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RATTONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECENICAL NOTE NO. 1423

THE STABILITY DERIVATIVES OF LOW-ASPECT-RATIO TRTANGULAR
WINGS AT CUBCONIC AND SUPERSONIC SPEEDS

By Herbert S. Ribmer
SUMMARY

Low-~anpect~ratio wings having triaigular plan forms are treated
on the assumpbion that ths flow vrobentials in plancs at right angles
to the lonyg axis of the alrfoils are similar to the corresponding
two-dimensional potentials. Pregsure dlstributlions caused by down-
ward acceleration, piliching, rollling, sideslipping, and yawing are
obtained for wingze with and without dihedral. The stability
derivatives calcnlated from these distributions are sxpected to
apply at both subsonic and supersonic speeds, with the exception
of the transonic rsgion, up to a limiting speed at which the
triangle is no longer narrow comparsd with the Mach cone from l1ts
vertex.

INTRODUCTION

The aerodynaunics of slender sypmetrical pointed airfolls
moving point formmost may be approximated as Munk approximaeted the
serodynamics of slender esirships (reference 1). TFor such bodien
the flow 1s approximetely two dimensional in planss perpendicular
to the axis of symmoetry. The assumdtion of two-dimensional flows
leads to a very simple mathematical procedure for obtaining the
pressurc distribution. Referonce 2 Introduced this method and
treated thereby the slendsr pointed alrfoil at an anglo of attack.
The method is suited, as well, to the calculation of the pressure
distributions due to normal acceleration, pitching, rolling,
sldeslipping, and yawing. In the present analysis ths method in
extonded form is apvnlied to the determination of these pressure
distributions for a low-aspect-ratio triansular plen form. The
stabllity derivatives of the airfoll are calculated from these
resulis.
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The anslysis of the 1ifting airfoil showed that if the airfoll
is very slender (very low aspect ratio} the results apply well into
the supersonic range with no modification for the effect of
compressibility. The trensonic region probebly must be excluded.
The stebility derivatives of this report are expected to have a
similar range of application.

" The principal part of this investigation was carried out during
March and April of 1946.

X,¥,2

u,v,w
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SYMBOLS

flight velocity

rectengular coordinates (fig. 2)

incremental flight veloclitles along x~, y-,
and z-axes of figure 1, respectively; induced flow
velocltiles along x-, y~, and z-axes of figure 2,
regpectively

angular velocities about x-, y-, and z-axes,
respectively (fig. 1)

component of velocity induced on upper surface
parallel to stream velocity

angle of attack
engle of sideslip
dihedral angle

pressure difference betwean lower and upper surfaces
of airfoill (positive in sense of 1ift)

densilty of air

semiwidth of triangle at distance x from vertex
spen (base of triangle)

root chord (height of triangle)

o b/2
mean aercdynemic chord | & = s j) (Looel chord)dy = gc

P 0
agpect ratio i%%}
Y
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edze slope <§‘c- =42 _ 4

area of triangle (%bca

constant defined in equation (23)
surface velocity potential

cos™t y/a

rolling moment

normal force (approximately 1lift)
pitching moment

yawing moment

lateral force

suction force per uwnit length of edge

14
1ift cosfficient /L
Kl ves
gP

rolling-moment coefficlent —Lb
"\ JovPsp

pi'éching-momem: coefficient ( I M \
V258

&

rawing-noment coefficient l{)
%‘-pV"Sb

S)
profile-drag coefficient (Lrefile drag
' Lov°s

lateral-force coefficient 4
%pve
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Xk vorticity

Agshy, e o, Ay TFourler coefficlents

i induced surface velocity normal to wing leading edge
8 distance from wing leading edge measured normal to
edge

g distaence of center of grevity forwvard of %c
Subscripts:

T B, at tralling edge

L.E. at leading edge

R at right leading edge

L at left leading edge

Subscripted parentheses:
( Jg contribution dve to angle of attack
(p contribution duve to dihedral

Whenever a«, &, ¢, P, B, and r are used as subscripte, a
nondimensional derivative is indicated and this derivative is the

-

3
B e N

slope through zero. For oxample, Cmd =

ac, ( ) 30, |
CZ = = ; ‘ CZ .
PR o)
) p_ - r=0

A dot sbove a syubol, denotes differentiation with respect to
time. .

All angles are measured in radians.
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ANALYSIS

SCOFE

The stability derivutives troeted hersin are listed, together
wvith the values found for them, in teble I. The derivations that
Tollovw give the values with reference to .the principal body exes

of figure 1 with origin at the aerodynamic center ( =c,G O) Con-

version has been made to the system of stabillty axes shown in

figure 3 with origin a distance Xog ~ Shead of the %c point B

(transformetion equations in reference 3). Table I comprises
parallel columns vhich preseut the velues relative to both systems.

. GENZRAL

Considsr a slender isosceles triangle moving with ite vertex
foremost along ites longitudinel axis, as in figure 1, with velocity V.
Smell lincar disturbance velocities u, v, and w along the x~, ¥~,
and z-axes and emall anguler disturbance velocities p, g, and r -
about the x~, y-, and z-axes, respectively, may be contemplated., .Angle
of attack glvea rise to w, sideslip, tc v, and rolling, 'oi'bching,
and yawing correspond to p, q, and ¥, respectlvely.

As an example, suppose the sole disturbance veloclity is w,
caused by, angle of atteck. (This case forms the subject of reference 2
The trienguylar alrfoil is assumed to be moving forwerd with velocsity V
and downvard with thz small velocity oV. The airfoil section 1s.
agsumed to ba very thin; therefors, only the downwerd motion disturbe
the alr. The tirianguler plan form is also assumed to be very slendex.
so that the edges are nearly parallel. The flow in any.plane
x = constant (coordinete system of fig. 2) due to the downward .
motion is thus elmost two dimensional. It may be expressed by the
two~dimensional potential of a horizontal straight line moving.
dowvnward with veloclty «V. The horlzontal straight line is then
the section of the airfoil cut by the plane x = constant.
. Planes x = constant may be tsken anyvhere from the apex to the

tralling edge. .

- R n
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In case the disturbance velocity is rate of roll p, ‘the
straight line is to be regarded as roteting wlth angular veloclty p.
The other cases &re somewhat more complicated and are discussed in
detail in subsequent mections. In all cases, however, the initilal
problem 1s the determination of the two- dimensjonal surface potential
for the flow about & straight line with assigned boundary conditions.

With the two-dimensional surface potential known for the motion
of the section x = constant, +the pressure difference between the
upper and lower surfaces (positlve vpvward) is obtained from

&P = 2pVu, (1)

In this equation wu, is the component of the veloclity induced on- the
upper surface parallel to the stream directlion and is obtained by
differentiation of the potentlal in the stream direction. Equation (1)
expresses Bernoulli's law with the approximation of small disturbances.

The assumption that the triangular plan form is very slender
is oxpressed mathematically by the relation C << 1. The quantity C
is the slope of the sides of the trlangle wrelative to the siream
direction and is equal to one-fourth the aspect ratio. The pressure
digtributions derived on this assumphtion cen be shown to be valid
only to the first order ig C. (See reference I, appendix-A.) Thus,

terms of order C° or %Z will be neglected in camparison with
unity wherever they appoer in the analysis.

The validiby of the analysis depends on the assumption that the
disturbance parameters «, B, DPb/2V, qc/2V, and rb/2V are
small in comparison with unity. Ae in ordinary 1ifting~-line uing
theory, however, terms 1n o ‘are of - interest. Some such terms
arise without epproximation in the transformation from prineipal
axes to stability axes, but-others of order C (and hencs not
negligible) result from retention of terms of order C2. For
consistency, therefore, it has appeared necessary to neglect all
terms of order o© 4n the treatment.

In the determination of certain of the stability derivatlves,
two cases will be considered. Case 1 is for a configwration having
no dihedral and case 2, for a configuration having a small dihedral
angle.



NACA TN No. 1423 T
DERIVATIVES CI’CL’ CL&.’ AND Cm&

The derivative CI,- is obtained in reference 2. For

accelerated motion the local pressure difference therein must be
increased by the term

AP:EQ%—%

evaluated relative to axes fixed in the ealrfoll, This is

AP = 2p g%&. _ (2)

If the (small) angle of attack is «, the flov pattern in a
plane cutting the alrToll at s distence - ¥ Irom the nose is the
two-dimensional flow caused by a flat plate having the normal
velocity oV. The surface potential is (reference 2)

$ = taVe sin n

= tov \Ja? - y2 (3)

-

where cos N = 'X. and the s:lg,n changes in going from the upper

surface to the lower surface of the airfoil. Differentiation of ¢
with respect to o and substitubion in equatlon (2) yield

AP = 2paVa sin n

Integration over the plen form glves the total incremental 1ift
caused by & as .

L' = l%pV'bzc&. ‘
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This 1ift divided by %pves is the incremental 1ift coefficlent,

and the derivetive of this coeffilcient with respect to &8/2V 1is
the stebility derivative CL&' It is

CL' = %A (ll-)

a

The center of pressure of the distribution of AP is found to be

at x = %c- The pitching moment gbout x = %c 1s therefore

- - -2\ 1!
=g - S

e - vbheel4
e e

This moment divided by %pvesa is the pitching-moment coefficient,

and its derivative with respect to &B/2V is the stability
derivative Cmd. It is

. =-_7.E.A
Cmg, e (5)
DERTVATIVES Cp — AND qu

An angulasr veloclty of pitch ¢ Introduces & variation of
angle of attack along the x-axis,

= -+
o= oy 7
vhere a, is the angle of attack at =x = 2c. This variable o is
to be substituted in equation (3) for the potential,

¢ = ar\e - y°

= dVa gin
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Equation (1) for the pressure difference betwesen the upper and
lower surfaces of the ailrfoil may be written

A'P=2pvg—g

C&fx'ying out the indicated differentiation glves

2 da
AP -_-EQV[V% + g(x - §-c>] caC 1 E+ 2pVqa sin 7

The integration of AP over the area of the triangle glves
the value of 1lift found in reference 2 for an angle of attack o
plus the additional term

L' = Zover® 2

The coefficient 1s formed by division by %—pves , @and its derivative
with respect to qi/2V is the stebility derivative ch. It is

Crg = A (6)

The integration of (%c - %AP over the area of the triangle

yields the piltching moment about the reference point < %o,o + This

moment 1is

I R
M Efppvab Cov

The coefficlent is defined as the moment divided by %QVQSE and 1ts
derivative with respect to ¢E/2V is the stebility derivative Cmq.
The derivetive is

= -3 : (7
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DERTVATIVE Gy

For the airfoil in rolling motion, any section x = constant
is a rotating strailght line. Lamb (referenco 5) gives the potential
of the two-dimensional flow produced by the rotation of en ellipse
gbout ite center. In the limiting case for which the ellipse
becomes a straight line, the surface potential is

pH = %pae sin 2n

=L\ - 2 - (®

vhere p Iis the angular veloclty, a 1is the semlwlidth of the line,
and coe 1 = %.

Equation (1) for the pressure distribution telkes the form

- g@. - ]
AP = 2pV ox

ooy 80 da
oV da dx

By ugse of equation (B), with € = %=, <this expression becomes

\[1_

= p¥pCex cot f : (9)

gls

%

LP = pV':pC2

ol to

This antisymmetric pressure distribution dus to »olling was first

obtained and shown graphically in reference 4. Fipgures W and 5

herein are revroduced from this reference. TFigure L4 may be compared .
with flgure 3 of reference 2 which shows the pressure distributlion

due to angle of attack.
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The spanwise loading, following reference 2, is merely
ar' _ o
= = pv L
i P

with ¢ evaluated at the trailing edge of the airfoil. The dis- - -~
tribution is shown in figure 5. :

1
The integration of g? y dy eacross the span gives the rolling

moment

-—Egpbhvp

Division by %pVQSb converts this moment to coefficient form,

and the derivative with respect to pb/2V ' is the stebility
derivative Clp' It is

C, = -JE.DE
iy 32 5 —
- TN . .
24 - (20) _

DERIVATIVE Cy,

Case 1, No Dihedral

The pressure difference across a thin alrfoil in steady flow
has been given by equation (1)

AP = 2pVu,

where U, 1s the component of induced velocity narallel to the
stream direction, measured along the upper surface. If sideslip
occursg, the stream direction 1s inclined relative to the x-axis of
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the airfoil by the sideslip angle p. Thus, with § positive for
sldeslip in the positive direction along the y-axis,

Yo = co8 B %g - gin B %g

- ad
ax B _ﬁ

vhere ﬂ2<K 1. Hence,

&P = va@@ - B ay) (11)

The surface potential ¢ for the disturbance velocity depends
only on the normal velocity of points of the suwface. The potential
is therefore unaffected by sideslip when there is no dihedrsl. In
the present case the noymal veloclty is oV due to angle of attack
end the appropriate potential is thet discussed in the section
on CLét and Qm& and given by equation (3). Carrying out the

differentiations indicated in egquation (11l) gives, after
simplification,

AP = 2pV2a (%% cec 1 + B cot ?) (12)

The symmetric first term is the 1lift distribution In the
absence of sideslip. This term yields no rolling moment. The
antisymietric second term contributes the rolling moment

L = -—fé-pv2.b20(iﬂ-
The coefficient is formed by division by —pVESb and 1iis

. Gerivative with respect to f is the stability derivative CIB
It 1s

(Czﬁ)a = —731(1 (13)
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Case 2, Dihedral Angle I

If the wing has a emall dihedral angle I' (case 2), the angle
of attack on tho lsf't panel is reduced in sideslip by the amount I
end the angle of attack on the right penel is inoreased by that
amount. The flow pattern in a plane cutting the airfoil at a
distance x from the nose cen be obtained by a slight modification
of the clagsical thin airfoil theory. (See reference 6.) The
left edge and right edge .of the section at x are to be identified,
respectlively, with ths leading edge and trailing edge of the section
of thin elrfoil theory. The section is regarded as a small
deviation from its chord. A dlstribubtlion of vorticity along the
chord of the section is imagined. Paraphrasing Glauert (reference 6),
the induced velocity w 1s determined for noints on the chord but
may be teken to be the same for the corrssponding points of the
gection itself. The dirsction of the resultant velocity adjacent
to the airfoil must be parallel to the surface so that gt each
point of the left panel

{—;= - + a (1ka)

end at each point of the right pa_nel'

%": fr + a (14b)

The potential corresponding to a 18 already known; therefore, only
the case for o« = 0 nced be treated.

The vorticlty assumed in the thin airfoil theory (reference 6)
has a net circulation to satisfy the Kubtta condition at the trailing
edge. The addition of a term ~2V (AO + %‘Al) csc n (with 1  written

for Glauert's 6) eliminates the circulation while retaining certain
mathematical properties. Vith this added term the vorticilty is
given as

A o
k=2VGOcotq--2é'cscn+E- Ansinnrb (15)
. 1
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The velocity potential on the upper surface of the section is
related to the vorticity k by

4 e
¢=§f -k &y
¥

The angle 1, originally identified with Gleauert's 6, is now
defined differently so that y = a cos 7. Then the Integration
of the equation for ¢ with dy = -a sinn dn gives

@0

$ = av Aosinn+-,:-sin2n +‘Zé h[w -s-in—-(z-l——'—:l-‘-)-ﬂ}(l&

Equation (16) expresses the upper surface potential for an
axybltrary distribution of induced verticel veloclly along a line
in two-dimensional flow without circulation.

The coefficlents in eguation (16) are still to be evaluated.
The calculation given on pages 88 to 90 of reference 6 when
applied to equation (15) leads to

oo

$o o) oo

1

for the ratio of the induced dowvmward veloclity to the stream
velocity. The coefficients are glven by the theory of Fouriler

seriecs as
bid
1 W
AO:"FJ; 7 an

n

=2 ¥
Ay = - . ¥ cos nn dn

- (17)
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For the sideslipping éirfoii sectlon with dihedral angle, the
boundary conditions on w/V has been given in equations (lkas
and (1kb). By eguation (17) ths coefficients in this case are,
for a =0,

Bo = 0
(18)
b = L o1n B

With the coefficients given in equation (18), then, equation (16)
represents the additional potential due to dilhedral that may bs

substituted in eguation (11)« The terna B gg is found to be of -

the order 82 and thus may be neglected for ths present purpose.
Integrating the pressure chordwise glves the incrementsl spanwise
load dlstribution caused by dlhedral. anm R . _—

T-E'

AP dx .
L.E. : o LT T

R

20V x.

The rolling moment is

)]
P e N
5

no
T
o
=
o
B
n
o3
5
H

H]
1
G%‘A
)
W
o~
o
3
g
e
H a
F
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By equation (18) 4y = Egl and Ay = -%EL, and at the trailing

cdge .a= %. Thus, for ‘the present casme
R § 3
L = 3Ep‘\z'eb:sr'

The coefficlent is formed by division by %pVESb and its derivetive
with respect to £ is the stabllity derlivative Ozs for zero angle
of atteck. The derivative is

(C2p), = &

The complete stabllity derivative is obtalned by adding to the
preceding eguation the contribution of angle of attack given in
equation (13) so that )

Cyq = - - gr (19)

B

DERIVATIVE Cy,

Case 1, No Dihedral

The reference polnt for these calculations 1s at a dimstance %c

from the vertex of the trlangle, measuvred along the x-axis. Let the
gtream velocity at this point be V. Then, If the yawing velocity
is r, the longltudinal velocibty at (X,Y$ iz V ~ ry eand the

sldesliy velocity is -rix - g?). Lot these expressions replace V
end BV, rempectively, in equation (1l1) so that

A?__.gp[(v-ry) %%*I( '§c> gg]
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The appropriate votential ¢ 1a that given by equation (3),
vhich is

¢ = ov¥a sin %

Carrying out the indicated opsration gives

AP = Epk’aaﬁ cac n - I‘VCLGC - %c + a“) cot n] (20)

where C = % << 1. The ferm &€ = xC* ent. ls negligible in
cormparison with x +o the first order dn C.
The syumetric comecent tcyum 1s the 1ift distribubion in

straight flight; it yielde no 3olling moment. The antisymetric
cotangent term contributes the rolling momont LT .

c na . o
L=2pff rVaGc-%—c) cot n 7 &x dy
0 J-a ’ S

With n = arc cos g—, this moment is evaluated as : R

T = ]“:“‘QV”CC}JQ 2

The coefficient is defined as tho moment divided by -pVe.:'b and its
derivative with respect to rb/2V is the stability c‘.erivative Cq
r

for zero dihedral. It is : . - o

(cz ) = —i— (e1)
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Case 2, Dihedral Angle I

In the section on Cy dihedral was showm to add an additional

torm, which 1s given by equation (16), to the potentlal, where the
constants A, are given by equation (18). In the present secction

the variasble sideslip angle -%
pideslip angle B of the section on CZB- The rolling moment due
to the additional term is thus

L={%@é@l~%j%%

x - %q) replaces the constant

as was found in the section on CZB. By equation (18),
with =-£G% - 2}
B=-% 3%

= -hE Tl . 2
By =l X 59

=2lzl .2
A3"3=rVG“ 3>

The substitution of the values of a, Ay, and A3 et the trailing

edge, where a = % end X =c¢, gives

=2 3

The coefficient is formed as before by dlvision by %pVESb, and its
derivative with respect to rb/2V is

/C * - gri
klI')P 9
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This result must be added to the result for case 1 (no dihedral)
to give the total value of the stability derivative, as follows:

o =1LQ‘.+?.P '(22).

DERTVATIVES Cv AND G
Yo oy

Case 1, o Dihedral

The silde force and yawing moment ralative to body axes are
contributed entirely by suction along the leading edge of the wing.
This suctlion may be evaluated by considering the triangular wing to
have a small thickness so that the secctions x = constant avs
ellipses. The lateral componsnt of the pressure dlstribution is
determined and integrated. This awproach is given in detail in
reference 4 for the case of rolling at zero angle of attack, and
its extension to the case of rolling with a small engls of attsck
vas made In the original detexrminntion of CY-D ané Cnp in the

rresent analysis. A very much sirmpler method of svaluating the
suction is suggested in reference 7, howover, and this method is
adopted herein.

Consider & condition for vhich the induced surface velocity
normal to the edge is of the form

G .
g = '1'-‘:‘:;_ . (23)

in the immsdlate neighborhood of the edge, vhere &8 1is disbance
from the edge and G is a constant. Referonce 7 points out that
for such a flow there is a suction force per unit length of elge
which is

F = ﬂpGe (2};})

In an incompressible fluid. Wor the narrow triangles discussed in
this paper the component of the stream velocity normal to the edges
is inherently small corpared with the velocity of sound over the
range of stream Mach mumbers considered. Thus, no compressibility
correctlon is necessary.
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Tor the triangular wing in rolling motion the induced velocity
component u has been obtained as a factor in eguation (9) and may
be written

Wy = e

e - @

Angle of attack will give the additional contrlbution (reference 2)

w = + G.VCE =
2 . (L
Ve - ()
The total induced veloclty component u on the upper surface is thus
ce oV + %pé)
' s — -
\[Ce -(zf
x/
Very near the edge this expression is approximately
c3/2 Gv : %‘:9039

Cerf g

vhere the plus sign refers to the right edge and the minus sign %o
the left edge. :

u

If a similar calculetion 1s made for v = gg, 1t is found that

as the edge is approached the resultant induced velocity Ju? + v2

becomes normal to the edge. Thus, the normal veloclty near the
edge is
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to the first order in C. The perpendicular distance of point (x,y)
from the edge is, to the same degree of accuracy,

s x:x<: - !%{:)

The induced surface velocity very near the edge may thersfore be
expressed approximately as

c
g = (%V S %pr \L&% | .

vhich i1s of the Porm of equation (23) alrsady considered. The
suction force per unit lengith of edge by equation (24) is thuse

P = ang

c:::@_’?v2 + 43.—920212 £ an09

-?[!).‘:l

n

where the plus sign refers to the right edge and the mihus sign
refers to the left edge. )

The lateral component of this suction force is given by

c’
Y= | @r-Fyax
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The coefficient is formed by division by %QVQS, and the derivative
with respect to pb/2V ie the stability derivative GYP. It is

7 ’ 2 ne

= Sna (25)
(CYP)CL 3 '

The moment of the lsading-sdge suction about the vertex of the
triangle is approximately, foru e << i,

(o]
(Fr - Fr)x dx

éz

u

1
E?*‘“:

= -Epcecthp

T

The moment sbout the referencs point (%c,ég is
N
N=N0+%CY

=_1( ghv
-3-EQCCCI.P

The moment coefficient is formed by divislon by %pVQSb, end the
derivative with respect to ©1b/2V 1g the stedbility derivative Cnp.

It is
(cnp> = '%?: (26)
o4

Case 2, Dihedral Angle T

To the first order in the dihedral engle ', dihedral will not

change the pressure distribution. The inclination of the wing panels,

however, will give rise to a lateral force component, as follows:
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Y=TJUEG.I&3’

for the right wing panel, and a similar expression with opposite
sign for the left wing penel. The pressure difference AP has
been ovaluated in squation (9) of the section on Czp- With this

value the integration glves
N 3
Y = 'ié-pVI'b Y

Division by %QV"S and differentiation with respect to pb/2V give
the increment to the stebility derivetive Oy, caused by dihedral as

\CYP>I" ) -%AP

By additlon of the value obtained for the case of no dlhedral, the
complete derivative CYP is

Oy, = 5ra - &r | e7)

The pressure dlstribution is such that along any radlal line
Prom the vertex the pressure increases in proportion to x. For

such a distribution the center of pressure on sach panel 1ls &t Ec
from the vertex. The yawing moment sbout the reference point %c ,(9
is :

N=-(§c-r§9Y

=TT
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Division by —pVESb and differentiation with respect to pb/2V
give the incremant to Cnp caused by dihedral &8

(Cnp), =

By addition of the value obtalned for no dihedral the completo
Gerivative is therefore — _ .

(- AN o
Cnp = oA o+ 18 (28)

DERIVATIVES Cy. AND Cp,

Case 1, No Dihedral

A 1little sideslip can readily be shown to have negligible
effect on the symetrical distribution of suction along most of-the
leading edge. Near the trailing eodge some modification may be
expected at subsonic speeds due .to the altered directlon of the
trailing vortex sheet. Any lateral force and yawing mament would
have to come from the emall disturbed reglon. ZExamination indicates
that such a force or moment would be of order 8 &and hence zero
to the first order in «.

Case 2, Dihedral Angle T
The contribution of dihedral to the velocity component u
induced in sideslip 1e obtained by differentiating equation (16)
with respect to x. A term oVC csec n must be added for the

effect of angle of attack. After insertion of the constants from
equation (18) the total veloclity component w is obtained es

= oVC csc N + BrCVA{;--ﬂ + cog 211 cob n

-:;;: sin %§léin £P¥+1l)n + 8in én-~11)nj:}‘ (29)

.
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The only terms that approach infinlty near the edges (tha'b_ is,
as n->0 or n) are the cosecant term gnd the cotangent term. In

that region both terms behave like \/__C—_g_, with eppropriaste slign,

vhere e 18 the perpendiculer distance from the edge. The veloclty
component u therc may thus be writiten

u = @f g-ﬁ[)V\/QE
. 'Y 28

vhere the plus sign refers to the right edge end the minus sign to
the left edge.

If a similar calculation is made for v = %f_—, it is found as
before that near the edge the normel induced velocity vy 18

approximately equal to wu/C to the first order In C. Thus, vy 1s

of the form -;{QI-._—, and the corresponding suction force per unit length
8 .

edge 18 F = npGo, es indicated in & preceding section. Substitution
of the expression for G, mneglect of terms of the second order in 8,
and simpliflication gives S

F e ngQCx@Q * %cqarD (30)
The lateral component of this suction force is
. .
s f (Fg - Fr) &
0]

= 2pVECceaBP (31)

There is an additional lateral force dus to a component of
the pressure acting on the inclined pansls. The part of the 5
pressure caused by dihedral will contribute terms of order I'".
To the Tirst order in I, +then, only the pressure distribution
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in the absence of dlhedral (equation (12)) need be considored.
Further, only the antisymmetric cotangent term will contribute o
the lateral force. The incremental lateral force 1s thus

Y, = -EPffll-c%szB cot 1 dy dax
' c nu/2
-thEaBPL/)Lf Cx cos 1 dn dx
o uo :

-EQVECCEQBP (32)

The totel lateral force to the first order In I' 1s Y, + Yp.

This sum is seen to be zero, and hence the lateral force
derivative CYB is likewlse zoero.

Equation (12) shows that sideslip gives rise to a pressure dis-
tribution that is constant along radial lines from the vertex of the
triangle. (Such a pressure dletribution defines a conicel flow
field.) Equation (12) is Ffor_zero dihedral, but equation (16) leads
to the same behavior for the triangle with dihedral. The center of
pregsesure on each panel of the trlangle will be on the line x = gc-

3
So also will the center of pressurs of the lceding-edge suction.

There is thus no yawing moment about the reference point (%c,é), and

the stebillty derivative Cnﬂ 1s zero.

DERTVATIVES CYf AND Cnr

In the case of yawlng motion the local sgideslip veloclty
is r(%c - x). The suction F per unit length of the leading edge

is obtained by substituting this local sidesllp velocity for gV
in equation (30) derived for sideslip, as follows:



NACA TN No. 1423 a7

(When B varies with X, a8 in the present case, equation (29)
requires an addlitional term in %__%, proportional %o I's This term

is finlte at the edges and, therefore, does not contribute to the
expression for Y.)

The lateral component of this suction force is
c
Y1.=f (Fr - Fr) &
0

=0 (33)

The antisyrmetric cotangent part of the pressure distribution
in equation (20) mey contribute a lateral force because of the )
inclination of the pemels. To the first order in I, this 1s the
only contribution, according to the reasoning in the section

on Gy and CnB. The contribution 1s, to the first order in C,

¢ na
Y=h-pVarPff (-%c)cotndydx
cvo :

z/2
=1LpVarI‘f f x--c)Cxcosndndx
(0N

- | (3)

The total lateral force caused by yawing motion is Y + Yo.
The lateral force derivative Cy_ 1is accordingly zero.
r

The leading-edge suction gives rise to a pure yawing couple.
This couple is conveniently obtained by computing the moment of

'bhe suction force about the vertex of the triangle, as follows
(c® << 1)t
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[+ »
N, - /1 (Fr - Fr)x ax
Jo

fwm& o (35)

=

o[-

The pressure distribution on the inclined panels of the wing
will have a lateral component that likewlse contributes a pure
yawing couple. From eguation (20) the couple is, to the firet

order in C,
nc ng
-4 oV ( - 2%) cot 1 x dy dx
odo 3

cpn/fe
-4 oVl jp jﬁ <‘ - %%)x? cos 1 dn dx
o Ja ' .

-%pvqrmch (36)

b

No

A third yawlng couple wlll be contributed by skin friction.
(Skin friction has not been considered in evaluating the other
stebility derivatives because its direct contribution is expected
to be unimportant.: - The indirect effect of skin friction in
influencing ‘the pressure distribution via the boundary layer may
indeed be important, although it is not treated.)

The skin Triction couple 1s approximately given by:

C na
e [ b 2 ]

2
where Vi is the resultent velocity and Vhe = (Vv ~ ry)2 4+ rg(: - %é) s

2
-r(; - -é)
B 4is the local sideslip angle and equals ____fﬁriL—v and Cp, is

the section drag coefficient which is taken equal to wing profile :
drag coefflcient. -
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To the first order in r <this expression ls

cpa >
N3 = ‘%‘-QCDO f f JVr[(x - gc) + 2y2] - 'V'Ey dx dy
- ouJ-a L ~ 3/
= -gjngrCDoCch'(l + 662)

The total yawing moment caused by yewing motion is N; + No + Ng,

vhich is Just N3 because N; and Np cancel. The coofficient is N3

divided by 32-.,ov28b and the derivative with respect to % is the
stability derivative Cnr' Carrying out these operations glves

On,, = -% + gli—e)cpo (37)

A similer calculation shows that the side force due to skin
Priction 18 zero.

RESULTS AND DISCUSSION

The values obtained for the stabllity derivatives are
sunmarized in teble I with respect to two systems of axes. One
syetem 1s the principel body axes of figure 1 with origin at the

aerodynamlc centexr (%c,O,d). The other system is the stabllity

axes shown Iin figure 3 with origin a dlstance xcg ahead of

the -23-c point. —

These stability derivatives apply to an 1solated triangulear
wing in the limiting case of aspect ratio approaching zero. Applica~
bility decreascs with increasing aspect rabio, and an aspect ratio 0.5
is estimated as the upper limit of wbility. The mathematical validity
at the very low aspect ratlos may be offset, perhaps, by error dus o
the neglected boundary layer.
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The arguments for the effects of compressibility presented in
refersence 2 can be carried over to the present work. The stability
derivatives presented herein, therefore, are expected to apply at
both subsonic and supersonic speeds, with the exception of the
transonic region, up to a limiting speed at which the triengle is
no longer narrow compared with the Mach cone from its vertex.

The over-all plitching-moment derivetives should be 1ittle
affected by the addition of a fuselage, the nose of which does not
project much beyond the vertex of the triangular wing. The wing
will orilent the flow along the axis of the fuselage and thereby
wlll eliminate much of the unsteble piitching moment of the fuselage.
The flow will continue to be essentlally axial along the part of
the fuselage behind the wing because ths low aspect ratio ylslds a
downwash angle substentlally equal to the angle of attack.

Theoretical considerations suggest that the unsiable yawing
moment of the fuselage will add to the value of CnB for the wing

alone. Little effect on Cnp or Cnr is expected. Llttle effect

on the rolling-moment derivatives is expected if ‘the wing is mounted
centrally on the fuselage. High-wing or low-wing arrangements,
however, should have pronounced effects on the effective dihedral.
These concluslons ares only bentative, and a prover evaluation of

the wing-fuselage interference must be the subject of further
Investigation.

Langley Memorial Aeronautical Laboratory
Nationel Advigory Commlttee for Asronautlcs
Langley Fileld, Va., July 15, 1947



NACA TN No. 1423 31
REFERENCES

1. Munk, Max M.: The Asrodynamic Forces on Airship Hulls.
NACA Rep. No. 18k, 1923.

2, Jones, Robert T«: Piropoerties of Low-Aspect-Ratio Pointed Wings
at lépoed.s below and above the Speed of Sound. NACA TN No. 1032,
10k6.

3. Glauert, He: A Non-Dimenslonel Form of the Stability Equations
of an Aeroplene. R. & M. No. 1093, British A.R.C., 1527.

L. Ribner, Herbert S.: A Trensonic Propeller of Triangular Plan
Form. NACA TN No. 1303, 1947.

5. Lamb, Horace: Hydrodynemics. Reprint of sixth ed. (first
American ed.), Dover Publications (Mew York), 1945, pp. 86-88.

6. Glauert, H.: The Elements of Aerofoil and Airscrew Theory.
Canbridge Univ. Press, reprint of 1937, po.« 87-90,.

T+ Brownn, Clinton E.: Theoretical Iift and Drag of Thin Triangular
Wings at Supersonic Speeds. NACA TN No. 1183, 1946.



NACA TN No. 1423 . 32
TABLE T B
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Figure 1.~ Velocities, forces, and moments relative to
principal axes with origin at %c
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Figure 34~ Velocities, forces, and moments relative to
stability axes with origin at %c - Xoge Principal

axes of figure 1 dotted in for comparison.



NACA TN No. 1423 : 34

Figure Le= Distribution of pressure difference caused by rolling.
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Figure 5.~ Distribution along span of normal force caused by rolling,



