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SIMPLY _qWJ_-PORTED RECT_NG[ZJ_/_ FLAT PLATES

By S. B_ Ba¢dorf and },[anuel Stein

The buckling of a si_nDly s_poorted rectang_lar flat plate

under co_binations of shear and direct stress was investigated by

means of an energy method. The critical c_binations of stress for

several length-width ratios were de_er_ined to an accuracy of about

i percent by the use of tenth-order determinants in conjunction wiih

a modified matrix iteration method° Curves were drawn which can be

used to obtain the critical stress combinations for the case of

interaction of shear and lon_itudina! direct stress and for the case
of interaction of shear and transverse direct stress.

INTRODUCTION

The oroblem of buckling of plates under the action of more _an

one stress has been given considerable attention. For plates

subjected to two stresses the critical combinations are usually given

by means of interaction curves, that is, curves that can be used to

obtain the value of one stress required to produce buckling When a

given v_lue of another stress is also present. The stresses are

ordinarily given nondimensionally Sn terms of either stress ratios

or stress coefficients.

In reference ! the interacT, lon curve for infinitely long flat

plates under combined shear _nd longitudinal direct stress was

sho_n to be very nearly a parabola as indicated in figure I of the

Dry,sent paper, In this figure R s is the ratio of shear stress

Dresent tO the critical stress in pure shear an8 R x is the ratio

of the longitud_na! direct stress present to the critical stress

in nure longitudinal co:_9ression. (__iI symbols are defined in

appendix Ao) q_is curve is shown in fig_re i of reference i to

a_oly to plates having edges el+her si,uply supDorted, clamped, or

e]astica!ly restrained agains! rotation. Reference 2 demonstrates
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_hat the oarabola also applies, to a high degree of accuracy, to
nearly square plates with simply supported edges. On the other
hand, for _nfinitely long plates loaded in shear and transverse
direct stress, the _nteraction c_rve asstnnesa different form,
which is shownfor s_mp].ysupported edges in figure 2 taken from
fi_]re 3, reference 3. The fo_a of the intoraction curve for shear
and transverse direct stress appears, therefore, to changemarkedly
as the length-width ratio of the plate increases from 1 to _.
The purpose of thc present paper is to investigate this transition
and, in addition_ to determine whether any appreciable change in
the form of the interaction curve for shear and longitudinal stress
occurs as the length-width ratio of th3 plate increases from 1
to _.

RESU%TSANDDISCUSSIC_[

The results discussed herein are based on the theoretical
solution presented in appendix B. The mm_erical results, computed
by meansof the matrix iteration method described in appendix C,
are believed to be accurate to within about i percent. Interaction
curves are presented for the buckling of simply supported plates
having length-_ddth ratios in the range of ! to 4 and subjected to
shear and longitudinal stress end to shear and transverse stress.

Shear and Longitudinal Stress

The inleraction curves for shear and longitudinal direct stress
are sho_min figure 3 in terms of stress ratios for simply supported
fla_ rec+_nsular plates having iength-width ratios of i, 2, and 4.
Oneof the two craves given for each length-width ratio represents
a b_ck!e pattern that is sy._etric about the center point of the
pla_e. The other curve represents a buckl_ pattern that is anti-
sy_mmetricabout the center point of the plate. Those parts of the
two c_rves that are govern_g parts (the parts that give lower
values of one stress for a given value of the other stress) are
drawn with solid lines. The ptu_possof presenting two curves
instead of only the governing parts of either curve is to indicate
whcre the cusps occur r_udto show the abrupt change from asymmctric
to an antisymmetric buckle pattern that results in these cusps°

For purposes of comparison, points from the parabola represented
by the foilowlng equation for the interaction curve for a length-
width ratio of oo

Re2 + Rx = i (see reference i)
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are included in each graph in figure 3. The curves for the
rectangular plates do not differ visibly from the parabola; this
close agreement indicates that for shear and longitudinal direct
stress of simply supported rectangular plates the parabolic
intersction formula is substantially correct.

Shear and Transverse Stress

The interaction curves in stress-ratio form for shear and
transverse _irect stress for simply suDported rectangular plates
having length-wid[h ratios of 2, 3, and 4 are sho_n In figure 4.
The curve for a length-width ratio of 2 is nesrly a parabola in
the conpression range but deviates considerably from the parabola
in the tension range. The curves for the higher length-widthl
ratios deviate considerably fr_ a parabo!a in both c_npression and
tension &rid incline toward the c1_rvefor infinitely 10ng p!ates,
In figure 5 the curves of figure 4, together with curves for plates
of leng_h-w_dth ratios of i and _, are plotted on the same
graph. The ver+dcal s_rai_t-line part of the interaction curve
for a ]ength-_idth ratio of ¢o corresponds to buckling of the
plate as an Euler strip. (See reference 3.)

in figdre 6 the trs_nsition in the form of the interaction
cur_e as the length-width ratio of the plate changes from i to oo
is sho_min terms of buckling stress coefficients, The assumption
that a long p!atc is infinitely long is seen to lead to a conservative
estir_mte of the buckling stresses9 if the !engt_h-width ratio is
greater thegn4_ only a small error is involved in this assumption.

The comblnati_s of stress coefficients that result in buckling
and the corresponding deflection coefficients are given in table i.

CONCLUSIONS

The results for the critical combinations of di_ect stress and
shear of simply supported rectangular flat plstes, computedby an
energy method summarizedin tables and graphs, show that:

1. For shear _d longitudinal direct s_ress %,heInteraction
curve for all length-_idth ratios investigated is substantially a
Darabola for which the equation in ter_is of stress ratios is

" 2
Rs + Rx = i
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where Rs is the ratio of shear stress present to the critical stress
in pure shear and Px is the ratio of longitudinal direct stress
present to the critical stress In pure longitudinal com_resslon.

P. For shear and transverse direct stress_ the sha_e of the
interaction curve de_ends on the length-width ratio of the plate.
For square D!ates Che interaction curve _s very nearly a parabola,
the equation for which is given in the preceding paragraph. The
interaction curve for _lates having a leng_l-wid_l ratio of 2 is

nesrly Darabollc in the com_resslon range but is close to the _o_

_nteraction curve for _nfinitely l_g plates in the tension range.

In the range of leng_-_.-Jdth ratio from 2 to 4 the parabolic equation

does not hold even in c_press_on_ therefore the curves given in

the _resent pa_er should be used. At length-width ratios greater

than 4, the interaction curve approximates the interaction curve for

a length-width ratio of _ .

Langley Memorial Aeronautical Laboratory

N_<,tional Advisory Committee for Aeronautics

Langley Field, Va., November 8, 1946



NACATN No,1223 5

APPFNDIXA

SYmbOLS

a

b

t

D

X

Y

B

E

bmn

L

i_.J_m_n_p_q,N

C i

X

o
Y

T

R x

_y

length of _late

I"

width of plate; b =_a

thick_ess of _late

deflection normal to plate

fle_ural stiffness of p!ate _ .E_t3_ _

\12(i-  2)7

10ngltudina! coordinate

transverse coordinate

symmetrical matrix

Y(_ung's modulus for material

deflectlon-func tlon &oeff icient

element of matrix B

diagonal terms in stability determinant

ruth unk_owr_ in set Xl,X2_ ...xN

integers

arbitrary coefficient

longitudinal compressive stress

transverse compressive stress

shear stress

longitudinal direct-stress ratio

transverse direct-stress ratio
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Rs

kx

k
Y

ks

k

ki

_ (n)

cr

shear-stress ratio

longitudinal c_ressive-stress coefficient

transverse compressive-stress coefficient

shear-stress coefficient

length-_id_l ratio (a/b)

Poisson's ratio for material

characteristic value of matrix B

ith characteristic value of matrix B

colunm matrix with elements Xl,X2,.,._

modal colunm associated with ith characteristic value

nth approximation to _

column matrix constructed so that each element is the mean of

the corresponding elements of _(n) and _(n-l)

critical (used as subscript)
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APP[_'_PIXB

THEOPETICALSOLUTIC_I

Method of Analysis

The problem of the stability of finite rectang_11ar flat plates

under co-ubined shear and direct stress _s solved by use of the

l_ayleigh-}_itz method. (?.ee referonc_ 4.) The deflection function

Is expressed exactly by _._esns of a t_,To-dimensional infinite

Fo1_ier series. The application of the Ray!eigh-Ritz method results

in an infinite set of homogeneous linear equations in the infinite

nu._ber of unknc_ Fourier coefficien_;s. Solutions of these equations

that give Fox,tier coefficients not all equal to zero exist only for

those co._binstions of shear and direct stress for _,hich the buckled

plate is in neutral equilibrit_i.

The algebraic equations obtained herein are equivalent to

the equations used in reference 2. In order to obtain accurate

results for relatively long plates, however, a method of solution

of these equations different frown the method of reference 2 was

employed in the present paper, in reference 2_ two slxth-order

determinants (on_ determinant corresponding to a sy_metrical and

the other dete.lnninant to an antisyntmetrlcal buckle pattern) were

expanded and the resulting polynomi_is were solved for the critical

Stress combinations. Each solution involved the use of only

six terms in the Fo_n_ier expansion of the deflection function. In

the present paper i0 to_w._.swere used in the expansion of the deflection

function. The corresponding set of i0 simultaneous equations was

solved by the matrix interation method (references 4 and 5) modified

in the manner described in aprendix C. This method has the advantages

that, whereas a very accurate so].ution requires a great deal of

labor, a good approximate sol_ition can be obtained _ithout much

effort, and the Fourier coefficients as well as the buckling loads

can be evaluated. A knowledge of the Fourier coefficients for a

given loading condition is used to dete_nine whether the best

choice of equations _as made and also to assist in the choice of the

i0 most important equations for a similar loading condition.

Accuracy of Results

Difficultly is usually encountered in evaluating the discrepancy

between the buckl_n_ load determined by an exact, solution of the I0

most impor?ant eqaations and the true value of the buckling load.
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On the assumption that the use of the i0 most important simultaneous
equations of the infinite set to find the critical shear stress for
a given compression stress would in all cases result in _ error of
not more than a few tenths of 1 percent, the iteration (see appendix C)
was carried out until the error in the solution of the equations used
was estimated to be less than 0.5 percent. The shear-stress
coefficients presented in table 1 of the present paper therefore
are believed to be in error by not more than 1 percent.

Solution

The critical stresses are determined on the basis of the principle
that dL_ing buckling the elastic-strain energy stored in a strucbure
is equal to the work done by the applied loads. For the case of a
rectangular flat plate under loads applied in the plane of the plate,
this equality becomes, when the coordinate system is that of figtu'e 7,

2 o o o L\_x2 _y_,;

-_(i -I_)
-_2w ;52w 82w " 2-I";_ ;y2 >

- 2
dx dy (_l)

(equivalent to equation 210, reference 6)

Equation (BI) can be rewritten in te_ms of nondlmenslonal stress

coefficients as follows:

(B2)
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where

b2t
k = cx --
x _2 D

k --(_ b2t

Y Y _2D

_t
k s T 2

_D

The procedure used in solving equation (D2) involves substituting

for w a function of x am_ y that satisfies the edge conditions

and can be adjusted so as to closely spproximate ,_.hebuckling con-

figt_ration. For any case in wh_oh the value of w is 0 at all the

edges, the term with the coefficient -2(1 - #) can be shown.to

vanish (reference 7). A series of terms with arbitrary coefficients

is used to represgnt w, and the coefficients are determinei by

the Rayleigh-Ritz method. A general fol_u for the deflection w is

OO CO

....L_ _ sin _n_l (_3)
m=_ n=l amn sin a b

Equation (B2) is solved for the case of bucklingunder shear _ud

transverse stress and for the case of buckling under shear 8rid

longitudinsl stress,

?

Shear and transverse airect stress.- If the value of k x is

set equal to 0 and the e_#ressi0n for w is substituted in'

equation (B2), the following equabion is obtained:
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co _ 2 22
Z _-- a2 ab m_ +

L m=-_-iLCi- /
m=l n=l L -
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-2k /_'_2 co co .co. co,YT}___- "-..... z. azau apq
m=l n=! D=l q=].

4=b(==] -0

(:B4)

where m __ p and n + q are odd ntLmbers.

The coefficient a must be chosen to make the value of
nln

a minlml_. This procedure results in the set of homogeneous

linear equations represented by

k s

a n _/ - kyn2_ 4 + 32ks_3
.... 7_2

.._c--> c_

(Bs)

=0

where

m = !, 2, 3,...

n = ]., 2, 3,...

and m + p and n *- q are odd nt_ubers.

This set of eguatlons may be divided into two groups which are

independent of each other, one group in which m + n is odd

(antls_r_etrlc buckling), and one group in which m _- n is even

(symmetric buckling). Ten equations in I0 unkno_qs were solved for

each grou_ by the iteration flethod explained in appendix C.
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A representative @eterm!nant in terms of the coefficients for
the group of equations in which m ± n is even is

m=l, n=l

m=l, n=3

m.=2;n=2

m=3, n=l

m=!, n=5

m=2_ n=4

m=3, n=3

m=4 3 I%=2

m--5,i--I

_n=4j n=4

all a13 a22 a31 al5 a24 a33 a42 a51 a44

_n o 4 o o _.8_ o 8_ o !6_
9 45 45 225

o _x3 "_ o o ,8 o . _ o _._6
5 7 25 35

4 4 9o_ o 3_6 o 20 o
- _ =22 5 -63 2_ "6-_

o o .k _3x o __ o 8 o x_6.
5 25 7 35

0 0 20 0 40 0 8 0 16
-6-_ _ ........27 63 27

8_ 8_ o 8 40 T_24 _I_ 0 _ 0

0 0 3.6 0 0 _ 7.2_- L33 _ y2 0 1M/_
25 35 35 49

8. 8 o 8 8 o _72 40
4--5")" 2"-5 "7 -6-3 35 L42 - --27

0

o o 2o o o 8 o .Lo _ o

(B6)

where

L,_in-

_2

32ks_3 ( m2 + n2_2) 2 _
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A typical determinant _n terms of the coefficients for the
grouo of equations in which m + n is odd is

re=l, n=2 1,12 .4
9

m=2, n=l

m=l, n=4

m=2, n=3

m=3, n=2

m=4, n=l

m=2, n=5

m=3, n=4

m=4, n=3

m=5, n=2

a12 a21 a14 a23 a32 a41 a25 a34 a43

o -4 o __8 2_o o 8_
5 45 63 25

4 8 o Ji 0 0 8 0
"47 2-3

o .i Z,l__ .8 o ..l_! _,_o o _lfi
45 7 225 21 35

a52

0

2O

63

0

o 4_. o _16. L32 .8 .4- o I%
5 25 7 7 35

0

20 o _._o o .4 o :r"25 .8_ o lo._9.o
63 21 7 3 441

0 ____ 0 72 0 . i6 8 L34 .144 O
25 35 35 3 49

0 .1._6_6 0 .7_ 0 0 144 L43 .
25 35 35 49 3

, 0 20 0 .4 0 4_0 l_O0 0 .8 LS2
63 7 27 441 3

(BT)

In general, the method is to choose numerical va].ues of

and ky, set each determinant equal to O, and solve for the lowest

value of ks • The ` lower of the two values of ks found from the

two determinants establishes the s.ritlca! shear stress for a panel

wlth length-width ratio _ under the transverse stress glvon by ky.
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Shear and lon__itudinal d_rect stress.- If k is set equal
to 0 Jn equation (h2) and the same procedure asYthe procodu1_e

for +.hecombination of shear and trensverse stress is carried out,

the set of homogeneous linear equations given by the Ray]slgh-Ritz

method is represented by

[<m2 + n2_2>2 - kxm2_ _ + 32ks83 __ _m_ _%Pq/_ ..... .z__ apq . . q_a_n _ ,2 _--1q--1 (m_ p2)(n_ )
-0

where

m = i_ 2, 3, o..

n = i, 2, 3,...

and m + p and m + q are odd nt_bers.

The determinants set up from these equations are the same as the

determinants (B6) and (B7) for sy_m_etric and antisymmlotrlc buckling,

respectively, except that the diagonal terms aro

- + n2_ - kx__
Lmn 32ks_33 ....

In general, the method is to choose n_nerlcal values of

and kx, set each determinant equal to O, and solve for the

lowest value of ks • As in the deternination of the shear and

transverse direct stress, the lowest value of ks establishes the

critical shear stress for a panel with length-width ratio _ under

the longltudlnsl stress given by kx.
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APP!NDIX C

MATRIX ITERATION METHOD

If the matrix iteration method is used in attempting to solve

the set of simultaneous linear algebraic equations associated with

the buckling of flat plates _here shear is present, the conventional

iteration process as described in reference 4 does not converge.

The reason for this nonconvergenee, the modification in the iteration

process used in the present paper to obtain convergonce, and the

method of choosing the best finite set of algebraic equations to use

are doscribed in the following paragraphs.

Conventional Iteration Process

The matrix iteration method is described in the present paper

in te_s of the following s_!plified symmetrical equation:

\
/----b_mnxn = kYm (CI)
n=l

where

m = !, 2, 3,...

and

b =b
NLrl ll_l

This set of equations is equlva]ent to the set of equations (B5)

fro,_i_,_hich _he critical shear stress is deter:_iJned if

= 2 + (c2_)

(where m is a different integer for each different combination

of i and j),

_2
(i 2
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(where n bears the same re]mt_on to p, g
and

as m bears to i, j),

Equations (C]) can similarly be shown to be a generalization of

equations (B,q).

The problem is to find the highest value of k which permits

nonvanish_ng solutions to be found for equation (C1). In order to

avoid the use of too many suffixes, matrix notation is used, so that

equation (C1) becomes

= (05)

where B is a square matrix and ._ is a colt_m vector.

_e matrix iteratlon method (reference 5) consists 1,n tak.ing

some arbitrarily asstmied values for the set of values for

and in calculating ihe left-hand side of equation (C5) in order to

obtain an improved set of values for _. (Division by k is

unnecessary because the solution of homogeneous equations can be
deter,:linedonly to _-ithin an a.bi,,la_y _uultiplicative constant.)
These new values are relnserted in the left-hand side of eguation (C5)

to obtain ftu'ther improvenent in the values, and the process is

continued until the ratios of the components of _ are not

aoprecJably changed by further iterations. The value of k _s then

given as the ratio of the last value found for _ to the preceding
value.

The basis for this method ¢an be seen from the following

discussion. According to matrix theory, if the _trix B is

of Nth order, there are N values of k satisfying equation (C5).

Let these values be called kl, k2, ..., kN with the order so

arranged that !klj >Ik21> ... >IkNl. For each value of ki there

is a corresponding solution for x, which may be called _i. Then

B_i = ki_ i (C6)
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Ary initial asmmed solution _(0) can be expressed in terms

of the N true solutions _l, _2, "'', _N as follows:

_(o)-_@- ci_i (cv)
x_
i=l

where the v_ues of the coefflclents Ci are in general not known.
The result of one iteration, obtained by using equations (C6)

end (C7)_ is seen to be

,.(_) B_(O)

The result of

N

___ci_iT_i
i=l

= \ Cik
i=l

n _terat_ons is

(n) N

= ____Ciki%i

i=l

The next step is to fadtor out the nth power of kl,
the largest value of k:

(n)
kln \= + ___C i _

that is,

(c8)
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Equation (C8) shows that as n

and more nearly a constant times _i'

depending on the smallness of the ratio q

The largest value of k can then be found as

increases _n)f becomes more

the rate of convergence

(i = 2, 3, "'" , N).

Modification for Shear Buckling Problems

In plate buckling problems in which shear is present, the

critical shear stresses occur in pairs which are equal in magnitude
but opposite in sign. For such a problem k2 =-kl, and equation (C8)

may be written

n FC i__ = Xln i_I + (-i)n C_2 + Z l\kl/ _ (C9)
i=3

Equation (C9) implies that unless C2 is by chance equal to 0,

no amount of iteration will result in convergence.

A simple expedient can be used, however, to Pred_ce convergence.

Since equation (C9) shows that as n increases _inj oscillates

about the true solution (constant times _l), an improved approxi-

mation can be obtained by const_xcting _ (n) such that each
t _

component is some kind of mean of the corresponding components of _nj

and _[n-1)" . Immediate convergence results frcm the use of the

geometric mean (but not from the use of the arithmetic me_D) after

one iteration if only two equations of the set for a r_ctangular plate

in shear are used_ In the present paper, therefore, in wldch

i0 equations were used, the geometric mean_as employed except when

Fourier coeffi,_ients of two successive iterations had opposite signs,
in which case the arithmetic mean was used.

The procedure adopted for obtaining the shear buckling stress

was to use the matrix iteration method modified by taking the

geometric mean after every two iterations as described in the pre-

ceding paragraph° In addition, by use of a method suggested in
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reference 8, an improved value for kI was obtained after the
completion of n _teratlons by meansof the equation

Choice of Equations

An exact solution of the critical shear stress for rectangular
• plates involves the use of an Infinite set of eq]mtions in an

infinite nu_ber of un_uo_ms. Since attention must be confined to
a finite n_:ber of equations - say, N - the ability to choose the
best N eGuatlons for the purpose is very desirable.

A very useful (althcugh not rigorously correct) guide to
the best choice of the equations to be used maybe obtained from a
consideration of the accuracy of representation of the _uckle
deformation. _e use of N equations in N _nkn_ns implies that
the deflection surface is being described in terms of N Fourier
co:_onents_ with the other componentsassumedequal to O.

The matrix iteration method yields the Fourier coefficients as
well as the critical stress coefficient. The values found for these
Fourier coefficients (where N was taken to be lO) were s_stituted
in the follo_dng form:

m + n even

a3i

a24

a33

a4_

a

51

m ± n odd

a18

al6 a27

a a a

14 25 36

_3 a34 a45

a41 a52 a63

a61 a72

%1
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As a result of this substitution, values were _nserted in the

lO sguares corresponding to coefficients assumed not equal to O,
_,hereas no values were substitutod for the remalning squares.

The absolute values of the coefficients were observed to

decrease _n _agnitude in a rather uniform manner as the distance

fro_ the largest coefficient increased. If a space in which no

value was substituted occurs in one of the foregoing forms in a

region where the neighboring computed coefficients are not small,

appreciable error is usually incurred by the neglect of that term.

In such cases, the buckling stress was recomputed with the coefficient

in that space included and the smallest coefficient dropped from
consideratJ on.
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TABLE 1

STRESS COEFFICIENTS AND DEFLECTION-FUNCTIO_ COEFFICIENTS

a 1
_=

21

i • J even
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TABLE i

STRE55 COEFFICIENTS AND DEFLECTION-_UNCTION COFFICIENTB - Concluded

Shear and _raneverse direct I_ell

S_eee

cogfficlents

ks

ky --l*J l_J
Even Odd

1.56 o a.7o

1._5 1.93

1.3 2.9_

i.O h .18

•5 5.65

O 6.59 6.61

Deflection-functlon coefflolen_ aiJ

all al 3 &22 a31

I 0 0 0

1 -.oo2 .o76 -.olS

i -.oo6 .zz9 -.o43

i -.o131 ,i_2 -.zo2

l -.o23 .26_ -.2oi

1 -.o32 .3_3 -.32_

i + J even

al 5 a2_ a33 awe as1 a35

O O O O 0 O

,OOO ,OO2 .OO3 .OO9 -.OO1 ooo

.ooo .oo3 .oo6 .olo -.oo5 ooi

-.001 .00_ .014 .005 -.009 .001

-.001 .OO5 .O29 -.O12 -,O13 002

-.OO2 .OO6 ,O47 -.O43 -.010 OO_

I * J odd

-,_ 7.76 7.52 -.E7o I -.o78 .337 -.155 -.oo5 .oo5 .o_o -.oo5 oo_

-1.5 _.56 8.31 -.264 I -.o85 .361 -.176 -.oo5 .oo_ .o_5 -,oo6 ooi

_=3

1.23 o

1.1 2.69

•9 _ .O1

•5 5.2]-

O 6.04

- ,5 6.63

-1.2 7.50

all al 3

3.59 ]. o

1 -.oo3

i -.O08

a12 a21

5.04 .153 ]-

5._9 .15_ I

G.6o .lh7 1

7.47 .131 i

i _ J even

a22 a31 a15 a24 a33 a42 a51 a35

O O O O O O o O

.o98 -.o72 .ooo .oo2 .oo4 .oo9 -.o].o ooo

.179 -.23 a .ooo .oo4 .o1_ -.o17 -.oo9 ooi

i * J odd

aE 3 a32 ak I a14 a3_ a_ 3 a25 a52

-.o32 -.z79 -.237 .oo3 -.oo6 .o27 -,oo2 o12

-.o41 -.337 -.333 .oo3 -.oo6 .o39 -.oo2 .o35

-.o48 -.396 -.455 .003 -.007 .o5_ -.oo3 .069

-.057 -.487 -.654 .003 -.007 .081 -.00_ .131

a - 4

- 1.13 0

1.O_ 2.61

0 '5.67 5.77

- .5 6.37

-I.I 7.07 7.11

•9 3.99 3._9

•5 4.93 _.89

all

I

I

all

-.].53 .2o9 1

-.o88 -.198 I

-.o27 -.176

a]2 a21

.o99

.iOE

t * J even

al 3 a22 a31 a24 a33 a42 a51 a62 a71

O O O O O O 0 O O

-.002 -.007 -.068 -.002 .002. -.013 -.OIL -.ooh -.oo_

a22 a31 a33 a42 i5l a62 a71 a53 a91

-.OhS .32b -.300 -.012 -.032 .032 -.OlO

-.055 .370 -,3S2 -.033 -.03_ .042 -.012

I -.o63 ._8 -.57S -.O95 -.oo7 .o66 -.OLO

i + J odd

I -.O15 -.2o_ -.2a3 -.oo& .oI_ .oo9 -.oo7 -.oo5

1 -.023 -.299 -.b63 -.o06 .030 .057 -.005 .005
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Fig. 2 NACA TN No. 1223
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NACA TN No. 1223 Fig. 3
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Figure 3.- Interaction curves in terms of stress ratios R s and R x

for shear and longitudinal direct stress of simply supported

rectangular flat plates having length-width ratios of i, 2, and 4 and

comparison with points from the curve representing the parabolic

interachonformula Rs 2 + R x = I. R s = I" ; R x = °x .
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Fig. 4 NACA TN No. 1223
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Figure 4.- Interaction curves in terms of stress ratios R s and

for shear and transverse direct stress of simply supported

rectangular flat plates having length-width ratios of 2, 3, and 4.
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Fig. 6 NACA TN No. 1223

1 i

O4 a0

,q-

04

04
!

I

0 II

0 tl) ,...-i

o o

"_o %

_m m ii

___l_ _ _1

_ 0_

o._
• r..t _-I .el

0_,-I

_-_ o

_N •m

,,'-4



NACA TN No. 1223 Fig. 7

Figure 7.- Coordinate system for a rectangular flat plate.
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