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The present report presents a theoretical anal_sis of an initially

flat, rectangular plate with large deflections under either normal

pressure or combined normal pressure and slde thrust. As small

deflections of a flat plate are governed by a single linear equation,

large deflections introduce nonlinear terms into the conditions of

equilibrium and are governed by 2 fourth-order, second-degree, partial
T I /

differential equations. These so-called Von Kakn_mu equations are

studied in the present report by use of the finite-dlfference approxi-

mations. The difference equations are solved by b_o methods, namely,

the method of successive approximations and the relaxation method.

Neither of these methods Is new, but their application to nonlinear

problems requires new techniques.

The problem of a uniformly loaded square plate with boundary

conditions wl_ich approximate the riveted sheet-strlnger panels is

solved by the msthod of successive approximations. The theoretical

center deflections show good agreement with the recent experimental

results obtained at the California Institute of Technology when the

deflections are of the order of the plate thlclmess. This agreen_nt
vr-( /

perhaps suggests the range in which these Von _rL%an equations are

to be applied.

Other problems of thln plates wlth large deflections are discussed

from the point of vlew of an aeronautical engineer. The boundary

conditions wl_ch approximate the various cases are formulated, and the

methods for solving these problems are outlined.

Since the .method presented in the present report is general, It

may be applied to solve bending and combined bending and buckling

problems wlth practically an_, boundary conditions, and the results may

be obtained to at4/ degrec of accuracy required. Furthermore, the s_

method may be applied to solve the _mmbrane theory of the plate which

applies when the deflection is very large In co_q)arlson with the

thlck_les_3 of the plate.
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INTRODUCTION

The classical theory of the bending of a thin elastic plate expresses
the relation between the transverse deflection of the middle surface of
the plate w and the lateral loading of intensity p by the equation

D_w=p

where D - is the flexural rigidity of the plate. It is
12(i-

known that the theory is restricted in application, for on the one hand

its basic assumptions can be questioned unless the plate is thin, and

on the other hand it neglects an effect which must be appreciable

when w has values comparable with the thickness. This is the nembrane

effect of curvature, whereby tension or compression in the middle

surface tends to oppose or to reinforce p. The effect is negligible

when w is vex-F small, provided no stresses act initially in the plane

of the middle surface; but even so, it operates when w is small

becatbse stretching the middle surface is a necessary consequence of the

transverse deflection. When the deflection gets larger and larger,

the membrane effect becomes more and more prominent until for very large

values of w the membrane effect is predominant whereas the bending

stiffness is comparatively negligible.

Small transverse displacements of a flat elastic plate are governed

by a single linear equation but large displacements entail stretching

of the middle surface and consequent tensions which, interacting with

the curvatures_ introduce nonlinear terms into the conditions of

equilibrium and so make those equations no longer independent.

The large-deflectlon theory of flat plates is given by A. F6ppl

(reference 1), and the second-order terms were formulated by Theodore

von K_rmah in 1910 (reference 2). The amended (large-deflection)

equations have been solved, however, in onl_ a few cases (references 3

to 19) and then wlth considerable labor.

Essentially there are three problems concerning flat plates with

large deflections. They are:

1. The bending problems, when the flat plates are subjected to

lateral loading perpendicular to the plane of the plates, but no

side thrust is applied in the plane of the plates

2. The buckling problems, when the plates are subjected to side

thrusts £u the plane of the plates but are not loaded laterally

3. The combined bending and buckling problems, when the plates

are subjected to both lateral loading and side thrusts
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In the case of metal airplanes, in which weight is of primary
importance, the metal sheets used m_st be thin an& the deflectLons of
the plates are usually large in comparlsonwith their thickness. In
order to obtain the design formulas or charts for stressing such
plates, the large-deflection theory must be used.

The bending problem Is important in the design of seaplanes.
Seaplanes are subjected to a severe impact duri_ landing and take-
off, especially on rough water. The impact must be withstood first
by the bottom platlngand then by a system of transverse and longi-
tudinal membersto which the bottom plating is attached, before It is
transmit[_d to the body of the structure. The bottom should be strong
enough not to washboardpermanently under these impact pressures.
Suchwashboarding is undesirable because of the increased friction
between the float bottom and the water and also because of the increased
a_rodynamlc drag in flight.

The bottom plating of seaplanes Is, as a rule, subdivided into
a large numberof nearly rectangular areas by the transverse and
longitudinal supporting ribs. Each of these areas behaves substantially
like a rectangular plate under normal pressure. Bending of rectangular
flat plates maytherefore be used to stud_ the w_shboarding of seaplane
bottoms, provided the boundary conditions at the edges can be formulated
Just as in the seaplane.

The buckling problem is important in determining the strength
of sheet-stringer panels in end compression. The use of stiffened
sheet to car_j compressive loads is increasingly popular in box beams
for airplane wings and in other types of seml monocoqueconstruction.
Inasmuch as the sheets used as aircraft structural elements are generally
quite thin, the buckling stresses of these sheet elements are necessarily
low. The designer is therefore confronted with the problem of using
sheet metal in the buckled or wave state and of determiming the stress
distribution and allowable stresses in such buc1_ledplates.

The combinedbending and buckling problem has becomea problem of
importance with the increasing use of wings of the stressed-skln type
and the pressurized fuselage construction for high-altitude flight.
During flight the wing Is subjected to a pressure difference between
the two sides which produces the lift. The normal pressure acts
directly on the sheet covering and Is then distributed to ribs and
spars. At the sametiz_ the sheet panels are also subjected to a side
thrust due to bending of the wing. In an airplane of pressurized
fuselage constructlonan attempt is madeto 1_ep the pressure inside
Lhe cabin at a comfortabl9 level for the passengers, regardless of the
altlt_de of the airplane. Thus, there is a pressure differential across
the fuselage skin with an internal pressure higher than that outside.
The fuselage skin is usually subdivided into a number of rectangular
curved p_nels by longitudinal stringers and rings. These panels are
subjected to the pressure difference and slde thrust resulting from
bending of the fuselage. As pointed out by Niles and Newell (reference 20)
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the strength of curved sheet-strlnger panels can be determined approxi-
mately from the flat sheet-stringer panels. The problem is then
essentially that of determining the strength of flat plates under combined
lateral loading and side thrust.

Levy (reference 19) has shownthat the effective width of a square
plate with simply supported edges decreases with the addition of lateral
pressure and that the reduction is appreciable for pa*> 2.25. Therefore

Eh 4

a panel is unsafe if its design is based upon the slde-thrust considerations

only, and the study of combined loadi_ is of great significance.

A great number of authors have studied the buckling problems, an_

considerable experimental work has been carried out. As a result,

design formulas are available and seem to be accurate for most practical

purposes. The bending problems, however, have Been studied by only a

few investigators, and test results (references 21 to 23) are far too

scarce to Justify any conclusions. The combined bending anA buckling

problem has been studied in onl_ one case (reference 19), and even in

this instance the results are incomplete.

Among the solutions of the large-deflection problems of rectangular

plates under bending or combined bending and compression, Levy's solutions

are the only ones of a theoretically exact nature. His solutions are,

however, limited to a few boundary conditions and the numerical results

can be obtained only after great labor.

The purpose of the present investigation is to develop a simple

and yet sufficlentl_ accurate mstho_ for the solution of the bending and

the combined bending and buckling problems for engineering purposes,

end this is accomplished by means of the flnite-difference approximations.

Solving the partial differential equations by finite-dlfference

equations has been accomplished previously. Solving the resulting

difference equations, however, is still a problem. In the case of

linear difference equations, solutions by successive approximation

are always convergent and the work is only tedious. Besides, Southwell's

relaxation l_thod may be applied without too much trouble. But, in

order to solve the nonlinesr difference equations, the successive-

approximation _thod cannot always be relied on because it does not

always give a convergent solution. The re]2_xationmethod, since it is

nothing but intelligent guessing, can be applied in only a few cases

and then with great difficulties (reference 16).

A study of the finlte-difference expressions of the large-deflection

theory reveals that a technique can be developed by n_ans of which the

system of nonlinear difference equations can be solved with rapid

convergence by successive approximation by us_ Crout's method of

solving a system of l_near simultaneous equations (reference 24). By

way of illustration, a sq_re plate under un!formnormal pressure wi_1

bo_idary conditions approximating the riveted sheot-stringer panel

is studied by this method. Nondiz_nsional doflections and stresses are
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given under various nor_ml pressures. The results are consistent with
Levy's approximate num_rlcal solution for ideal, simple supported plates
(reference 19) and Way's approximate solution for ideal clamped edges
(reference 15), an_ the center deflections check closely with the test
results by Head and Sechler (reference 23) for the ratio pa4/Eh4 as
large as 120. The deviation for the ratio pa4_h 4 larger than 120
is probably due to the approximations employed in the derivation of
the basic differential equation.

The procedure is quite general} it maybe applied to solve the
problems of rectangular plates of any length-width ratio with various
boundary conditions under either normal pressure or combinednormal
pressure and side thrust.

The present investigation was originally carried out under the
direction of Professor Joseph S. Newell at the Daniel Guggenheim
Aeronautical Laboratory of the Massachusetts Institute of Technology
and was completed at Brown University, under the sponsorship and with
the financial support of the National Advisory Committee for Aeronautics,
where the author was participating in the program for Advanced Instruction
and Research in Mechanics. The author was particularly fortunate to
receive frequent advice while working on this problem from Professor
Richard yon Mises of Harvard University. The author is grateful to both
Professor Newell and Professor yon Mises for their manyvaluable
suggest ions.

SYMBOLS

a, b

h

x, y_ z

u, v

_g

P

E,

D

length and width of plate, respectively

thickness of plate

coordinates of a point in plate

horizontal displacements of points in middle surface

in x- and y-dlrections, respectively (nondimensiona

forT_ are ua/h 2, va/h 2, respectively)

deflection of middle surface from its initial plane

(nondimensional form is w/h)

normal load on plate per unit area (nondlmensional

form is pa4_ h4)

Young's modulus and Poisson's ratio, respectively

flexural rigidity of plate _12(1 -
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v2 ;52 ,:32

_x2 _2

_4 _4

_x'J ay'_ _xy'

Gx", _y", "rxy"

Ex' , _y'_ YXT'

If I! tt

Ex _ Ey _ YX_

_4
+ m

4,4

membrane stresses in middle surface (nondimensional

%'a T ,a2/m,2
respectively) xy ,

extreme-fiber bending and shearing stresses

(nondimensiozml forms are e'x"a2/E'h2 , Cry"a2/Eh2,

and Vxy"a2/Eh2 , respectively)

membrane strains in middle surface (nondimensional

forms are _x 'a2/h2, _y 'a2/h 2, and _x_ 'a2/h2,

respectlvel_ )

extreme-fiber bending and shearing strains

(nondimensional forms are ex"a2/h2, _y"a2/h 2,

and _,xy"a2/h 2, respectivel_)

stress function (nondlmensional form is F_h 2)

first-, second-_ ..._ to nth-orier differences,

respectively

first-order differences in x- and y-directions,
respectively

FUNDAMENTAL DIB_EEEENTIAL EQUATIONS

The thickness of the plate is assumed small c_pared with its other

dimensions. The middle plane of the plate is taken to coincide with the

xy-plane of the coordinate system and to be a plane of elastic symmetry.

After]sendlng, the points of the middle plane are displaced and lie

on some surface which is called the middle surface of the plate. The

displacement of a point of the middle plane in the direction of

the z-axis w is called the deflection of the given point of the plate.

Consider the case in which the deflections are large in comparison

with the thicknsss of the plate but, at the same time, are small enough

to Justify the following assumptions:
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1. Lines normal to the middle surface before defolmztion re_in

normal to the r_ddle surface after deforn_tlon.

2. The normal stress cz perpendicular to the faces of the plate

is negligible in comparison with the other normal stresses.

In order to investigate the state of strain in a bent plate, it,

is supposed that the middle surface is actually deforn_d and that
the deflections are no longer small in comparison with the thickness

of the plate but are still small as compared with the other dimensions.

UnAer these assumptions, the following fundameni_l partial

differential equations governing the deformation of thin plates can be

derived from the compatibility and equilibrium conditions:

bx_. 8x 2 8 2Y _y4 _k_X _j_ _X 2 _y2

_4w + 2 ;54w ;54w P h_-2F _2w _2F _2w 2_
_x _ _x _J

where D

Eh 3

12(l - _2)'
the median-fiber stresses are

_2F

(_y -
8x2

82F
T ! --

xy _x

and the n_diarJ-fiber strains are

,
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7_' = _2(i+ _) _2F
_. axa_

The extreme-fiber bending and shearing stresses are

°"" " 2(1 -"_2) + _'

_Y 2(_- .2)k.__+ _S

These expressions can be made nondlmensional by writing

F' = -_- x'
h2E = a

Vt Wh Y' =ya

m4 , = f:a,_2
P' ='-- E e_k_J

Eh 4

where a is the smaller side of the rectamgular plate.

The differential equations then become

,,., a2_, a%,
_x,2 _)y,2

+ 2

_,2 ohy,2 _x' _' _x'
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If _2 = 0.i, which value is characteristic of aluminum alloys, and

the primes are dropped, the partial differential equations in nondimenslonal

form are

_4F ___2 1 52w _2w+ _ = _2 _2

_4w _4w _w lo.%, + ,0.8 _--.__2w

(i)

_2F _2w _2F _--_y_+ _2 _2 2_--_ (2)

The nondimensional mediam-fiber stresses are

_X ' _2

, _2F
TX_T -= .....--.m---

and the mondimensional median-fiber strains are

_2F _2F

x ' _y2 #_x2

_2 F 82F

Cy' = _z2 P'_2

(3)

(4)

"Yx:y' = -2(1 + #) _)2F

The nondimensional extreme-fiber bendin_ and shearin_ stresses are
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_X st

I"

2(1 +

FORMULATION OF BOUNDARY CONDITIONS

(7)

The governing differential equations are 2 fourth-order slmul-

taneous partial differential equations in two variables. In order to

obtain a unique solution in the case of rectan_,_lar plates, there must
be four given boundary conditions at each edge.

Before proceeding to the actual case, two theoretical bolundary
conditions may be mentioned:

i. Simply supported plates, that is, plates having edges that can

rotate freely about the supports and can move freely along the supports

2. Clampedor built-ln plates, that is, plates having edges that

are clamped rigidly against rotation about the supports and at the same

time are prevented from .having any displacements along the supports

Actually, it is to be expected that neither of these conditions will
be fulfilled exactly in a structure.

The bending problem will be considered next, in which the bottom

plating of a seaplane is to be studied. The behavior of the sheet

approximates that of an infinite sheet supported on a homogeneous

elastic netwrork with rectangular fields of the sam_o rigidity as the
supporting framework of the seaplane.

Because of the syn_et_y of the rectangular fio!ds, the displacement

in the plane of the sheet and the slope of the sheet relative to the

plane of the network must be zero wherever the sheet passes over the

center line of each supporting beam. Each rectezqgular f'Jeld will

therefor_ behave as a rectangular plate clamped along its four edges on

supports that are rigid enough in t_le olana of the sheet to prevent

their displacezrmnt in that _lane. At tile sa_m time these supports must

have a rigidity nor_l to the plans of the sheet equal to that of

the actual supports in the flying-boat bottom.
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The rigidity of the supports will lie s_newherebetween the
unattainable extremes of zero rigidity and infinite rigidity. The
extreme of infinite rigidity normal to the plane of the sheet is
one that maybe approximated in actual designs. It can be shownthat
the stress distribution in such a flxed-edge plate will, in most cases,
be less favorable than the stress distribution in the elastic-edge
plate. The strength of plates obtained from the theory will therefore
be on the safe side if applied in flying-boat design. Reference might
be madein this connection to a paper by Mesnager (reference 25), in
which it is shownthat a rectangular plate with elastic edges of certain
flexibility will be less highly stressed than a clamped-edgeplate. This
difference in stress may also be clearly seen by conLoarlngthe extreme-
fiber-stress calculations by Levy (reference 19) and Way (reference 15)
for simply supported plates and clamped plates.

The impact pressure on a flying-boat bottom in actual cases,
however, is not even approximately uniform over a portion of the sheet
covering several rectangular fields. Usually one rectangular panel of
the bottom plating would resist a higher impact pressure than the
surrounding panels, and the sheet is supported on beamsof torsional
stiffness insufficient to develop large momentsalong the edges. The
high bending stresses at the edges characteristic of rigidly clamped
plates would then be absent. In order to approximate this condition,
the plate maybe assumedto be simply supported so that it is free to
rotate about the supports. At the sameti_ the riveted Joints prevent
it from moving in the plane of the plate along and perpendicular to the
supports. According to the sameconsiderations as in the case of rigidly
clamped edges, the result would be on the s_e side. This case has
never before been discussed and the stud_vof such a problem se_msto
be of importance.

For the combinedbending and buckling problems hhe sameconsider-
atlons will hold. It is evident, however, that as soon as the side
thrust is applied, there are displacements perpendicular to the
supported edges in the plane of the plate. Gall (reference 26) has
found that a stiffener attaclled to a flat sheet carrying a compressive
load contributed approximately the sameelastic support to the sheet
as was required to give a simply supported edge (see also reference 20,
p. 327). In combined bending and compression problems, therefore, it
seemsalso i_ortant to study the ideal simply sup_0ortedplates. The
analytical expressions for these boundary conditions are formulated in
the following discussion.

Simply Supported Edge

If the edge y = 0 of the plate is simply supported, the deflection w

along this edge must be zero. At Ole s_ tJJao this edge can rotate freely

with res!_cL to the x-axis_ that is, there is no bending moment M_

along this edge. In this case, the analytical foz_itt]_ation of the_hyslcal

boundary conditions is
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Similarly, if the edge

boundary conditions are

(W)y_o = 0 I

y=O

NACA iS{ No. 1425

(6)

x = 0 of the plate is simply supported, the

(W)x=0 = 0

Since w = 0 along Z = 0, _w/Sx and 82w/_x2 must be zero
also. The boundary conditions can therefore be written as

(W)y=O = 0

Sy-y_Jy=0= 0

Similarly, on the edge x = O,

(7)

(W)x= 0 = 0

: o
\,_2Sx___o

If the plate has ideal simply supported edges, it must be free to
move along the supported edges in the plane of the platej that is, the
shearing stress along the edges in the plans of the plate is zero.
Analyticallyj

TXy)y=O = 0

oxy x_O
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or

=0

One more boundary condition is required to solve the plate problems

uniquely, and this may be obtained by specifying either the normal

stresses or the displacements along the edges.

For a plate having zero-edge compression, the normal stresses along

the edges are zero. That is,

_Y')y=O = 0

or

=0

r

The strain in the m_dian plane is

'x -_ +_\/x;

(8)

, __+__/aq2



14 NACA TN No. 1429

Therefore

= _X 1 /_"h2_W_/' 5

_y_'Y= ey' -l(_)22

and the displacement of the edges in the x-direction is

o  -=constant .- 2

while the displacement of the edges in the y-direction is

--Constant Y 2 _Sy_ dy

The addition of side thrust may be exlpressed in teens of the

change in displacement of the edges.

If Ex' and _y' are expressed in terms of the stress function F,

U

V

I82F 82F

J y=Constamt [_@ B@

_' 1-82F 8,°-F 1 _2-1

J x=Constant i _x---_- B@ - _ L_'_) j dy

(9)

Clamped or Built-In Edge

If an edge of a plate is clamped, the deflection along this edge

is zero, and the plane tangent to the deflected middle surface along this

edge coincides with the initial position of the middle plane of the plate.
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If the x-axis coincidBswith the clan_ed_, the _oundary

conditior_s are

(W)y.O = 0

If the y-axis coinciles with the clampel edse, the boun_
conditions are

(zo)

(W)x=0 = 0

,,,0

If the ed@e is clamped rigidl_ a_ainst e_ displacement along its

support, the strain in the median fibers must be zero along that edge.

The boundary conditions are

or

i°

" Jx-o

" _y=O 0

The o_ additional condition required is a_ furnished by

specifying the displacements- along the edges as in equation (9).

(_)
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Riveted Panel with Normal Pressure Greater than That of

Surrounding Panels

The boundary conditions which would approximate this situation

are, if y = 0 is one of the edges,

(w)y _-0

=Constant L i_x2

The first two expressions are those of simpl_ supported ed4_s ,

the third one gives the condition of zero strain along the supports,

and the last one specifies that the displacement along the edge is zero.

REVIEW OF PREVIOUS WORK

The large-deflection theory of flat plates is given by A. Fgppl

(reference I), a_1 the difficulty of solving the nonlinear equations

has been noted by Theodore van Ks_ (reference 2). The earliest

attempt to deal with these differential equations was, perhaps, made
by H. Henck_ (references 3 and 4), who devised an approximate method

of solution for circular and square plates when the deflection is very

large, the bending stiffness being then negligible. Following the

sam_ procedure, Eaiser (reference 5) solved the case of a simply supported

plate with zero edge compression under lateral loading. His theoretical

result checked closely with his experimental data.

In the case of circular plates with large deflections, because of

the radial symmetry, the two fundamental partial differential equations
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which contain the linear biharmonic differential operator and quadratic
terms in the second derivatives can be reduced to a pair of ordinary
nonlinear differential equations, each of the second order. For both
the bending and the buckling problems, exact solutions are available
(references 8 to 12). The bending problem has been solved approximatel_
by Nadai (reference 6) and Timoshenko (reference 7) and exactl_ by
Way (reference 2) when the plate is under lateral pressure and edge
moment. Waygave a power-series solution for a rather large range of
applied load. The buckling problem has been solved by Federhofer
(reference 9) and Friedrichs and Stoker (references l0 to 12). Federhofer
gave the solution for both simply supported and clamped edges which

yields accurate results up to values of N of about 1.25, where N is

the ratio of the pressure applied at the edge to the lowest critical

or Euler's pressure at which the buckling Just begins. Friedrichs

and Stoker gave a complete solution for the simpl_ supported circular

plate for N up to infinity. To cover this rauge, they employ three
methods. Each of the three methods is suitable for a particular range

of values of N: r_amely, the perturbation method for low N, the

power-series method for intermediate N, and the asymptotic solution

for N approaching infinity. There is no solution, however, for

the case of circular plates under combined lateral pressure and edge

thrust •

The exact solution for a thin, infinitel_ long, rectangular

strip with clamped or simply supported edges was obtained by Boobnoff

and Timoshenko (references 13 and 27), and the other cases were discussed

by Prescott (reference 14), Way (reference 15), (_reen and Southwell

(reference 16), Levy (references 17 anA 19), and Levy and Greenman

(reference 18).

Prescott gives an approximate solution for the simply supported

plate with no edge displacement; however, Prescott's approximation

is rather rough. Way presented a better approximate solution for the

clamped plates by using the Ritz e_rgy method. Kaiser (reference 5)

transformed the differential equations into finite-difference equations

and solved them by the trial-an_-error method. G_een and Southwell

extended the finlte-difference study into finer divisions and solved

the difference equations by means of the relaxation method.

Levy (reference 19) gives a general solution for simply supported

plates, and numerical solutions are given for square ar_Y rectangular

plates with a width-span ratio of 3 to i _nder some combined lateral
and side loading conditions. Levy and Greenm_n (references 17 and 18)

extended this solution for simply supported edges to clamped edges.

Their conditions are, however, limited to the case in which the edge

supports are assumed to clamp the plate rigidly a_Lust rotations and

displacements normal to the edge but to allow displacements parallel

to the edge. They presented a numerical solution for square and

rectangular plates with a width-span ratio of 3 to 1 under lateral

pre ssure.
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In summarythe problem of rectangular plates with large deflections
has been solved by three methods: namely, the energy method, the finite-
difference-equations method, and the Fourier series method. These methods
are briefly outlined in the following paragraphs.

Energy Method

The method of attack used by Way (reference 15) is the Ritz
energy method. Expressions are assumedfor the three displacements
in the form of algebraic polynomials satisfying the boundary conditlons_
then, by meansof minimizing the energy with respect to the coefficients,
a system of simultaneous equations is obtained, the solution of which
gives these coefficients.

The energy expression for plates with large deflection is

V

qw + 6 2 + UxWx 2 + + VyWy2

+ x + wy2)+ vy+ v +
Y2

+ --2 (my2 + 2U_Vx + Vx2 + 25WxWy + 2VxWxWy) _x _y (z3)

where u and v are the nondlmsnsional horizontal displacements and w

oa4
is the nondlmensional vertical displacement, q = --_ , and the subscripts

16Dh

indicate partial differentiation. In order that u, v, and w

satisfy the boundary conditions for clamped edges# Way assumes (fig. 1):

u = (1 - x2)(_ 2 - y2)x(bo0 + bo2y2 + b20x2 + b22x2y2 )

v = (1 - x2)(_ 2 - y2)y(CO0 + c02 y2 + c20x2 + c22x2y2 )

where

y_ z,

determined later. For convenience,
power of x, and J that of y.

(14)

w = (1 - x)2(_ 2 - y2)2(aO0 + ao2Y 2 + a20x2 )
I

8 = _ u, v, w are positive in the positive directions of x,

respectively; and alj , blj , Clj are numerical constants to be

I is taken to be the same as the
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When V is minimized with respect to the coefficients aij ,

bij , and cij , ll simultaneous equations corresponding to the
ll constants, are obtained as follows:

=o; _ =0; _ =o (15)
8a00 8a02 _a20

ab0o 8b02 ab20 8b22

:o; _:o; _:o_ _:o (17)
8c00 8c02 8c20 8c22

These equations are not linear in the constants. The first three

equations (equation (15)) will contain terms of the third degree
in the a's. Equations (16) and (17) are linear in the b's and c's

and quadratic in the a's. Way solved equations (16) and (17) for b's

and c's, respectively, in terms of a's and then substituted these

expressions in equation (15). There then are left three equations

of third degree involving the a's alone. These wore solved by Way

by successive approximations.

Way gives the numerical solutions for cases for which _ = l,

1.5, and 2, for _ _ 0.3 up to q = 210. Since he assumed the dis-

placements to be polynomials in x and y of finite number of terms,
his solutions are essentially approximate. By comparing with Boobnoff's

exact solution for the infinite plate, Way estimated that the error of

his solution for 6 = 2 is about l0 percent on the conservative side.
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Finite-Difference Methods of Solution

Kaiser writes the nondimensional Von Ka_ma_equations as follows:

V2F = s

2 °b2F cb2 (B2F _)2w c_2 t
_--_ 8x 8y _-_ _ - 5 _2 = PG (18)

i V_ = p - PG
12(1 - p.2)

Yew = M

and then transforms these five equations into finlte-difference equations.

His procedure is to assume w's at all the points and then to solve

for S's, F's, M's, and w's. If the calculated w's do not check

with the assumed ones, he assumes a new set of w's and repeats the

process. The work which this involves is very tedious. In fact, as
will be pointed out later, when the usual method of successive

approximations is used, the process is actually divergent. Kaiser

solved the simply supported square plate with zero edge compression
4

under a uniform lateral pressure of pa__ = ]-18.72. His numerical solutio_
Eh 4

checked with his experimental results with good accuracy.

Southwell and Green solved four examples of the problem by moans
of a technique based on the relaxation method. The fundamental

requirements for use of the relaxation technique are a simple finite-

difference pattern of the variables and a simple exp_ression of the

boundary conditions. In using this, Southwell and Green expressed the

differential equations in terms of the displacements u, v, and w,
which then gave simple boundary conditions. Instead of using exact

relaxation patterns, they worked with the patterns which are given

by the linear terms of tlm differential equations and made corrections

from time to time, the nonlinear teE_s being combined with the
"residue."
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+ _ + _ + (i - _1 _ +

I+_ i+_

21

J

(19)

It Is readdly seen that, in order to obtain a simple expression

for t_e boundary conditions, not only is the number of the partial

differential equations increased from two to three, but also the form

of the terms involved becomes more complicated and the number of terms

is increased. This technique proves very laborlou.q in practice.

Equation (19), expressing conditiona of equilibrium, could have

been derived by minimizing the total potential enerh_F V, which is

given by the expression

L 2 V

_ = II + 12 + 13
h2 D

(20)

where

Zl = E _ a,y

12 23 + ey.,j2 + ,.1J.exxey 7 + ,_

and

where _ is the lateral loading.
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The relaxatlontechnique consists first In asstunlnga set of

answers and then changing them according to the relaxation pattern

and boundary conditions. To obtain a more rapid convergence, Southwell

and Green multiplied the given values of w by k and substituted

them into the energy expression to obtain

v
h2 D

(21)

which was then minimized with respect to k}

_Y = 0 to give
_k

that is, by setting

2_i + 4Q12 " _B = 0 (22)

From the third-order equation (equation (22)), k can be obtained ar_
a set of values for w which are closer to the true values can be

derived from values of k.

Fourier Series Methods of Solution

Levy and Greenmanobtained general solutions of the rectangular

plates (fig. 2) under combined benddmgand side thrust with large

deflections by means of Fourier series. Their approach to these

problems is given in the followlngdiscussion.

Simply supported rectangular plates.- In order to satisfy the boumAary

conditions, w is assumed to be given by the Fourier series

o@ c@

w = win,n sin m _- b
m=l,2,3 n=l,2,3

The normal pressure _ay be expressed as a Fourier series

PZ =

@@

r=1,2,3 s=1,2,3

_x _y

Pr,s sin r _ sin s b-
(24)
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For the compatibility equation to be satisfied, F must be given by

2 £Px y2 P _c:
F = 2 2 bp,q cos p _ cos q _- (25)

p=O,1,2 q--O,1,2

where _x and py are constants equal to the average membrane pressure

in the x- and y-directions, respectively, and where

bp,q =

and

Bl=

E 2(B1 +B2 +B3 +B4 + B 5 +B 6 + B 7 +B 8 + B9) (26)

p-1 q-1

k=l t=l

B 1 = 0 if q = 0 or p = 0.

q-1

k=l t=l

+ p)(q - t) + k2(q - t)2]wk, tWk+p,q_ t

B 2 = 0 if q = 0.

if q #0.

q-1

k=l t=l

+ p)kt(q - t) + (k + p)2(q _ t)2]Wk+p,tWk,q_ t

B3 = 0 if q = 0 or p = 0.
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p-1

B4 =Z_[kt(p- k)(t + q)+ k2(t + q)_wk, tWp_k,t+ q
k=l t=l

if p_O.

B4=o if p=O.

p-1

k=l t=l
+ q)(p - k) +K2t2]wk, t+qWp_k, t

if p _0 and q # 0.

B5 = 0 if p = 0 or q = 0.

£2B 6 = [kt(k + p)(t + q) - kR(t + q)2] tWk+p,t+qWk,
k=l t=l

if q#0.

B 6 = 0 if q = 0.

B7 = Z Z [kt(t + q)(k + p)- k2t2_wk, t+qWk+p, t
k=l t--1

q#o p#o

B 7 = 0 if p = 0 or q = O.

B 8 = (k + p)(t + q) - (k + p)2(t + q) k+p,tWk,t+ q
k=l
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If q#O _d p_O

B 8 = 0 if p = 0 or q = O.

B9 =Z _-- _(k + p)(t + q)kt - (k + p)2t Wk+p,t+qWk, t

k=l t=l

if p#O.

B 9 = 0 if p _ O.

The equilibrium equation is satisfied if
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Pr_8 _._.2_2 s2 _2"_2 . 2 _2= DWr, # + b"'_J - PxhWr, sr2 a_ - #_Wr,sS 2 --s b2

k_4
+ -----

4a2b 2 _k_l i t2br-k,(s - t)k - (r - k) s_tWk, t
= t=l

- _ _ It(k + r)- k( t + s)_2bk, tWk+r,t+ s

k=O t=O

+_ __E<_+,><t+o>
k=0 t=l

- kt] 2bk, t+sWk+r, t

+ __l_ <_-><_>]"- + + s _k+r, tWk, t+s
k=l t=O

O0 O0

- __ [(t

k_l t=l

+ s)k- (k + r)t72_k+r,t+sWk, t

r

k=l t=0

)_2+ (r - k)(t + s br.k, tWk,t+ s

k=l t=l

t_ 2+ s)k + (r - k) br.k,t+sWk, t

+ r) + t ,s_tWk+r,t

+

S

_Z[(S - t) k

k=l t=l
+ + r bk+r,s+tWk, t (27)
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When the lateral pressure is given, Pr s can be determined.

Equation (27) represents a doubly infinite family of equatio_g. In

each of the equations of the family, the coefficients bp,q may be

replaced by their values as given by equation (26). The resulting

equations will involve the kno%ul normal pressure coefficients Pr,s,

the cubes of the deflection coefficients Wm,n, and the average

membrane pressures in the x- and the y-directions, Px and _,

respectively. Values of Px and py can be determined from _e

conditions that the plates are either subjected to known edge compressions

or known edge dlsplacemsnts. The number of these equations is equal

to the n_ber of unknown deflection coefficients win,n.

The procedure now is, with the known values of Pr,s, to ass_ue Wl 1
and to solve the other coefficients by successive approximation. However',

the work involved is tremendous, and it is very easy to make mistakes.

As illustrated by Levy in a relatively simple case of a square plate,
if six deflection coefficients are used, then each equation contains

60 thlrd-order terms. And for each given applied normal pressure

these six 60-term, thlrd-order equatior_s must be solved by successive

approximations •

Clamped rectangular plates.- Levy and Greer_m_n solved the case of the

clamped rectangtLlar plate by assu_nlng that the edges are clamped rigidly

against rotations and displacements normal to the edges but are permitted

to move freely parallel to the edges.

The required edge moments mx and my are replaced by an

auxiliary pressure distribution Pa(x,y) near the edges of the plate.

The auxiliary pressure can be expressed as a Fourier series as follows:

pa(X,y) = r sin q- + --s sin s_
_ b 2 b

r=1,3,5 8--1,3,5

(28)

By writing mx and my as Fourier series, where k s

coefficients to be determined,

mx = -_-p kr s_ _a
r=1,3,5

4b2

my = _p >-_- ks sin
_3 b

s=i,3,5

_d k_ al_e

(29)
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Inserting equation (29) into equation (28) gives

Pa(X,y) = _4)2p

oo

I"=1,3,5 s=l, 3, 5

(rk s + skr) sin r_ sin s_ya b
(30)

On combining the auxiliary pressure Pa(X,y) with the normal

pressure Pz, equation (24), the following equation is obtained:

co O0

Z
r=l,2, 3 s=l,2, 3

_x
Pr,s sln r _- sin s b (31)

where

Pr,s = (_)2 (r_ks+ sp_:) + Pr,s' (32)

Since the ed4_ moments _x add my have been replaced by the

auxiliary pressure distribution Pa(X,y), the general solution for the

simpl_ supported rectangular plate (equations (23) to (27)) can be

applied to clamped plates, and the remaining problem is to determine

the values of k s am_ kr. These values are obtained by use of the

boundary condition that the slope at the edges of the plate is zero.

Equating to zero the normal slopes along the edges gives

= 0 --

=O,x=a

= 0 =
=O,y=b

Z  Wmn81n
m=l, 3,5 n=1,3,5

win,n sin -_-

m=l, 3,5 n=l, 3,5

(33)
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Equation (33) is equivalent to _he set of eq_tior_

0 = Wl, I + 3Wl, 3 + 5Wl_ 5 + ...

0 = w3, I + 3w3, 3 + 5w3, 5 + ... (34)

0 = Ws, I + 3w5, 3 + 5w5, 5 + .."

The deflection coefficients Wm n m_t now be solved from the

family of equations (equation (27)) For the linear term in terms of the

cubic terlms and the pressure coefficients Pr, s" The expresslcns for Wm, n

th_s obtained are now substitu_d into equation (34)_ and the expressions

for pressure coefficients Pr,s are obtained from equation (32). The

resulting f_mily of equations contains linear _rms of pkr and pk s

and the cubes of the deflection functions Wm, n.

The method of obtaining the required v_lues of the deflection

coefficients Wm, n and the edge-moment coefficients pk r and 4Pks

consists in assuming values for _ and then solving for paa_
h Eh 4'

h , ..., Pks, Pkr,... by successiv_ aoproximations, from the

simultaneo_ equations. The procedure is oven more laborious than that

for simoly supported plates. Two nl_uerlcal solutions are given, n_mely
solutions of the bending problem for a sq_re plate and for a rectangula-_

plate with leng_h-wldth ratio of 1.5.

FINITE-D_I_F_RENCE _Q_ITIONS OF BOOT_DA_RY-VALUZ PROBL_

Some fundamental concepts about the fLuite-difference approximation

may be worthy of mention b_fore the partial differential equations are

converted into finite-differenoe szoressio_.

It is asst_d that a function f(x) of the variable x is defined

f_ equidistant walu_s of x. If x is one of th_ valuhs for which f(x)

is dsfined, f(x) is also d_fi_d for the valt_Bs of x + k _kx, where _x

is the interval betu_3n two successive values of x and k is __u integer.

For the sa_e of simplicity, the value of th,_ function y = f(x) for

x + k _3x may b_ written as:

f(x + k akx) = Yx+kakx
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The first difference or the difference of the first order Ayx
of y at the point x is now defined as the increment of the value
of y obtained in going from x to x +_x:

AYx = Yx+Z_x - Yx

It is seen that the increment in the direction of increasing x has

been arbitrarily chosen; £_Yx could also be defined by the difference

Yx - Yx-£_x" _nis process is continued and the increment of the first

difference obtained in going from x to x +_x is called the

differ#nce of second order of y at x; that is,

A2yx = Ayx_%x - Z_Vx

= (Yx+e_x- Yx+6x> - _x+_x -Yx>

.= Yx+?ihx - 2Yx+Ax + Yx

In general, the difference of order n is defined by

nZ_ Yx = &n-lyx+6x -

If Z_x is chosen equal to unity,

Yx+nKix = Yx+n

By the use of this notation, the sequence of differences becomes
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f_Yx = Yx+l Yx

_2yx = Yx+2 - 2Ym+l + Yx

A3yx = Yx+3 - 3Yx+2+ 3Yx+l - Yx

n

a5 x : (_l)r n:
r'(n - r) :

r=O

Yx+n-r (35)

In man_ physical problems only differences o_ even order occur.

In such cases it is more convenient to define the differences

2m

Yx in the following way:

A2yx = YX-I - 2Yx + YX+I

2
That is, _Yx is the increment of the first difference taken on the

right- and left-hand sides of the point x. In _neral,

(36)

In this case a difference of order 2m represents a linear expression

in Yx-m, Yx=m+l, "'', Yx, "'" Yx+m-l' Yx+m"

In replacing partial derivatives by the flnite=difference

expressions, the differences corresponding to the changes of both the

coordinates x and y are considered. With the notations as shown

in figure 3, the first differences at a point Am, n in the x= and
the y-directions are, respectively :

2_xWm, n = Wm+l, n - Wm, n

2_yWm, n = win,n+ I - win,n



32 NACATN No. 1495

The three kln_s of second differences are as follows:

Z_xWm,n = 2wAx m,n

= Wm+l, n - 2Wm, n + Wm.l, n

_Wm, n 2w= Zhy m_n

= Wm,n+ 1 - 9Wm, n +Wm, n- 1

{IxyWm, n = ZhyWm+l, n - Z_yWm, n

° " - "

= Wm+l,n+ 1 - Wm+l, n - Wm,n+ 1 + Wm_n

J

.>

The three kinds of fourth differences, which will be used later, are:

ZixxxxWm, n = Ax m,n

= Wm+'2,n " 4Wm+l,n * %,n - 4Wm-l,n + wm-2,n

Z_vyyWm, n = £_y m,n

4Wm_n+ 1 + 6Wm_ n

(37)

=Wm+l,n+ 1 - 9Wm+l, n +Wm+l,n. 1 - 9Wm, n+ 1 + 4w m,n

- Wm,n_ 1 + Wm.l,n+ 1 - 2Wm_l, n + Wm-l,n-i

Zl w
Xx_ m,n

J

= win,n+,2 -

=A%,.
x_ ,n

" 4Wmsn. 1 +Wm, n. 2 > (38)
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P_-t_al derivatives n_%ybe approxSmmtedby fi_u%te differences as
follows :

_w __=_

_2 z=2 , _2 @2

a2_ 55_Z_
N

4

_4w _x_W_ _4w=_=_' _

J

When these relations are used, the fundamental partial _Ifferential

equations (i) and (2) may be replaced by the following difference

equations : _,

+ + - _'_" Zk72

+ z_2 z:_2 +z:_4 = z:_:2

(39)

(4o)

÷_ _ __.___ _z_2 A72 AT A7 '_

J
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If Ax =Z%v = AZ, and the relations (37) and (38) are used,
equation (40) maybe written as

Fm+2, n - 8Fm+l, n + 20Fm, n - 8Fm.l, n + Fm_2, n + Fm, n+ 9 - 8Fm, n+ 1

-SF
m,n-I + Fm,n-2 + ZFm+l,n+l + 2Fm+l,n-i + 2Fm-l,n+ 1 + 2Fm_l,n_ 1

=_m+l,n+l "Wm+l,n" Wm, n+l +Wm, n) 2 " _m+l,n " 9Wm,n + Wm.l,n_

x _m,n+l" 2Wm,n + win,n-l) (4_)

win+e, n - 8win+l,n + 20win,n - 8win_l,n + Wmw2, n + win,n+_ - 8win,n+1

- 8Wm,n_ 1 +Wm, n- 2 + 9Wm+l,n+ 1 + 9Wm+l,n. I + 2Wm_l,n+ 1

IO'8(h_)4P + i0"8 [_m,n+l_ - 9-Fm,n +Fm,n-l_

× _m+l,n- 9Wm,n +Wm-l,j+ _m+l,n- 2Fm,n +Fm-l,n_

× _,n+l- 2Wm, n + win,n-l)-2_m+l,n+l- Fro+l,n

x <Wm+l_n+l

+ 2win.l, n_ 1

- Fm, n+ 1 + Fm,n_

(42)

In actually writing these equations for each net point, it is more

convenient to employ the finlte-_ifference pattern or so-called

relaxation pattern as shown in figure 4 rather than to substitute

directly into equations (41) and (49).

In terms of finite differences, the boundary conditions can be

formulated in the manner discussed in the following paragraphs.
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s_ly supporte_E_

Th_ boundary conditions for the simply supported edge y = 0 are:

(w)y=o--o

_'_)y=O =0

2@, -o
=0

and, for plates with zero ed_ compression:

--0

or, for plates with zero or known edge displacements :

x _x2 " _* - _ av = v

Let n = 0 denote the edgs points along y = O. The finite-

difference expressions for the boundary comddtions are:

win,0 = 0

,0

:01
,0

>

m,0

J

(_3)
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for plates with zero edge compression and

n=O = vi

where n = 0 arA_ n = k

y = b, respectively, and

in the plate.

denote points along the two ed_s y = 0

i denotes a_y point along the line x = Constant

cmampea

The boundary conditions for the clamped edge y = 0 a_e:

(w)y=o= o

y=O

With the same notations as were used for the simply supported edges,
the finite-_ifference expressions are:
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win,0 = 0

(_w)_,o : o

2F

2F-_2F v i

n=O i,n

Rivete_ Panel with Sormal Pressure Greater than That of

Surrounding Panels.

The _ou_lary conditions which approximate this case are:

(w)y=o = o

f_2F _2Fh

(_)

if y = 0 is one of the edges.

Expressed in terms of finite differences, these conditions

become :
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Wm, 0 = 0

6 m,o O

"I, 1 =0

(_7)

The boundary-value problem which approximates the rivete_ sheet-

stringer panel sub_cted to uniform normal pressure higher than that
of the surrou_ panels may _e form_ted in terms of finite

d/lq'efence s.

In order to start with a simpler case, the square flat plate will

be discusse_, since, on account of symmetry, onl_ one-eighth of the

plate nee_ be strolled.

The finlte-d_ifference approximation of ax_ differential equation

requires that every point in the domain to which the equation applies

must satisfy the initial _ifferential equation. If the points to be

taken are infinite in number, the solution of the difference equations

is the exact solution of the corresponding differential equations. But

the points to be taken are finite in nmnber s the solution will be

approximate, and the degree of approxlmatien will increase as the

number of points taken is reduce_.

Since the diagonals of a square plate are a_es of symmetry, if

the bou_ co_itlons along the four si_es are the same, wi, k = Wk, i

an_ git k = Ok2 i. The conditions for zero edge displacements may

be put into different forms. Since

then

_x aT = _ dx
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Now2

_2F

_x + _y _y2

_2F _2F _2F

+ "

Note that _ _)2 _)2

ax2 _2

= t,v2_ (1-_)

Equation (48) then becomes

+ i,k = (i '- _)

k-1

(AZ)2_.(Wi,n+ 1 - Wi,n) 2
n=O

l,k-i

(49)

This simplification is not necessary, but it is useful in applying the
relaxation method.

n = i.- On referring to figure 5, it is seen that points i' and 2'

are fictitious points placed outside the plate in order to give a

better approximation to the boundary conditions.

By the use of _2 = 0.i or _ = 0.316228 for aluminum alloy,

the compatibility equation becomes

20F 0 - 32F 1 + 8F 2 + 4F 1 = K 0 (_o)

where

K0 = ("2 - 2"1 + _)2 _ (_:l. - 2'+0)2
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Then the equilibrium equation is

20w 0 - 32w I + 8w 2 + hw !, = p' + I0.812(2F 1 - 2F0)(2w I - 2w0)

- 2(w 2 - 2w I + w0)(F 2 - 2F I + FO_
(_i)

where p' = 12(1 - _2)(&_)4P : 0.675p,

The boundary conditions are:

I

since /k_ : ±.
2

(a) wI = O, w2 = 0

(b) w I, - 2w I + w 0 = 0

(c) F 0 - 2F 1 + FI, - _(2F 2 - 221 ) = 0

(a) (4F1 - 4Fo) + (Fo+2F 2 +F l - 4FI) =sl

2 -wo)2
where S1 = (Wl - Wo)2 (i - _) 0.3418 _p6 . The boundary-value problem

now determines the values of w uniquely and the values of F to within

an unkno_m constant. Since the acttml value of the constant is irrelevant,

it may be defined by letting F 2 = O.

Solving wl, , w2 , and F l, from the boundary conditions gives

the followingresult:

w I, = -W0

w2 , = -WI = 0

F I, = -F0 + 2(1 - _)F I
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Whenthese values are substituted into equations (50), (51), and (d),
the resulting equations are

16F0 - 26.529824F I = -3Wo 2

16w 0 = p' + 43.2WoF 0

-4F 0 + 1.367544F 1 -

w02

0.341886

(52)

The eight or nine significant figures in these equations are due to

computations made with a computing machine having i0 columns. In order

to get satisfactory results in subsequent computations it is convenient

to retain a number of figures beyond those normally considered Justi-

fiable because of the precision of the basic data.

n = 2 - With reference to figure 6, points 3' 4' and 5' are again

fictitious points. The compatibility equations are:

20F 0 - 32F I + 8F 2 + 4F = K3 0

-8F 0 + 25F 1 - 16F 2 - 8F 3 + 6F 4 + F3, = K 1

1
(5B)

2F 0 - 16FI + 22F2 + 4F3 - 16F4 + 2F5 + 2F4' = K2

where K0, KI, and K2

i, and 2, respectively.
e toL< wl1ton0,
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The equilibrium conditions are:

20w 0 - 32w I + 8w2 + 4w 3

_-_,÷_.6[(%,+_o')(_-wo)-_'(_o-_ +_)]

-_o + e_l - 1_e - _3 + 6w4 + _3'

= p' + 1o.8 _l,(2w2 - _i) + _1'(wo- 2wl + w3)

- 27 l'(w 4 - w 3 - w 2 + Wl) _

2w 0 - 16w I + 22w 2 + 4w 3 - 16w 4 + 2w5 + 2w 4,

= p' + i0.8 [_' + _2_4- 2w2 +wl_- 2Y2'_5- 2w4 + w2_]

where _'_ _' ', 7 are

indicated by the subscripts.

Zkx2F, _F2F, _F at the respective points

The conditions for zero edge lisplacements are:

where

-2F 0 - 321 + 4F 2 - 2F 3 + 2F 4 + F 3, = SI

F0 - 5F2 + 22 3 + F 5 + F 4, = S 2 J

Sl= 0.3418861I _Wl - w0)2 + (w3 " Wl)2_

i I( Wl )2+ ]s2 = 0.3_18_ w2 - (_4 - _2)2

(54)

(55)
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The boundary conditions ere :

(a) v3:o , _:o, v_:o

(I') "_3' " _3 + wz : o

w_, - _4 +w2 :°

'5' +,%=0

(c) F1 - P]_3 + F3' - _(2F4 - P-_3) = 0

F2 - 2F4 + Fg, - _(F 9 - F4 + F3) : 0

F4 - eF5 + F5, = 0

For the same reason as explained in the case of n = i,
Solution of the boundary-conditions equations gives

let Fs=O.

(d) w3' : "wI

_h' = "'V2

w5, =0

(e) F5, = -F4

_' = _4 + _(F3 -

_3' = _3 + _(_4

m%) - F2

-F 1
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The combination of the fox.going eq_tio_ (_) and (e) with equati_ (53),

(5_), aria(55) gives

20F 0 - 32F1 + 8F2 + 4F3 = K0

-SF0 + 24F 1 - 16F 2 - 6.632456F 3 + 6.632496F 4 = K1

220 - 16F1 + 20F 2 + 4.632496F 3 - 13.264912F 4 = E2

-2F0 - 4F1 + 4F2 - 0.632456F 3 + 2.632456F 4 = S1

an_

F0 - 6F2 + 2.316_28F 3 + 1.367544F 4 = S2

20 + 21.6(m O' + _0' + 70'_w0

[32+ 21.6(%,+ _o'+ 2_o'_wi+ (8+ 21.67o,)w2 --p'

-(8+ io.8%')wo+ _4 + 21.6(%'+ _' + 7_'_wI

(56)

(57)

n = 3.- Reference is made to figure 7 and to the fact that points 6'

7', 8', and 9' are fictitious points for _asons explai_d in the ca_

n = 19 then the compatibility equations are as foll_s:
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20F 0 - 32F 1 + _F2 + 4F 3 =

-_F 0 +RSF 1 - 16F 2 8F3 + 6F 4 + F6 = K1

9_F0 - 16F 1 + 22F 2 + 4F 3 - 16F 4 + 2F 5 + 92 7 : %

F0 - _F1 + 4F2 + 20F 3 - 16F 4 + 22 5 - 8F 6 + 4F 7 + F 6, = %

321 - 8F2 - _F3 + 23F4 - _5 + 926 - 8F7 + 3F8 + FT' = K4

2F2 + 2F3 - 16F 4 + 20F 5 + 4F 7 - 16F 8 + 2F 9 + 2F 8, = %

at points O, i, 2, 3, 4, and 5, respectivel_.

(58)



NACA TN No. 1425 47

The equilibrium equations are :

20w 0 - 32w 1 + 8w2 + 4w 3 = p' + 21.6[(_ O' + _O')(Wl

- %,(w o - 2wI + w2)]

-8"0 + 2_,,_- s._2 - 8"3+ _4

- wo)

= p' + 10.8 '(W2 - Wl) + _I (wO - 2wl + w3)

- 2_1,(wi -w 2 -w 3 +w4)]

2w0 - 1_ 1 + 22w 2 + 4w 3 - 1_ 4 + 2_

= p' + 10.8_' + _2' ) (w1 - 2_ 2 + w4 ) - 272'(w 2 - 2,w4 + Ws) ]

wo _,_.+ 4w2+ 2ow3 - _.6,,_+ _5 - a'6 + 4wz+ %'

= p' + i0.8_'(2w 4 - 2w3) + _3'(Wl - 2w 3 + w 6)

- 273'(w3 - w4 - w6 +w7) ]

3W 1 - 8W2 - 8W3 + 23W 4 - 8W 5 + 2W 6 - 8W 7 + 3W 8 + w 7,

= p' + lO.8[a.4'(w 3 " 2w 4 + w 5) + _4'(W2 - 2w 4 + W 7)

;I
274'(w4 -w 5 - w7 +w8_

+ 2w 3 - 16w 4 + 20w 5 + 4w 7 - 16w 8 + 2w 9 + 2w 8,

+ + - +
/

(59)
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where _', _' and 7', are L_x2F , _y2F, Z_F at the respective points

corresponding to the subscripts, and p' = 12(i - _2)(A_)4p = 0.00833333P,

1

since A_ = _.

The conditions for zero edge displacements are:

-2F 0 - 2171 + 4F 2 - 5F 3 + 4F 4 - 2F 6 + 22 7 + F6, = S 2

F0 - 4F 2 + 32 3 - 32 4 + 2_F5 + F 6 - 2F 7 + F 8 + F 7, = S2

F 1 + 2_F2 - 2F 3 - 2F 4 - 5F5 + F 6 + 3F 7 + F 9 + F 8, = S 3

(6o)

where

k-1

2S +llSi=l_ _

The boundary conditions are:

(a) w6 = 0, w7 = O, w8 = O,

(b) w6, -_6 +w 3--°

wg=O

w 7, - 2w 7 + w 4 = 0

_8' - z_8 +w5 =°

w9, - 2w9 + w8 = 0
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(c) F 3 - 2F 6 + F6, - _(2F 7 - 2F 6) = 0

F 4 - 2F 7 + F7, - _(F 8 + F 6 - 2F7) = 0

F 5 - 2F 8 + FS, - _(F 9 + F 7 - 2F8) = 0

F9, - 2F 9 + F 8 = 0

Solutions of the boum&ary-co_iitions equations give

(a) _6' = _3

w7, = -w4

w8, = -w5

w =0
9'

(e) F6, = -F 3 + 1.367544F 6 + 0-632456F 7

F7 ' -F4 + 1.367544F 7 + 0.31 228_ 6 + 0.316228F 8

FS, = -F 5 + 1.367544F 8 + 0.316228F 7

F9, = -F8

where F 9 = 0 is assumed for the same reason as explained in the case

of n= 1.



50 NACA TN No. 1425

Combination of the for_golng equations glws:

2OF 0 - 3221 + 8F2 + 4FB = K0

-SF0 + 2_F1 - 16F 2 - 8F3 + 6F4

2_F0 - 16F 1 + 222 2 + 4F3

Fo - aFl + 4F2 + i_ 3

BFI - 8F2 - 8F3 + 2aF4 -

+ S.316_28F8 = K4

2F2 + _F3 - 16F 4

-2F0 - 2F1 + 4F2

+F6=K I

- 16F4 + _5 + 2F7 " K2

16F 4 + _F5 - 6.632456F 6 + 4.632456F 7 = KS

8F5 + 2.316228F 6 - 6.632496F 7

+ 18F 5 + 4.632456F 7 - 13.264912F 8 =

- 6F3 + 4F4 - 0.632496F 6 + 2.632456F 7 = S1

Fo - 4F2 + SF3 - 4F4 + 229 + 1.316228F6

+ 1.316228F8 = S2

F1 + 2F2 - 2F3 " 2-F4 - 6F9 + F6 + 3.316_-28F7

- 0.632456F 7

+ 1.3675_4F 8 = SS

1

>(6z)

J
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and

+ (6 + 21.671')w 4 = p'

_0- _16 + i0.8(_2' + _e')]Wl + _L-x_+ 21.6(_

+ 4w3 - 6 +10.8(: 2' + P2' +472' w4

+ (2 + 21.672')w 5 = p'

3_z - (8 + zo.e_4')w 2 - (8 + zo._')w 3

+ _22 + 21.6(_4' + _4' + _4')]w4 " _8

_ +_3-i-_6÷_o.8(_,÷_5,_w4

' + _2' + 72')]w2

' + 133'+ )'3 w3

+ i0.8(_' + 2_4i]w9:p'

J

_(62)
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}_THOD OF SUCCESSIVE APPROXI_4ATIONB

Explar_tion

After the boundary-value problems are expressed in terms of

finlte-dlfference equations, two sets of simultaneous equations are

obtained. The first set consists of the compatibility equations and the

equations specifying the condition of zero edge displacements. These

equations contain linear terms of the nondimensional stress function F

and the second-order terms of the nondim_nsional deflection w, and
are of the form

c_F0+ c01q+ "'"+ °0n;_=I%

clo;o+ cn;l+ "'"+ °m;n--_\

and

(63)

C'IoFo + C'llFl + ... + C'lnFn = Slj

/
i

Ki = _w) 2 - (_x_'W_(_y2W_ at points 03 I_ and so forth_
where

2 /_--__ZlxW)2m,corresponding to the subscripts of K; Si = _ i;
m

and Co0 J c01 , , c' '"'" 10, c ll, "'" are given constants.

The second set consists of the equilibrium equations, which contain

the linear terms of w with coefficients involving linear te_s in F
and are of the form

aO0 + bo0m'O + b'00_' 0 + b"o0Y'0_w 0

+ _01 +b01_'0 +b'ol_'O +b"olT'_Wl

+ ... + _aOn +bon_' 0 +b'on_' 0 +b"0nT'_Wn = p'

......................... (64)
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where m' = Ax2F , b' = Ay2F, 7' = _vF at points 0, i, • • •

corresponding to the subscripts of _', _', 7', and aO0 , aOl , . . .,

bOO , b01 , . .., b'o0, b'01, • • ", b"00, b"01, • " " are given

constants •

If a set of values of w is assumed at each of the net points

and the values of Ki and Si are computed, equation (63) becomss

a system of linear simultar_ous equations in F and can therefore

be solved exactly by Crout's method for solving systems of linear

simultaneous equations (reference 24). After the values of F have
' _' and 7' canbeen computed from equation (63), values of _', ,

be founA without anj difficulty. Then equation (64) becomes another

system of linear simultaneous equations and may be solved exactly by
Crout's msthod again. If the values of w found from equation (64)

check with those assumed, the problem is ccm_pletely solved.

Inmost cases, however, the values of w will not check with

each other. By following the usual method of successive approximations,

the computed w's will now replace the assumed ones and the cycle of

computations will be repeated. If the value of w at the end of th?

cycle still does not check wlth the one assumsd at the beginning of the

cycle, another cycle will be performed. In this problem, however, if
the ordinary msthodwere followed, the results would be found to diverge,

oscillating to infinity. Therefore, a special procedure must be devised

to make the process converge.

A simple case will be examined first. In the boundary-value

problem in which n = 1 under the normal pressure p = lO0, equation (52)

can easily be reduced to the form

Wo--
16 + 37.6908w02

or

w03 + 0.424507w 0 - 1.790888 = 0 (65)

The third-order algebraic equation can easily be solved, and the roots

of this equation are

w0 = 1.098254 and (-0.549127 +- 1.1528_81)
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For the physical problem, only the real root is of interest because

the imaginary roots do not have ax%y physical meaning.

An attempt will now be made to solve equation (65) by the usual

method of successive approxln_tlo_. It is assumed that

2 =1.4_0_
w0 =I._, w 0

67.5 - 0.960516
WO = 70.2T474

w02 = 0.922591

If it is assumed that Wo 2 = 0.922591 for the second cycle and that

the value of w02 found from the second cycle is the value for the
2

third cycle, and so on, the followi_ values of w 0 are found from

various cycles :

1.767416, 0.667554, 2.689324, and so forth.

These values are oscillatorily divergent. A plot of these values

against cycles shows that they oscillate about the true value 1.206161,

and the true value is approximately the mean of the values obtained

from two consecutive cycles (fig. 8).

If w02 = _(1.440000 + 0.922591) = 1.18L?_96 is taken as the

assumsd value of w02 for the second cycle, and the mean of this

value and the value found from the second cycle are taken as the

assumed value for the third cycle, and so forth, the values of w02

are found from various cycles as follows:
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Cycles 2 3 4

Wo2 assumed 1.181296 1.212550 1.204658

Wo2 found 1.243805 1.196766 1.208390

Cycles 6 7

Wo2 assumed i. 206075 I. 206182

w02 found i. 206289 i. 206131

5

1.206524

1.2o4526

This process is convergent and wo converges to the real root of

equation (65). The value of wo found at the end of the seventh cycle

is 1.O98240 and is accurate to four figures at the end of the fifth cycle,

in which case it is found to be 1.098010. The results are plotted

against cycles in figure 9.

It is to be noted that K 0 = -3w02 in the case of n = i. The

values obtained by the method of successive approximations would

converge if K 0 were assumed to be the mean value of two consecutive

cycles. It is found that this convergent property is the sams for n > 1.
If the mean of K's or S's found from two consecutive cycles is

taken, the values are convergent but are oscillatorily divergent if the

usual way of successive approximations is followed.

It may be pointed out here that for the special case n = i, if

the mean of the values of w_ from two consecutive cycles is used, the

values are also convergent, Knd if w0_ for the second cycle is
assumsd to be equal to the sum of 0.6 times the assumed value for the

first cycle and 0.4 times the value found from the first cycle, and

so on, the convergence is much more rapid (fig. lO), but this result
is not true for the cases with n > 1.

The rapidity of the convergence depends on the accuracy of the
assumsd values of K's and S's for the first trial. The deflection w

from the linear small-deflection theory can easily be determined. When p

is small, the values of w so determined would give a first approximation

to the problem. It is convenient, therefore, to start the computation

when p is small and then to consider the cases when p is large.

Also it is advisable to begin with but a few net points and then

gradually to increase the number of net points. For example, consider

case n = 1. When w O is found for a certain small p, a

curve of w 0 against p can be plotted because the slope of the curve
at the origin can be determined from the s_ll-deflection theory. For

a larger value of p, w o can now be estimated by extrapolation. For

n = 23 the v_lue of N 0 found for n = i can be used as a first trial.

However, w 2 and w 3 are stil/ difficult to estimate. In order to

obtain first approxi_ations to these quantities, the ratios w2/w 0

and w3/w 0 may be found from the small-deflection theory and the values
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of w2 and w3 computedby multiplying these ratios by the estimated
value of w0. Whenthe deflections have been assumedat every point of
the net, the values of K and S can be computed. These are the values
which maybe used as a first trial. By successive approximations, the
true values of the w's are then _etermined. The values of w0 and
the (Wn/WO)'s are now plotted against p to estimate the corresponding
values at a larger p. The values estimated by extrapolation maybe
used as the trial values corresponding to that p. The process is
repeated until the maximum p is reached. For n = 3, w0 from n = 2
is used as a first trial_ the remainder of the procedure is the same
as before.

SampleCalculations

Finite-difference solutions of small-deflection theory.- The small-

deflection theory of the simply supported square plate will be studied

first. The differential equation is

(66)

and the boundary conditions are

I

w = 0 along four edges 1

_x---_ = 0 along x = -2

32w__ +a_ I32.2 = 0 along Y = -2

(67)

where a is the length of the sides.

With equations (66) and (67) written nondlmsnsionally by letting
4

WW W pa x' X _ p' and x'
= -- = H_-_q_' a' Y = ' ' 'h' P' = - and ' where w'

and y' are nondlmensional deflection, pressure, and lengths, respectively,

and wlth the primes dropped, the boundary-value problem is:
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v% --m(1 -2)p

w = 0 at x = __, y =

32w +i_
8x 2 = 0 at x -2

_-_ : 0 at y = _!

_y2 2

By retaining the notations previously used, the flnite-difference

equations for the problem are

(w) __ = 0X---_,y----

(68)

%9x

69 o
y=+2l

.J

where p' = 12(i - _2)(A%)4p.

For n = 1 (fig. 5), the finlte-difference equation, after the boundary

conditions are employed, becomes

16W 0 = p '

therefore,

w 0 = 0.0625p'

= 0.042188p

for _2 = O.1.
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For n = 2 (fig. 6), the flnite-dlfference equations, after the
boundary conditions are inserted, become

2°_o- 3_i + 8_2= p'

8'o + 24"1 lr_2 = p

2w 0 - 16w I + 20w 2 =p'

(69)

When Crout's method is used to solve these equations the solutions

of equation (69) are

w0 = 1.031250p' = 0.04350610

wI = 0.750000p' = 0.031641p

where #2

w 2 = 0.546875P' = 0.023071p

is takBn to be equal to 0.i. For _ = 0.3,

w 0 = 0.032989p

For

boundary conditions are employed, become

n = 3 (fig. 7), the flnite-difference equations, after the

2o% 3_ z + _2 + 4"3 = p'

So + 2_1 le,2 a 3 + _4 p

2% 1_ 1 + 22w2 + 4,"3 l&,% + 2v5 = p

,'o s,_+ 4,2 + l_ 3 16,"4 +_5 = P

_ a2 a3 + _, _ ° p

2w2 + 2w 3 - 16w 4 + 18w 5 = p'

(7o)
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The solutions of equation (70) are:

w0 = 5.2_667t>p' = 0.043722p

wI = 4.597633P' = 0.038314p

w2 = _.031250p' = 0.033594p

w3 = 2.735207p' = 0.022793P

w4 = 2.402367p' = 0.02o020-9

w9 = 1.439164p' = 0.011993P

if _2 is assumed to be 0.i. If _ is assumed to be 0.3, the answer is

w0 = 0.044208p

Timoshenko gives the exact value of w0 for a simply supported

square plate (reference 27) as:

wo = O.O_3p

Therefore the solution by finite differences with n = 3 is in error

by 0.23 percent. This solution is seen to be sufficiently accurate for

englneeringpurposes. The agreement of the finlte-difference approxi-
mationwith the more exact results of Timoshenko is sufficiently close

to encourage application of the finite-difference approximation to the

problems with large deflections.

The large-deflections problem I n = 2.° After the boundary conditions

are inserted, the two sets of finlte-difference equations are:

20F0 - 32F 1 + 8Fz + 4F3 = K0

-SF0 + 24F 1 - 16F2 - 6.632496F 3 + 6.6324_F 4 =

2F0 - 16F I + 20F 2 + 4.632456F 3 - 13.264912F 4 =_

-,2F0 - 4F1 + 4F 2 - 0.632456F 3 + 2.632456F 4 = S1

F0 - 6F2 + 2.316228F 3 + 1.367544F 4 = S2

(TX)
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and

-\

[_20 + 21.6(_0' + _0' + 70')Jw0 - I32 + 21.6(ao' + _o' + 270')_w I

+ (8 + 21.670')w 2 = p,

-(8+_.o.8_-,')wo+[-_4+_..6(_._.'÷_.' +_,_.,)]w_.

- [,.6+ ÷ ,.

/

,(72)

It is to be noted that the terms of the left-hand side of equation (71
do not change if the assumed values of K and S are changed.

Equation (71) can be solved uniquel_, therefore, in terms of K's

and S's. The given, auxiliary, ar_ final matrices obtained by Crout's
method are given in tables i, 2, and 3, respectively. More significant

figures than required are used to ensure good. results.

The solutions of equation (71) are as follow_:

F0 = -0.04870_ - 0.265696K 1 - 0.225111_ - 0.304114S 1 - 0.309525S 2

FI = -0-II1203K0 - 0.307363K 1 - 0.23552_ - 0.2624&7S 1 - 0.288692S2

F2 = -0.I03085K 0 - 0.311969/{1 - 0.2210_ - 0.162880S 1 - 0.317642S 2

F3 = -0.189937K0 - 0.506498K 1 - 0.316561_ - 0.253249S 1 - 0.126624S 2

F4 = -0.09496_ - 0.316561K 1 - 0.26907_ - 0.063312S 1 - 0.221593S 2

For a nun_rioal example of the computation, let

_73)

p = i00

p' = 0.0421875P = 4.218750
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From the curves for w0_ p,

it is estimated that

w1

Wo
and

w2
w0

(figs. ll and 12),

w 0 = 1.135

: 0.7535

wO

= 0.5775

Wo

The first trial values are

w0 = 1.135

w1 = o.855222

w : 0.655463
2

These values are written at the right-hand corners below the corre-

spondingnet points. The flnlte_lifferenoe patterns are used as given

in figure 4, and _, _, 7, wn+ I - Wn, a_xl then K and S are

found at the net points (fig. 13). As an example,

% = _o : -2(1.135ooo- 0.855222): -0.559556

70 : 1.135000 + 0.655463 - 2 x 0.855222 : 0.080019

KO = (0.080019)2 - (-0.559556)2 : -0.306700

Similarly, it is found that

K 1 = -0.189997

: o.221966

SI : 2.368276

S2 = 1.373368
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From eq_tlon (73) the valtles of F's are obtained as follows:

F0 = -1.129866

F1 = -0.977802

F2 = -0.780162

F3 = -0.6894_

F4 = -0.424723

These values are substituted in a_y one of the expressions (equation (71))

as a check and then are recorded at the net points_ as in figure 13.

Similarly, the values of m'3 _'_ and 7' are recorded below hhe

corresponding values of F.

Equation (72) can now be wrltten and the given matrix 18

w0 Wl w2 = p, Checkcolumn

34.122771 -47.107213 8.984442 4.218750 0.218750

-12.269024 36.930948 -20.392900 4.218750 8.487774

2.000000 -19.408458 28.313451 4.218750 15.123743

The check column can be obtained by using the following relation:

Check column

-4 +p'

i0.8_ I' + p'

6 + 21.6(a. 2' + 82') + P'

The sum of the elements in a row should be equal to the value of the

element of the same row in the check column. This procedure provides 8

check for the substlt_tion made in the given matrix.
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The first approximation gives, therefore

w0 = 1.i17078

wl = o.843225

w2 = 0.6481.12

A computation similar to the one outlined in _ foregoing num_rical

example gives

= -0.293781

= -O.184115

K2 = 0.214841

S1 = 2.299072

S2 = 1.339974

As a second trial, assume

KO = 2_-0.306700 - 0.293781) = -0.300241

K1 = 2!(-0.189997 - 0.184115) = -0.187056

K2 = 2_0.221966 + 0.214841) = 0.2181_4

SI = _2.368276 + 2.299072) = 2.333673

S2 = 2_1.373368 + 1.339974) = 1.356671

The results of _e second, third, and fourT/z trials are shown

in figure 13. The corresponding assumed and computed values of the

fourth trial are
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Assumed Computed

K0 -0.300446 -0.300006

-.18740 7 -.187472

K2 .218738 .218786

SI 2.337941 2.338531

S2 1.360090 1.360631

The first three values check with one another, and the results, correcte,

to the third decimal place) are

wo = 1.1269

wI = o.85o2

w2 = 0.6528

The large-deflections problem I n = 3.- When n is takBn to be

greater than 2, the same procedure of computation as that in the case
of n = 2 is still valid. As an example, the case of n = 3 will be

considered, when the square plate is subjected to a uniform pressure

of p = 100.

After using the boundary conditions, the two sets of difference

equations (61) and (62) are obtained. Equation (61) can be solved in

terms of K's and S'e, and the results are given in table 4.

w!~ p, w_4~
From the curves of wO_ p, Wo p, wo_ Wo_ p, Wo p,

and _ _ p (figs. 12 and 14), the following values are obtained by

extrapolation:

w0 = 1.1247
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w4
-- = 0.5O37
w0

For a first trial, it is assumed that

w0 = 1.124700

wI = o.9999TA

w3 = 0.620385

w4 = o.5665_

w 5 = 0.393308

Again these values are written at the right-hand corners below the

correspomiing net points. With the computed values of _, _, 7,

_xW, an_ _w, the following values are obts&ned:

Ko : -o.o61945

_z : -o.o92o63

: -o.o2_186

K3 = -0.023043

: o.ooLe92

K5 : O.lO624_

SI = 1.592696

s2 = 1.282838

s3 = 0.5487oo

By table 4 the values of F's are found to be

Fo : -l.095495

F 1 : -i.028996
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F2 = -0.950911

F3 = -0.868159

F4 = -0.762520

F5 = -0.505761

F6 = -0.675850

F 7 = -0.546620

F 8 = -0.239729

The values of F's are written at the left-hand corners below the

corresponding _t points, auk the values of m', 8' aml 7' _e
computed.

When the values of _', 8', and _' are substituted into

equation (62) and it is noted that p' = 0.00833333P = 0.833333, the

given matrix of the equations is obtaim_d as in table 5 and the auxiliary

matrix as in table 6, and the solutions of equation (62) given by the
final matrix are

wo = ]..123384

wz : o.99 %

w2 : o.891 65

w 3 = 0.620342

w4 = 0.565591

w5 = 0.390999

It might be pointed out here that the check column of the given matrix

may be obtained by a direct substitution by using the following relations:
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Check column

-1 + p'

w2+p'

2 x 10.8_ 4' + p'

1 x 10.8_ 5' + p'

6 + el.6(_ 6' + 76') + _'

This procedure woul_ provide a w%y of checking the substitution in the

given matrix, since the sum of the elements in am_ row shoul_ be equal
to the element of ths same row in the check column.

v_, of Io, KI, _, x3, _, _, sl, s2, =_ s3 _-e
foun_ from the computed valmem of w's. The mean values of the K's
and S's first assums_ a_l thoae computed are use_ as the trial values

for the seco_ Cycle, am_ so on. At the e_l of the thlx_ trial, the

following assume_ and com_utea values are obtainea:

Ass_ed. Compute_

-0.061763 -0.061699

-.051947 -.0_i_4

- .o2_o6o - .024799

K3 - .023377 -.023477

K4 .001614 .001697

.106177 .10620_

S1 1 •592106 i .992078

s 2 1.281878 1.281814

s3 .546560 .5_6173
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These values check with one another to the fourth dsclmal place. The

deflections at the various net points, accurate to the fourth decimal

place, are

w 0 = l.LO40

w1 = 0.£995

w2 = o.892o

w 3 = 0.6207

w 4 = 0.5660

w 5 = 0.3915

The results of various trials are shown in figure 15.

RELAXATION METHOD

When a more accurate result is needed_ the plate must be divided

into a set of finer nets. The number of slmultanaous equations

increases as the number of nets is increased. In order to avoid the

solution of simultaneous equations, Southwell's relaxation method

may be used. The so-called relaxatlonmethod is essentially a clever

scheme for guessing the solution of a system of difference equations.

A brief description of the method and a numerical exau_le, the mmall-

deflection problem of a square plate, are given in appendlxA.

The solution of the general came of the large-deflectlon problems

of rectangular plates by the relaxation method has been studied by Green

and Southw_ll and their method was outlined prevlouslj. Green and

Southwell worked with the three complicated equilibrium equations in

terms of the displacements u and v and the deflection w. However,

it is satisfactory to use the two much simpler equations in terms of the
stress function F and the deflection w.

The fundamental differential equations (i) and (2) can be rewritten

as follows:

= k (74)

V4w = lO.8,p + lO.Sk' (75)
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where

82F ;52 F ; 2w 82F
k' - + 2

%2

In applying the relaxatlonmethod, as usual_ the domain of the problem
to be solved is first drawm_ and the net points chosen. Since there

are two simultaneous equations robe solved, two sheets of paper may be

used, one for F an_ one for w. A set of solutions of F an_ w are

guessed and are recorded on the F- and w-plates, respectively.

By starting from the assumed values of w_ K can be computed

without difficulty. Equation (74) is then a linear differential equation

for F, and the biharmonic relaxation pattern ma_ be used. After the

residues at each point have been reduced to t2_ desired extent, the

new values of F may be substituted into eq_tion (79) and it m_y be

solved by the relaxation method. Equation (75) leads to a rather

complicated relaxation pattern for w. In actual computations the

biharmonic pattern may be used, the assumed values of w being used for

the computation of k'. By means of the relaxation process, the residues

at all points are reduced somewhat. New values of k' are computed

and the residues are then corrected. The relaxation operation is applied

again until the values of w are determined to the desired accuracy.

The average values of the new K's and S's and the originally assumed

ones are now .Ised in the second cycle. The cycles are now repeated until

the final results have the desired accuracy.

In general, the boundary conditions for F are usually difficult

to handle. It is possible, however, to solve the boundary values of F

in terms of its values for interior points. The boumdary values of F

vary from time to time as the interior values c_anse. The operation

is rather complicated, but it can be handled.

In the case of a square plate with given edge displacements, the

boundary conditions as given by equation (49) may be used to some

advantage. Equation (74) can be written as

V2T = k

_2F = T I (76)
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and the boundary conditions are given by

TO, i + 2Tl, i + "'" + 2Tm-l,i + Tm, i = Si

m

2 w 2
(1- _)(A_)27 _ n'i - n-l,i_

n=0
(77)

and

2F - _2F_m,i = 0

J

In using this form, not only are the boundary conditions much easier to

handle, but also the relaxation pattern is simplified from the biharmonlc

type to the harmonic type. The simplification is obtained at the

expense of introducing one more equation into the system and therefore

considering one more plans. The results obtained are given in figure 16.

DISCUBSION 0FRESULTS

The bending problem of a square plate under uniform normal pressure,

with the edges prevented from displacements along the supports but free

to rotate about them, is studied by the finlte-difference approximations.

The difference equations are solved by the method of successive approxi-

mation and by the relaxation method. The computation starts with n = 1

to n = 3_ in whlch case the plate is divided into 36 square __ts with

25 inner points. The maxLmumnormal pressure calculated is pa = 250.

Eh 4

After the values of w and F have been determined, the stresses

can be fou_ by the following relations:

_x' _2F _ 2F _'

' = a2F _X 2F _,

Y 2 (/u)2 (,",z)2
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G 9 l,, 1 _ +_ (_z)2

=- _.. 1 (_+_)
2(1 - p2)(A})2

1
! P =:I , , , J, 1

"Y -2(1 _2)(_z)2(_ + _)

whore _' and _" are the m_mbrar_ stress and the extreme-fiber

bending stress, respectively. The total stresses _ are the sum of

the m_mbrane and bending stresses at the section _ are maximum at

the extreme fiber of the plate. They are

_X = GX' + GX"

,_y= a.v' + ,_y"

At the center of the square plate, m' = 6' and m = 6, and therefore

hhe stresses are

ax' = _y' = _ = _

P

.x" = ay 2(1 - _)C,',z)2 2(1 _)(z_z)2

The deflections at various points &etermined in the cases n = i,

n = 2, and n = 3 are tabulated in tables 7 to 9. The center deflectiaas

are plotted against the normal pressure ratio in figure 12. The membrane

stresses in the center of the plate and at the centers of the edges are

tabulated in table lO and are plotted in figure 17. The bending and

total stresses are tabulated in table ll and are plotted in figure 18.
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A study of the results shows that the maxlmmaerror in center
deflections is 0.47 percent for n = 2 in comparison with n = 3
and the maximumerror in the center membransstresses is 0.44 percent 9k
both valuss being conservative. Both maximumerrors occurred at pa = 250.

4 Eh4
pa

The error in the center bending stresses is 2 percent at -- = 12.5

Eh4
and is 0.83 percent at = 250, both valuss being unsafe. The error

Eh 4 _°4
in the center extreme-flber stresses is 1.6 percent at _-- 12.5

pa 4 Eh 4 =

and 0.17 percent at -- = 250, both values being safe. The error in
Eh4

the membrane stresses at the center of the sides is 12 percent for both

_x'a2_h 2 and Gy'a2_m_h 2 at pa4 = 12.5 and 8.9 percent for both
Eh 4,

/i

dx'a2/Eh 2 and _y'a2/Eh 2 at Pa_= 250, these values being unsafe
Eh 4

One case of n = 4 has been solved by the relaxation method.

4 v°  xo,a2 ayo,a2
At _ = i00, it is found that

_0a2 exl'a 2
-- = 11.394, ------- = 9.688,
Eh 2

-- = 1.1250, = -- = •
h Eh 2 Eh 2

uyl'a 2
and -------- = 3.064. When the results

Eh 2 Eh 2 pa4
for n = 3 are compared with those for n = 4 at -- = I00, the

Eh 4

center deflection has an error of 0.09 percent, the center membrane stress

has an error of 0.02 percent, the center total stress has an error of

0.5 percent, and the membrane stresses _x'a2/Eh 2 and Gy 'a2/Eh 2 have

the errors of 4.2 percent and 4.1 percent, respectively, all values

being unsafe. Since in the present case only the center deflections and

stresses are to be investigated and the errors are sufficiently small

for engineering purposes, the case n = 3 is cor_sidered to be satisfactory
for the final results.

The center deflections obtained by Way (reference 15), Levy

(references 17 and 19), and Head and Sechler (reference 23) are plotted

in figure 19 for comparison with the present results. The center

membrans, bending, and total stresses are plotted in figure 20 to

compare with the results by Levy (references 17 an/[ 19). It is seen

from these results that the center deflections are in good agreement with

test results from the California Institute of Technology up to

= 120. The theoretical results seem to be too low at higher pressures.

Eh 4
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It is interesting to note that the test results are really for
clamped-edgeplates. The clamping effect seemsto be onl_ local, and
at the center of the plate the plate behaves Just as though it were
simply supported_ that is, the plate is free to rotate about its edges.

From the point of view of the engineer designing the plate, the
total stresses at the center of the edges ar_ still muchlarger in the
case of clampededges than in all the other cases; hence, a design based
on those stresses would give a conservative structure. The center
deflections, however, would give an idea of the magnitude of the
washboarding of a boat bottom while a seaplane is taxying or landing.

CONCLUSIONS

The following conclusions maybe drawn froma theoretical analysis
of an initially flat, rectangular plate with large deflections under
either normal pressure or combinednormal pressure and side thrust:

i. The large-deflection problems of rectan_ plates can be
solved approximately by the present methodwith a_y boundary conditions
and to a_ degree of accuracy required. Although it is still difficult_
the present method is, nevertheless, simpler tha_ the previously used
methods for giving the samedegree of accuracy.

2. For the square plate considered, case n = 3 gives results of
good accuracy, and the results are consistent with the existing theories.

3. The clamping effect of a clamped thin plate seemsto be only
local. At the center, the plate behaves more lika a plate with simply
supported edges; that is, the thin plate is approximately free to rotate
about its edges.

4 _he Pa44. The test results show that, at _ > 175 re _ is
_Eh- Eh4

nondimenslonal form for normal pressure), all the existing solutions of

the differential equatior_s give unsafe results for center deflection

for a square plate. This conclusion perhaps suggests the range in

which the differential equatiorLs may be applied.

5. The present results of the center deflections and membrane

pa 4

stressos give good agreement with the test results when --_ _ 120.
Eh

Massachusetts Institute of Technology

Cambridge, Mass., March 4, 1946
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APPENDIXA

BRIal_DF_CRIPTIONOFRELAXATION_fHOD

The idea behind the treatmsnt by the relaxation n_thod is
essentially Just the sameas that by Cross' method of momentdistribution
in the case of bending of continuous beaJ_s. It see_s, therefore,
easiest to explain the relaxation methodby a comparison with the
moment-distribution method, since the latter is w_Ll accepted and is
familiar to most structural engineers.

The redundant beamas shownin figure 21(a) is nowexamined. The
procedure for obtaining the redundant support momentsby the moment-
distribution method is well known. The first step in the momont-
distribution analysis is to assumsthat the slope at each of the four
supports is zero. By this assumption, the end momentsat A, B,
C, and D can be found without difficulty. The result is shown
in figure 21(b). Here the boundary conditions at A and B are
satisfied_ and the principle of continuity is also satisfied. The
condition of equilibrium, however, is not satisfied, since there are
unbalanced momentsat B and C. The moment-distrlbutionmethod now
offers a procedure to balance these unbalanced momentsby a relaxation
based on consistent deformations. The a_sis by the relaxation
method, in this case, would be essentially the same. The momentsat A,
B, C, and D are assumedto satisfy the boundary conditions and the
condition of continuity. The unbalanced momentsat B and C are
then distributed by the relaxation based on consistent deformations.
The difference lies in that the relaxation method offers more freedom
in assuming the end momentsand therefore could makethe convergence of
the operations more rapid. On the other hand, however, it becomes
difficult to assumethese values.

The method of momentdistributions applies onl_ to redundant
structures, but the application of the relaxation method extends much
further, and its application to the partial differential equations
has brought the study of engineering sciences into a new era because
the boundary conditions are now no longer difficult to be described and
to be satisfied.

The procedure can be illustrated by a study of the small-deflection
W I

theory of thin plates. Letting w = _ where w' and p are the
p"

nondimensional deflection and pressure, respectively, gives the

following equilibrium equation in terms of the finite difference

4
(A1)
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In order to solve the problem, the domain to be investigated Is drawn
and the net points chosen. Values of w are assumedto satisfy the
boundmmyconditions and are then written adjacent to each point of the
net. From these values of w, the residuals Q at points (m,n)
are computedand recorded as follows:

Qm,n = 20Wm, n- 8_m+l,n + Wm-l,n + Wm, n+l + win,n-l)

+ 2_m+l,n+l + Wm+l,n_ 1 + Wm_l,n+ 1 + Wm.l,n_l)

+ <Wm+,2,n + Wm-2,n +Wm, n+2 +Wm, n-2)

- ].2(l - _2)(m) 4 (A2)

The residuals Q thus computed can be thought of as an unbalanced

force which must 1_e removed from the system. New, instead of setting

up a specific iteration process, it is merel_ observed that if the

deflection at one point (re,n) is altered, all others remaining fixed,

the residuals will change according to the pattern of figure 4, the

relaxation pattern. Each change of w at ar_ point effects a redistri-

bution of the residuals Q among the net points, and such changes of w

are desired as will move all the unbalanced forces to the boundary.

For a simply supported plate, the deflection and bending moments

are zero along the edges. Equation (A1) can be written as

Letting V2w = M makes possible the formn]_tion of the boundary-value

problem as follows :

P I
M = 0 along the four edges

(A3)

an_

V_=M

w=0

(

along the four edges I
r

j/

(A4.)
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The problems can now be solved in two steps, that is, first, by

use of equation (A3) and. then by use of equation (A4). This transform_tio_

greatly reduces the labor required in applying the relaxation method

because the relaxation pattern of the harmonic or Laplacian type is

much simpler than that of the biharmonic type.

As an example, the boundary-value problem is solved when the plate

is a square one. The process is considered with n = 4. From the

previous results as found from the calculations with n = 3, the values

of w at all the net points can be assumed. By equation (A4)

Mm, n = win+l,n + Wm_l, n + Wm,n+ 1 + Wm, n_ 1 - 4Wm, n (A5)

The values of Mm, n are then recorded at the right of the corresponding

net point, and the residuals

Qm,n = Mm+l,n + Mm-l,n + Mm, n+l + Mm,n-1 - 4Mm, n - 12(1 - _2)(_) 4 (A6)

are computed and are recorded at the left of these net points. The

results are shown in figures 22(a) and 22(b). For example,

M0 = 4w I - 4w0 = 4(0.0406) - 4(0.0437)

= -0.0124

M 4 = w 2 + w 3 + w 5 + w 7 - 4w 4

= 0.0377 + 0.0316 + 0.0231 + 0.0163 - 4(0.0295)

= -o.oo93

Qo = hMl - laMO " 0.002637

= 4(-O.0117) - 4(-0.0124) - 0.002637

= 0.000163
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Q4 =M2 + M3 + M5 + M7 " 4M4- 0.002637

= -0.0106 - 0.0093 - 0.0078 - 0.0064 - 4(-0.0093) - 0.002637

= 0.001463

where 0.002637 = 12(1 - _2)(AI)4, since _2 = 0.i and _I : _.

The largest counterbalanced M occurs in the vicinity of the

greatest deviation of the assumed values from the correct solution;
so changes are first made at this point. An examination of figure 22(b)

shows that the greatest residual occurs at point 2. Since

Q2 = PMI + P-M4 " 4M2 - 0.002637

a change of M 9 would change Q2 by an amount equal to four timss

(-_M2). Mathenmtlcally,

AQ2= -&_M 2

where _ denotes the amount of change. Adding -0.0004 to M2 while
assuming all the other values of M to remain unchanged gives

Z_Q2 = 0.00163 and Q2 is now equal to -0.000637. If a nomenclature

similar to that in the method of moment distribution is used, this

process can be called balancing the unbalanced Q. A symbol (bl) is put

at the side of the value to indicate the first balnauclng. Now it is
observed that

QI = MO + 2M2 + M3 - 4MI - 0.002637

and

Q4 = M2 + M3 + M5 + M7 - 4M4 - 0.002637

A change of _ with all the other M's flxe& would change QI and Q4

by the relaticns as follows:
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Now, by relaxing the nets,

L'_i = 2(-O.O00tO : _.ooo8

AQ4 : -o.ooo4

ancl

Q1 = 0.001263 - 0.0008 = 0.000463

Q4 : 0.001463 - 0.0004 = 0.001063

These operations may be called carrying-over an_ be denoted by (cl).

The whole process consists of 20 balancing and carrying-over

operations by similar calculations. The detailed operations of the

computations are shown in figure 22(b). After the values of M's are

computed, the residuals are computed as follows:

Qm,n' = Wm+l,n + Wm-l,n + Wm,n+l + win,n-1 " 4Wm,n - Mm,n

The values of w may be determined by a similar series of calculations

The detailed operations and computations are shown in figure 22(a).

The whole process consists of ll balancing and carrying-over operations
The center deflection ratio thus obtained is, for _ = 0.316928j

w0 = 0.043790p

For _ = 0.3,

w0 = 0.043790 X O._lp
0.9

= 0.0443p

which checks exactly with the exact analytical solution.
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For thin plates with clamped edges, the boundary conditions are

w=0

_x = 0, along x = 2

_g = O, along y = _l
2

The re]mxation pat_rn of the blharmonlc type must be used in this case.

Although the pattern is more complicated, the process is essential_ the
SalGe.

After the essential idea of the relaxation msthod is grasped, other

problems may be solved by rather obvious steps. It may be noted that

no question of convergence can occur in the general relaxation process

since no specific instructions are given. If, after some steps, the

residuals get worse, the intelligent computer mal_s changes in the

opposite direction. These remarks, however, oversimplify the problem

somewhat because of two facts: first, the computer may becoms confused

as to whether the residuals are really better, and, secondly, there is

always a question of whether a solution with zero residuals exists.
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TABLE 7.- CENTER DEFLECTIOI_3

4
pa

Eh4

0

]2.5

25

5o

75

i00

15o

200

e5o

Wo/h
n=l n=4

0

.3888

.5844

.8184

.9757

i .0980

1.e888

1.4376

1.5623

n=2 n=3

0 0

.4062 •4055

.6O9'2 .6O83

•8_74 .8460

1.005e l.O031

1.1269 1 .]240

1.3145 1.3].04

1.4616 1.4557

1.5844 1.5770

1.1250

NATIONAL ADVISORY

CCMMITI_E FOR AERONAIFfICS
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TABLE 8.- DEFLECTIONS AT VARIOUS POINTS

4/_4 ,,.o/h ,..1/h ,,.2/h

0

12.5

25

5o

75

i00

15o

200

25O

0

.4062

.6o92

.8474

1.0052

1.1269

1.3145

1.4616

1.5844

0

.298O

.4508

.6332

.7555

.8502

.9966

1 .ii16

1.2076

0

.2198

.3363

.4791

.5766

.6528

.7713

.8648

.9431

NATIONAL ADVISORY

C(_a41TTEE FOR AERONAL'rICS
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TABLE9. - DEFLECTIONSAT VARIOL_BPOINTS

0

12.5

25

5o

75

i00

150

20O

25O

0

.4055

.6083

.8460

1.O031

1.124o

1.3104

1.4557

1.5770

_,i/h

0

.3564

.5365

.7494

.89o5

.9995

1.1677

1.2988

1.4o81

0

.3136

.4738

.6650

•7930

.8920

1.0450

1.1641

1.2634

0

.2139

.3249

.4592

.55oo

.6207

.7305

.81_64

.888O

0

.1890

.2892

.4131

.4986

.5660

.6717

.7551

.8249

0

.1159

.1822

.2711

.3370

.3915

.4804

.5531

.6149

NATIONAL ADVZSORY

COMMITTEE _ AERONAUTICS
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0

12.5

25

5O

75

ioo

150

20o

25o

TABLE i0.- MEMBRANE STRESSES

,'subscript 0 denotes center of plate;
ubscript i denotes center of sld_s

aXO 'a2 = _YQ 'a2

Eh 2 Eh 2

_Xl'a 2

n=2 n=3 n=2 n=3

0 0

.6089

1.377

o

.6103

1.38_

2.695

3.806

4.802

6.566

8.136

9.575

n=2 n=3

0

•3338 .3795

•7612 .8574

1.484 1.661

2.096 2.341

2.643 2.943

3.613 4.001

4.473 4.929

5.264 5.778

0

1.055

9.407

4.693

6.628

8.357

11.43

14.15

16.64

2.683

3.792

4.785

6.549

8.1o3

9.533

0

i •200

2.711

5.254

7.401

9.305

12.65

15.59

18.27

NATIONAL ADVISORY

CC_41TI_E FOR AERONAUTICS
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TABLE ii.- EITRD_-FIBER BENDING AND

TOTAL STRESSES AT CENIER OF PLATE

4
pa
m

Ell4

0

12.5

25

5O

75

lO0

15o

200

2_

Ben_i_ stresses,

Eh 2

n=2 n=3

0

2.53o

3.7o8

5.010

5.845

6.475

7.439

8.191

8.817

0

2.582

3.781

5.o87

5.928

6.554

7.513

8.261

8.891

Total stresses,

O"'s. 2 O",,&2
+

Eh 2 Eh 2

n=2 n=3

0 0

3.14o 3.191

5.092 5.158

7.705 7.770

9.651 9.720

11.277 ii. 339

14.005 14.055

16.327 16.364

18.39"2 18.424

NATIONAL ADVISORY

CO_4I_ FOR AERONAUTICS
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Figure 3.- Finite-difference notation.

m,n
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A x

m_n
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Ay &xy

&X 4 2&xy= &y4

Figure 4.- Relaxation pattern.
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o)o
P=IO0 , n=2

SI= 2 368276_ _ _H,;; q[ .:[" i :,

s2=1373388j
I- ASSUMED

S; = 2.299 072 ; 2- COMPUTED

$2= 1339974) 2

780182 )655483 _ 42472310
O('=l_'= 157799 i 0_=p=-455704l

I T= 655 463 > l 1"r'= 069284

i R== 214 841 J

.648H2

o( = I_ =- 452 99dl

"r= ,648 t12 )2

(^,W)2= 273 853 j Kz = 214841 JI'

L ......

- 770018

OC= 1'5" t'55934

1"= 066 8t8

(AW_I =.279778 __ .277_146

-I.IL_)8_ I.l't5000 --_ -.977802 855222 -689444 Q -1114,469 1128/74l -.964(E_,4. 851595

_'=_= 304128 Or =13=- 539.556\ q:_ =- 576 44_, _'--13'= 299570 _=_=- 55.4292

• '= _,5576_= .0600,9 [ ' _ =-3w5,6 _, _'= 0,488, _= .079458
Ke=-.308700 j I" = .199759 m K,==-300926

,0('-- 136294 K,=- 169997J 0¢_= 134744
_'= .389332

1"'= 066071

S,= 2 336 106

Sz: I 359343

(_'= .395 280

_"= 067081

I t l 7_078 84 3 2?-5

= =_=- 547706 or=- 589 372"_

'_= .078 740 2 (3= - 390226 _ 2
f

Kin=- 293 781 "r = .t95 113_

K, = -i64. IISJ

u/O

!711, ,1_ F: /,IP_[[ H

i

-772 256 _52 5?)2 -420874- 0

CX':_'= 158423 0¢:_:- 455280

1"'= 069092 ) 7 = 652 552

I K_ 218544

I

1
276552 _. _

- .682 068 O

O( = - 573 272

: -394. 544

'r= 197272

K_=- 187265

65,3,907 - 419418 O
(_ = _=-.456 219

7 : .653907

Kz= -.219 459

-680155 0

S,= 2 338 531

5_ = I 360 631

- 771743

0_= _E 15654 2

T '= 069 O67

276 720

-Ijl6797 1126 977 -9645739

(3___=_,f= .300118 CX=_:-.553440

_'= 04.4938 y= 079311

KID= - 300 006

0('= 135123

F_' = 389992

_"= Dee 157

O_ = -. 574 449

[_ =- 395376

"r= .197 688

K,= - 188 043

NATIONAL ADVISORY

COMMITTEE FOR AERONAUTICS

652 84.8 --420 405

o(= (_= -455 439

7 = 652 848

KzF 218786

-1117 582 117-83_76 -967415 .849 824.

Q('--_'= 300334 C_=_=- 533 104.

T'= 044.992 1"= 079280

K,=- 299839

0('= 135180

(_' = 390316

T'= 01_235

650:_57

(:X =- 573 537

I'_ = -394 818

7 = .197 4.09

K,= -A67 4.72

-.88t538 0

Figure 13.- Method of tabulatLon of = , B , 7 , (Wn+ 1 - Wn), K,S, and F. n = 2.
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NATIONAL ADVISORY

COMMITTEE FOR AERONAUTICS

Sl, L._e,z a_a ? /
5_ = .5¢a 700)

5,, •/..5"JpO /6,9"

•-,_ = .Sq_r 0.9.5,)

C A W')t • •/0 7 _53

-,950 9//

•(%,8"= .//o 5o6
Y '= .068 3(.._

•v..--_l " . 00.9Z73
o

("'_ _'.), . .32Y _0/

I R55U/_ED

e_ Co/v/PUrED

('_ t_')_ • .35J 3o8

•393 .908

•<._.,8--._EO/0.5
"(, .39_ )08

,'rjr = ./06 ,?9'5

• ._._o _._9

•_=P--.._16 ¢07

)"= .3_qo 9.9.9

Ks = ./de 0¢8

(",¢1 I"V'_)t = .S% 6.S//

< .,8 = -. Z,_' "P4_

T* = ./.SZ 3._8

-.7(_ _=?0 .._6_, _r/I
I

,._ ' = .o=77 £0_ ,<.= -._¢0 _10

p" ./_r/ /zo, ,_=-.//._ 3.3_,

p.r= .0-4"01J-_ _= .17.J ZO_

(",,t _V-,,)a_ =./0 7 q'-_l

('.,_t_}/ ,, . /," 4 7_.9
/. 1_.4 7dO

(',¢_ leV',,,)ar• . ,t,?._r, _ 7_

X z =. 0_4 810_"

•IJ_ ._38 ,<.,_,-.,¢,r.e

0 0

0

o

K_ - . 0o/._'_,='_

• 5_.._ .._".9/

• L • -. _3_ 717

,_ =-.tie 841
Y = • / 74 __,qa_

,_, = . 001 73¢

(',a==,')/•.6_o :_e_r

•_ao 38J -._7_8so o-/. O-_3 4_9 _,

"_'=A'=

tf',, -. 04;I _ )st" Oa 7 5J'lf

Ca
LI_'3 )Sq

)"= .oI_ ._37

/1",,,= -. oGI _4Z

_=-.24d 79_

p=-.¢/_rT/8 p'. .,l_// Z7_ /0.-./O7 7,f8

Y= .O._._ g_3 "r'; .#Z_ 5-_1 Y. .05387q'

(4 ¢o',)a = .378 _/4 /",_ _cr)a = ._ao 3_
• .9._,9 .e_ . G_.O _ _'_.

.L . -.._q /8_ "_ - -. _¢/ 7_

Y= .o..-,;z 7"¢0 Y= .o_4 7._1
_, = -. o_/ 8_4 /'t'_= -. oar] 47_.

(a) First approximation.

Figure 15.- Results of various approximations, p = i00: n = 3.
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Y=

_1 • i.,_rjD 781

51 • t.&84 _._6

-,%j = . .._'q_ R_q

•/0 7 5S_ .3_._ 0-97

- .S0_891

•_'.#'_ .O09 tlJ
Y" -. oz 6 sr_

NATtONAL ADVISORY

COMMITTEE FOR AERONAUTICS

• J@/ _"

=p = -. _,'6 8,'0

Y'.= .391 q6.._'

•/,_ .._ /

• 89Z _.17 -.71;1472 . _'66/,_0

_ ,,_=-..9/8 J'¢3 ec'= .0£'7_62 _.= -.240 O,P.._

/r = -.0_¢ _I'_'G "Y= .0_0 0._/

,_1= -. I/,9 _0_
Y= .17¢ _._,_

,_= .001 7,_

0

•_78 _0_

-.z_ &_

-. _r¢_ _7_

_. I_*F _.9_ -/.0_'7 7.._T. ._.9..9 77/ -._,'/ OG-_ • (; 20 _; 7

I_('=-.0_1 7._41 ¥ = .0_757_ Y'= .05_ 807 Y= .OZ_.,_'71 Y= .0_'¢7¢7

/'r = -.o31 ._31 t_ " -. o 23 _#_

-._7,5 o_o

0

o

0

0

(b) Second approximation.

Figure 15.- Continued.
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(c) Third approximation.

Figure 15.- Concluded.
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(c) Domain of problem, F-plane.

Figure 16.- Concluded.
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(a) Redundant beam.
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gO00 go00

(b) End moments for zero slope at each support,

Figure 21.- Moment-distribution method.
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(a) _2w : M; _'--V2w- M.

Figure 22.- Solution of small-deflection theory by relaxaLion method.
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(b) V2M = 12(I - 2)(z_ ;)4 = 0.002637; Q : V2M - 0.002637.

Figure 22.- Concluded.
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