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By John E. Duberg and Joseph Kempner
SUMMARY

A recurrence formula is developed for the stress analysis of
reinforced circular cylindeors loaded iu tite planes of their rings.
In contrast to the elementary engineering analysis, deformations
of rings and sheet are considered. The recuwrrence formula in
conjunction with appropriate boundary equations can be used to
obtain sets of simultaneous linear algebraic equatione. The solu-
tions of these equations enable the stress analyst to find the
shear flows and direct stresses in the sheet, as well as the
shear forces, axial forces, and bending moments in the rings.

In order to reduce the amount of compubation involved in the
stress analysis of relatively long reinforced cylinders, an epproxi-
mate method of analysis ls presemted. In this method the cylinder
under consideration is assumed to bLe infinitely long, and the
recurrence Fformula 1s treated as a fourth-order fini'be-d;ifference
equation. Tt is recommended thet the spproximete solution be
utilized for the stress analysis of cylinders loaded at rings
located two or more bays from external restrainus.

TWTRODUCTION

Expsrimental data on stresses in reinforced clircular cylinders
indicate the inadequacy of the elementary theoxry of bending and
torslon when applied to the relatively flexible shell structures
used in airframe construction. Several investlzators have pre-
sented methods for the stress analysis of cylinders laterally loaded
at the reinforcing rings (references 1 to 3). The theory of refer-
ence 1, develouped only for the case of a one bay cylinder, involves
the assumption thaet stringer strains can be entirely neglected and,
consequently, leads to imaccurate results. The more precise theory
of references 2 and 3, developed for canbtilevered cylinders having
identical bays, becomes tedious and unwleldy when extended to non-
uniform cylinders. :
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The present, paper contains the development of a gensral
recurrence formula suitable for the stress analysis of cylinders
that may be nonuvniform in construction, arbitrarily supported at
the boundaries, and arbitrarily loaded in the planes of the rein-
forcing rings. <The development isg based upon tho maintenance of
continuity of deformation between the rings and shell. In any
particular problem the recurrence formula togebher wlth appro-
Ppriate boundary equations are ueed to obtain sets of simultsncous
linear equations for the corrections to the stresses glven by the
elementary theory. (For a cantllevered uniform cylimder the rosults
obtained in this manner are identical with those obtained by the
mothod of reference 2 or 3.) ' '

If a2 cylinder is composed of many bays, as in convontional
fusclago construction, the number of simultancous equations
requiring consideration may be prohibitive. Fdr a wdiform cylinder,
however, good approximations to the corroction strossos can be
obtained if the cylinder is assumed to be infinitely long. The
recurrence formula for this case is solved as a hcmogeneous finite dif-
ference equation of the fourth order and ylelds & relatively simple solu-
tlon. For practical purposes this solution can be applied to .
arbitrarily supported cylinders provided the louds sre located a
few bays from external restraints. When the recurrence formula, .
togethexr with the boundary equations presented, is applied to a
cantilevered uniform cylinder discussed in reference 3, good agree-
ment 1s obtained emong the recuwrrence=farmula solubtion, difference- ’
equation solution, and experimental strosses. -

SYMBOLS
64
A= BE _ AU
1.3
2
, . - . - -
B = ZLR ' il
GtL2
c function of ring loading
2 - '
D = Pn ) _ _
7 2 '

n

E Young's modulus
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G shesr medulus

H axial force in ring

I moment of inertia of cross section

L length of bay

M bending moment

M, concentrated ring bending moment

P radlal lozd

Q gtatic moment about neutral axls of crose-sectional aresa
lying between extreme fiber and plane under considera-
tion . . o ) ’

R radius of cyl:‘_nzder. and rins'

tangential load on ring

v shesr force -

a, b Fourler coefficiénts 1A Fourier éx:pangions of gq

c distance from neutral axis - T |

i, k general nmunbers of bay or ring

m designation of rooilslbaI;; | i - :

n generel number of Fouréler coefficlent |

q shegr flow in skin

5 thickness of skin

! effective sheet thickness, that is, thickness of all

material carrying bending stresses in cylinder if
uniformly distrlbuted sround perimeter

n, v, w axial, btangential, and radial displacements of points
on cylinder

X, ¥, 2 axial, tangential, and radisl coordinatos of cylindor
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o arbitrary constent of integration
B =34 n2 + 3B
o 38y
2
y. = -2 4+ _13.—_:_36?.
n 124y
y = 1

nz(ﬁg-- l)e

A, B, V . congtants dependent upon bay lengthsa

S
1 -11Bp - 1 (ﬁn+l) z
= -~ cosh - -
Pp = 2 \/ z ) " 7'a

2
o] longitudinal direct stress in skin

¢ angular coordinate of point on cylinder

. [“ . 2
-1iBy = 1 Bp + L\ 2
\Vn = g cosh ll n2 + \f( n2 ) - ')‘n

e
_1  -1iPn -1 Bp 4+ 1\T 2
R e \[(T‘ G

Subscripts:

R rigld
m : moment
T radial

t tangential



NACA TN No. 1219 5

STRESS ANALYSIS OF REINFORCED CYLIKDERS

Inadequacy of Elementary Thecry

The elemsmnbary engineering theory for bending and torsion of
reinforced cylinders loaded at the ring relnforcements ylelds the
well-known formulas Mc/I for direct bending stress, VQ/It for
shear stress due %o bending, and T/2At for shear stress due to
torsion (vhere T and A are the torgue on cross section and the
area inclosed by perimeter o¢f cross section, respectively). This
simple theory is based upon the assumption that radisl dilsplace-
ments of both rings and shest can be neglected. BSince the dimen-
sions of most wmonocoque struchbures are such that radial displace-
ments of the structursl componenta carmot be ignored without
appreclabls inscouracies ixr “he results of analysls, the elementary
theory must be modified & &% not only %to satisfy the laws of
statica but also to maindein continuity between rings and sheet.
The present development, consequently, 1s dirscted towards finding
self-equilibreting streses distributions that, when superimposed
upon the elementary stress distributions, yleld results which, in
addition to satisfylng the laws of statlcs, presserve the continuity
of the sitructure. These corrsction stresses are found from the
recurrence formula that is developed herein. '

Basic Assuxptions of Present Theory

In the devslopment of the recurrence formula that can be
used to obtain the desired stress corrections, several simplifying
aesgurptions ars made. That part of the sheet area which is con-
gidered Yo resist normal stresses is added to the sbtringer area
and the combination is uniformly distribubted about the periphery
of the cylinfer. This resulting comblnation is an effectlive sheet
thickness +t' <+that resists normal stresges. The actual sheet area
18 considered capsble of supporting only shear stresses. It then
follows that within a bay the shear stresses vary in the circum-
ferential directlon but are constant in the longituiinal direction.
Insxtensional defoimation of rings and sheet 1s also aesumed, and
Poisson's ratio is considered to be zero.

Develomment of Recurrence Formula

Procedure.- For the skin of any bay i of the structure (see

figs. 1 and 2), the corrections to the elementary shesr flow,
direct stress, axial displacemsnt, and radial displacement ere
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each expressed as Fourier series with undebermined Fourler coef-
ficients. Through static, elastic, and. geometric conslderations
of rings and sheet, a recurrence formula is obtained relating the
Fourler coefflcient of the shear flow of any bay i1 with the coef-
Plcients of the two bays on each side of bay i, that is, bays 1+l
and i+2 and bays 1-1 and 1-2. Fram the recurrence formula, simul-
taneous equabions may be obbtained from which the valuse of the
ghear-flow coafficlents are determined. With these values the
loads end stressos in the rings and shest can be found.

Sheet gtregses and deformations.- The system of coordinate
axos to te used is ehown in figures 1 and 2. Positive displace-
ments in x-, y-, and z-directions are designated u, v, and W,
respectively. For convenlence, the exhernal loading cn the rein-~
forclng rings of a cylinder is considered to De either symmetrical
or anbleymretrical about ¢ = 0°. (Soce figs. 1 and 2.) In accord-
ance with the basic essunptions the correctlons to the elementaxry
shear flow, direct stress, axial displacement, and redial displaco-
ment at any point (xi, cp) in bay i cén be expressed for symmet-

rical loading as the Fourieor axpsnsionsg

0,(®) = ) e, sinnp (1a)

> Te

(o2}

ci(xi, cp) = z Gin(xi) cos ngp (1v)

n=2

ui(xi’ q)) = ﬁ)__.. uin(’ﬁ) cos ng - (1)

o]

wi(xi, cp) = Z win(xi) cos no (13)

n==2
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respectively, in which 84ns “in("-i ), uin(xi), and Win(’?i}- are
Fourier coefficients. Inasmich as only corrections to the ele-
mentary stresses and displacements are-desired, Fourler terms
corresponding to n =0 and n = 1 are omitted since they corre-
gpond to the elementery stress and, d:lsplacemn’c. distri'butions. :

If antisymmetrical loading is considered the harmonlic func-
tions in equations (1) are rsplaced. by their cofu*ctions. It is
then convenient to deslgnate the Fourier coeff" cien'b of the shear

Relationships among sheet stresses and dePormations.- Within
any bay i the following relationships exist (fig. 2)t by the: .-
- squil Abrivm equation ' _ B B T

L, S Sag(e) L Lt e
gt do1{m, 9) oL 1 (9) e

.3 \ X 4
Dxi oQ

by Hooke's law for direct stress

dus O e e e
o'i(xi’ cp)|=aE ,ul(J%"-' ) el P S .(eb)
0%y
“by Hooke's law for ghear stress - <
Q.i(cp) 1 a i(JCi, q)) a"r"( j_; CP) . . C <2 )
m—— T ! L o mat c
¢y R 2 Bxi _
and ‘by the inextensional deformation equation -(p. 208 of “vefer-
ence )
av (x . 7, ) RN .- e - . .'. _.| -.
. OV4i Xy, P L
——55--—- - "’i("l* .cp) =0 {24a)
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vwhere

'bi actual skin thickness of bay i X
4] 'i effective skin thickness of bay 1

R radius of cylinder

E Young's modulus

G shear modulus

Vi (x.l R cp) circumferential displacement of any point in bay i

If equations (la) and (1b) are substituted into equation (2a)
and if coefficients of like cosine terms are equated, the following
expresgion for the Fouwrier coefficlent Uin("i) ig obtained:

E’c"ingxi) __.n

= 24n
A '
Bxi Rty

Integratlion of this equation yields

nxy
o1n(m) = - = o 4n(0) (3)

in vhich 04,(0) 1s the direct-stress Fourier coefficient at Xy = 0.

Similarly, elimination of Uin(xi) from equations (1b), (lc),
(2b), end (3) and subsequent integration gives

2

nxi X
wyn(zg) = - —n 0,,(0) + 1y, (0) (1)
ey -

in which u'in(O) 1s the axial displacement coefficient at x, = 0.
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"Blimination of viCii, ¢) from equations (2¢) and (24) yields

Beui(xi, qD

a¢d

vy, ) 1 daslo)
ox B

-
5 Gt; o R

Substltution of equations (1a), (1c), (14), and (4) into this
relationship and integration yields the following expression for
the radlal displacement coefficient:

3..3 2.2 :
n n

nxy *1
Vin xi) = G-'biain - u.in(O) + win(O)

in vhich win(o) is the radial displacement coefficient of the
sheet. of bay i at X = 0. -

Appropriate changes of the subscripts 1 1in equations (3)
to (5) permit the application of the equations to each bay of the
structurs.

Ring deformations.- The radial displacement et eny point )
of a symmetrically loaded circular ring can be exvressed as the
Fourier expansion (see pp. 208 and 209 of reference k)

Erri(cp)] ring = Z (Win)ring cos ng

n=2

It can be shown by the method -of virtual work (pp. 209 and 210

of reference 4) that for inextensional deformation the radial dig-
Placement coefficient (?in)ring for a ring of radiue R and

(5)
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constant moment of lnertis Ii - that is loaded by the shear flows

in bays 1 and 1-1 and by an srbitrary set of symuetrically applied
external forces is (fig. 1)

L‘ 8in " .81-1,n

(ﬁin)ang EIy ( )2. * Cin . ®
al{n? -

In equation (6) the first expression on the right-hand side repre-
genta the part of the radisl displacement coefficiemt due to tho
correction shears only, whereas the second expression represents

the part of the displacement coefflicient due to the extermal loasding
and the slementary shears. Values of Cyn arc givem later for

particular loadings. (Sce equations (232).)

Continulty relationships.- The following expreseions can be
obtained from continuity comnsideretions of thoe rings and sheet of
beys i-1, 1, and i+l (fig. 1):

ﬁi-l,n(Li-l) = 03n(0) (7)

Gin(Li) ?_°1+1,n(0) : (8)
w3, n(le-1) = wp0) (9)
uin(Li) = %y 7, 5(0) (10)
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Wi-l,n(o) = (wi-l,n -

ing
> (11)
Wi—l,n(Li-l) = (Win)ring
Win(O) = (Win)r-ing -
> (12)
win(Li) - (i, n)rin8 J
Wi+l,n(o) = (wi"'l’n)ring |
> (13)
W:1.+l,n(l'i+l) = (wi+2,n ring

Equations (7) to (10) are conditions of contimwity of o and u
across the boundaries between bays 3i-1 and 1 ard between bays 1

and 1+l. Eguations {(11) to (13) state that the radial deformetions
of the rings bounding bays 1-1, i, and i+l srs equal to the sheet
deformations of these bayes at the rings. Implicit in squatlons (11)
to {(13) is a statement of the continulty of w of the cylinder
across the boundaries bebtween bays.

Recurrence Tormula.- Substitution of the expressions for
cin(xi), uin(::ci), Win(xi)’ and (vin)ring (equations (3)

%o (6), respectively) in the continuity relationships (equations (7)
to (133) yields the following seven simultansous equatiocns in
‘WhiCh = 2, 3, "l" e 8 .



K

1
s Ly
,u1+l:n(0) =y, (0) + —= 84y 'ﬁ"din(o) = 0
g% 8in - 83-1 p .G nly-3 n3L1--13
= -‘-.'_""—-—'—a
EI . \2 Gt, - 1l 2 i-1,n
i nfp® - 1) 1 6ER“t 'y 1
Py (0) + Eland (0)
+ o em—y
s Ji-1,n 3 M-1,n
L oas.
R i-l,n i-2,n
+ BT ~ + Ci"'l,n
I+
1-1 n(n2 - l)
RY 84+l,n " 4n , oby . n%Lij_a
EI ~ g Tl+ln T gy 4 2 in
1+1 n(nn: - l) 6ER"t 'y
2 2 2 D
n“L n<L 4 a as..
+ - 1 . (O) " 1uin(0) + R in 1 1,11 + Ci
ZER R EI, 5 2 n
n{n< - l,)
A R T nhy .y n3I’i+l3
- 2,n = i+l,n 7
EI; ~ 2 e, at ) o
1+z nn2-l) 1 6ER LA
2 2 2
N L4 0Ly,
+ R °1+l,n(0) + u'i~z-l,1'1(o)

e

NACA TN No. 1219

> (1)
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If the six quanbtities °i-1,n(0)’ 04,(0), °i+1,n(°)’

v n(0), un(0), amd w5 o(0) are eliminated from the

seven expressions of equationa (14), the following recurrence
formula relating the Fourier coefficlents a of five successive
bays 1s obteained:

5 .
- he! i_"l T;.3 6Byep - n Vo
83-2,n * 83-1,n 1+ + + =
2\p-1 {_Ii-l Iy 6A5 17 I

= 2
U/ By -~ no° %) Uh_n

Ii+l - 6&1')' Ii +1 EIiA:L7

Yz 3 4. Iip1 By - no\ | Y3
8141, + 5 + &142,n

Ti41 Ti4l Iis0 6Ay 17 Iieg
= - - - 1E
a [Ulci-l,n (vl * u‘E,)c:in + ("2 * "3)Ci+1,n "3014,2,:]@; (15)

in vhich

1/ Dy Lgeyr
T, Ly;1 Dysz
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v, = -k (: R R RN L% N

L2 \L14l  Taal Iy
ROy,
A, =
3
LT,
Et 4R
Bi= 8 2
Gt,Ly _
7 = 2

nZ (n"a' - ZL)‘£

If the cylinder is of uniform constructiom, equation (15) can
be considerably simplified and reduces to

81-2,n * “¥n831-1,n * Ppfin + BV 8441 n + B342,n

- - ' EI
= (ci-l,n 3Cin * Cq1,n Ci+2,n) T (26)
RL"ny

In which
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The recurrence formulas (15) and (16) relate the nth shear-
flow coefficlent of bay 1 with the corresponding coegfficiente of
the two bays on each side of bd,y i. One equation similar to equa=~
tion (15) or equation (16) can consequently be written for each
bay of a cylinder, provided that at least two bays exlst on each
gide of this bay. For antisymmetrical loading, eguations (15)

and (16) can be applied if the Fowrier coefficients g are replaced.

by the coefflclents b.

Boundary Equstionsg

Since the recurrence formula applies only to a 'bay having two
bays on each side, incomple‘be or boundary eguations must be found
for each of the two bays at each boundary. Boundary equations,
consequently, are presented for bays m and m-l for a cylinder fixed
at the right of bay m and for bays 0 and 1 for a cylinder free at
the laft end of bay O. (Bee fig. 3.) ' By suiteble combinations of
the bowmdary equations and by proper menipulation of the subscripts,
“these equations can be used for the analysis of cylinders fixed at
both ends, unrestrairiod et both ends, or u'nrestrained. a'b one end
and Tixed at the other end. :

Procedure For d.e:c‘iving bound.ary‘oq;uatiéns;-"i‘he é;enér_ail recur-
rence formule was derived by combining the equations for o;,{xy}),

uin(’%_) Win(xi) and (Win) (eq_ua'bions (3) to (6)) with the

ring
gensral.. con'binuity candi tions (equa'bions (7) to (13)) and then
eliminating all Fourier coefficients except the a's. In the deriva-
tion of the boundary equations, the defining equations (3) to (6)
are combined in a similiax fashion with (l) all of the continuity
conditions (equa'bions (7} to (13)) thaet do not include quantities
in nonexistant Days ‘or rings and (2) the bowndary conditions.

Thus, for clamped edges (see fig. 3) the boundary equation for
bay m is obtained by combining equations (3) to (6) with the con-
tinulty conditions

c"111-1,,n(1’m-l) = ?m(o).

1, n(Fige1) = Bgn(©)

il

Vm-1, n(0) (Wm-l s n)rin g
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?ﬁ-l,n(gmrl) =-(ﬁﬁn ringl

K (O) (%n)ring _

and the boundary conditions

s
.

)0 |

xj ...-.- - '. - _ UMI(LIE) = 0 |

: _aﬂd 'then eliminating all the Fourier coefficients e,xcept the a's.

SR Boundary equations for fixed end < If the foregoing procedure
is followed, the boundary eguation for bay m (fib. 3) is found to

'be_ .. . Lo . 1

",',‘._‘ o ) ._" . . 2 :
o My M = Nl WL
" %mr-,n I * fm-1,n0 T ¥ GA, ' I
ST Im- L L

j -
Lo GBm - n =1
P8 I 6Am7 i 7\
v FRAACTE K I
. : . .
) R B . ’

. |
=" [“1°m~1,n ) (“1 * “e)gm];zf— (17)

in which ' .

I
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" B (% + ey -’-1&—-1+Im-2+63m—2-n2 4 D
..3,11 \:,:Jn—e -2,11 Im..2 Im—l 6A ,—,7 Im-l

' . 2
- am 1 p.h- + —li.s_é + I'm—l + 6Bm-l = + E.é + —-——pl?-.-_-
T T In S Ip  2Ty-1An-17

b5, Mg GBm-n
g ™ Iml+ "hm-zn (b + B5)Cho1 n

+&

+ (u5 + “6>Cm;]£;; (18)
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w1 L. -
u7 1 I‘ml+m2+Lm2+9

L1it\ T I I‘m-:-_l

For cylinders of uniform construction the fixed-end boundary
equations (17) and (1.8) for bays m and m~1, rospectlvely, reduce to

.an%-Q,.n + ..(2711 - l_)a'm-l,n + (a{an -2y, - G)amn

= (Cm-l,rlil'?. hCim ;ff; e
L (19)

®m-3,n * 27y w-2,n + “Pope1,n * (Zyn + l)a‘mn

EY
Rl"n‘y .

= (_Cm-2,n = 303, n + 2€
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For antisymmetrical loading the Fourler coefficlents a iIn
equations (17) to (19) are replaced by the corresponding coeffi-
clents ©b.

Tn order o apply eguations {17) to (1%) to the left end of a
cylinder, the signs of the shear-flow coefficlents mst be changed
and the subscripts of the various terms altered. If the cylinder
of figure 3 is fixed at the left of bay O, subscripte m, m-1, . . .
are replaced by 0,1, . . ., respoctively, for those terms pertalining
to the sheet of the bays and by 1,2, . ..., respectively, far those
terms pertainlng toc the rings.

Bowndary equations for wrestralned ond.~ The boundary equa-
tlons for the wnrestralned end of the cylinder shown In figure 3
arc also found by followlng the proceclure outlined. The boundary
condition at the free edge 1s

crOn(o) = 0

The boundary equation for bay 0 is found to be

A 6By - n~ Ao A
aOnl:—]—'-Il+E4- ZA +—‘:+ﬁ 3/\
o\ L Ao¥ T =hobe?
!A'l Ao I 6.‘Bl n~ Ao
-aml—-+-—-l+-£:+ aa t 8p f
1 DL\ e . Oy I
R - R
= {_R]_COn (Rl + Le)cln + }\'ECEn]—T;-‘— . (20)
Ry
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In vhich

.i

|
|
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A A
P
I,  2I,Ay7

- (21)
7
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vhere
X
Ay, D e
L
Lilo
L% \F1
L
Ll2 Ly

Por cylinders of wniform construction the wrestrained-end

boundery equations (20) and (21) for bays O and 1, reepectively,
are

EI |

(27n + 2B+ 3.)a0n + (2yn + :L)aln# 8y, = - (ccn =20, + C ;1-1-1-7-

(22)

_ EI
27na0n + Eﬁnaln + 27na2n + a3n = (cOn. - 3Cln + 302[1 C3n)3~—14-n

: For antisymmetrical lomding the coefficients =& are replaced
by b in equabtions (20) to {22). In order to apply equations {(20)
to (22) to the right end of a cylinder, the signs of the shear-
flow coefficients must be changed and the esubsciripts of the various
terms sultably altered. . .

Special boundary equations.- The bommdary equatlons developed
are sulttable for cylinders having fouwr or more bays. For the
speclal case of the center bay of a three bay cylinder, the boundary
equation, which depends upoh the conditions at both boundaries, can
also be found by means of the general procedure previously outlined.

The boundary equations for cylinders of one or two bays can be
similarly derived.
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Application of Recurrence Formule and Boundary Equetions

Specific loadings.~ As mentioned previously, the stress
analysis of a reinforced cylinder arbitrarily loaded in the planes
of the rings can be carried out conveniently if the stresses caused
by the symmetric and antisymmetric components of the extermal
forces are sultably combined. Further simplification of -the
analysis is obtained if the loadings are resolved inlo concentrated
radial forces, concentrated tangential forces, and concentrated
bending moments. For each ring loaded at ¢ = 0° (seec fig. 4) the
load function Cy,, obtained in the derivation of eguation (6)

for (win)rin ,» Tor a concentrated radial force, a concentrated

tangential force, and a concentrated bending momont are, respec-
tively,

l

Ctin iR BT, - 7 - {(23)

M. (n - 1) R ny

Min R2 - By

(]
u

where P, T, and M, ere the symmetrical radlal load, the anti-

symmetrical tangential loed, and the antlsymmetrical bending-moment
load, respectively, acting on any ring 1 at ¢ =

Similtencous equations.~ A typical set of equations appliceble
to a cantilovered uniform cylinder with six bays (m = 5 in fig. 3)
is presented in teble 1. The first two and last two rows wore
obtalned from the umrestrained-end and fixed-end boumdary relation-
ghips of equations (2¢) and (19), respectivoly, &nd tho inter-
medlate rows were obtained from the recurronce Pormula of oqua~
tion (16). For a nonuniform cylinder these oxpressions are
roplaced by those of equations {20), (u1i), (18), (17), and (15) .
It 1s to be noted that tho coefficients of the unknown a's
and Db's are indopendsnt of Cyn (load term of oguatioms (23));
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consequently, numericsl solubion of the equatlons (reference 5)

for various loadinge is greatly facilitated. A sot of simnltaneous
linear equations similar to that of table 1 must be solved for
each n-value chosen. The number of n~values requlired depends upon
the desired accuracy. The Fowrier coefficlents obtained for a
given load P, T, oxr M, at ¢ = 0° can be used to determine

the coefficionts for similar loads at any other value of ¢ since
the z-axis (fig. 2) can be chosen to coincide with any radius.

Stresses and loads in cylinder.~ After the coefficients a

and b ars computed, substitution in the formulas (Al) to (Al)

" presented. in eappendix A enables the stress anclyst to compute the
shear f{low In the actual sheet, tho direct stress 1ln the fictitlous
sheet, and the moments, shears, and axiesl forces in the rings. The

" stresses due to loads acting at several rings cnd at various values
of @ c¢2n be superimposed to give the stressos caused. by these
loads gcting simultancously.

APPRO)GMAIE METHOD OF ANALYSIS BY SOLUIION
OF FINITE DIFFERENCE EQ,UATION

Difference-Equation Solution for Infinitely Long Cylinders

Equation {15) referred to previously as a general recurrence
Tormula 1s also a fourth-order finite difforence equation with
variable coefficients. 8ince the varisble ccefficients prohiblt
the solutlion of this eguation in cloped form, only the solution of
the equation that pertains to a uniform cylinder is discussed
herein. A general procedure for solving the fourth-order finite
difference equation with constant coofficients (see cquation (16))
is presented in reference 6. Whon the right-hand side of cqua-
tion (16) is sot equal to zero, the following hamogeneous eguatlon
is obtained: ol

ai"'E,n + ‘27n&i,l’n + EBnain + Eynai_’_l’n + 51+£’n = 0 (2}4—)

From reference 6, the general solution of this hamogeneous eguation
consists of tl)le followlng six Indopendent solutions: for

Bn -1
D, =2 5 >1 and 7, <0

"n
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for

a:I.n
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e ﬂyﬂk

(m].n cos k’)(;n+ @, sin k’)(.n)

Yk ,
+ e (a.3n cos k:')(,n+ @, sin lcxn) {25a)

Dn>l and 7, >0

a.’Ln=(

- & ‘
-1)%e Yo (u‘ln ‘cos k')_(,n+ o, sin k:')('n)

+ (-J_)ke%k(a?’n cos _k’)(.n+ @, §in k'X,n) (25b)

for D, <1 and 7, <O

8in

= k
e O (uln cosh kpn + O sinh kpn)

'\l_.' k .
+ e B (“3n cosh kp, + oy  sinh kpn) (25¢)

for D, <1 and 7, >0

for

for

o
]

pw
It

- (-1%k "‘!’nk y -
8y, = (-1)*e (d‘ln cosh kp  + o, sinh kpn)

b k ’
+ {-1) ko' (d,3n cosh kp_ + o5 einh }:pn) (254)

1l and 7n<o

84n

==

_e-\lfnl_:(cr,ln + -ocznk) + e‘!‘rnk(cl.rgn + ;x‘q-nk) (250)

1l and ')’n}O

Q4n

(—l)keﬂ{;nk(‘ooln + a.ank) + (~J.)ke\ynk<oo3n + d’hnk) (25

f)
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2
B, - 1 B, + 1 P
-1|Pn n
h + -7
908 2 \/( > ) n

2

-1 BIJ. -1 C."}n + l) )

cos = =7
2 2

in which

o

2=
i
s

2
- 1
B -ilBn =1 (|fPa* 2
pn—-E‘GOBh 5 ( 71’1

o

k=i=o’l)20 L

and Gpr g “3:1’ and oy, are arbitrary constants.

The analysis of a uniform cylinder that exbends longitudinally
to infinity in both directions from a loadod ring is readily carried
out with the aid of egnations (16), (2%}, and (&5). If the loaded
ring is considered to be a boundary between tile two halves of the
beem and if no load other than that at the boundary is assumed to
act, the difference equation (16) with the right-hand side set .
squal to zero applies equally well to vokh rarts of the cylinder
(see fig. 5) j consequemtly, only one-half of the cylinder need be
considered in the analysis., Since the difference agquatlon
applicable is the homogeneous equation (2h), equations (25)
together wlth the appropriate bowndary conditions are solutions of
the present problem.

The distortions caused by the concentrated load have no effect
on the stress distribution in the cylinder at % = w ; therefore,

Bp = 0+ ‘The first term on the right-hand side of each of equa-

tions (25) eatisfies this condition; howsver, the .Becond term does
not satisfy this requirement and, hence, must vanish. The golutions
then that are compatible with the boundary condition at infinity

are from equations (25): for D, >1 &and 7,< 0 -

8 = o nk(“ﬂn cos k')(,n+ o, sin k-’)(,.n) (26&)-
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for

Tor

for

for
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D, >1 and 7, >0

D, <

D, <

o
1

From

ay, = (—l)ke-\ynk(&t}n cos k’Xh+ o, 8in k?(‘n)

1 and 7, <0

“Ypk ' .
By, = © (a'ln cosh kpn + Cop ginh kp n)

1l and 7n>0

e k . .
(-l)ke \ljn (aln cosh kpy + 0, &inh kpn>

ain

1 and 7,<0

oun = o' (o + )

1 and 7n>o

- (0% gy + )

the conditions of symmetry about the loaded ring,

1219

(26c)

(264)

(26e)

(26f)

modification of equetion (16) leads to the determination of two

boundary equations applicable to the present problem.
load function at the loaded ring is designated CO (see equa-

tions (23)) and equation (16) is written for bay O, the first

boundary equation is

(_zgn - 27, Yao, + (2711 - l)a]_n + Ay = ~30y, <

If the

(27)
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= - ‘8, = - . ' 15t
since &, = -a_, &and a;, a. If equation (16) _is written
for bay 1, the second boundary equaticn is seen %o be

-,

~ _ EI__ . 8
(;7n - 1)aOn + 2B gy, + 278, +ag = Cgy E‘Tny (28)

glnce a = =g «
On -ln

The boundary equations (27) and (28) pexrmit the determination
of the arbitrary constants Oy and Gy o For a given value of n,
substitution of the appropriate value for a,;, from equations (26)

intoc equations (27) and (28) yields a sot of two simultaneous equa-
bions; for example. if D, >1 and 7, < 0

(=4

%[(?.Bn - Eyn) + (27n - l)e-.\pxL cos ’X’n +e B cos E’X,n]

. -'\!f _2\1’
+ agnti27n - l)e % sin Ky+ e Tosin 2’)(,4—_- -3Con ;{%

. (29)
J

“o¥p
cos N +e cos 3 ]
K T N S 3

-2,
- C g BT
o n £ e rafy ! -
+ m2n<¢5ne sin X’n+ 2y, e sin Zf, +o sin JlX'n)" Con ﬁ;

The constants ey and. Oy, are obtained from the soclubion of

these equations. To each value of n there corrogponds one value
sach for @, and oy * Since D, eand 7, aro funchtlons of n as
woll as the elastic properties of ths cylinder, for a particular
cylinder more than one of equations {26) may bb6 required for the
determination of all the values of o, &ané O"Zn’. With the values

of these constants determined for each value of n, corresponding
values of a,;, for each bay are obtained from equations (26).
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As in the spplicstion of the recurrence formula, a's corre-
sponding to several harmonics, that is, n varylng from 2 to the
value that yields the desired accuracy, must be found. For anti-
symmetricel loading, & 1s replaced by b in equations (2h)
to (29). The values of the coefficients a and b obtained are
substitubted in equations (Al), (A2), and (Ah) for tho desired load
values. BSince the expression for the direct stiress in the sheet
now involves an infinite sumation along the cylinder of the shear-
flow coefficients, simplified formulas for the direct stresees at—
any ring k are presented in appendix B.

If equations (27) and (28) are replaced by the unrestrailned-end
boundary equations (22), with all valuee of C,, except Cop sotb

equal to zero, a tip loaded cylinder extending to Infinity in one
direction can be analyzed with a procedure similar to that developed
herein. '

Applicetion to Finite Cylinders

Whereas & concentrated load causes distortion in the region
in the immediate vicinity of the load, for most practical purposes
the part of the cylinder a few bays away from the load can be
agsumed. undisturbed. Consequently, if the load is lccated a
sufficient distance from extexrmal restraints, the distortions of
the cylinder in the region of the load are independent of those
rogtraints. If then a wmiform cylinder of finite lemgbth is to bo
analyzed and this cylinder is losded in a manner such that the
load is not in the proximity of an external restraint, the ele-
mentary stresses snd loads are found ds usuel by considering the
cylinder to be finite, whereas the correctianeg may be found by
use of the difference-equation method by considering the cylinder
to be infinito. Boceuse the effoct of the concentrated load
dlssipates quite rapidly, volues of & and b are ususlly of
interest only for those bays in the vicinity of the load. The
desired forces asnd moments in this reglon can thon be determined
as before from the egquations giver in appondixes A and B.

Adsquacy of Difference~Eduation Solution

Although the solution in cloged form of the problom of &
uniform reinforced circuler cylinder im exact only for infinitely
long cylinders symmetrical about a loasdod ring, comperisons of the
finlte-difference-oquation solution, the recurronco-formula solution,
the standard solutlon (reference T7), and oxporimental data For
cylinder 2 of reference 3 were made fdr a cylinder Tixed at one
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end, unrestrained at. the other, and” havin.g only For 'bayb. The
cylind.er amg loalled:with a. concentrate& radial; force Et a ring
located: two. bays’ from each end. :(See”fig, €.) In’ figures T and 8
curves" ars given for  bending moments in- the - oaded ring and. aa.Jacen'b
~rings as vgll.as .For the shear flows in- the'- uwo ’bays ad;;acent ‘to
4he loaded: ring.. -Inasmuch a& the ¢ylinder con'balns re’latively
few bayd; an extreme case is represented tnat 19 anlikely to be”’
met. i preactice. . The more bays a- c:y'lina.ez_' Had the more closely
it epproximates an infinite cylinéer for whi ch '[:he finite-~difference-
equation golution is.exact; co‘nsequently, ,the 500& agreement shovn
in figures. T .and 8 among the" f;nite-diherence*equation solu'tion, .
~ the recurrence~formnla solution ‘and” experﬂe"xta,l d.a‘té :Lnd.icatee
that ’che s:lmplified. solu.tion is qu.i‘be aﬁeq_uate. L . ,

P - . o s v .
P P e e v .

Advaﬁtages of Diff'erence-Eq_uation Soluation

Since airplane fuselagss dpproximati no circalar cylind,ers ére
composed of a relatively larpge rnriber: 6f - b.‘ys “For’ mcss'b practical
cases, the eimplified solution.should be a good approximation to
that obtained by the use of the recurrence formula. As mentioned .
previously, when the recurrence formula is applied, sets of
gimulteneocus equations containing as many unknowns as there are
bays in the structure must be solved for each n-value required.

For structures having many bays the amount of computations involved
may be prohibitive; however, no such compubtations are involved when
use is made of the infinite-cylinder solution. In addition, this
solution is adaptable to the conmstruction of design charts similar
to Wise's charts of reference 7. The analysis of any long uniform
cylinder is dependent only on the values of the structural
paremeters A end A/B. For various representative values of
these parameters, charts can be constructed from which the analyst
can determine desired stress coefficients. For extreme cases, such
as a cylinder loaded only one to two bays away from s restraint,
the recurrence-formula method is recormended for accurate solutions.’

CONCLUDING REMARKS

The recurrence formula developed in the present paper facili-
tates the stress analysis of circular cylinders loaded in the planes
of the reinforcing rings. The cylinders can be composed of bays
of different cross sections and lengths and cen be supported by
rings having different moments of inertia. The boundary equations
bresented are applicable to cylinders fixed at both ends, unrestrained
at both ends, or wnrestrained at one end and fixed at the other end.
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'For the analysis of cylinders composed of relatively: few
bays, 3% is recommendséd that. the recurrence fTormila:be used to. ' -
obtaln sets:of simultendows linear algebralc-equations. -The . .
"solutiong of these egquatiocie lead touan accurate: determinahion of
the Btresses:in the rirgs and shset of-the cylinders. The analysin
of cyiinders:composed of many bays, és are. semimdnocoque Pfuselages,
can more ‘converiiently be accomplished by +tie -molikion of the .
recur¥ence ‘formula.ds & finibe.difference egquation. .- Althoush the
© ptresfes obtained with -this golution ‘sre approximetions to.-the
more: accurate gtregses found vith the simultane ous. equatione, for
long.cylinders ‘the_computations involved are coneidérably shorter.
In addition, isincé for the three basic loads the.stresses determined
by this method are dependent only upon the structural parameters
of the cylinder, charts facilitating the rapid determination of
the stresses In reinforded cylinders can be readlly constructed.

Lengley Merorial Aeronauticdl. Labormtory - & vl e
- Netional Advisory Committee for: Aerodaubics = .- .~ . i
+ Langley Field, Va.,’ November 1@, 194G . .i:mw:: /& w.ic
. I
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APPENDIX A
FORMULAS FOR LOADS AND STRESSES IN CYLINDERS

After the coefficlents & and b are computed, the shear
flows in the actual sheet, the direct stresses in the fictitlious
sheet, and the bending moments, shears, and axial forces in the
rings can be found with the aid of the equations - ziven in the )
appendix of reference 3. For the sake of completensss these equa-
tions, with some additions, are presented herain.

Shear Flow

The total shear flow qi(cp) in any bay i for any ring
loading on a cylinder can be expressed as

(2] o
g, () =qR+Z-ain sinns:p-:-z byp cOS 1Y (A1)
n=2 : n=2 -

In vhich e represents the elemenbtary shear flow calculated on

the basis of rigld rings. For a cantilsvered cylinder, an is

zero for those bays located between the tip and a loadsd ring. For
those bays between a loaded ring and the root the vglues of qR

for a radial load P, a tangential load T, and a concentrated
ring bending moment M each applied to rinz 1 at ¢ = 0°, are

given in table 2. Positive forces and bending moments are indi-
cated in figure 4. If more than one ring is loaded or if the
cylinder is not of cantilsever construction, P;s Ty, and Mg 1

are replaced by the resultant radial, tangential, and moment load,
respectively, acting on & cross sec'bion of bay 1.

Direct Stress in Skin
For a cantilevered. cylinder such as that shown in figure 3,
if the longitudinel skin stress at ring O is agsumed to be zero,
the direct stresms at rins 1 is (see equations (1b) and (3))
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[s2]
1\ Iy Ly-1
ci(o, cp)=oR-§Z_ qon -t e T t tA R T ncos ny
2 O l ' i_l
n= _
+ = Zgj b b e nein np (A2)
On -[-,' P ln 't' coeoe ¥ i-1,n tli"l nsein np

in which oR is the sitress given by the simple engineering theory

of bending. Since the shear stress 1s constant in the longitudinal
direction within a bay, o varies ljnearly between rings.

If the cylinder is rigidly fixed at ¥ing O as well as at

o

ring m+l, the initial boundary stress :E: %on (0) cos no (for

n,_._ .
symuetrical loads) must be added to the direct stress obtained with
equation (A2). The value of the Fourler coefficient cOn(O) is

determined for a cylinder having at least thres bays from the con-~
tinuity condltion " =

WOn(LO )= _(Wln)ri%
and the boundary conditions

Uon(©)

N
o

!
[}

Wy (0) =

together with the defining equations (5)- and (6). The relationship
obtained is : '

, 2ToA 'Y €By ~ n*° ET
.Uon(o)-—-'_—l'{t—’-g—‘aonl+' Or' +aln+—]-'—Cln ' (A3) -
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in which
6.
At - Rt g
o 3
ko
For antisymmetrical loading, ao_l and aln are renlaced

by by, and by, respectively.

Bending Moments and Forces in Ring

The bending moments, shear forces, and axial forces in the
reinforcing rings of a cylindsr arbitrarily supported at its ends
are, respectively,

© C 0o, n
. - - b - By
M1=1\&%_'_REZain 23-1,n coan:-R?‘Z in i-l,n sin no
n=2 n(n2 - l) n=2 n(:).2 - l)
@ . . g h
' - - : . b - bi_
Vi=VR'RZ ainr 8i-1,n sinnq)-R.Z in i-1,n cos ‘op S (4h)
n=2 I‘J.a - l) n=2 (n2 - l)
(o] { o
n{a, - as. ) D b bs.
H - K +R \ina i-1,n coszxp-'RLn(in iln)sinn(p
=2 (n - l) n==2 (n2 - l)

in which M, Vi, and Hp are the bending moment, shear force,

and axial force in the rings, respectively, determined on the basis
of elementary shear flow iIn the skin. Positive values of the bending
moments and loads in a cylinder are indicated in Tigure 4. Formulas
for My, VR, and ~Hp corresponding to a radial losd P, a tan-

gential load T, and a concentrated ring bendinz moment Mc, each

applied to a ring 1 at @ = O°, are glven in table 2. For rings
not loaded externally, only the series expression in equations (Ak)
are required.
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APPENDIX. B
DIRECT STRESSES IN INFINTTELY LONG CYLINDTRS

For the determination of the direct stress in the skin of a
uniform infinitely long cylinder, eguation (AZ) can be replaced

by

o k
=)
c.(0 = O 4 e a,. n cos Bl)
i( ) CP) R RG L in .n:p (
n=2 i=co
or
© s g A
L \ [\ | e
oi(o, Q) = op + s 2\ 4 ®m " 8..] n cos np {Bx:)
n=z “i=0 i=C

in vhich only the cosfPficlents 84n are considered. In these
egquations, ci(o,. ) is the direct stress at »ing 1=k. Corre-
sponding to the six valuves of 8,, from eguations (z6), six
solutions for ¢,(0, @) can be determined by svmmmation along the

cylinder. As an illustration of the proceduse iavolved, equa-~
tion («6a) is used herein for the velue of a,.+ Conseguently,

equation (B2) becomes

[+ [+>]
SN : ,
ci(O, ®) = op + i% s E: o B (aln eos l;_'X,n Gy, B1n kX,n)
k-1
-\r k
- Z o 11’n (qln cos k")(,n-r-or._,_n sin 1:%:1)}n cos no (B3)

1=0



The summtions from 1 =0 to isw end 1=0 %o i=5kx~1 are readily accomplished with
the aid of formules 6.830, 6.833, end 3.01, numbers 12 and 13, of reference 8. The resulting
formila for the direct streas at any rins I is for Dn> 1, Th< 0, and i=k=0,12, .. .

ST2T *ON NI VOUN

] (.0 . . L % "\I!nk'amf‘lfn co8 k'X-n"CoS (x-1) XT:_L'% I:G‘I’n sin k:-;(.n-sj_n (x-1) %IJ
i :fP—UR-i-ER_b'Le s ooe
i S e ‘_.. me

' _ cogh = cos X,n

(B4)

With a procédure analogous to that used for the determination of this equation, the followlng
solutions are obtainsd for the direct stresses correcponding to the remaining five values of ay.°

for Dn>1 and J'n>0

TTgE



oo r ) 1 v g
kL N Al a.]n!_e‘!&lcos ;Y + cos(k-l)'ﬂnj+ @ l; Psin XY, + Bin(k-l)'x,nj
01(0;@) =0p+ (-1) Tl ° _ n cos np (B5a)
Rt cosh W + cos 'X,n

for’ Dn< 1l and 7'n< 0

o I_‘lfn _ . [ % ]
L\ ¥ x Tl cosh kp, - cosh(k-1)p_ | + azyle “sinh kpy - sich(k-1)p,

6. (0,9)=0p+— )} © = = n cod np (B5Db)
310,91 =0g E:Rt'n% coah \lrn-cosh P,

for D <1 and 7. >0
I i A

® U U . i o )
-y k& [e cosl kp_+cosh(k-1) ]+ E& sinh kp +smh(k-1)pJ
‘l)kjh—;'?;'Ze o m- 2 Prj % - B0 cos np {B5c)

di(olq)) = UR + (

_ n? cogh \!fn + cogh o n

for D=1 amd 7,<0 _ -
- ), o et |
S ik cr.ln(.e -1/ 4 o tke' - (k- 1)_'

74(0,9) = o5 + Ly e ¥ ks n cos P . (Bo4)

RE' L— cush ¥ - 1 .

=2 n

for Dn=l and ‘)’n>0

. () s ol - o)
kI N Wk e’ + 1) + q’anke + .(k l)‘ i (556)

2R o cosh \{In +1

If the cosfficients b, ~ are considered, cos o 1s replaced by -sinnp in equations (B1)
to (B3). -

9t
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TARIE 1.- GENMRAL SCHEME OF IQUATTONS FOR UWIFORM CYLINER (OF SIX BAYB

Righti-hepd aide

Laft-hand etde
(2) {3).
Tt " | %2 "| % 2 L+ (Toad term)
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: .' n e e\ k e g NDA =1
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Looetficients a apply to xedial losds; coefficlents

25ysbols sre defined in oquation {16).
3pyubols ere defined in equation (23).

to tangsatial or bending-momnt loads.
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TABTE 2.- ELEMENTARY SEEARS, BENDING MOMERTS, ARD TOADS IN CYLINDER
CORRESPONDING TO BASIC RING LOADINGS

[Sigu gonvention shown in fig. 4 ]

6187 "ON N.I. VOVN

Extarnal.
ring

loading & M i B

at = 0°
P -Eamw E1131+—-°""—'-'—q’--(1t-»:))rs.'ulcp Ell’—1-';9-(1-1;:)<:01aq: -ﬁ- x-cp)sincp+§coaqa
i R 2x 2 2x| 2 2x 2

™ /1 R 3 REN coB ¢ Tilsin o
Ty -§(§+eoaq:) -é;—lgx-tp)(l-cosm) ,esinqa_a;(:—qa)ainq:——-—g-- = 2 {(x - 9) cos @

oy
R

H"i - — -é-;-[(x-tp)—aainq;] _2_H°iﬂ_(1+2005q)) - sin @
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Figs. 1,2 : NACA TN No. 1219
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Figure 1.— Part of typical cylinder.

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

Figure 2.~ Coordinate system for typical bay.



NACA TN No. 1219 Figs. 3,4
drty R -

otz i mIA{m2m-il m

— —_—

O | 2 3 i W3 m2 m1 m

AANRRRNRNNNNNNNNN

Figure 3.~ Side view of cantilevered cylinder.
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Figure 4.~ Sign convention used in analysis.
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Figure 5.— Loaded part of infinitely long cylinder.

Z
7
%
7
7
-2 — O I %
7
7
7
7
| | 2
2 - O ‘ Z
R 2

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

Figure ©.~Side view of cylinder 2 andlyzed in reference 3.
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Figure 7.— Comparison between caiculated and experimental ring-bending

moments for cantilevered cylinder.
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Figure 8.~ Compgrisgn hetween colc_y[g'regl and expenmem_gl skin-shear
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