that order are contributed mainly by *3.

Since only the first two terms *1 and. *2 were &3riv8d in refer-

ence 1, it is necessary to d.etermlnethe third term *3 in order

to obtain the ccrapletefirst-step improvement of the l?randtl-Glm.ert
approximation for

‘cm

J

In order to obtain the third term $a in the eqtmsion for the

stream function

Nf=-

it is first necessary

of third order tezms,
Analogous to eq,,tion

-—

(u)

to obtain the expression for Pi/P, inclusive
in the neighborhood of the undisturbed stream
(19) of reference 1, thts expression is
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..

. . . ..

WJ& t~ expreeatdba ilm * ad @ given* eqMticm$’x(12)”and (13)

basic ~erential eg.mtlon “[; . . .
. . ..!

,.. ,.

.
~,

.:

:.
.,

,.

amd tqima of the third order, In the &Jrivatilvo6 of

equation fclr *3 is obtained:

.. . .

*= are collectea,

.. .

. . .

are mbstltuted into the

(14)

. . , . ,.,
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!Chia differential equation can be expressed m a convenient foI’M fcsc solution by makhg use of the

affine transformation

x.x

and by Introducing a new stream fmction w*, where

I

I

$=@’+*



Then equaticm (15) beccmas

.-

+:$:;p..}[I <57+j’)- (7+1)(#~- 1)]+;@ -1)2 {15+ (7+l)p2~27+ 15)+3(7 +l)(V* -1]
v .,.: ‘“

1

-! l)]~ + 2(7 + 1)[v2 -17+4) +’(7+i)&2- - )1])@Q.2ylxz

Aga4~, as in reference 1: it till be found that the mtkaatical ansl.@s will be considerably

eiI@Ifled by workingwith a nomnal@ic cazpl.ex potential T#a( z,Z) instead of its imaghary

pint, w
3“

As Ehown in reference 1, ~1 is the Im@mry WA of au EtWJ.@c fUMtiQ ~l(z),

UhBrem w., is the ~glnary part of a nonanalytic function #e(z,;). It mst be airphasized

‘&Et the real parts of these ctmplex functlone are not to h l.n+jerpretAL as velocity ~otential.s Imb

only es functicmm that render the analyeie ele~t ml simple. !Che follow!g i&entlties can be

*sily verifie&

1

.

— /-
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1

( ‘)- - ;2= + W2E; ‘2Z - ‘2Z

( )‘*p”i ‘2Z - ‘Z5Z
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where the asterisk has been dropped. Then

1-( )-’ 21*P.WUZ‘“~%z-%z

3. ”-.2

( )=~’12 + ‘lZ l“P*WIZZ

/

(~‘lZZ +

-\
q~/ (‘!2ZZ- =’2ZE)

.

.

.
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.

By means of these identities and by substituting for W2ZZ frcm

equation (29) of reference 1, equation (16)oenbe written as

+ *~(.’+l)+(.+3)(w’-l)]w1:w,zz

.

.

{
2(21)+(W2-l)E+(U+.2)(U+4)I]=,E2WUZ1 8(cT+I)+a v +

‘i

where ~ ~ is the imaginary part of W3. lRromequation (33) of

reference 1

( )[12=.-
‘2 8P - 1 >ZW1Z2 1+(u”+k]tilwu +)?(z)

(17)

where F(z) is a.functi~the form of which is decidedby the
boundary conditions but need not be #ven b~licitly at,thid point.
When the e~essions for the derivatives of W2 are inserted into __

—

equation (17),then



(18) ~

E

This MfYorential equatim can be inte~ted by inepowbion %zthout dlfllcul.ty. Thus the general
~

Bolution is
&

m

.
1’ . .



. I ,

: G1(z)+ G2(5)

where ~(z) and &d(Ii) are arbitmry analytic functlma, respectively, of only z end i

to

at

be determined by the boundary conditions, me bom cmditiona to be satisfied are that

the surface of the elklpae, q u 0,

(19)

.
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and at infinity, ~ = m,

NACA TN NO. u18

*3 W3
—=- =0 20(b)

and that the trailing end of the major axis be a.steqgwaticmpoint.
It may be noted that the result represented by equation (19) i~
riot restricted to an elliptic profile but is valid for an arbitrary
solid bOUIldary i

Agtiin, as in reference 1, the most direct way to impose the
boundary condition, $

3
= X.2. W3 . 0 at the surface of the solid,

is to utilize the ‘~ol.ar”variable ~ of the z ‘-plane. Thus, for
the elliptic yrofile according to equation (39) of reference 1,

‘1 = ccos(c+ lh)-2Rcosf-2RcL (sin c+~) 1
1(21)

.

.

where, from equation (6)

.



.
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Just as in reference 1, it is a shnple
functions of L needed to satisfy the

19

matter to sup~ly the
boundary contition at the

(equation cOntinuea on next page)
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.

+

+

+

+

,,

~~+ (7cT+ 8)(w2 - 1)] [cos (C - ix) - cos (c- ix)]wlzs

●

—

.

I

—
.

s

(22)



* I
, , ● 1

~

4R* ~R2”

[
coE(g-iA) ++&2sin(~-lM +2! COEM-*

coa(!. +ik)-l co

+7
02

Elm a log
COB (C+m)+l

, M? M=R*’
[

cosh L-.--% 2islIw2wJ;L-;
ooshk+l

~ 02

Eiinh 2% log —
coah?’. -l

1
- 2i Slnh 1. log (-i SIRh k)

IJ

and s J?., the lower limit of intagrerbiauj denotes ,the stagnation point. BY IMSDS Of tie fouo~g

fCmDIUIA (equation (-1-4) of mfmxmca 1) for the complex velocity (with ref5ard to V3 oily) in the

phywxll z-plane:

(24)

. .

,,
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equation (22) can be shown to fulfill the boundery conditions, not
only at the solid surface, q = 0, %ut also at infinity, q .m;
moreover, the trailing end of thema~a axis (~= X, ~ . O) is a
sta@.ation point. In order to satisfy the boundary conditions,
however, a number of singularities of the nature of doublets have
been introduced into the field of flow. These UnW31CC8110Si~-
larities are caused by the factor l/sin (f- 1A) and are located

at the exterior yoints z’ = &Rex or cl = ih and~2=fi+i?w

They are removed by the addition ot doublets in such a manner that
the sum of the residues at a pole is zero. The images, moreover,
of these superimposed singularities in the conformal circle of
radius R must be included
conditions are Preserved..

where the function H(~)
exterior to the circle of
the residues at the poles

in order to insure that the boundary
As an example, consider the e~ession

(25)

is regular f3verywherein the finite region
radius R (q=O). Then, in .grderto cancel
t~ = ik and ~2 = TC+iX and to presmwe

the boundary conditims at the solid and at infitity, tho followlng
e~ressionmust be added to the right-hand .sideof equation (22):

‘( )-+E@) cot*- cot ~
( )

-%(fi+n)tm~-~~ (26)
i! L 2 2 2“”

By means of
obtained in

/... \ /

this expression the additional terms canbe cmsily
~ be regular everywhere in the finiteorder that w

.

“

region exterior to the conformed circle of.radius I1tn tho z’-plano
or to the elliptic profiles in the z-plane and Z-plane, An
examination of equaticm (22)immediatolyyields the followlng equa-
tionfor H(C):

.“

.
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(3’)

where,f%cmequation(43)of reference 1,

Now, the introduction of the foregoi~ shgularities inducm
a finite velocity at the Wailing end of the major axis of the
elJ.@tic boundarys This ‘velocity,obtained by moans of equation (24)
and expression (26),is

Then, by means of eqmtiom (~} and (20), with terms of higher
order than the third neglected.
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~ () i =~(u + 4)2(lt2- 1)2+
plu ‘3 -73 ~*p,

{
- %(3 - log 4)(w2 -$ 8(0 + 2)2

1+[U2+2(IS+ 2)(3cr+ 8)](W2- 1) ~
a-l-b

fi order to maintain(~= m, v = 0) a ~+=~tionw~t~ the
followlng e~ression, the imaginary part of which vanishes

( {&f+4)yv2 -1) -*(3 -log4) W+2)2

1)~2+ [62 + 2(c + 2)(3u + 8)](w2 - 1) ~
.,,

,.
. . .

must be added to the right-hand.side of equation (22),

al (30)

Finally
8

then, the complete e~essicm for -q is givenby the rlght-

hand side of equation (22) and

EQUATIONSFOR

the~’~e~sions (26)and (30).

(:J m “%/,
The components > and V3 of the velocity of the com-

pressible fluid in the physical flow plane Z are calculated by
means of equation (24). Since, for-the purpose of the present
paper, calculations me p9rf0~a aLong an ultimately infinitely
large contour, the develowent~ for us ~d V3 in tie nei~bm- .

hood of infinity are sufficient. Thus, by use of the complete “

.

.

.

.

.

.

I
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expression for w ,3
the development of the complex velocity

()

3Y
in the neighborhood of infinity is given by

+U 5 -~3
.

where

z’=e -ig ,

and

31
( )16-b— —+**.
a+b J ~ 12*%

. .
. . .

A= &J+4)2(~2-1 )2+; (3-10 g4) &2-1) {8(a+2)2

] :-J} ,+ [u* + 2(u + 2)(3cr+ 8) (W

.—

(31)

--

c= ;(~+~d(G+8)(v2-1)2 ‘“
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D S;(U+4)(P%)2~

E= ;(U+4)?(N* -

From equation (31),

,,2

‘-)

i.tfol.bwa easily that

+E;;

X )(

2

\
-*A Z’*

a+b
.

.

>(32)
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Then

(33)

From equation (4.6)of reference 1 and equation (33), therefore, tho
development in the neighborhood of infinity of tilecomplete complex
velocity, inclusive of terms of the third order, is @ven by

+ +&-y]fa +)- $[P’-1)+
\

( )1[ 1{

+’ 2 (l-p) z’b. (l+.)fii~ ~~D~
+b e2!l a+b

-.

{34)
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.

.

Rmn equaticm(34),

Now, by definition

pu
—=%
p,u u Y

and

(35)

.

.

------

*

.
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Hence

,., . .,..
29

()
ilx2+,IV*2(.J* 2

$’=v
PI

and by means of equation (17)of reference 1 for ~ and equa-

tion (35),

2 LTJ](’4-ji)-%@w+i-+~=tb 2

CALCULATION OF TEE LIE!2

.

.

is
In a compressible flow as ti an incompressible flow, the lift

given by

Lc = PIWC
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where Tc is the circulation round the profile and where, bY

definition,

+

9-

rc = !)udX+vdY) =R.P. ,(u -iv) U

I

NOW, dZ is given by equation (Tb), and from equations (34)ead(36)

( )1[

122
+i-——— ‘(~-$ (z-~)]+. . .(1- V}Z’-(3+V); ,+

2 a+b

Then, because only terms that-involve dz’/z’ contribute to the
line-integral, it-follows that

‘[ (rc s 4iRUp2aI-+2

or if A is replaced by its definition (see equation (31)), it
follows that

+ :(3 - log 4)(lA2-1) @u+a)2+ [.2+2(0+2)(37+8)](.2- ,)})$]

(37)
If, accordingto the co~espond.ence equations (9),b, CL, and R

5are replaced by - ‘, %’, and R’ +%’,
2y

res~ectively, then
P P

for the actual ellipse in the physical flow plane,

,

.

.

.
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Since the circulation in the case of incompressible flow is

ri . 4Ji!3’ua’

L= ‘c t’

F
(A)+37+1)(P2- 2 “1)]~=~=ll+l+t,

(38)

where t‘ is the thickness coefficient b’/a’ of the actual
elliptic profile in the physical flow plane. Equation (38)
represents a second-step Tmproveruentof the Frandtl+llauert
approximation and reduces to that result when tt ---+0. Xn refer-
ence 1 a first-step improvement of the Frandtl-Glauert approxi-
mation for the ratio Lc~i was calculated and is represented by

the first two terms on the right-hand side of equation (se).
Table I shows values of the ratio Lc/Li for the f~st-fJteP and

second-step improvements, for martous values of the thiclm.ess
coefficient t’ and me stream Mach zu.miberMl (with 7 = 1.,

for air). 3’igure2 shows the corresponding aaphs with ~ as

abscissa and Lc~Li as ordinate, An examination of these graphs

shows that below the critical stream Mach number Mw tie ~ti

effect of compressibility is already given hy the Handtl%lauert
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term and the first-step improvement and that lar~e differences
between the first-step and second-step Mprovemnts do not appear
until well above the critical stream Maoh nmnber.

In reference 2 the ratio L Li WZM -c-ted for ~ e~lQticc1
cylinder by the method of Poggi. ,Thisresult, restated in the nota-
tion of the present paper, is

Lc 25+2t’
%1

~.21+t’ 2
=s1+ — . -— log— - -“t’2

~ Z!
L1 -t’l-*’ l+t’i (;. %t)21%7

(39)

and must a~ee wtth equation, insofar as the terms comnon to
the two developments are concerned.2 ~, then, equation (38) is
expanded according to powers of ~ and equation (39) 5.sexpanded

acccnxtingto powers of t~, the two wrpmeions are found-to agree
and yield

CALCULATIONa3’l?mMoMENT

For the purpose of calculating the moment, the following two
equations are needed.. Frcmeqnations (7)

-%-q-----z’y “.

.

.
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and from equations

33

(34)e.na(36)

.

:+](’+-}[1-.W-WN-$].

21
+(l+p)—

z ,21+...
By means of these equations and equations (8), (35), a~d (36),
equation (~) for the moment ~ about the origin yields the

following result:

.-
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Again, replacin a, b,
t

c, and G according to the correspond-
ence equatioas 9) yields

—

+- ~2+2(U+ 2)(3U+8)]&2 -I..} 10fj ~+ ~@a2+w4)

.,
where B1 and. B2

equation 31.) Now,
,,

.,

have been replaced by

for an incompressible

The ratio M ~
c1

for the actual elliptic

flow plane therefore becomes

their “clefiniti.ons. (See

fMid,

profile in the physical
.

-)+ {h)~+2(u+2)(3cY+8 j}log~- (40)

EquatioQ (40) representsthe complete first-step improvement
of the Prandtl-Glauert approxtition for the ratio of mcanents hlc~~

and reduces to that result in the linitin$ case t’AO. Again>
as in the caso of the lift, the ratio Mc~&$ waa calculated for

an elliptic cylinder.by the method of Po@ (reference 2). This
result, restated in the.notation”of the present ~ayer, is

,..,

A

-.

-.
—

.

.
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Just as in the case of the lift, equations”(~) and (41) must agree
.,

insofar as the terms common to the two results are concerned. ‘Thus,
if equation (M) is expmded according to powers of M12 and eq!-za-
tt~ (41) ig e~an&@ accorti~ to powers of t‘, the e~ansions
are found to agree and.yield

..—.-

Table II shows values of the ratio Mc~Mi calculated by means

of equation (443)for various values of the tJ@ckness coefficient t‘
and tie stream M=ch number Ml) and fi~e 2 shows the corresponding

graphs with Ml as abscissa and NC /M1 as ordinate●

Contrary to the lift, which is a localized vector, the moment
Is a nonlocalized vector, the ma@.twde of which depends on the
point about which It is taken. In the present 2aper, this point
is the
ortgin

in the

where
origin

origin of coordinates. If, now, the mcunentabout the

0 ‘s ‘enota ‘by ‘%’
the moment about any other point P.,

plane of flow is then given by .

Mcp =%0 - ‘%
..

r is the length of the pGrpendicW.ar dropped from the
O to the line of action of the lift vector Lc throu@,.

the point P. If+this e~ression for the moment is emmined in
relatioc to the mament about the same yoint P in an incmnpressible

——

fluid, it will be seen that the ratio of moments MOp/%p a-in
begins with the Prandtl-Glauert a~roxima.tion but that the hQjher
temm of the ayprox3ma.ttondepend on the point “P about which
the mcments are tak~. Figwre 2, coneequent,~, should not be
used to compare the ‘variousmoment,curves,with tho l&andtl-Glauert
approximation; rather, the sig@ficant r&B@.t W the compressibility
effect on ‘&o movement of the center “ofpressure Rrom its position
in an inccm.rpressiblefluid - a qURnti@ that is independent of the
point about which maments are taken.

,.
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.4

EPTEOW OF COMI%XS&LITY ON POS~ION 6F CENT!ER@ PRESSURE

If ‘W; and 01‘ deriotethe distance of the center of premwre

frcm the center of the ellipse in the compressible and incompremi.ble
fIuids, respectively, then

Also, ci a ,:(1 - t‘); therefare,

By
to

‘.

(42)

IIH31M of this
calculate the

center of pressme for various-thiclmess coefficients and stream ‘

formtia and e~uatims (38) am (M) it is possible
effect of coqmessibility on the position of the

.

.

.

cc - c~
Mach number-s. Table III shows v&ea of &e i8&ti0 , the -

2a

negative values indicating movemnt toward the”center of tho elliptic
profile. Figure 2.shows the corresponding ~aphswith the stream

cc - Ci
Mach number. Ml as abscissa and the ratio — in percent

... 2%”
chord a~ ordfnate. Note that in each case at.some high svQ&@c .
stream Mach “number,the movement of the center of pressure rovorses”.
(See table 11X where sj.~ changes from negative to positive.) Th5s
peculiar behavior of the center of pressure is probably caused by .

the term log& in the equaticm for the moment Mc and indicates

the need for additional terms in the expansion for the stream

.

●
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function $ to insure Seater accuracy in the range of high suT-
sonic stream Mach numbers-

Langley Memorial Aeronautical Laboratory
National Advisory Conmzitteefor Aeronautics

Langley Field, Va., Ootober 24, 1946

1. Bkplan, Carl: Effect of Compressibility at,High Subsonic
Velocities on the lLiftingForce Acting on an Elliptic Cylinder:
NACATN NO. w8, lg46.

2, Kaplanj Carl: A Theoretical Study of the Moment on a Body in
a Com~ressible Fluid. NACA Rep. No. 671, 1939.
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.50
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.60

.65

.70

.75
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.9

P

l.my

1.0206
1.0483
l.ogll.
~.=98
1.1547
1.1974
1.2500
1.3159
1.4003
1.5SL9
1.W
1.%83
2.2942
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!cABr$I

Rl?mo cm’ LIFrs FOR cOwREssm m ImwmEssrsm Jmms

LcjLi (first-step improvement)

;I= 0.05

1.0053

1 .02ZL’7

1.0510
1.0969
1.12@
1.1664
1.2.140
1.2739
1.3510
1.453+
1.5555
1.@9
2.1732
2.95A8

l.co~

1.0226
1.0534
1.102I.
1.1355
l.lm
1.2291
1.2977
I..3830
1.5Q16
1.6715.

1.*1
2.4231

3●5554

t’ = 0.15

1.0057
1.0235
1.0557
1.1069
1.1423
l*l&7
1.2A29
1.3155
1.4121
1.5456
1.7409
2.0589
2.6513
4.1042

t’ =0.20
——

Loo%

1.0243

l.m

1.11.13

1.1485

1.1956

1.2556

:::;%
1.5853
1.W6
2.1679

2.*
4.6%4

, #

—

t’ = 0.05

1.0053
1 .02Y7

1.051.1
1.0972
1.32%
1.1672
1.2153
102760
1.3$6
l.ktixl

1.6094
law
2.261.4
3.33a

t’ = O.1,o
.—

1.0056
1.0228
1.0539
1.I.032
1.1373
1.1799
1.2337
1.3033
1.3961
;.7&9

2:0524
2.7440
4.9304

—

7
.1
, = 0.15 t’ = 0.20

10358 1.0063
1.0238 1.0248
1.0566 1.0592
1.1o93 1.IL52
1.lW 1.1547
1.1926 1.2Q52
1.2524 l.qll

L

1.3312 1.3594
1.4392 1.483
1.5957 1.6677

~“w 1.9704
2.291 2.5455
3.31.21 3.9357
6.9353 9.2308
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TA3EE 11

RAKIn OF 140MENTsFciRCawmssm AND mcom!mssm= Hm7s

0.10
,20
● 30

:$
●5O
●55
.60
.65
.70

1.00X
1.0206
1.0483
1*09U
1.1198
1.1547
1.1974
1.2500
1.3159
1.4003
l*53.19
1*6667
1.8983
2.29&2

t’ = 0.05

1>0051
1.0207
1.04e6
3..0920
1.1212
1.l~o
1.2012
1.2564
1.3274
1.4222
1.57J30
1.7789
2.2438
3●9315

t’ = 0.10I %’= 0.15

l.o@l
~.0208
1.0488
1.0925
1>1222
1.1587
1.2044
~.2625
1.3392
1.&69
1.6147
1.9294
2.7499
6.5741

1.0050
1.0206
1.0478
1.0914
1.3.208
1●l~o
1.2023
1.26b5
1.3385
1.453.3.
1.6358
2.0135
3.1211
8.go9

TABLE III

MOVXMENI!OF CENTER OF ERESSURE AS FUNCTION OF S3!REAM

MACH ISWMKERAND THICKNESS COEII?ICIENT

%.

.lo
,20
*30
.40
.45
●X
● 55
●EO
.65
.70

t’ = 0.20
—.

1..0049
1.0202
1.0467
1.0M2
1.=58
1.1J}99
1*1923
L.2&61
1.3177
1.4211
1.5946
l.gq
3.1895

10 ●v~l

1.ooy3
1.0206
1.0483
1.Ogll
1.=98
1*1547
1.lq%
1.2500
1.3159
1.4003
1.5119
1.6667
1●8913
2.29k2

%’ = 0,05

-0.0001
-m002
-.0006
-.0011
-.0015
-.0021
-.0028
-.0039
-,0048
-.0062
-.0076
-●ob
-00019
.Okq

c -Ci
c

2a

t’ = 0.10

-0.0001
-.0004
-.Oou.
-.0022
-.0030
-.0040
-.0054
-.0071
-.0092
-●032.7
-.0139
-.0135
.0005
●0750

t’ = 0015

-0.0002
-.000

i-.001
-.oojk
-.0047
-.0063
-.00*
-.0=3
-.0149
“.0193
-.0239
-.027T
-.01.23
.0624

t’ = 0,20

-0.0002
-.0009
-.0024
-.0049
-.0067
-.0092
-.0124
-.016’7
-.0223
-.0296
-*03&
-.Oky
-.0381
.0259
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Figure 2.- Ratio of lifts and ratio of momenta In compressible
and incompressible flows and movement of center of pressure
in peroent chord as functions of stream Mach number. Center
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of pressure movement rearward with i.ncreaslngstream
number.
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