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SI!KESSANALYSIS BY RECURRENCE FORMULA03?REINI?ORCED

CIRCUIJR CYLSNDERS UNDER LATERAL ~=

By John E. Diberg and Joseph Kampner

A recurrence fomnula is developd for the stress analysis of
reinforced circular cylinders loaded in We planes of their rings ●

In contrast to the elementary engineering analysis, deformtions
of rings and sheet are considered. The rec~ence fo~~a fi
conjunctloti’with appropriate boundary equations can be used,to
obtain sets of simultaneous linear al~brai.c eq-uatians. The solu-
tions of these eq,uat~onsenable the stress analyst to find.the
shear flows and direct stresses in the shcmt, as well as the
shear fmces, ax5.alforces, and bending mcments in the rings. .-

In order to reduce the amount of comyutition involved .inthe
stiess andyW e of relatively long reinforced cytid~j~s, an epproti-
mate method of analyai.sis presentedt In this uethcd the cylir+der
under consideration is assumed to he infinite@ lon& and the
recurrence formuk is treatd. as a fourth-order fbite.-dlfference
equation. It is recolmnendodthat the q?proximzto solution be
utilized fcm the stress analysis of’cylinders loaded at rings
located two or more bays frcm external restraintso

JNIRODUCTION

Experimental data on stresses in reinforced circular cylinders
indicate the inadequacy of the elementary theory of lxmdin~ ,and
torsf.onwhen applied to the relatively flcmiblo shall structures
used in airframe construction. Several investi@ors have pr6-
sented methods for the stress analysis of cylinders laterally loaded
at the reinforcing rings (references 1 .to3). The theory of refer-
ence lj developec only for the case of a one bey cylinder, involves
the asswption that stringer strains can be entirely ne@ected and,
consequently, leads to inaccurate results, The more precise theory
.ofreferences 2 and 3, developed for cantilevered cylinders having
identical bays, becomes tedious and unwieldy tien extended to non-
uniform cylinders. .. .
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The present paper con%ins the d?velo~rit of a general
recurrence formula suitable for the f3tresaanalysis of cylinders
that may be nonuniform in construction, arbitrarily supported at
the boundaries, and arbitrarily loaded in the planes of the rein-
forcing rings. The develqnent is based upon tho maintenance of
continuity of deformation between werin~w and shell.. Xn any
particular problem the recurrence formd.a together with approp-
riate boumkry equations are Wed to obtafn sets of simultaneous
linear equations for tho corrections to the stre~ses gfven by the
elementary the”ory, (For a cantilevered uniform cyl%mlcr the rmnzlts
obtained.in this manner are identical with thoso obtained by the
method of reference 2 or ~.}

.

i

—

If e cylinder is composed of - bays, m in conventional
fusolago cxxmtruction, the nunitwrof simul.tanoousequations
requiri~ considerationmay bo.p’ohibitive. FGr a uuiform cyllndor,
howevor, good approximations to the correction strossos can be
obtained if tho cylinder is assumed to be infinitely long. !l?he
recurrence formula for this case Is solved as a huuo~eneous finite dif-
ference equatfm of the fourth order and yields a relatively simple EIOhZ- _
tion. For practical yurposes this solution can be applied to
arbitrarily supportod cylfnders provided the lads are locatod a
few bays Nom ex!mrnal restraints. When tho rocurronco formula,
together with tileboundary equations ~remnted, is appkted to a

.

cantilevered uniform cylhder discussed in reference 3, good agree-
ment is obtmined among the recurrence-fcwmuls solution, difference- Z
equation solution, and experimental stresses.

A
R6t I
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B= Et ‘R2
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c function of ring loading

—
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?? young’s modulus
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u, v, w

x, y, z

shear modulus

axial force in ring

moment of ine7tia of cross section

le~gth of bay

bending moment
,,

concentrated rtng bending moment

radial load ,.

statio moment about neutral axis of cross-sectional area
lying betwe6n extreme fiber and plane u&3.erconsidera-
tion ..

radius of cylh!der and ring”

tangential load on ring

shear force : -

Fourier coeffici&its-tfi”Fourier~,~a~ions of q
..’,

distance from neutral axis - ,...
..

,.
gene~al nwnbors of bay or ring

,,,.,” ..
demtgnation of root bay ; ‘: .,.

,, ..; .’

genertilnumber of Fourier coefficient

shear flow in skin .

thickness of skin

effective sheet thickness, that is, thickness of all
mterlal carry5ng bendin~ stresses W cylinder if
uniformly distributed around pmimeter

axial, tangential, and radial displacements of points
on cylinder

axial, tangential, and radial coordinates of cylinder
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a arbd.tmaryconstant of integration

II*+3R
t3n=3+—

MY

.

‘=ri’k1)2
X,v, v, constants dependent upon bay lengths

u longitudinal direct stress in skin

v angular coordinate of yoint on cylinder

r

+

Subscripts:

R ri@d

m moment

r radial
,,,.

t tangential
.
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STRF..SANALYSIS OF REINFORCED CYLIKDERS

Inadequacy of Elementary Theory

~he el~~n~ary eng~eering theory for beti@ and torsion of
reinforced cyklnders loaded at the ring reinforcements yields tiie
well-known formulas Mc/1 for direct bending stress, VQ/It for
shear etress due to bending, and T/2At for shear stress due to
torsion (w~iere T and A are the torque on cross section and the
area inclosed by perimeter Gf cross secticm, respectively). This
simple theory is based upon the assumption that radial displace-
ments of both rings and.sheet can be neglected. Since the dimen-
sions of moat nc~ocoq~e structures are mch that radial displace-
ments of the atriict~nalccmqmnenta cannot be i~ored without
appreciable Waccuxaoies ~ +ie results of analysis, the elementary
theory must be modified Bb QS not ofiy to satisfy the laws of
statics but also to maintati continuity between rings and sheet.
The present development, cmsequently, W dtrected towards finding
self-equil~bret.ingstress di~trihutions that, when superimposed
upon the elementary .dxeas d.i~tributions,yield results which, in
addition to satisfying the Mws of statl.cs~preserve the continuity
of the structure. T%ese correction stresses are found from the
recurrence formula tlnatis developed herein.

Basic Assumptions Gf Present Theory

In the development of the recurrence formula that can be
used to obtain the desired stress corrections, several simplifying
assuv.ptioneare made. That part of the sheet area which is con-
sidered to res~.stnormal stresses is added to the stringer area
and tinecombination is uniformly distributed about the periphery
of the cylizn?er. This re8ulting combination is an effective sheet
thiclmess t’ that resists normal stresses. The actual sheet area
is conside~ed capable of supporting only shear stre~ses. It then
follo%w that within a bay the shear stresses vary in the circum-
ferential direction hut are constant in the longitwiinal direc%ion.
Im+ensional defo~”uationof rings and sheet is also assumed, and
Poisson’s ratio is considered to be zero.

Developnmnt of Recurrence Formula

Procedure.- For the skin of any bay i of the structure (see
figs. 1 and 2), the correctfona to the elaentary shear flow,
direct stress, axial displacement, and radial disylacment are
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each expressed as 3?ouri.ersewfes with undeterminedFourier coef-
ficients. Through static, elastic, and..geometric considoraticms
of rings and sheet, a recurrence formula is obtained relating the
Fourier coefficient of the shear flow of any bay i with tho coef-
ficients of the two bays on each si.&eof bay i, that is, bays i.+1
and i+2 and bays i-l and i-20 l%aznthe recurrence formula, slmul-
taneouo equations may be obtained from which the value~ of the
shear-flow coefficients are determined, With tkeso values the
loads and stresses in the rings and sheet cam be found,

.

,

~i?eetstremeu am de&gmn~E.- The system of coardlnatw—...— —
a=s to ke used 3s shown in fj.gures1 and 20 Posit3ve displacem-
ents in x-, y-, and z-directions are desi.~ted u, v, and w,
respectively. For convenience, the eti,ernalloading on the rein-
forcj.ngrings of a cy.li.ndopis considered to he either symmetrical

—

or a...tl~ymnetiricalabout q = OO. (Sinefigs, 1 a.niL2.) Ih accord-
ance with tho busic e.~su.mpihxlsthe corrections to the elementary
shear fiow, d5rect ~bro~s~ axial displacement, and radial di@.aco-
ment at any poln.t (~,, 9) in bay i can be e~ressed for symmet-

rical loadi~ as the FoIwior CKPSnChnEI

m
-r--

*2

+-sQj“ 2_%tn(%}Cos w
n=2

(la)

(m)

(lC)

.

,

(Id)
.

—
.



respective=, ti which ~nj 6in@ti), %nf%), ~~d wfn(~} me
Fourier coefficients. 13wxauch a.sonly corrections to the ele-
mentary stresses and displace.wenteare desired, Fourier terms “
correapomiing to n = O aznd n = 1 are omitted s~Lacethey corre-
spond to the elementary etress anti,dtsplaa~nt dis~ibutions ● ;,, .

If antis-trtcel lea@ is considered, ~!e harmonic ~-c-
tions in equations (1) are r@aceM. hy .tic3ir”cd?Uh?&JiOnS, It iS
then corrvententto desi~ie the Fourier coefficient of the shear
flc?wby b~n.

,,..,.

.,

Relationships among sheet stresses ah” &or&ti ons.- Within
any bay i the fo~lowing @.ationships exist. fig. 2),s !F the:.

equilibri~m’equation
. . .-

,,. :,,,,,-
.,, .. .., .,.,,. ..’.

:., ... . . ..
.... . , ~~ “A. + L ti=’i” :“-’’”‘-;::’:”’(Z&):- ‘-::. .,, .i.

Z3Y5 R *

,,
;: ...”..”.-. .,,

%y Hooke’s law for direct’str&6 .

jby Hooke’s law for’eheai

faj,(v)~=.. ..,, .-. .,, .,. . . Gt.

,, ... . .’ )

and by the
enoe 4)

.. . .

.. ,., ,.. . . . ...,’.

inextensional

,.
. .

stress::““ .,:~ -.

,.

. ... .,, .,. ‘iv -~i(~?+ so‘‘- (Zl)

,.,. .“”.,“*, ” ,,-..... . .....-. ,.. .,..,... .. ....... .
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L

.

—.

*exe

‘i actual skin thickness of

t ‘i effective skin thickness

R radius of cylinder

bay i

of’bay i

E Young ‘smodulus

G shear modulus

‘i(~, 0
circumferential displacement of any point in bay i

If equations (la) and (lb) are substituted into equation (Z%)
and if coefficients of like cosine terms are equated, the following
expression for thel?ourier coefficient sin(q) i.8obtained:

i

Integration of this equation

oCrinY~ =

yields

--—
Rt ‘lain

in which crin(0) .iswe direet-styees

$Imil.arly,elimimtionof Cfin@f)

(2b), and (3) and.subsequent integration

+- qnm (3)

Fourier coefficient at & .0.

&cm ecymidons

gives

inwhlch %(O) is the axial displacemmt coefficient

A

(lb), (lC),

(4)

at xi = 00

_
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‘Elimination of Vi(q, q) from e~uations (2c) and (2d) yields

Substitution of equatfons (la), (lc), (la), and (4] into thts
relationship and integration yields the followinS expression for
the radial displacement coefficient:

.-

0
llq n3q3 n2~2 ‘ n2~

‘in ‘i = —ain - ——
Gti -=%+———+

6ER2* ‘i 2ER iJO)+Y-~Jo)+wiJO) ‘5)

in which Win(0) is the radial dieplacanent coefficient of the

sheet.of bay i at ~ = O.

Appropriate cha~es of the subscripts i in equations (3)
to (5) permit the application of the equations to e.schlmy of the
Structure.

Ring deformati.ons.-The radial.displacauent et mypoint q
of a symmetrical.lyloaded circular ring can be e~es~ed. as the
Fourier expansion (see py. E08 and 209 of reference 4)

It canbe shownby themethod.of virtual work (pp. 209 and210
of reference 4) that for inextensional defomnation the radial dis-

()
placement coefficient Wfi for a ring of radius 33 and

ring
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constant moment of inertia Ii that is loaded by the shear flows

in bays i and i-1 mad by an arbitrary set of symraetr3.tallyapplied
external forces is (~g. 1)

. . . .

(6)

Ih equation (6) the f+lrwkexpression on the ri&t-hand side repre-
sents the ~art of the radial displacement c.oemiciezrbdue to tho
correction ‘tiearsonly, whereas the second exprossicm represents
the part of the diaplacemont coefficient due to the ehernal lmdi.n~ .
and the elementary shears. Values oi’ Cti aro given later for

particular loadings. (S00 equations (22).)

Continuity relationshipst-The following expressions can be
obtained from continuity considerations of the rings and sheet of
bays i-l, i,,and i+l (fig. 1):

()ain.Li ‘.”i+l,n(0) ,

%-ljn(+-1) ““=~n(”)

(7)

(8)

(9)

.

()‘in ‘i = ‘i+l.,n
(o) (lo)
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}

U.

(u)

1
(E?)

%(%)=(%b’}ring

‘i+l,n(o) = @i+vJrin,

1

(13)

‘,+I,J,+J = kf+z,nlriw

Equations (7) to (10) are conditions of continuiti~of a and u
across the boundaries between bays i-l and i ar.dbetween bays i
and i+l. Equatione (11) to (13) state that the z?atialdeformations
of the rings bounding lmys 1-.1,i, and i+l me equal to the sheet
defcmmetions or these bays at the rings. Jinp.licltin equations (I-1)
to (13) is a statement of the continuity of w of the cylinder
across the boundaries between bays.

Recurrence formula.- Substitution of the expressions fcxc

%n(~-)~ ‘in(xi)’ %n(%~~ a @in)rx (eq~ti= (3)

to (6) respectively) in the continuity relatlcmliips (equations (7)
to (13\) yields the followlng seven simultaneous equaticms_in
which n = 2,s,4, . . .
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.
.-

.

ain - ai-lAn—.

(
2 j2

nn - 1//

+

-?-

~4

%+1

+.

#

EIi+2

+

+

%-12 A,ql,n(o) =0

=t’ ‘f-l
qj.-l,n ~

Ii@
—Lib +in(o) .0
Zi2Rt‘4

J.

- 1)%.--l ~ ~2
(

%+1, n - afn..—

+ - 1)2

ai+l,n - ain
+ Ci+l, n

(14)

.
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If the

~-lj ~(o),

six quantities ai.ljn(0), Uti(o)j ~i+l,n(o)~

rqJo),
aev& e~ressions of
formula relating the
bays is obteined:

- ail

@ ~+1, n(0) are elimimted from tie

eqnatlons (14}, the foU.owi3~ recurrence
Fourj.qrccmfficients a o: five successive

in which
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,

—

y = 4’1-d“
If the cylinder Is of uniform constrnctim, equation (15) oan

be considerably slmplifi.edand reduces to

ai+,n + 27nai-ljn + ~Pnain + 2~nai+l,n+ ai+2,n

( ) EI
- 3cin + 3ci.+l,n= Cf.-l)n - ci+2,n_&

h which

(16)

L“.

.
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The recurrence formulas (15) and (16) relate the nth shear-
flow coefficient pf bay I ,with,the cOZ’)?eEI~n~g Coefficients of
the two bays on each side:of Tx@ $. (one equation similar to equa-
tion (15) or equation (16) can”cotiequentlybe written for each
bay of a cylinder, provided that at least two bays exist on each
side of this bay. For anti,ey?muetricalloatig, equations (15)
and (16) can be applied if the-Fourier coefficients a are replaced
by the coefficients b.

Boundmy Eqqa$ionE?
‘. . “,

Since the recurrence fomnula applies only to a bay having two
bays on each side, incomplc?jmor boundary equations must be found
for each of the two bays at each boundary. Bcmndary equaticms,
consequently, are >resen%eclfor bays m and-m-l for a cylinder fixed
at the right of bay m and for bays O and 1 for a cylinder free at
the laft end of bay O. (See fig. 3.)‘By suitable ccmblnatf.onsof ‘
..thebmxiary eq~mtions and by proper manipulatim Cf the subscripts>
“these equations can be used for the analysis of cylinders fixed at
both ends, unrestrained et both ends,or Restrained at one end
And fixed at the other end,

— -.

... .. ..
Procedure for”detiivlngbo,undary‘equations;-The gener@l-recur-

rence formula was derived by combi.ning”theeqmtfons for din ~ Y
()

(equations (3) to (6)) with the‘%(%) Y ‘in(%~~ .and .,@ti)rin= ,

genm?al.contip~ty &ndZt~ons (eq&ttons (7) to (13}) and then
eliminating aQ’Fourior coefficientsexcept the a’s- In the.@lva-
tion of the boundary equations; tho.defining 9quations (3) to (6)
are combined in a mhnild fashicm w5th (1) au of the continuity
conditions .(equations(7) to (13)) tkat do not include quantities
In nonetistant ‘bays“orrings and.(2) the boundary conditions.

Thusj for clamped edges (see-fig. 3) the boundary equation for
baym is obtained by””conibtingequations (3) to (6) with the con-
tinuity conditions

, ‘“” %n-l,n(%n-1) ‘~ti~o).

%-~,n(%-lj=%N)

‘~-l,n(”) = P---din.
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YJo).,.
.“-.

.... ,
— .—

oondifxhmsand the boundsry
.

,,.

!’ ()‘m ‘m = 0,
,’.,,,. .’

,.. _ -.

,.

%I&n)=o

..

1,.’.’

,,..
-. -

“ , .. ;. ,,, -,. .,. ‘,” ,“ .

,“, “ add”!+ke~ eliminating all *A: fourier “cos”ffici-en+js”e3@ the a‘s.
., -.. ,..,.. ... ..- ...... . . . . .,, ,.. -. .—

“’ Boundary equations for fix~d “elk.”‘ifthe fo&j&.ng. pkcedu.re
is followed, the boundsry equetion ‘forbay M (~i~. 3) is “fo& to —

.-

.

b, .%, ,.. -.. ..:., .: ..:,.,-. .. -,----.-.. .“:.,... .. -.” ---- . ... . . . .. . . .. . . ,.,
. . .

.:, ,!

.,,, .
~,.$

1,

i

— ..—

(17)

.,

,
,, ..

..c:

--

.,,,,, ,.

j:, .: Ji”,’? ;, .. . .. .... ,,, -, . .“

L‘lcm-l,n“;; ) ]

E
P1+w~cm—

,, R4n7
,. .. :.’“--:....

=-

—

.in which 0,
,,

.. . , ‘,,
,,. . ,

.

. ..

. .
,.

.-
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and sbdlarly for bay m-l

‘)L&
- %-3,n — + %-2,*

\3n-2

+a
IJK

.

.

.-

6B ?.”Ill-1- n w2-i
%-1’ ‘ : + 21m-~~-17

(+W 5 1+‘6)cnrIi&

17

(18)
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where
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For cylinders of unifozm construction the ffx@l-end.boundary
equations (17) and (].8) for bays m and m-l, rmqmctively, reduce to.

.,.,,.. . . ‘,

‘a
( ) (

+ 2yn-lam-ln+ 2pn-27n-6anl-2,13 ) 1>
,,

,.

(“ “)

~x .-: .:

= .tim.l,;.-‘ll.Cm——.. ,“
#ny . ‘“ .,’

~1
(19)

( ) E1
= cn..2,n - 3cn.1,~ + 2c~ —

R4ny J
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For antisymnetrtcal loadtig the Fourier coefficients a in ..
equations (17) to (19) are re@zced by the corresponding coeffi-
cients b.

Xn order to apply egmtions (17) to (19) to the left end of a
cylinder, the sigm of’the shear-flow coefficients must be changed
and the subscripts of the various terms alta-ed. If the cylinder
of fi~e 3 is fi~d at the left of bay 0, subscrip~ m, m-l> * ● s
are replaced by 0,1, . . ., respoctirel.y,for those terms pertaini%
to tinesheet of the ‘bae~end by 1,2, . ... respectively, for those
tezms pertaining to the rinpy+

Boundary equaticns for Unrestrained end.- The boundary equa-
tions for the unmstralned. end of the cylir.dershown in figure 3
mm also found by folkming the Erocedure outlZrwd. The boundary
condition at the tiee @W is

Uw(o) = o

The boundary equation for bay O is found to be

:“

(20)

.

.
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*n WM.c.h.

-1
L

‘1=—
‘oLl

Shilarly, the boundary equation for bay 1 is

NACATN NO, 12!19
—

,

.

—

.

(21)
,
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where

21

For cylinders of uniform construction the mrestrained=end
boundary equations (20) and (21) for bays O and 1, respectively,
are

E!,n+ -wn + +Lon + (wn + l)ab’+ >n = - (con- =~ + C* ~(
u

For,antisynmetrical
by b in equations (20)
to (22) to the right end

}
(22)

( )
EX

b - 3c~+ 3c& .cm—
R4ny J

loading the coeffickrlx! a are replaced
to (22). In order to apply equations (20)
of a cyltnder~ the ai~is of the shear-

flow coefficients must be ch~ed and the cubsctiiylmof the various
terms suitably alteredq

Special boundary equations.- The boundary equations developed
are @table for cylinders having four or more bays, For the
special case of the center bay of a three bay cylinbr, the boundsry
equatioqj Woh depends upon the conditions at both boundaries, can
also be found by ?neaneof the general procedure previously outlined.
The boundary equations for cylinders of one or two bays canbe
similarly derived.
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Application of Recurrence Fommula and Boundary Equations

Specific loadings~- As mentimed previously, the stress
analysis of a reinforced ~llnder arbitrarily loaded in the planes
of the rtngs can be carried out conveniently if the stresses caused
by the s:mmetric and antisymmtric components of tho exkumal
forces are suitably combined. Further simplification of-the
analysis is obtained if the loadings are resolved into concentrated
radial forces, concentrated tangential forces, and concentrated
bending moments, For each ring loaded at q = 0° (seo f5.go4) the
load.function Cfnj obtained in the derivation of equation (6)
for ()‘in for a concentrated radial force, a concentrated

rin~y
tangential to~ce, and a concentrated bending Incmmntare, rewpoc-
tivezy,

‘In R4n7c e——

‘i R4nyCtln= ——

m ‘li

—

-.

.-

}

.(23)

Mci(n2 - 1, R4ny

C%.n= - ;+2, —
IIIi “ !

where X’, T, and Mc are the symmetrical radial load, the anti-

symmetrical tangential load, and the antisynmetricalbending-moment
load, respectively, acttng on any r-lngt at (p= OO.

Simultenoous equations.- A typical set of bquations applicable— ——
to a cantilevered uniform cylinder with six bays (m = ~ in fig. 3)
is presente&in table 14 The fir~t.two and last two rows wore

—

obtained from.the unrestrained-end and fixed-end boundary relations-
hips of equations (22) and (19), resp”ectivoly,.zndtho inter-

- me~iatwrows, woro obtained from the recurronco formti” of oqua- .

t~on (16), For a nomniform’cyllnder these”o~rossims aro
3?epbCed by,those of equations (20), (::1),(18), (?.’7),and (15),

—

It is to be rmted that ttm coeffictent~ of the ~own a’s ...
exit b’s are inibpendeut of Cti (10tu3 term of cqI.5tims (23));
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consequently, nunerical solution of the equations (reference 5)
f=m various loadinfisis greatly facilitatxxle A sot of simultaneous
linear equations simi~ar to that of table 1 must be solved for
each n-value chosen. Tne number of n-values required depends upon
the desj.redaccuracy. The Fourier coefficients obtatied for a
given load P, T, or Hc at cp= 0° canbe used to determir;e

the coefficients for similar loads at any ~ther value of q since
the Z-HXLS (fig. 2) can be chosen to coincide with any tiadius.

Stresses md loads in cylinder.- After the coefficients a
and ~ are computed, substitution In the fornnfis (Al) to (A4)

“presented.,inappendixA enables the stiess analyst to compute the
shear flow in the actusd sheet, tho djrect stress in the fictitious
sheet, and the moments, shmrs, and axial forces fn the r+~gs. The

“strcmse~ dtiet~ loads acting at severgl rin~ cnd at various values
of q) tin be super3myo~ed to give the stresses caused by these
loads acting simultanoously$

APPROXIMATE METEOD OF AJMLYSZSBY SOLZ.lTION

OF F~ITE DD’FERENCE EQUATION ‘

Difference-Equation Solutlon for Infinitely Lon~ Cylinders

Equation (15) referred to previously as a g6noral recurrence
formula is also a fourth-order finite difforonce equa%ton with
variable coefficients. Since the variable coefficients prohibit
the solution of this equation in closed form, only the solution of
the eqxation that pertains ‘m a unif~ cyllnder 5s discussed
herein. A general procedure for sol~tig the fourth-order finite
difference equation with constant coefficients (see equation (16))
is ~resented in ~oference 6. When tho right-hand side of equ&-
tion (16) is sot equal to zero, tho followin~ haogeneoua equation
is obtained: .—

=0 (24)ai-2,n+ ‘~nai-l,n+ 2fJnafn+ ‘Ynai+ljn + %+z,n

??romreference 6, the general solution of this homogeneous
consists of the following six independent solutions; for

equation .

D _p($n-l)
n- ~2

>1 and yn<O
.

L1.
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(25b)

—
(25C)

—

(25d)

(250)

ain . (-1)‘e+nk(ctb+adnk) + (-l.)e n amk v ‘( + ~nk) (~5f)
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,n=,cosh-j+-l-]
k = 3 =0,1,2..,

The analysis of a uniform cylinder that extends longitudinally
to infinity in both directions from a loadod ri~ is readily carried
out with the aid of equations (16), (24), and (23). E’ the loaded
ring 3s considered to be a boundary bettieenthe two ha~~es of”the
team and if no load other than that at the ‘Lmmdary is assumed to
act, the difference equation (16) wtth the ri~t-hand side set
equal.to zero applies equally well to Lot. parts of the cylinder
(see fig. 5); consequaxtly, only one-hal$ of the cylinder need be
considered in the analysis, Since the dlt’ferenceequation
applicable is the homogermou.seq~tion (.dh),oqucti.ons(25)
together w~th the appropriate boundar~ conditions cum solutions of
the pre6eut ~roblem.

The distortions caused by the concentrated load have no eftect
an the stress distribution in the cylinder at “k==; therefore,
am = O* The first term on the right-hand ’siti6f each of equa-

tions (25) Satisfies this condition; howmer, the.second term does
not satisfy this requir~ent andj hence, must ~anish. The solutions”
then thut are com~tihle tith the boundary condition at infinity
are from equatfons (25): fcr D~n>l and 7n<0 —

,,

‘$nk “
‘in = e (%

cos k%+ ~ ‘M ‘~~)
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for Dn>l and Tn>O

ain . (-l)kewnk~~

for Dn<l and Yn<O

~nk
ail’l= e (% cosh

for Dn<l and 7n>0

k ‘~nk
ain = (-1) e (%1

for Dn = 1 and yn<O

(W-II)

(260)

a~.*
-iJnlc(% + ink)

cosh kpn + ~ s~ @n) (26d)

.

*

—

.

(26e)

.

for Dn = 1 arid 7n>0

ain =
(-~)%?-~k(qn + %nk)

From the conditions of symmetry about the loaded ring,
modification of equation (16) leati to the detemnimtion of two
boundary equations applicable to the present problem. If the
load func’cfonat the loaded ring is dqsi~ted Con (see equa-

tions (2s)) and equation (16) ie written for bay O, the first
boundary equation is

(27’)
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since aon
for bay 1,

3219

= -a-b and ati =

the second boundary
‘a-2n* If equation

equaticn is seen to

.:27

(16) is written

be

(
EI

‘2Yn- l’)aon+ 2~nati + 2Yn~2n.+ @3n = cOD—- (28)
/ RkY

s~n~e
aOn = ‘a-in”

T?Jehouzndaryaquatione (~) and (:8) permit the determination
of the arbitrary constzznts ~ and ~Gas For a @~-a value of nj

substitution of the appropriate value for aln frcm equations (26)

into equations (27)anti(28)yiel~
tions; for exa~le, if Dn >1 and

a set of two simultaneous equa-
—

Yn<o —.

The constants % ‘“a %-1 are obtained .Srcsnthe solution of

these equations. To each value of n thero corro=pmds one value
each for ati and ~. Since Dn and 7n” are “functionsof n as

well as the elastic properties of ths cylinder.,for a particular
cylinder more than one of equations (.26)my W sequire& for the
determination of all the values of ~~ and a=.” lii~hthe values

of those constants detemninod for eaoh value of n, corresponding
ralues of ain fo~ each bay are oltained from equEtlons (26).
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As in the application of the recurrence formula, a’s corre-
sponding to several harmonics, that iq, n varytn+jfrom 2 to the
value that yields the desired accuracy, mwt be found. For arrti-
symmetrical loading, a is replacedby b in equations (2k)
to (29). The values of the coefficients a and. b obtained are
substituted in eqm.tions (Al), (~), and (A~~)for tho desired load
values. Since the expession for the direct stress in the sheet
now involves an infinitm mmuaation along the cylinder of the shear-
flow coefficients, simplified fomlas for the direct stresses a~
any ring k are presented in apyendix B.

Xf equations (27) and (28)are replacedby the unrestrained-erxl
boundary equations (2!!),with all values of ~+n except Cm sot

equal to zero, a tip loaded cylinder extendtn~ to infinfty in one
direction can be analyzed with a procedure sim@r to that developed
herein.

Application to Finite Cylinders

Whereas a concentrated loaa causes distortion in the region
in the ixmediate vicinity of the loaa, for most practical yurposes
the part of the cylinder a few bays away from the loaa can %e
asmxned.undisturbed.. Consequently, if the load is located a
sufficimt distance from external rmtraints, the distortions of
the cylinaer in the region of’the load are indqynxl.entof those
restraints. If then a uniform cyltidti of finite length is to bo
analyzed and.this cyllnder is lomicxlin a manner 3uch that the
load is not in the proximity of an external restraint, the ele-
mentary stiesses and loads are founa as USW1 ly considering the
cylinder to bo finite, whereas the correctionsmay be found by
use of the difference-equationmethod by conslderin~ the cylindcm
to be infintto. B~cem6 the effect of the.concentrated loaiL
dlssipatos quite rapidly, values of a and b are usually of
interest only for those bays in the vicinity of the load. The
desired forces and moments In this region can then be determined
as before from the equatims give~ i_nappendixes A and B.

Adequacy of Difference-EcjuatfonSolution

.

.

Although the solution in closed form of th problom of a
uniform reinforced circular cylinaeris cnnct ori@ fcr infinitely

‘

long cylinders sy?imetricalabout a loadod rizzg,cmnyerisons of the
finite-difference-equationsolution, tho recurronco-forzmla solution,
the standard solution (reforonco 7),

.
and uxporimontal data for

cylinder 2 of reference 3 were made fdr a cytider fixed at one
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Ad.vantages of Difference-Equation Solution

—

.

Since airplane fuselages.&p@o’xlni3t@’ d%ti-~~~ cf~tie~s’ al% ●

composed of a relativel~.‘largbtw@ber:bl?.:~iys’:~fo$”mc@%~@5”acii6al
cases, the simplified sdlution..shotidbe a @od &o?oxfi@tion to
that obtained by the use of the recurrence formula. As mentimed
previously, when the recurrence formula is applied, sets of
simultaneous equations contain.ingas many unknowns as there are
bays in the structure must be solved for each n-value required,
For structures having many bays the amount of cczuputaticnsinvolved
may be prohibitive; however, no such computations are involved when
use is made of the infinite-cylinder solution. In addition, this
solution is adaptable to tineconstruction of desiga charts similar
to Wise’s charts of reference 7. The analysis of any long umiform
cylinder is d~endent only on the values of the structura1
parameters A and Afi. For various representative values Of
these parameters, charts can be constructed from which the analyst
can determine desired stiess coefficients. For extreme cases, such
as a cylinder loaded only one to two bays away &cm a restraint,
the recurrence-formula method IS recommended for accurate solutions.”

COITCLUDINGREMARKS

The recurrence formula developed.in the present paler facili-
tates the stress analysis of circfiarcylinders loaded in the planes
of the reinforcing rings. The cylinders can be composed of bays
of different cross sections and lenLtis and can be suyported by
rings havin~ different moments of inertia. The boundary equations
presented are applicable to cyltiders fixed at both ends, unrestrained
at both ends~ or unrestrained at one end and fixed at the other end,
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For tha ahalysis”.afc$linders composed of @elativel.y:few
bays, ‘it’’:i$recmmnendti”that.’therecurrence “fdrmtd..a-”beused to,.::,.
obtdh dets’mf simult6n&ms linear algebr~.ic..eq~tims.”The..

‘“EJoIut~on& of’ tieee ~qm”t~ti~ lead!%a::an aec~a’te;detetina%ion of
the .Atressebiinthe ririgs:and,sheet of’the c~linders. The analysia
of cyltndepscmpoded of many bays, ds are semimbnoco~ae fuselages,
can more ;co~vdnfent~ be accomplished by the “soln%tonofthe
recum5ence’formul.a.%s-.a.finite..differenceuquationst~though the
stiesbes.ctrlzi%iedwith .tils.sblutioti!are,ap~bx~.tij.ons to.%he
more:bccurate”.stresses.fd’wd’withthe sjx@tamo@.. eqtitione, for
long.cylftiers;tiee.c~u%.tions,fnvolved.’mecomSifi&ab~ ~t~,
In addition,”:.sincdfor!“the..t.hr.ee.basi:c-kada the..st&esses.d.etemlned
by this method are dependent only upon $im ‘stiuuctmal.Vparamet’ers
of the cylinder, charts facilitating the rapid determination of
the stresses M reinforced cylinders can be readily constructed,

,, ,.~”;””-.,.”..”.’ :,:”.,..-, -’.-:”
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After the coefficients a and b are computed.,the shear
flo?m in the actual sheet, the direct stresses in the fictitious
sheet, an~ the bending moments, shears, and axial forces in the
rings can be found with the aid of the equations:sven in the
appendix of reference 3. For the sake of completeness these equh-
tions, with some additions, are presented herein,

R-mm Flow

The total shear Ylow qi(cp) in any

loading on a cylinder aan be”e~ressed as

bay i.foy any ring

n=2 ~~

in which qR represents the elementary shear

the basis of ri@d ri~s. For a c~tilgvere~

(Al)

flow calculated on

cylinder~ % ‘s
zero for those bays located %e%%wen the tip and a loaded ring, For
those bays between a loaded ringand the root, the vqlues ,of

-%
for a radial load P, a ti~ential load’ T, and a concentrated
ring bending moment Mc, each applied to rin~ i at (p= 0°~ are

given in table 2. Positive forces ‘andbendin~noments are indi-
cated in fi~e 40 If more than one ring is loaded or if the
cylinder is not of cantilever construction, pi) Tij and Mci

are replaced by the resultant radial, tan~ntial} and.moment load,
respectively acting on a cross section of bay,i. ,.

Direct Stress in Skin
,

For a can~ileveredcylinder suclras that E&own in figure 3,
if the lowitu@nal skin stress,at ringO is asswnad to be zero> ‘
the direct stress atrin~ i is (see equations (lb) ~d (3))
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.&\f-( %) L1 Li-l

)
‘i(o’ ‘)=UR R~ aon~+a~~+ ● “ “+ai-%nz ‘cOs W

Q-2

in which crR is the stress given by the simple en@neering theory

of bending. Since the shear stress is constant in the longitudinal
direction tithin a bay, a varies linearly between riqge.

If the cylinder is rigidly fixed it ri~ O.as well as at

ring m+l, the initial boundary stress e
~ ‘On(o) co~ nq (for

symmetrical loads) must be added to the ~’&ct stress obtained with
equation (AZ). The value of the Fourier coefficient son(0) iS

determined for a cylinder having at least three bays from the ccm-
tinuity condition

.

—

,

and the boundary conditions

L+-Jo)=:0 “

won(o)= o

together with thekefining equations (~) and (6). Th&relatlonshiy
obtained.is

—
.

0
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,,
R% ‘()

A’O = —

11L03

For antis.metrjcal loading,
aon

and a
b

are replaced

bY bon and bin, respectively.

Bendi~- Moments

The bending moments, shear
reinforci~ rings of a cylinder
are, respectively,

and Forces in RinG

forces, and axial foroes in the
arbitrarily supported at its ends

,,

I ain - ai-l n
&$=~+R2 :

:90
“z

bin - hi-l n

2
Cos nq - ~2

IL(” )’
sin nql

nn -1 n 2
-. -- na -1

1

al m—“- 1

(n bin -bi-l, n)
(.2-1) ‘Smq

.#

m’omen.t,shear force,
and axial force in the rings~ res~ective&, determined on the basis
of elementary shear flow in the skin. Positive smlues of the bendi~
moments and load& in a cylinder are indtcated ii i’i~e 4. Formulas
for ~, VR, ahd -~~ correspondi~ to a radial loe~ P, a tan-

gential load T, and a concentrated ri~ bendin~ moment M., each
applied to a ring i at g . O“, are @ven b table 2. For-rings
not loaded externally, only the series expression in equations (A~)
are reqtired..
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APPENDIXB

DIRECT STRXSfN%SIllINI?D?ITELYLCHG CYLINXOZR3

For the determination of the
uniform infinitely long cylinder,
l)y

in the skin of a
can be ~eplaced

-.

(Bl)

Q&2 i.cn
,.

or

in tiich only the coefficients ain ar~ consl&ered. In these

equations: @; q) is the direct stress at uinc I=k. Corre-
sponding to the six values of’ ain from equations (26), six

solutions for @, q) c-anbe determined ‘;)Fsmmnation alo~ the
cylinder. As an illustrateon of the procedure involved, eque-
tion (k&) is ueod herein for the valLw of atn, Consequently,
equation {B2} bec~es - —

,

.

.
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Coab *n - COB .La. T
(B4)

.,-.
.. ~,

,.,

With a procedureanalogoue
Bolutfolmare obtainedfor

for Dn>l ard 7n}0

.

to that utvedfor the determinationof thi~ Mmti% tie fo~o~g
the direct dweasea Cozrecpcmlingto the rarcaimhlgfive values of am:

I
1



for” Dn< 1 and 7=< O

for Dn<l and 7Q}0

B~)

for D== 1 and ?’U< 0

Cusll II/ - 1
.n

for Dn=l and Yn>O

ai(o,~) = ‘R + (-l)k~
2Rt‘

If the eaefficients

to (B5).

. ,

bin are consMcrefl, 00s up is replaced by -sin q

(B5d)

(B5e)

in equations (Bl)

.
-.
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Figs. 1,2 NACA TN No.1219_- ..__

Figure 1.– Part of typical cylhder.
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Figure 2.- Coordinate system for typical bay.
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