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CRITICAL COMBINATIONS OF SHEAR AND DIRECT STRESS FOR
SIMPLY SUPPORTED RECTANGULAR FLAT PLATES

By S. B. Batdorf and Manuel Stein
SUMMARY

The buckling of a sinply supported rectang.lar flat plate
under combinations of shear and direct stress was Investigated by
means of an energy method. The critical combinations of stress for
geveral length-wldth retios were determined to an accuracy of about
1 percent by the use of tenth-order determinants In conjunctlon with
a modified matrix lteration method. Curves were drawn which can be
used tc obtain the critlcel stress combinations for the case of
interaction of shear and longltudinel direct sitress and for the case
of interaction of shear and transverse direct stress.

INTRODUCTIUN

The problenm of buckling of plates under the actlon of more than
one stress has been glven conalderable attention. For plates
subJjected to two gtresses the criticel combinations sre usually glven
by mcans of interaction curves, that 1s, curves that can be used to
obtaln the value of one stress requlred to produce buckling when a
glven value of ancther stress is also present. The stresses are
ordinarily given nondimencionally in tsrms of either stress ratlos
or stress coefficients. '

In rcference 1 the Interaction curve for infinitely long flat
plates under combined shear end longitudinal direct stresg was
shown to be very nearly a parabola as indicated in flgure 1 of ths
pragent paper. In this figure Rs is the ratio of shear stress

present to the critical stress In pure shear and R, 1s the ratlo

of the longltudinal direct stress present to the critical stress
in wurc longitudinal compression. (A1l symbols are defined in
appcndix A.) This curve is shown in figurs 1 of reference 1 to
arvly to plates having edges elther simply supvorted, clamped, or
elastically restrained agains' rotation. Reference 2 demonstrates
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‘hat the varabola also applies, to & high degree of accuracy, to
nearly square plates with simply supported edges. On the other
hand, for Infinitely long plates loaded in shear and transverse
direct stress, the interaction curve assumes a different form,
which 1s shown for simply supported edges iIn figure 2 taken from
figure 3, referonce 3. The form of the interaction curve for shear
end trensverse direct stress appears, thercfore, to change markedly
as the length-width ratio of the plate increcases from 1 10 -
The purpose of the present paper 1s 4o Investigate this transition
end, In addition, to determine vhether any apprecliable change in
the form of the interaction curve for shear and longitudinsl stress
occurs as the length-width ratio of th:z plate increases from 1

to oo,

RESULTS AND DISCUSSION

The results discusscd hersein arc based on the theorctical
solution presented In appendix B. The numerical results, computed
by means of the matrix itcration method described in appendix C,
ars bellcved to be accurate to within sbout 1 percent. Interaction
curves are presented for the buckling of simply supportsd plates
having length-width ratios in the range of 1 to 4 and subjected to
shear end longitudinal sitress and to shear and transverse stress.

Shear and Longltudinal Stress

The interaction curves for shear and longitudinal direct stress
are shovn Ia figure 3 in terms of stress ratios for simply supported
flat rectansular plates heving length-vidth ratios of 1, 2, and 4.
One of the two curves given for zach length-width ratio represcnts
a buckle pattern that is sywnetric about the center point of the
plate. Tho other curve represents a buckle pattern that is anti-
synaetric about the center point of the plate. Those parts of the
two curves that ars govorning parte {(the parts that give lowsr
values of one stress for a given value of the other stress) are
drawvn with solld lines. The purposs of presenting two curves
inoctead of only the governing parts of eithor curve is to indicate
where the cusps occur and to show the abrupt change from a symmetric
to an antlsymmetric buckle pattern that results In these cusps.

For purposes of comparison, points from the parabola represented
by the following equation for the Interactlon curve for a longth-
width ratio of o

ng +R, =1 (sec reforence 1)
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are included in each graph in figure 3. The curves for the
rectangular pletes do not differ visibly from the parabola; this
close agreement indlcates that for shear and longitudinal direct
stress of simply supnorted rectangular plates the parabolic
interaction formula is substantially correct.

Shear and Transverse Streas

The iInteraction curves in gtress-ratio form for shear and
transverse direct stress for sinmply sunporited rzctangular plates
having length-widih ratios of 2, 3, end 4k are shown in figure k.
The curve for a length-width ratin of 2 is nearly a varabola in
the conpression range but deviates considerably from the parabola
in the tenslon range. The curves for the hlgher length-wldth
ratlos deviate considerably from a parabola in both compression and
tension and Incline towvard the curve for infinitely long plates.

In figure 5 the curves of figure 4, together with curves for platcs
of length-width ratios of 1 and o, are plotied on the same
gravh. 'The vertical straight-line part of the Interaction curve
for a length-width ratio of o correspcnds to buckling of the
plate as an FEuler sirip. (See reference 3.)

In figure 6 the tronsition in the form of the Interaction
curve as the length-width ratlo of the plate changes from 1 to w
is shown ir terms of buckling stress coefficicnts. Tho a3sumptlon
that a long plate is infinitely long 1s seen to lead to a conservatlve
estimate of the buckling strosses; if the length-width retlo is
greater than 4, only a small error is involved in this assumption.

The combinations of stress coefficlents that result in duckling
and the corresponding deflection coefficients are given in table 1.

CONCLUSIONS

The results for the critical combinations of direct stress and
shear of simply supported rectangular flat pletes, computed by an
energy method summarized in tables and graphs, snhow that:

1. For shear and longitudinal direct siress the‘intprgction
curve for all length-width ratios investigated 18 suos?antlally a
parebole for which the equation in terms of stress ratios is

b 2
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whaers Rs is the ratio of shear stress precent to the critical stress

in pure'shear and R, 1s the ratio of longitudinal direct stress

present to the critical stress in pure longlitudinal compression.

2. For shear and transverse direct stress, the shave of the
interaction curve devends on the length-width ratio of the plate.
For square plates the interacticn curve 1s very nearly & parabola,
the equation for vhich is given in the vpreceding paragraph. The
interactinn curve for mlates having a length-wid=h ratio of 2 1is
neerly parabolic in the comvression range hut 1s close to the known
interaction cuvrve for infinitely long plates in the tension rarge.
In the range of length-width ratio from 2 to 4 the parabolic egquatlon
does not hold even in compression; therefore the curves given in
the present paver should be used. At length-width ratlos greater
than 4, the interaction curve aporoximates the interaction curve for
a length-width ratio of w.

Langley Memorial Aeronautical Leboratory
N:tional Advisory Committee for Aeronautics
langley Field, Va., November 8, 1946
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APPENDIX A
SYMBOLS ‘
a length of vlate
b width of plate; b e
t thickness of »late
w aeflection norieal to plate
D flexural stiffness of plate ____ELE_;_
\12(1 - u?)

X : : lorgitudinal coordinate
y transverse coordinate
B symmetrical matrix
E , Yeung's modulus for material
amn o defleétion-function‘éoefficient
bon element of matrix B
Lmn diagonal terms In stakpility determinant
X mth unimown In set Xp,X,, .« Xy
i,imn,p,q,N integers
Cyq arbitrary coefficlent
Ux longitudinal compressive stress
Oy transverge compressive stress
T shear stress
Ry longitudinal direct-stress ratio
R trensverse direct-siress ratio
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ghear-stress ratio

longitudinal conpressive-stress coefficlent
transverse compressive—streéé coefficient
shear-stress coefficlent

length-width ratio (e/b)

Poisson's ratio for meterial

characteristic value of matrix B

ith characteristic valus of matrix B
colum matrix with elements Xp,X5,s-r¥y

modal column associated with ith characteristic value

nth approximation to &

colum metrix constructed so that sach elemeﬁﬁ is the mean of
(0) ang g(n1)

the corresponding elements of &

critical (used as subscript)
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APPTAITIX B

THECRETTCAT SOLUTICH

Method of Analysls

The problem of the stahility of finite rectangular flat plates
mder conbined shear and direct atress 18 solved by us2 of the
"Rayleigh-Ritz method. (See referance 4.) The d~flzction function
i3 expressed exactly by wueans of a two-dimensional Infinite
Fourier series. The apovlication of the Rayleigh-Ritz nethod results
in 2n infinite set of homogeneous linear eguations In the infinite
nuber of unknown Fourier coefficlents. Solutions of these equations
that give Fourler cocfficients not all equal to zero exist only for
those cobinations of shear and direct stress for which the buckled
plate 18 in nsutral equilibriwa.

The algebralc equations obtained hereln are equivalent to
the equatlons used in reference 2. In order to obtaln accurate
results for relatively long plates, however, a method of solution
of these equations different from the method of reference 2 was
employed in the present papver. In reference 2, two sixth-order
determinants (one determinant corresponding to a symmetrical and
the other determinant to an antisymmetrical buckle pattern) were
exranded and the resulting polynomials were solved for the critical
stress combinations. Each solution involved the use of only
six terms in the Fourlsr expansion of the deflection function. In
the present paper 10 tzrms were used in the expansion of the deflection
function. The corresponding set of 10 simultaneous equations was
solved by the matrix Interation method (references 4 and 5) modified
In the mauner described In apnendix C. This method has the advantages
that, whereas a very accurate solutlon regqulres a great deal of
labor, a good avproximate solution can be obtained without much
effort, and the Fourler coefficlents as well as the buckling loads
can be evaluated. A knowledge of the Fouriler coefficients for a
given loading condition 1s used to determine whether the best
choice of equations was mede and also to assist in the choice of the
10 most Important equations for a similar loading condition.

Accuracy of Results
Difficultly is usually encountered in evaluating the dlscrepancy

between the buckling load determined by an exact solution of the 10
most imnortant equations and the true value of the buckling load.
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On the assumption that the use of the 10 most important simultaneous
sguations of the Infinite set to find the critical shear stress for

a given compression stress would in all cases result in en error of
not more than a few tenths of 1 percent, the iteration (see apvendix C)
vas carried out until the error in the solution of the equations used
was estimated to be less than 0.5 percent. The shear-stress
coefficients presented in table 1 of the present paper therefore

are believed to be in error by not more than 1 percent.

Solution

The critical stresses are determined on the basis of the principle
that during buckling the elastic-strain energy stored in a structure
1s equal to the work done by the applied loads. For the case of a
rectangular flat plate under loads applied In the plane of the plate,
thls equality becomes, when the coordinate system is that of figure 7,

r,

- ) o 2 \2 - < ?.‘
D /\b / a{‘,/éf:v_f + ifl)? -2(1 - u) | Pu '/adw L ax ay
2do Jo L\ax’é dy* ax? 3yF | ad J

dx dy (B1)

b oaa - » . -
=_t/ \-/ad(bh’)ﬂuggl}iﬁqyz'r.a_‘iéw_
2, o o X\ox I\oy ox 9

(equivalent to equation 210, reference 6)

Egquation (Bl) can be rewritten in terms of nondimensional stress
coefficlents ag follows:

4D a » 2 N
L/ U/W‘J éﬁg N QEH . -2(1 - ) Iaew Fw - v e
o o L 3L yF o 32\ axdy

@@ BT @B o

J
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where

The procedure used In solving equatlon (P2) involves substituting
for w a function of x and y that satisfies the edge conditions
and can be adjusted so as to closely epproximate the buckling con-
figuration. For any case in which the value of w "1is 0 at all the
edges, the term with the coefficient -2(1 - p) can be shown.to
vanish (reference 7). A series of terms wilth arbltrary coefficlents
1s ussd to represent w, and the coefficlents are determined by
tho Rayleigh-Ritz method. A goneral form for the deflection W is

[e4] co
S 2 m
N 3 mtx nny
w B &m sin y sin Y (B3)

Equation (B2) is solved for the case of buckling under shear and
transverse stress and for the case of buckling under shear snd
longitudinel stress.,

Shear and transverse direct stress.- If the value of kx is

set equal to O and the expression for w Is substituted in
equation (B2), the following eguation is obtalned:
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(e - ()

St
i y\b) (T)J

AN P .E?. >_CE_ 2- ,.@- . q
2k XY D > 2 a &EECE%(_£> jys! -0
: L L L /- fpn 8 :
S R R Pd - 2\a/\b/ (2 - 4R) (2 - ¢7)

(Bk)

vhere m* p and nt q arec odd numbers.

The coefficient amn must be chosen to make the value of ks

a minimum. This procedurc rosulis in the set of homogencous
ilnear equations represented by

e 2xgp> & €
& ,(m + n?B%) - kynzﬁ)‘L + ém-iwu P 5 mgpq = =~ =0
T - v p=l g=1 (@ = ") (n" - q%)
(B5)
where
a
B =%

m=1,2, 3,...

n

].’ 2’ 3,"‘

end m¥tp and n ¥ g are 0dd nuibers.

Thie set of equations may be divided into two groups which are
indspendent of ench other, one groun in which mt n is odd
(antisyrmetric buckling), and one group in which m + n 1is even
(symmetric buckling). Ten equetions in 10 unknowns were solved for
each grouv by the iteration nethod explained 1n appendlx C.
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A reprecentative determinant in terms of the coelfficlents for
the grovp of equations in which mt n is cven 18

m=l, n=ly L;; O 4 0 0 8 o 8 o 16
' 9 45 L5 225
m=l, n=3| 0 L, -b 0 0 8 o .8 o 16
35 7 25 35
m=2, n=2| L b T, kb 20 o0 3% o0 20 o0
9 5 5 63 25 63
m=3, n=1{0 0 R L3y o 8 o0 8 0 16
> 25 7 35
m=1, n=5| 0 0 20 0 L, .0 0o 8 o _16
63 - 63 o7
m=2, r=4 | 8 8 o _8 _k 1, 72 o _8 0
7 55 T M Ty 63
m=3, n=3 |0 0 3% 0 C 72 L _72 0 1hh
25 ESRE SR > k9
mb,n=2 |8 8 0o 8 8 o _ I, o o
L5 25 { 63 35 27
m=5, n=1 | 0 o .20 0 0 _8 0 _k L 0
3 63 o7 Ot
m=b, n=h | 16 16 0 16 16 0 L o 0 L,
225 39 35 a7 49
vhere
. -
. S - 22)2_1 PJ
mn BQkSBR ( o B van B

(B6)



12

m=1,

m=2,

and

NACA TN No, 1223

A typical determinant In terms of the coefficlents for the
grouo of equations in which m

n=2
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+n 1s odd is

O\if\)
w O

@]

(]

In general, the method 1s to choose numerical values of B
set each determinant equal to O,

ky’

valuc of kg
two deterninants establishes the sritical shear stress for a panel

wlth length-width ratio £ under

The\lower of the two values of

(7)

and solve for the lowest

k

found from the

the transverse stress gilven by k_»
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Shear and longliudinal direct stress.- If k_ 1s set equal
to 0 1n eguation (B2) and the same vprocedure as” the procadure
for the combination of shear and trensverse stress 1s carried out,
the set of homogeneous linear equations given by the Rayleigh-Ritz
method 1s revresented by

— 3 o oo '
. (2 4 12p2 2 X m?ﬂe ' 32kg8- < S A mnpq _
mn % 2T T L R B T B (P - 2
-~ b1 'p:] q:l i (m - -)(n = q )
(BR)
vhere
m: l’_ 2, 3,:0-
n = l, 2,. 3,.--

and m+p and m+* q are odd numbers.

The determinants set up from these equetlong ere the same as the
determinants (B6) and (B7) for symmetric end antisymastric buckling,
respectively, except that the disgonal terms are

In general, the method is to choose numericel values of B
and ky, set each determinant egual to O, and golve for the-

lowvest value of kg« As in the deteramination of the shear and

transverse direct stress, the lowest value of kg establlishes the

critical shear stress for a panel with length-width ratio $ under
the longitudinal stress glven by kx.
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APPENDIX C

MATRTIX ITERATICN METHOD

If the matrix iteratien method is used in attempting to solve
the set of simultaneous linear slgebraic equations aessociated with
the buckling of flat plates where sheoar is present, the conventional
iteration process as described in reference 4 doss not converge.

The reagon for this nonconvergence, the modification in the ilteration
process used in the present paper to obtain convergence, and the
method of choosing the best finlte set of algebralc equations to use
are described in the following paragraphs.

Conventional Iteration Process

The matrix iteration method 1s described in the present paper
in terms of the followlng simplified symmetrical equation:

=
f\l?- Dym¥n = A¥y (c1)
vhere
m=1, 2, 3,
and
bmn = bnm

This set of equations 1s equivalent to the set of equations (BS)
fros vhich ihe critical shear stress 1s deterained if

R
5 = oy A2 P07 - xre ()

(where m 1s a different integer for each different combination
of i and J),

N =) 1Jrg _
~ Ayl N2 ) 1/2 1/2
(12 - ) (P - @) | (4% + )" - kyfaﬂ vy
) - (c3)
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(whers n beers the same relation to P, g 28 m bears to 1, J),
and

A= (Ch)

&
kg

Equations (Cl) can similarly be shown to be & generalizatlon of
equations (B2%).

The problem is to £ind the highest value of A\ which permits
nonvanishing solutions to be found for equation (C1) . In order to
avoid the use of too meny suffixes, matrix notetlon 1s used, so that
equation (Cl) becomes

B¢ =2 (c5)
vhere B 1s a square matrix and & 1s & colwum vector.

The natrix iteration method {refercnce %) comnsists in taking
gome arbitrarily assuued values for the set of values Tor
and in calculating the left-hand side of eguation (¢®) in order to
obtain an immroved set of values for <. (Division by A 1s
unnecessary because the solution of homogeneous esquations can be
deterained only to within an arbitrary wmultiplicatlve constant.)
Thess Tew values are reinserted in the lefi~hand side of esquation (CS)
to obtain further improvement in the values, and the process 1s
continued untll the ratios of the components of ¢ are not
appreciably changed by further lterations. The value of A is then
given as the ratio of the last value found for & to the preceding
value. . '

The basis for this method cen be seen from the following
dlscussion. According to matrix theory, if the matrlx B 1s
of Nth order, there are N velues of A satisfyling equation (cs).
Let these values be called A;, XAp, .+, Ay with the order so

arranged that l)"l] >|x2| S e S ’)«.Nl . For each value of Xy there
1s & corresponding solution for x, which may be callsd &4+ Then

BE; = M€y (C6)
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Ary initial assumed solution g(o) can be expressed in terms
of the N true solutions &;, &p, ..., &y as follows:

0
é’;( ) = ﬁi— ;54 (cT)
1=

where the values of the cosfficlents C, are in general not known..

The result of one iteration, obtained by using equations (C6)
and (C7), is seen to be

£ e(0)

The result of n iterations is

The next step is to fadtor out the nth power of A4y, that 1s,
the largest value of A\:

(c8)
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Equation (C8) shows that as n increases §<n) becomes more
end more nearly a constant times él’ the rate of convergence
A

depending on the smallness of the ratio XE (i =2, 3, «e0 5 N),
1
The largest value of A c¢an then be found as
n)
gl
A, = —
1 é(hrli

Mcdification for Shear Buckling Prcoblems

In plate buckling problems in which shear is present, the
critical shear stresses cccur in pairs which are equal in magnitude
but opposite in sign, For such & problem Xp = -)}, and equation (C8)

may be written

(n) n ¥ n » <§— Xi n\?
e = M Cieq + (-1) CoSp + > Cy XI S (c9)
, : 153

Equation (C9) implies that unless C, 1s by chance equal to O,
no amount of iteration will result in convergence.

A simple expedient can be used, however, to pr?d ce convergence.
Since equation (C9) shows that as n increases g N/} oscillates

about the true solution (constant times &), an improved approxi-

mation can be obtained by constructing E;Ol) such that each

component is some kind of mean of the corresponding components of é(n)

and g(n’l). Imnediate convergence results frcm the use of the
geometric meen (but not from the use of the arithmetic menp) after

cne lteration 1f only two equatlons of ths set for a ri:ctangular plate
In shear are used. In the present paper, therefore, in which

10 equations were used, the gecmetric mean was employed except when
Fourier coeffiolents of two succeszive lterations had opposite signs,
in which case the arithmectic mean was used.

The procedure adopted for obtaining the shear buckling stress
was to use the matrix lteratlion method modified by taking the
gecmetric mesn after every two lterations as described in the pre—
ceding paragraph, In addition, by use of a method suggested in



18 NACA TN No, 1223

reference 8, an improved value for A, was obtained after the
completion of n 1terations by means of the equation

Cholce of Hquations

An exact solution of the critical shear stress for rectangular
. plates involves the use of an infinite set of equations in an
infinite nurber of unknowns. Since ettention must be confined to

a finite nu:ber of equations - say, N - the abllity to choose the
best N equations for the purpose 1s very deslrable.

, A very useful (althcugh not rigorously correct) guide to

the best choice of the equatlons to be used may be obtalned from a
congideration of the accuracy of represcntation of the buckle
deformation. "™Me use of N equations in N unknowns lmplles that
the deflection surface 1s being described in terme of N Fouriler
components, with the other components assumed equel to O. :

The matrix iteration method yields the Fourler coefficients as
well as the critical stress coefficisnt. The values found for these
Fourier coefficients (where N was taken to be 10} were substituted
in the following form:

m+n even L m+n odd
Bt %18
815 | %26 816 | %7
13 "on | %35 " | %25 | %36
b 'L_;-;; «233 By &12 | 823 | ®3h | %5
“a | %l %53 %y | "2 | P3| %ou
a5l ‘a62 ' 8,y 8 863
571 %1 | 272
881
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As a result of this substitution, values were inserted in the
10 squares corresponding to coefficients assumed not equal to O,
wvhereas no values were substituted for the remaining squares.

Thz absolute values of the coefficlents were observed to
decrease in magnitude in a rather wmiform menner as the dlstance
from the largest coefficlent increased. If a space in which no
value was substituted occurs In one of the foregolng forms in a
region where the neighboring computed coefficients are not smell,
appreciable error is usually Incurred by the neglect of that term.
In such cases, the buckiing stress was recomputed with the coefficlent
in that space included and the emalliest coefficlient dropped from.
conslderation.
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TABLE 1

STRE3S COEFFICIENTS AND DEFLECTION-FUNCTIOR COEFFICIENTS

Shear and longitudinal direct stresss
% -l
Stress Deflection-funotion coefficlents a, g
ooeff'iclkanta - T5 J &ven e ]
b [T3 T 11 ) 13 | "2 | %51 f 5| %2 | %33 fwe | %1 | %35
E—
" o | 7.05 | 1 o 0 0 0 0 0 0 0 0
3 | u.esf su2] 1 |-.023].143 |-,017]|~.001]| .006 | .009 .006 | =.001 | 001
2 | 6.62) 961 1 |-.o81].205 |-.035]-.003| .007 |.019 .006 | -.002 | .003
1 | 811 1 |-.057|.253 |-.052|-.004| .006 | .c28 | .oos|-.c03| .o04
0 9.35 |11.63 1 -.070 [.293 |-.071|~-.005] .005 | .038 .003 | -, 00k | ,005
-2 |11.56 1 |-.091|.360 |-.107|-.006] .002 | .057 |-.003|-.006 | .007
-4 113,26 |14,76 -.107 | .17 | -.185 | -.0074-.002 | .076 |-.011|-.007 | .008
% =2
1+ ) odd )
2 ] %1 | fay | 23] %32 %m | %25 | %3y | %us3 .%Lu
b 2.89 0 0 1 0 o 0 0 0 0 o 6
3 |ua9 | 3.29 |-137| 1 |-.003)-.018].149 |-.052|-.001].005 |.007 |.o14
2 | 5.12 | 4.66 |~.195| 1 |-.004|-.035].214 |-.085|-.002} .006 |.015 |.ows
1 |5.93]5.71|-.239| 1 |-.o0ki-.053].265 |-.209[-.003] .006 |.o024 |.011
1 + ] even
, “10 [ M3 | %22 | fsn | M5 | fan | %33 | "we | *a1 | "5
o |6.59]|6.61| 1 |.032 |.383 |-.325|-.002] .005 |.okg |-.ok2|-.010 | .00k
-2 | 7.89 1 |.o42 |.377 |-.288|-.002| .005 {.058 |-,036!-.014 {.006
-4 9.04 | 9.48 1 .052 |.icy | -.269 |-.003| .003 |.069 | -.034 |-.016 |.008
p=b
B 1« VJV odd
812 | a1 823 | %3p | %y 833 | %52 61 bt ¥ Sg)
v {137 ] o 0 o | o | o | 1 o 0 o 0 o
3 3,06 | 2.94 | -,010 {-.224 | .00k | -,165 1 -.019 |.148 |-,0% |.02% |-,029
1 ¢ } even
%1 | %22 31 | *33 a0 8g) | %g3 %2 | *n 9
2 {u.a0 422 |-.069 | k2| 1 |-,026 |-.252]-.33%].009 |.013 |[-.028 [-.008
1 5.00
o 15.67 |5.77 -.153 | J209 | 1 |-.ou8 [-.324 |[-.300 |.032 |.0o12 |-.032 |-.010
-4 |7.98 |8.00[-.315] .316 | 1 |-.090 |[-.422 [-.292 |.057 |.025 |[-.026 |-.010
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TABLE 1

NACA

STRESS COEFFICIENTS AND DEFLECTION-FUNCTION COFFICIENTS - Concluded

TN No. 1223

Shear and transverse direct stress
g2
coe?f'{:::nts Deflection-function cosfflicients aj
X L 1 +# ] even
Ky [T 717 8 s | % [ %] M5 fau | %33 ] 2| %1 | %35
1.56 0 4.70 1 0 0 s} o o o 0 0 0
1.45] 1.93 1 -.002{ ,076 |-.018} ,000 | ,002 } .003 .009 | -.001 |.000
1.3 2,94 1 -.006} .119 |-.o43| 000 | .003 | .006 | .010 | -.005 |.001
1.0 i,18 1 -.013| .182 |[-.102(-.001 | .oo4 | .oik | 005 | -.009 |.001
.5 5.65 1 -.023| .264 |-.201(-.001 | .005 | .029 [-.012 | -.013 |.002
0 6.59 | 6.61 1 -.032| .3u3 |[-.32u|-.002 | .006 | .07 [-.043 | -.0l0 |.oOU
1 + § odd
812 | %21 | %23 | %32 e 'I§> %25 | "s2
-8 | 7.76] 7.52 |-.270| 1 |-.078 |.337 |-.155 |-.005 | .005 | .ouo |-.005 |[.oou
-1.5% £.56 | &8.31 |-.264 1 |-.085 |[.361 [-.176 |-.005 | .oo4 | .ob5 |-,006 |.001
% =3
1 +« ] sven
1| M3 %2 | %3 | %15 | Rew g 33 | %we | st | %35
1.23{ o 3.59 | 1 0 o 0 0 o | o | o © 0
1.1 |2.69 1 ~.003} .098 |-.072| .000 | .002 {.oo4 | .009 | -.010 |.00O
.9 |4.01 1 -.0081 .179 | -.234} ,000 | ,004 {.014 f-.017 | -.009 |.001
1 + ) o0dd
42 21 Ba3 &3p 8L 814 sy a3 825 8co
.5 [ 5.21 5.04 (153 1 -.032(~-.279 | -.237] .003 |-.006] .027 | ~.002 |.012
o {6.04 5.89] 154 1 -.081 | -.337 | -.333| .003 |[-.006] .039 | -.002 {.035
- .5 | 6.63 6.60} .1L7 1 -.0k8 | -.396 | -.u455| .003 |-.007] .054 | -,003 |.069
-1.2 |7.50 7.47] 131 1 -.057 | -.487 | -.654 | .003 |-.007 | .081 | ~.004 {.131
g=t
1 +« ) sven
8137 | 813 | %22 | %31 | B2y | %33 | %2 | %1 [ ®2 | N2
1,13 o 7 1 0 0 0 [0 0 o ] 0 o
1'05_L§;§1 1 -.002| -.007 | -.06% [ -.002 | .o02 |[-.013 |-.01k | -, 00k {-.00%
f11 | %z | 31 | %33 | fwz | "1 | %2 | %71 | %53 | %o
o 5.67 5.77 [-.153 | .209 1 -.048 | (324 |[-.300|-.012 |-,032] .032 |-.010
- .5 |6.37 -.0%8 |~.198 1 -.055 | .370 |-.382 }-.033 |-.034 | .0ok2 |-.012
-1.1 }7.07 7.11 |-.027 {~-.176 1 -.063 } uig |-.578 |-.095 |-.007 | .066 |-.010
i+ ) oda
212 %21 | %23 | %32 | %wa | %ay | fug | %52 | "m | %72
9 {3.99 3.89 |.099 1 }.015 |-.208 |-.243 [-,00k | .01k |.,009 }-.007 |-.00%
5 14,93 4,89 1.102 1 J-.023 |[-.299 | -.u62 |-.006 |.030 |.057 |-.005 | .005
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Fig. 1

NACA TN No. 1223
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NACA TN No. 1223

Fig. 2
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NACA TN No. 1223 , Fig. 3
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Figure 3.- Interaction curves in terms of stress ratios Rs and RX

for shear and longitudinal direct stress of simply supported
rectangular flat plates having length-width ratios of 1, 2, and 4 and
comparigson with points from the curve representing the parabolic

Y
interaction formula RS2 + Ry =1, Rg = T—T-— ; Ry = E_L .
cr X
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Fig. 4

NACA TN No. 1223

| Compression

1 I VO |

A Antisymmetric buckling
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Figure 4.- Interaction curves in terms of stress ratios Rg and R
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y

for shear and transverse direct stress of simply supported
rectangular flat plates having length-width ratios of 2, 3, and 4.
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NACA TN No. 1223

Fig. 6

dg* 4, « 9" _s
. = ¢ = : e 53 SJUSIOIe0D SSaJ)s
..N%.m A Nn.t b | %M % 3 SIUSTONE: }
JO swae] Ul e 03 [ WOJJ S83UBYD OljRJI UYIpIm-Yj3uel ay) se ojerd
1B JeMdur)}oal pajxoddns ATdWIS B J0F SSOJIS }09JIP 9SJISASUBIY
pU®B JIBBUS JOJI SAJND UOTIOBRISIUL JO WIIO}] 83 Ul UOTFISUBL], -"Q aan3td

14 c O & V-

! | I ] _

SHLAYNOUIY 404 IILLIMMOD
AYOSIAQY TYNOILYN

UoIssa4dwo) uolsua|

— ———— —~———




NACA TN No. 1223 | Fig. 7
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Figure 7.- Coordinate system for a rectangular flat plate,
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