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- By Joseph Kempner
SUMMARY

Recurrence formulas and differential equations are developed
for the stress analysis of cembered box beams heving one or two covers.
In contrast to the elementery theory of bending, shear deformation of
cover and web 1lg considered. The recurrence formulas are applicable
to beams loaded by concentrated forces at intervals along their spans;
the differential equation is valid for beams of comstent section
loaded at the Tip and is solved for beams fixed at the root.

For various methods of end restreint, boundary equations are
developed whlch, together wlth the pertinent recurrence formula,
yield a set of simultaneous linear algebraic eguations. Solution of
thoese equations provides corvection forces which can be used in
conjunction with the results of the elementary bending theory to
determine the direct stresses in the stringers and the shear stresses
in the skin.

Comparison of the results of the applicatlon of the formulas
end differential equations developed with experiment and other methods
of anelysie indicate that the analysis presented ls gulte adequate for
the determinetion of the stresses in'cembered box beams, '

INTROTUCTION

-

In the past satisfactory solutions have beon obtalned for the
stregs anelysis of rectangular or flat box beams under bending loads.
(See, for exemple, references 1 and 2.) Procedures presented for the
snalysis of cambered box boams, however, have been for the most part
quite approximate. In the present paper, recurrence formulas are
developed for the stress analysls of single-covered carbered box
beams having singly symmetrical cross sections and double-covored
cambered box beams having doubly symmetrical cross sectlons. The
recurrence formulas, together with the boundary equations developed,
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are applicable to beams loadsd. symetrically by concentrated. forces
at sections along their spens. The heams can be restrained at both
ends, wnrestrained at both eiids, "or restralned &t one end and
unrestrained  at the other end. In any particular. problem, a
recurrence formula, together with the wertinent boundary equations,
is uveed to obtain a set of simultaneous linear algebraic equetlons
for corrections to the stresces glven by the elementary theory of
bending. For tip-loaded centllevered beams of uniform consitruction,
exact differentlal-equation solutions are developed..

Ap:plica tiong of both the . recurrence fomulas and differential
equabtions and two numerical exerples ere glven., Comparison of the
results of the present aneslyses wlth experimental data and othexr
methods Indicates that the solutlions presented herein are satlefactory.
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h depth of web 0 B

(5

gonoral designation of sectlon or bay

k fixity factor for carry=-through bay .
m designation of bay adjacent to rigid support
skin thickness
u, 7 axial and chordwlise displacements, respectively
X, ¥ é:x:ial and chordwise coordinate a:;es .l
yl' cover coordinate axis (See fig. 3(a).)
Z distance between neuiral axls and stringer F
o} stringer dlsplecement due to elementary shear stress
§(x) stringer displacement at distance x due to!

correction sheay stress

\ Xb
B bhtw Gt tenh KT,

b= 'bhtw Gt, sinh KL

{ (z+c)t [:As(z+c)+AFz —-}
2
' 2c¢ 'bc K"

A= {1+ .
bhty / G, tenh K'L
202'(30 X'd

l.l' =\l +
bhty / Gt sivh X'L

vl =t As(h + 2c) [ {h + 2c) + AFh:t %;}

|

<
fl
c:l"‘

2IG



- 5w s;f%
I : NACA TN No. 1466 -
o . ‘total stringer stress., -.. . ..
T .correction stringer stress ___-
T "~ total shear. stress
. _corrdction shear stress o
T elementary shear stress .- I
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e} + 2¢

2 EpA 2

K = ¥\ h

1 2024
C
1+
tht,,

‘o . _
1{2‘2 = bhtw ’ i _ N . .o
2024,
L bht
- - .
Subscripts
c cover
1 beay 1
m bay m
w web
F refers to stringer F
S refers to stringer S - -
L refers to stringer L

INADEQUACY OF ELEMENTARY THEORY

The elementary theory of bending yields for the dlrect-stress
and shear stress in a cambered box beam (figs. 1(a) and 1(b)) My/I
and V’Q/It, respectively. Although the stresses obtained wlth these
relationshlps satisfy the laws of statits, the corresponding strains
do not satisfy continuvity conditions. If, for exemple, a bean ls
loaded at seversl sections along ite span, as in figure 2(a), the
shear strains calculated fram the elementary theory permit dlscon=-
tinuities in the box cover at sections at which steps in the shear
diagram occurs. The discontinuities at each of these sectlons can be
resolved -into two components ~ that due to shear in the cover and
thet due to sheer in the web. As indlcated in figure 2(b), the
elementary shear strains in the cover tend to displece the upper
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stringer toward the supported section. If no shear exlsted in the
cover, however, elerents of the cover that were origlnally perpen~
dicvlar to the web at the flenge (stringer F) would tend to remain
so during shear displacement of the web., As shown in Tigure 2(c),
the uvpper stringer now hag the tendency to be displaced away from

the supported end. Since the magnitudes of these dilsplacements are
proportionsl to the external shear acting on each bay, the slementary
thecry permits disoontinulties to exist at those seoctlons at which
external shesr loads are introduced. Discontinuities between
edjacent baeys having dlfferences in congtruction are also pormltted.

For a tip-loaded beam fixed at poinbts indlcated by the circles
in figures 2(b) and 2(c), the stresses in the sheet and stringers
would be in sgreement with elementery theory only if the upper
stringer at the supported end is permitted to be dleplaced in &
manner consistent wilth elementary shear stresses. TFor beams fixed
rigidly at one end, this condition ig campletely neglected by the
elexentery theory. It should be noted that, for bending of the beoam
(without shear deformation), sections that were originally plane
remein so efter bending occurs and merely rotate wlth respect to
oact. other. As indicated in figure 2(d), no discontinuities arise
wher. these rotatlions are pexmitted.

|

Because the sitresses in box beams determined from the slementary
thecry do not satisfy conditions of continuity, and consequently are
inadequate for the snalysis of beams similar to thoss used In
aeirplene constructlon, recurrence formulas and differentlal equations
are developed in the present papsr for the determinavion of self=
equilibrating correction forces which, when combined with the '
elementary forces, yleld stresses that satisfy the laws of statics
as woll as the cconditions of continulty.

BASIC ASSUMPTTONS OF PRESFNT THFORY

| In the development of the wvecurrence formilas for the corrections

to the elementary theory, the following baslc cesumptions are made:
(1) . The beem is prismatical and is composed of ;bays, the cross o
sections of which have one or two axes of symmetry as sghown in
figures l(a) and 1(b). . ) ST

, '(2). Each box cover aspproximates two flat plates Joined ata
central cover stringer (fig. 1). If thé cover is curved, the axc of .
the cross section of the cover c¢sn bo replaced by two equal chords.
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(3) The skin of covers and webs is ‘capsble of carrying enly
shesax stresses, wherees strinuere plus an effective sheet area earry
.only direct strees. e

(%) Chordise displacements sre negliglble.

&

DIFFERENTIAL EQUATIONS FOR THE STRUSS ANATYSIS |
OF CAMBERED BOX BEAMS

Beams with One Cover

A gsecond-order differentlal equation isg fowmd for the stress
analysle of single=-covered cambered box besms. This equation is
appliceble to laterally loaded beams having external shear forces
symmetrically distributed between the webs. In addition o the basie
assvmptions listed previously, for the solution of the differentlial
equation,the beem ls assumed to be a tip-loaded cantilever box of
wniform construction (fig. 1(a})}. Because of symoctry, only half the
beem is considered in the anelysis (fig. 3). The upper stringer of
the half cover has half the.area of the originasl cover stringsr.

Expressi for str r_end shear stresses.=- The origin of
coordinates is located at the rcot as indicated in figure g(a). The
direct’ stress in each stringer is . .

du
U‘:EEJ_C : (1)

" in which u represents axial stringer displacement. The shear
stregses in the web and cover, respectively, are

(31.1"1. av ) h
T =G\ + =
w oy ox
> (2)
du, Bvc
' T =Gl + —
¢ Oy! o
in vhich W, and Vg respectively, are . x- and y-displacements of
the web, and, uc ‘and V., respectively, afe the x= end y'-~displace-

ments of the cover. The sign conventlon for the shear stress is
indicated on figure 3(b).
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| If the axlal displacements of stringers ¥, S, end L ’
(rigs. 3(a) end 3(b)) at eny transverse sectien of the besm are
designated as Upy Vg, @nd  up, respectively, equations (2) becoms
. b
w h ox
end > (3)
. _G'(uF'uS_,__cgavw
¢ b .. b ox
o ' W, _
gince o ’ [,
w o | —
Ve = B Vi
- ~ ’ a'v ' .
Elininetion of Sf from equetions (3) yilolds
o a, Geo
CRER AR C RO RS- (CREN I ®
Foullibriwm relatlionshipg.- Consideratlon of the static
equilibrium of the forces on the free-body diagram of Pigure 4 yields
the following differentisl equationss e e
oy Tt Wy )
dx - Ap - Ap A L
T t ’ = = e Tt s ==
' dﬂs - c C (51))
Ao, Tt
...__...L_ = M (50)
ax Ay . T e - CCEE Saem

If any cross section of the beem is loaded by & shear force v,
then from further equilibrium considerations (fig. 3(b))
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Differential ecuation for shear stregs in covexr.=~ In order '_'bo
obtein ‘an expiression for. To 1in terms of the physical properties of

the beam and the sxternal loading only, "T., up, ug, and vy, are
elininated from equation (4). Differentiation of equation (4) twice
and subsequent -substitution of equations (1), (5), and (6) into the
resulting expression yields the following secand-~order differential,
equation for the shear strese in the cover of the beam:

- o N 2 [N .
(- ), = (P Kl)_‘.’ C Y e
_in which
: 2
° = .‘%—5
ax’
Gt,

G 1 e L l)
e e s =
o E'bh‘_.F' h GF AL
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I
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Shoar end _strinper stresges.- Fram eguations (6), (9), (10),
and (12) “the shear stresses in the cover and web, respectively, of
a tip-load.ed cantilovered heam are

2 \ n )
. cosh K(L =~ X
T = =P L ° (

o %2 bm-. +ct°} cosh K, 1@

.- - .- -

0 . .. B S L .NAQA TN N'o- 1466
Solut of differentisl. squation for a tip-loaded beem.- For a
tip=loeded beem (fig. 3(a)), equation (7) reduces to
- - 2 ’ - - 15 —_—
(P -, - e (8)
_ T ' : T e
in wvhich P 'is the load et the tip of each web. [The general
solu'bion of équation (8) is _ C -
. : - ﬁ'..; e _Klz .
o -ro_‘=.cl sinh Kx + Cp __c_:osh Kx +_T-;2—— P (9}
in. which’ 6, and Cp are co.ns’can’ts of integra.tion._ At the fixed =~ T
' end, ‘X = 07 and uF Yy = = Q. Hence, from equatiomns (%), (6),
and (9),
X 2
1 G
C, = - - - P (10)
2 \&  tht, + b
At “he free emd, x =1L and op =0y = 0p = 0. Censequently, from e
equations (1), (&), and (6), at x =1,
) dT -7 be o 4 '=":E
(o] - —
—_—=0 11
— | o
and therefore From ogquations (9) and (11) o
. : —
Kl c
=\ bht + o7t




NACA TN No. 1466 | 11

2 2\
oo B o e eshE@-x) 2 ( K
¥t \i2 'bh'EW +¢2t /' cosh XL C oHyh ¢ g2

(13b).

. The corresponding stresses in stringers F, S, and I,
respectively, are from equations (5) and (13)

2
Pty (h + c> o )sinh K(L - x)

(s} = - 7 i -

F ) 5 " cosh KL
Kap vt % oSt/

P K, 2 :1
v — |t (h+ o) = -1| (x ~1) (1ha)
hn 0%
Pt (K% ; £.K. 2 .
oy = - cf®1 _ c )sinh K(L - x) - cKl Pix - 1) (Lb)
= = — S S
. KAg \ %2 'bhi;W + TG, J. cogh KL . ASK.Q e
Pot, (k2 .
o. = - X i c ginh K(L ~ x)
LT Kath \g2 - bht, + ce-tc cosh KL o
. 2 ' ’
P K .
4 — \L =~ cb, — ~ T, l'!"-

In equations (13) and (14) those terms contalning hyperbolic
. Punoctions represent corrections to the stresses obtailned with the
elementary theory. The other terms represent the elementary stresses.
If & substitute structure is considered, therefore, the corrsctlon
terms only should be found and added Lo the elementary strssses that
corregpond to the actual structure. X ’

Beams with Two Covers

A typlcal besm having upper and lower covers of equal camber
is shown in figure L(b). Because of the double~symmetry of the cross
sectlon, the anslysis of {this bok is ‘somevwhat simpler than that for
the single~-covered box besm. For the double-covered beam, equations (4),
(5), end (6), respectively, are replaced by (fig. 5)
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i o 4 N 20e _ R
T W () )
dﬁz . AT T“tﬁ"_ A \(16) -
) & * Ap | Ag '
5. k% - (17)
ax Aé [ — - e
To:we 21‘ t.0
ey .
T . (18)
"’__ tvh el R
Elimipation of T, UF-' and - uS from eqva'bjone (l) , and (15)

to (18) yilelds the following differvential eguation for the shear stress
in either covexr of the beam

-2 - o™ - Ay o)

In which - -

| G5 l:l (;_1_+ 8¢\ . ]_.__]
x? _ B |Ap Ag

26%4 )
A1«
’bht.w

: (h + 26 o -

Klta EbAF
- ' 202

o o .bhtw _ .
E c S b i >

’ 'Ke 2 o . ‘bhir
: - S i éc>2“"c
N




NACA TN No. 1466 13

Por & beam loaded at the tip of esach web by & force DT,

equation (19) beccmes
(® - K’Q)Tc = K, 2P (20)

Solution of this equation for a beam fixed at x = 0 ylelds

the following expressions for the shear stress In the covers and
“\

webs, respectively,
o 2
P.Kl' o cosh K'(L - x) +K ' P
T, ) Bht, + 0624 cosh K'L K12
c ' >(21)
o QP'tCG le _ o cosh K'(‘L - X)+ _:E_ 1 - 20% I::_]:_'_.
v " o \gi? Tt + 2 2 cosh K'L t, g2 g

The stressges in the stringer of the tenslon cover of the beam

(upper cover in fig. L(b)) are of equal magnitude but opposite in
slgn to the corresponding stresses In the stringers of the comprsssion

cover and sre
Pt T, 12 h
oo = c (h+20> 1 c sinh X'(L ~ x)
¥ Ko, \ B K'?  put o+ 202‘6 cosh K'L-
| K, J S (22)
——~t(h+20)————-—-l (x-L) :
AFh K2
2 2
Ptc K;[_r c ginh K'(L ~ x) thl' .
°%s = Txig \g? 2 nET  ag? T =)
K 'bhtw + 2¢ tc cos ASK

In equations (21) and (22) those terms conteining hyperbolic
functions represent corrections to the corresponding stresses
determined by the elementary theory.
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TEVEIOPMENT OF RECURRENCE TORMUIAS AND BOUNDARY EQUATIONS

" Recurrence Formuls for Single-Ccvered Box

Procedure.~ At any section 1 of a cambered box bheam with a
single symmetrical cover (see fig. 6(a)), the discontinuity or "gap"
in .the cover permitied by the elementary thaory is dstermined. A
suitable set of stringer correction forces, which cen be related to
stringer displacement at any section 1, 1s found and the wanner in
which these forces distribute themselves within a bay is determined.
A recurrence formula ils obtained vhich, whon applied to successive
gections, ylelds a set of simulteneous equations for the correction

corrections to the elementery sitringer and shear stresses are
therefore readily determined.-

_ Stringer disvplacements due to .elementary shear siregseg.- In order
to determine the magnitude of the discontinuities that would exist
between adjacent bays on the basls of elementary theory, the stringer
displacements gt eny section 1 at which changes in external loading
or bay constriction teke place ere found friom the elementary shear
stresgess Because of the symuetry only -ohe half of the beam cross
section is considered (fig. 6(b)). The upper stringer of the half
coverr heg half the area of the original cover stringer,

The elementary shear stresses in the cover and. web of hay 1
are, respectlvely, .

T %, + c) : (23)
s I, % ( i .
1%
and. R . . R . e
) Vi ‘: ( . ) S e -.
T = A fz4 +C) + Ag 2 J ' (2k)
Wy s, (%1 7
Theg LAY 4
in which
Apy Ag cross sectional effectlve area of stringers F eand 8,
respectively
I, .  ~moment of inertias with respect to neutral axis of cross ) =

gsection of bay i
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c - camber. (vertical distence .of stringer S' frim stringer F)

'bci, 'hwi skin thickness of cover end web, respectively, 91“ bey 1
Z. distance of stringer F from nentral axia.
The sign _mfentid;i_ for the elein.entary sheer stresges is Indicated
in figure 6(b). ' ' '

If the part of stringer S within bay 1 is to remmin
continuous with the sheet of the cover of bay i, becauge of the
elomentary shear strosses, each point of the styringer segment must
‘be dlsplaced a distance (fig 5(c))

A -

s - Tt S .yt B
Si..TWiG TIC:LG . . (&5}

in which G 1s the sheer modulus and b, the half cover width.

The firet texrm of the right~hand side of squation (23)
represents the contribution of the web shear stress +to. the stringer
displacement, whereas the second term is the contribution of the -
cover ghear siress. Frcm equaetions (23) and (24), equation (25)
becomss. :

81 = "Vivi (2'3)
~ in which

1 ( _
vi = -fj-ﬁfsi(zi + c) _tl;i - I:Asi(zi o+ c) + A’E‘iz:{] t——:’;;}

.
~

From"elemen'bary conslderations, 'bheréfore , the tokal gep
between the segments of stringer S of adjacent bays 1 end 1 -1
(see fig. 6(c)) is . _ .

&, =95

g "8y = Viey Vi "My . (27)

Equation (27). indlcates that, ‘on the basis of elementery theowy,
displacements of the cover of adJacent bays having dlfferent applied
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external,«shear forces:Qr wemiations. in.gbrnotural properties
result In discontinuities in the cover. )

- -‘_;':.'\__' :'-_r1|‘$ A e L R ¥ T s s T T T

Correction forces.- At any section 1 of the beam, disconti-
nuities can be eliminated by the application of a suitable set of
self -equilibrating woryrection:forces. fo stringexs F, S, and L.
If a force -X; Iis applied to stringer 5 (fig. 6(6.5) tho applied

' "fortds Fequired at stringery F - emd I -are, rospectively,

eryn
S

S5 TP 1’1+c-X '}

and -

“
i
|
i

where h 1s the depth of the web. In order to utilize these forces
for the eclimination of the dilscontinuities in the cover, a reletion-
ship must be determined between.the displacements of styriunger S and
the correctlon force X.L

waveriesrs Relationships belveen corregtion force and stresses.= In order
ato £ind the deasired relationship bptween stxinger disvlacements and
corgection force, the sheax stresses in the cover and web (see .
fig. 6(d)) are ‘expressed as a function of X. Since the set of —
correction forces yields no resultant vertical shear, equation (6)

L for eny section 1, reduces_ to

T b, c '
T W . e9)
, b g

-

whére the horizontal bar indicetes correcticn stresses. Fram
equations (1), (4), end (29), the shesr stress in the cover of bey 1
due to the application of the correctlon forces 1s expressible as

r “-» 2 R i R . R . .
¢~t, \ &F . . o
c . A
(L+ S A R A *g-é-+-9-)'6’:&. "'(7}"' Ty - Ge Ty (30)
bty [ ax, EP h/ %1 Eb P1i Ebn 4
oo 3
R R

in which T, G, and 7. are the correction etringer stresees
. - ~for stringers - ¥; 8, and L, respectively,.at eny distance xy fram

. ESEEE LY - — R

Iy

o)
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section 1. In figure 6(d) it is seen that at xi =0,

— h + GX ~
[} ==
Fs 7 i
1 na
¥y
X
Ty, = T > (31)
i - A
51
and
— [o]
ag = W m———
I i
1 bR, )

Subgtitution of equations (31) into'equation (30) yields
at X4 =0
i

2 = .
¢t aT X .
]_+.._9.l ....9.1-:_..%@_+%)CJ;C)A1 +§'.. 1 +_c_gi_(32)
orat x, =0 -
= =X 33)
in which
Gtci“l <h + 0)2 + ..1;_ + -—--l 9..2_.] .
Y h 2 |
o b -AFi Asi ALi h
= 2
¢ tc
1+ 1
bht
Wy
At =
=L
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and from equation (30), therefors, at - %y = Ly,
AT,
axi .:T."O_ ; (34)

The manner in which the shear stress in the beam cover is
‘distributed consistent with no resultant shear on & cross section
is obtained from equation (7) whiclH reduces to

0° 5%, -0 2

The genoral solutlon of this homogeneous second=-crder
difforential equation is ' -

= R

il

Fci = Cp sinh Kyx, + Cp cosh Kixi_ (36)

Introduction of the boundery conditions represented by equations (33)
and (3%) Into equation (36) ylelds the Ffollowing relationship
between the shear stress In the cover of bay i and the applicd
coryvection force Ki

J . . —

To, = X (37)
c i
1 Yoy sinh KiLi L
From equations (29) end (37) the sheoar stress in the web is o
- K.c cosh: KefL, = x o A
— .l A e i

we = X -
YT b s Ky

Relationshipa between correction force and girinper dlsplecements.=-
Within any bay 1 +the dlsplacement of gtringer S corresponding to
the correction shear stresses T—ci and -?Wi and, cansequently, the
correction force X4, 1s determined from equation (25) and is

- - -'b ’ '
51("1) = Twi__'é " Tey o (39)
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Substitution of, _eg_uatibns (27) and (238) into equation (39) ylelds

2 -
=ty y bE, cosh K, (Li xi)zi
Phty [ to G sinh KyIy

B'i(xi) =" 3 + (ko).

E'Qua.‘cion (40) relates the exial displecement of stringer S at any
point x4 ‘to the correction force X, If bay 1 has a length I,
the displacement of the cover siringer st x; = 0 and x; = L, are,
respectively, '

51(0) = M¥,y ‘ (k1)
izll which | .
- é-'F cetci L xp
'bh’cvj: G, tenh KL,
and
By (1) = 4%y ' (42)
"in which
- ce'bci b

Bhty, / Gty sinh KyTy

Develomment of recyrrence formula.- A recurrence formila can

now be obtalined from consideration of the amount of correction
force X; required to eliminate the discontinuilty detéimined from

the elementary theory. From equation (27) the magnitude of the -
discontinuity between two adjacent bays i end 1 -1 (see
fig. 6(c)) is

B, -5

1 Ve

11 = YiaaVia T Y4V (43)
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-Since, -in general, correctlion fovces .are applied to, both ends of a
bay, the discontinulty defined by equation (43) is eliminated by the
epplication of correction forces X, i, -Xy, and X, ., (figs 7).

Consoquently, from equaticns (41) end (42) tho discontinuity at
section 1 can be eliminated 'by'lma.leing '

By =By = (¥ - MEy) - .(’”1-_-33‘1. " H11Xg 1) ()
Co_mbina'b'ion of equations (43) and (%) yields tho following
~‘recuirence formula rolating the correction forces X sat threoe
successive sechions: :

pi-lxi-l " (A‘i-l * )":L) Xy * ”:i_xi—!-l = vi-lvi-l RS (45.)

The recurrence formula (¥5) relates the correction force
applied Lo the cover stringer S at sectlion 1 to the corresponding
forces applied at tho sections adjacent to esction 1. Ome equation,
thorefore, similar to cquation (L5) cen be written for eech section
of a single~covered cambered hox beem provided that at least one bay
oxlsts on each side of that section.

oD **  Boundery Equé.tions

Eguations sultable for application to bays edjacent to boundaries
can e readily obtained from the previous analysls and the portinent
boundary conditions. Consequently, boundery equations are presented
herein for conditions of full restraint, partiel restraint, or no
restraint. By suitaeble carbinaticms of the boundary equations, and
Proper manipulation of the subsoripits, these equations can be applied
to the analysis of beams restrained at both ends, wwrestrained at both
ends, or restrained at one end and wnrestrained at the other.

- Boundary eguwation for Pixed end.- If a beam is fixed to the
righti'of bay m as Indlcated in Figure 8, the stringer dilsplacements
at se{zz’eog.on m+ 1. must be zero. Cansequently, from equations (41)
and \ . . . ‘ : . .

%= M iy e

- - ) .

e e
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and from equation (28), therefore, the fixed-end boundary equetion
ig

e - - {bT)

If the beam is fixed to left of bay 0, the boundaxry equation is
X - Ploxl = VOVO (11-8)

. '.gggndaz_;z_gg]ga'bion for _y;m_:\;_egi,;'_g;g_e enfl.~ If the 'beam of f:!.gure 8
is vnrestyained to the left of Pay 0, 'bhe correction force atb -

sectlon .0 1is zero. [Therefore, from continuity considera.tions at
section . 1 and from squations (27) , {(#1), amd (42), the unrestrained-
_end 'boqnd.ary equatlon which it_a w*it__‘ten for sectlon 1l is _

- (;\'O.."'.’"l) Xy & ¥y = Volg = MV o (b9)

and if bay m is unrestrained at 1ts right, the. boundary equation for
bay m is .

“m'lxm-l (Xm-l + ?"m) Xm = Vm-l m~1 " Yo'm (50)
Boundery eguation for paptly regtrag,_z_'_zg_d end.- If a beam is

continuotis through a fuselage as shown in figure 9, bay m is
partly restrained at its right end. The boundary equation eppliceble
to section m+ 1 i1s

“mx;n B (“m + k) Zoel = Vol . .. (51}

In vhich, when bay m + 1 1s composed of both skin and stringers,
2 ..2 |
X = » m+l M el
PN

m+l
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and, when bay m + 1 1s composed of stringers only,

k= Ll (h + C h )
© nE AFp1 ASm+1.

- - EES e . -+ -

Recurrence Formula for Double_-COVersd Be@_

A recurrence formula for the determination of the correction
forces for & dovble~covered beam such as that indlcated in
. flgure 1(b), cen be obteined in a manner similar to that used for
the analysis of the singlercovered beam. The equations presented
in the previous analysis must be altered, therelfore, as indicated.
below.

(1) In equations (23), (eu), : '_-('26),- z 'is replaced By -2—
(fig, 5(a)).

— (2) Equation (27) cen then be V?itten as

61 - 81_ = VI -lVi_l - V‘iV:L - - .- (52_) )
in which |

= --- {q(h + 20) E&S(h + 2¢) + AFh] f‘w}

(3) Rela'bions (28) ars replaced. by (seo fig. 10)

- - v e -

h + 20 h
n %4 L
» E ()
h + 2¢
- X
h i y.
(&) Equa.-b:t:on (7) becomes ) B
T o= o el _ (5k)

'Wi h
T TR
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From equations (1), (15), and (54) , the shear stress in either cover
of bay 1 cen then be expressed as - ’ -

2 -
2c°% a7
o] c G 2¢\ G _
1 + 1 i 2 —— 1 + = G - = F 5!")
vhty, | & h/Fy  Eb Sy (5

(5) Equations (31) are replaced by

- h+20x
°Fy " iy 1
1
(56)
5. oo
PL g, 4

(6) Fram equations (19) and (54) to (56), and (34%) and equations
similar to equations (32) to (34) and (3 ), the following expressicms
for the shear stresses in cover and web which correspond to
equations (37) and (38), respectively, are

. K', cosh K'i(Li - xi)

T : (57)
°1 oy  simh KNI,

i

-—

K'sc cosh K'y (Li - xi)

Ty, = X (58)
kb 1 tyyb sinh K',I, .

(7) The relationships for the displecement of stringer S
at x; =0 and x = Ly that correspond to equations (51) and (52)

are:d

.61 (0) = ?&T'iXi (59)

in vhich o
Ba tc K'i'b
A.’i =[1+ L
]
bhtwi G-tci tanh K iI‘i
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and ' N ) . ::_‘1"_,"!

By ) =0t (60)
in which - o=

LT 2c®t,\ ©  K'D
[..!."i = |1 + i A—-i
. y 4
Bty Gtg, sinh K'\L, B
(8) The recurrence forxmﬂ.a (45) end the b'mmdarymeqﬁa;ti_ons (1|-75 -
to (51), respectively, ocan then be written for a double-covered bax as

t - 1} ] \ -.1- = 1 . R N |

Mgt (’“ 3 * N :L) Ty ¢l = ViV - VeV (6D

B = M ey, = ViV

A% m ok = Violo

(&)

“tesy

_'<"\7'0 * ""1) Xy +p'yZp = Viglp = Va ¥y (6%)
M perfme1 ()" w1 * A”m) Xp = Vi Tmel VoV (63) :
o .<7" 'nt ¥ Xpyz = Vil . (66)
in which - o=
e -2
kt = m+) m+l
1 . - —
A m+l
vhen bay m + 1 is ccmpoged of both gkin and stringors, end
o T (h +2  h T
k L A-—-———- 4 me———
EE \"Pmel Asmin,

vhen bey m + 1 is composed of stringers only.

s
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Application of Recurrence Formules and Boundary Bquatlons

Simpltaneous equetions.~ After a beam has been subdivided into
the desired number of bays (see fig. 8), an equation in terms of the
wnknown correction forces X can be wrltten for each bay. Recurrence
Formula (45) (for single-covered beems) or recwrrence formule (61)
.{£or douvble=-covered beems) applies to all. bays located at least one
bay from & boundary; whereas equations (A7) and (48), equations (49)
end (50), and equation (51), respectively, epply to fixed-end,
urestrained-snd, and partly restrained-end bays of sin.%le =covered
beams and equations (62) and (53), equetions (64) end (65), and
equation (6%), respectively, apply to fixed=-end, inrestralned-end,
and partly restrained-end bays of double-covered beams. The group
of equations thus obtalned constitute a set of simulteneous linear
algebrais eguations for the determination of thie correctlon forces
at each section. A typlcal set of equations applicable to the besm
of figure 8 is given in teble 1.

Calculatlon of stringer siresses.- The total stringer siresses
are obtalned frcm the eddition of the elementary stringer stresses
determined from the formmla My/I end the corresponding correction
stresses determined by dividing the correction forces at each section
considered by the effective stringer areass at that section. If the
beam considersd is a simplified or 'substitute" structure (see, for
example, p. 2, reference 2), the elementery stresses should be teken
as those of the actual structure. The correction force for the cover
stringer S at any section 1 1s obtained directly fram the solution
of ‘the simultensous equations; whereas the forces for the web or
flange stringers are obteined from relations (28) (for single-covered
box) or relations (53) (for double-covered box). The total stresses
in stringers T, B, and L, respectively, at section 1 of a single-
covered beam ars -

Mj_zi h+CX ' )

£
|
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Similarly, the stresges in Bfringers ‘F and B in elther cover of
a double~covered beem are _
- ~
e _Mh h + 2
S hAFi 1
- . > (68)
Mi(h + Ec) Xi
g
3
i 211 Asi
- - . - . . - .. - - B
Calcultation 'o;Ej shear streppes.~ The shear stresses in cover -
end web at any sectlon 1 are cbtained from additicn of the
elerentary shear stresses delermined frcm the formula VQ/It and
the correction shear stress T determined from eguations (37)
and (38) (for single~covered beams) or equetions (57) and (58) (for
double~-covered beams). The total chear stresses in cover and web,
res:pectively, for a single-covered 'beam exe, therefore,
— L YiAS_i( y + c) . Ky (%y cosh K,L, =X, 5
c 5
e Tyt cy . sinh K I, N
and. . 5 U U S --._“1 -:- "- : I _h : _.é,_;
V‘i .~ K c X cosh KJ-I‘:I. i+l ‘
Ty = -1ag ( g+ c) + Ay, 2y (59)
Iitw tw \ ginh KiI’i
or R - ' mmem—
Ag, [z <
.o 83 (71 +0) Ky (% - Xi cosh Ki 1I’1 -1
cq ) t
1%y Ci-1\ SRR K D o
and - - . TooT T ST el Toooe : (D o ec—
T Ag, (g + ¢) + A o am (Faey T Fg 0O KTy
wy I:L‘Gw 1(j Ty ty, B ivh K, . L
* i1 ° :!.'--l 1-1 - T . EF  SIE

Similerly, for e double=-covered beam, the shear stresses in cover
and. web, respec'bively, are
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1 1
. ,YiASi(h + 20) i K'; (%; cosh X' L, ~X, .
L eIty % sinh K' L,
and
S PK! 4© %, cosh K'.L, =X
T, = PS (h + Ec) + Ap h] 1 11 il (70)
1
i EIi slnh X iLi
or‘ . . . . » N
ci _b . I.
and
? - ?
M A T i T T °°511-K-1-1I‘1-1
T = Ag,(h + 2¢) + Ag.h
L el by 3B sinh K'y Ty

If the corrections are for a substltute stmc’cure, ‘the elementary
streasses should. be teken ag those of the actual structure. .

NUMERICAT EXAMPIES

Exemple 1 ~ Cembered Box Beam with Single Cover

As an illustration of the applicetion of the recurrence formulas
and differential equations developed in the present paper, the single-
covered. cembered box beam of refersnce 3 iz analyzed herein. The
beam can be considered as & tip-losded cantilever box of mmiform
construction. Pertinent dimensions of both the actual besm and the
substitute structure used in reference 3, as well asg in the present
anelysis, are given 1in figure 11 and in ’ca'ble 2.

Application oi differential ~equation solubion.- Since the beam
considered (Ffige gd.)) is tip-loaded and of wniform construction,

equetions (13) end (14) cen be used to determine the sghear and
-stringer stresses, respectively. Since a substitute structure is

to be analyzed (fi.g. 11(c)), only the correction terms of these
formulas requlire consideration. After substitution of the mmerical
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= .

velues glvén in teble 2 into 4he ‘correctien terms of equation (13a),
the correction shear stress in the cover becomes

'?c = *21.9 cosh 0.074{88 - x) (71)_

in which x dis in inches and is measured from the root.end T, is

(o]
in poundes per square inch. The elementary shear stress in the part
of the caver adjacent to stringer T of the actual structure is

- 9360 pot (72)

Conéequently, the total shear sitress in the cover skin imﬁedia.‘bely
adJjacent to styringer F is | . oL T

T, = 9300 = 21,9 cosh d.o"(h(88 ~ x) " (?3)

in whivh 7, is weasured in pounds per squere inch. Eguations (72)

end (73) are plotted in figure 12, alcng with experimental date
obtained for the beem discussed. )

The stringer stresses for the substitute structure are dotermined
from equations (lh). Substitution of the mumerical values given in
table 2 into the correction terms of equations (14) yields the

following expressions for the corvection stressez for stringers F
and 8, . ' ’

.t

Q
43}
1

Bg = "13483 sinh 0.074(88 - x) (75)

in vhich & is in pounds per square inch. Theso corrections are
plotted in figure 13.

Gy = 15.57 sinh 0.074(88 ~ x)~ ‘ (74)

:

1T

o b
(34

3 b
I i |

i

,
I

i
]
[
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Although Tp is merely added to the corrvesponding elementery

gtress to obtain the total stress in stringer F of the actuwal

structure, ‘65 must first be distributed among the three stringers

of the actual cover and then each of the three reéulting corrections
added to the corresponding elementery stringer stresses. In
accordance with relerence k, FS_ is distributed along the developed

width of the cross sectlon.of the cover as a third-order parabola
(fig. 14). Therefore '

veps G AE) | 8
with | | |
-3 distridbuted cover stringer ..c:orréction stress
B negatlive of correctlion stress at center line of cover
S developed distance from center line of éover
b, developed length of cover

Since o_ 1s distributed along the developed width

8
- bc :
GSbctC = 5 O"tuc ds

1
&
Q
o
L L0
1
T a
f
=14
~ m,!
I

and, consequently

and, therefore,

30w b ) E) @
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The correction strees in stringers l 2 and 3, respectively,
at eny distence x from the root is determined from equation (77)

by teking (S ) eaual %0.0.364, 0.0787, and 0.0029P. (See fig. 14.)

The correctlon stringer stresses defined by equations (74)
. and (77) are added to the elementary stresses determined from
reference 3, and the resulting total stresses are plotted for the
root Yegion in Tigure 15, together with experimental data.
Applicaticon of recurrence-formuls solg_mgg Tha beam of
reference 3 can also be analyzed by the recurrenco formuls method.
Bince the beem is single-covered aud cantilevered, recurrence
forrula (15) and boundery équations (L7) and (h9) are applicable.
If the beam is divided into four bays of equal length (fig. 11l(e)),
m 18 set equal to 3 in the equationg of table 1, and the numerical
velves of the canstente are teken from table 2, tne following set of
similteneous equatlons for the corvectlon forces X,, X, 13,

and .Xh iz obtained

—— - . - R ) ) s e

T4 v —

: | Xl X2 X . XI& C??i—?)mts

w

- *15 55 2.9k 0

L PR e
- » +

2.94% ~7.77 18000

Solution of this_set of aquations yields:

= -18.2 poynds, X, = -96.l pounds, X, = -491.0 pounds,

X 3

1

and Xll = =2500 pounds,

’ The correction stringer stresses are obtalned from substitution

of the numerical velues of X into the X~terms of equation (67).
For stringers F and S these corrections are indlcated by the

crosses on figure 13 which fall on the curves obtained from the
differential~equation solution.. In order to obtain the total stresses _
in the actual structure the corrections must be considered in a .
manner similar to that discussed in the preceding scctiom.

The correction shear stresses at each of the four sectlons
considered are obtalned dlrectly from the X-texrms of equations (69).
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These corrections are added to the elementary ghear stress determined
previously and are indicated by the crosses in flgure 12.

Example 2 = Thin-Web Beam

In order to lllustrate further the application of the recurrence
formnlas and differentlal equations developed, a thin-web beam
(fig. 21 of refsrence 5) is analyzed by uss of the formules end
equations for a besm with two covers. A sketch of the beam indicatbing
the method of support, lecading, and pertinent dimenslons is given
in figure 16. ' '

1ilcatlon of differentisl-equati olubion.- If in
equations (21) and (22) (obtained from the solutlon of the differ=
ential equation (20)) the ceamber c¢ 1s made equal to the width D
(sce fig. 6), the panel ghown in figure 16 cen be analyzed directly.
Only the stringer stresses will be determined. From equations (22)
and the numerical values glven in table 3

Op = 1068 - 22.59x - 27.7 sinh 0.0674(k7.25 - x)‘_ 1
| > (78)
og = 2135 = 45.18¢ + 7.91h sinh 0.0674(k7.25 - x) l

-

in which =x 18 measured from the root in inches and ¢ 18 in
pounds per squave inch. '

The stresses obtained with equations (78) are plotted in
-figure 17 and as indlcated coinclde with the stresses determined in
referencs 5. .

Application of yecurrence-foymuls golution,=- The stresses in the

thin-web beam can algo be determined by application of recurrence
formula (61) and boundary equations (G2) and (64). Division of the
beam into three bays of equal length (fig. 16) end application of
equations (64), (61), and (62), respectively, yields the following
set of slmulteneous equations for the correction forces X:

Xl Xe ' X3 Constants
=231 B! . 0
i 1 ‘2}.‘ . 1 1 0

u! -xl V'P
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 Substitution of the mumericel.values given in teble 3 yields

X X Congtants
BB T

8,29 26,8 = 8.29 o
S 8.29 ~13.%  ~109k%

‘end, consequently

1]

1:35.h_?qpndsl

103.6 pownds

P
i 1

Substlitution of these correction Pforces and the numerical values
given in table.3 into equations (€3) and (70), respectively, ylelds
the giringer and sheer stresses in the panel at sectione 1, 2, and 3.
The stringer stresses obtalned are plotted in figure 17.

- - . - .o - - EREC . - D e e

. i T e rrre—

ACGURACY OF ANALYSIS o T

The resulss of the mumerical examples presented indicate that
the recuwrrence formules and differential equations developed in +the
prosent paper are sultable for the analyses of the siringer and sheuar
stregses in cembsred box beems. The plots given in filzure 13 eshow
that the correction stringer stresses determined from the recurcence-~
formunla solution are identical with those found by the differential-
equation solution, as they should be bvecause the two soluticms are
fundementelly identical. The curves for the tatel stresses in theo
stringers in the root region (fig. 15) indicate that tho differential~
equetion solution (and consoquently the recurrence-Tormula solubion)
yields results in good apveement witn the sxporimentel date of
reference 3. The plote given in Pigure 12 for the shesr stresses in
the skin of the part of the cover adjacent to the flange siringer also
indicate that the results of the recurrence~formnla solution and
differential-equation solubtlon are in good agreement with the
experimentally determined atresses. It should be noted that for both )
stringer stress and shear siress the elementary solubion yields
results thet are 1n poor egreement with the sxmerimental data.
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The stresses in the stringers of the thin-web beam (example 2)
of reference 5 determined by the recurrsnce-formula solution and
difPerential-equation solutlon are identical with those found by
the method of analysls of reference 5 and are plotted In figure 17.

CONCLUGIONS

» A

Recurrence forrmles and differential equatlons are developed
for the.stress analysis of cembered box beams having either one or
two covers. The recurrence forumlas in conjunction with the boundary
equatlons presented can be used for the determination of stringer and
ghear stresses in laterally leoaded cambered box beems restreined at
both ends, uwnrestrained at both ends, or restrained at ‘one end and
nnrestreined at the other end., The differentisl-equation solutions
are appllicable to cantllevered. ca.mbered box beums that are 'bip-loaded
and of wniform construction. .

Comperisons glven between the methods of anelysis of the
present paper and experimentel date and another method of snelysis
indicate that the formulas and eque.tions developed are adequate for
the atress enalysis of cambered box beams.

Langley Memoriel Aeronaublcal Laboratory
National Advisory Committee for Aeror'xautics
Langley Field, Va., July 15, 1947



NACA 1IN No. 1h66

REFERENCES
Kvhn, Paul: Stress Analysis of Beams with Shear Deformation of
the Flanges- NACA Rep. No. 608: 1937-

Kyhn, Paul: 'Approir.imate Stress Analysis of Multistringer Beams
with Sheer Deformation of the Flanges. NACA Rep. No. 636, 1938.

Peterson, Jemes P.t Shear-Ieg Tests of a Box Beam with a

Highly Cembered Cover in Tension. NACA ARR No. L5F27b, 1945.

Kvhn, Paul: A Procedure for the Shear-ILes Analysis of Box
Boams. NACA ARR, Jan. 19L43.

Etner, HE., and K8ller, H.: {ber den Kraftverlauf in lings-~ und
gusrversteiften Schelben. Iuftfahrtforschung, Bd. 15, Lig.
10/11, Oct. 10, 1938, pp. 527-542.




NACA TN No. 1466 35

TABIE 1.- SCHEME OF EQUATIONS FOR CANTILEVER CAMEERED BOX BEAM

xl X2 I3 xm-l Xm Xml Constants
(o * ™) 1 - Yo% " Y11
Hy (Mt M) mp AT
Pt -(xm-l * A'm) R Ymei'mel T ‘o'm
P M Va'm

TABIE 2.~ NUMERICAL VALUES FOR EXAMPIE 1

P c ) h 5 %, L
(1bs) (in.) (in.) (in.) (in.) (in.) (in.)

3000 3.38 9.01 1,8 | c.o18 | 0.0251 88

AF AS 'AI. I 4 G bH I.i 'b‘= ‘
(n.2) |(10.2) [ (1n.2) [(1n. 1) | (1n.)] (psi) (ps1) |(in.)](in.)

0.810] 0.537] 3.98 | k2.3 3.284x106 10.4 x 106 22 116.63

TABIE 3.= NUMERICAL VALUES FOR EXAMPIE 2

ol

= tv= tc I AF AS I G E Li
(1bs) ) | (tn.) | (#na)] (In®)] (1n.2)] (1n.M) (ps1) (ps1) | (4n.)

7

2005 9.8% 0.0315] 47.25| 0.620] 1.085| 960 |4 x 106]10.k x 109 15.75

" NATIORAYL ADVISORY
COMMITTEE FOR AFRONAUTICS
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Figure |- Cambered box beams.
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Figure 2 - Cover stringer discontinuities.
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(a) Single covered box beam, (b) Shear stresses.
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Figure 3- Notation for tip-loaded single-covered box beam.
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Figure 4~ Free body diagram of beam.
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Figure 5-Double covered box beam.
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Fiqure 6-Notation ‘for single covered box Beams,
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Figure 7-Applicafion of comrection forces.
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Figure 8-Beam with fixed end,
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Figure 9.-Beam with carry-through bay.
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Figure |O~Correction forces for
double covered box beam.
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(0) Cross section of test beam.
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(d) Side elevation of substitute beam. (e) Notation for substitute beam.

Figure 1l- Details of fest beam and substitute single stringer beam  {(example 1),
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Figure 12 - Cover shear stress (example .

—— Differential-equation solution
X Recurrence—formula solution

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

Y n i i | | [ ! i

O 20 40 &0 80
Distance from root, in.

Figure 13- Stringer corfection stresses (example 1).
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Figure 14 - Distribution of correction stresses (example ).
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Figure 15~ Gover stringer stresses (example 1).
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Figure l6 Thin-web beam (example 2),
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Figue I7- Skringer stresses in thin-web hearn (example 2).



