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By Chl-Teh Wang
SUWMMARY

The present report presents a theoretical enalysis of an initlally
flat, rectangular plate with large deflections under elther normal
pressure or combined normal pressure and side thrust. As small
deflections of a flat plate are governed by a single linear equation,
large deflectlons introduce nonlinear terms into the conditions of
equilibrium and are governsd by 2 fourth-order, second-degree, partial
differentlal equations. ‘These so-called Von Kafrmsh equations are
studied in the present report by use of the finite-difference approxi-
mations. The difference equations are solved by two methods, namely,
the method of successive approxlmatlons and the relaxation method.
Neither of these methods 1s new, but thelr application to nonlinear
problems requires new technlques.

The problem of a uniformly loaded square plate with boundary
conditions which approxlmate the riveted sheet-stringer panels is
golved by the method of successive approximations. The theoretlcal
centor deflectlions show good agresment with the recent experimental
results obtalned at the California Institute of Technology when the
deflections are of the order of the plate thickness. This agreemsnt
perhaps suggests the range 1n which thess Von Kalmasn equations are
to be appliled.

Other problems of thin plates with large deflectlons are discussed
from the point of view of an acronautical enginser. The boundary
conditlions which approximate the various cases are formulated, and the
methods for solving these problems arse outlined.

Since the method presented in the present report is general, 1t
may be applied to solve bending and combined bending and buckling
problems with vractically any boundary conditions, and the results may
be obtained to any degrec of eccuracy required. Furthermore, the same
method mey be applisd to sclve the membrane theory of the plate which
applies when the deflection is very large in comparison with the
thickness of the plate.
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INTRODUCTION

The classical theory of the bending of a thin elastic plate expresses
the relation between the transverse deflectlion of the middle surface of
the plate w and the lateral loading of intensity p by the equation

DPv = p

3
where D = L S is the flexural rigldity of the plate. It is
12(1 - 4?)
known that the theory is restricted in application, for on the one hand
its basic assumptions can be questionsd unless the plate is thin, and
on the other hand it neglects an effect which must be appreclable
when w has valugs comparable with the thickness. This 1is the membrane
effect of curvature, whereby tension or compression in the middle
surface tends to oppose or to reinforce p. The effect is negligible
when w 1is very small, provided no stresses act initlally in the plans
of the middle surfece; but even so, it operates when w 1s small
because stretching the middle surface is & necessary consequence of the
transverse deflection. When the deflection gets larger and larger,
the membrane effect becomes more and more prominent until for very large
values of w the membrane effect is predominant whereas the bending
stiffness 1s comparatively neglligible.

Small transverse displacements of a flat elastic plate are governed
by a single linsar equation but large displacemsnts entail stretching
of the middle surface and consequent tensions which, interacting with
the curvatures, introduce nonlinear terms into the condltions of
equilibrium and so make those equations no longer independent.

The large-deflection theory of flat plates is glven by A. Fippl
(reference 1), and the second-order terms were formulated by Theodore
von Kdrman in 1910 (reference 2). The amended (lerge-deflection)
equations have been solved, however, in only a few cases (references 3
to 19) and then with considerable labor.

Essentially there are three problems concerning flat plates with
large deflections. They are:

1. The bending problems, when the flat plates are subJjected to
lateral loading perpendicular to the plane of the plates, but no
side thrust is applied in the plane of the plates

2. The buckling problems, when the plates are subjected to elde
thrusts in the plane of the plates but are not loaded laterally

3. The combined bending and buckling problems, when the plates
are subjected to both lateral loading and side thrusts
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In the case of metal airplanes, in which weight is of primary
importance, the metal sheets used mmust be thin and the deflections of
the plates are usually large in comparison with their thickness. In
order to obtain the design formulas or charts for stressing such
plates, the large-deflection theory mist be used.

The bending problem 1s important in the design of seaplanes.
Seaplanes are subjected to a severe impact during landing and teke-
off, espocially on rough water. The impact must be withstood first
by the bottom plating and then by a system of transverse and longi-
tudinsl members to which the bottom plating is attached, before it is
trensmitted to the body of the structure. The bottom should be strong
enough not to washboard permenently under these inmpact pressures.
Such weshboarding 1s undesirable because of the increased friction
between the float bottom and the water and also because of the increased
asrodynamic drag in flight.

The bottom plating of seaplenes 1s, as a ruls, subdivided into
a large number of nearly rectangular areas by the trensverse and
longitudinal supporting ribs. Each of these areas behaves substantlally
like a rectangular plate under normal pressure. Bending of rectangular
flat plates may therefore be used to study the washboarding of seaplane
bottoms, provided the boundary conditions at the edges can be formulated
Just as in the seaplane.

The buckling problem is important in determining the strength
of sheet-stringer pansls in end compression. The use of stiffened
sheet to carry compressive loads 1s increasingly popular in box beems
for airplane wings and in othsr types of semi monocoque construction.
Tnasmuch as the sheets used as alrcraft structural elements are generally
quite thin, the buckling atresses of these sheet elemente are necessarily
low. The designer is therefors confronted with the problem of using
sheet metal in the buckled or wave state and of determining the stress
distribution and allowable stresses in such buckled plates.

The combined bending and buckling problem hags become & problem of
importance with the increasing use of wings of the stressed-skin type
and the pressurized fuselage construction for high-altitude flight.
During flight the wing 1s subJjected to a prossurs difference betwesn
the two sides which produces the 1ift. The normel pressure acts
directly on the sheet covering and 1s then distributed to ribs and
spars. At tho same tims the gheet panels are also subjected to a slde
thrust due to bending of the wing. In an alrplans of pressurized
fuselage construction an attempt is made to keep the pressure inslde
the cabin at a comfortabls level for the passengers, regardless of the
altitude of the airplane. Thus, there is a prescure differential across
the fuselege skin with an internal pressure higher than that outside.
The fuselags skin is usually subdivided into & number of rectanguler
curved panels by longitudinal stringers and rings. These panals are
subjected to the pressure difference and side thrust resulting from
bending of the fuselage. As pointed out by Niles end Newell (reference 20)
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the strength of curved sheet-stringsr panels can be determined approxi-
mately from the flat sheet-stringer panels. The problem is then
essentially that of determining the strength of flat plates under combined
lateral loading and side thrust.

Levy (reference 19) has shown that the effective width of a square
plate with simply supported edges descreases with the addition of lateral

pressure and that the reduction is appreciable for EEE:> 2.25. Therefore,
Eh

a pansl 1s unsafe If 1its design 1is based upon the side-thrust considerations

only, and the study of combined loading is of great significance.

A groat number of authors have studied the buckling problems, and
considerable experimental work has been carried out. As a result,
design formulas are available and seem to be accurate for most practical
purposes. The bending problems, however, have been studied by only a
few investigators, and test results (references 21 to 23) are far too
scarce to Justify any conclusions. The combined bending and buckling
problem has been studied in only one case (reference 19), and seven in
this instance the results are incomplete.

Among the solutions of the large-deflection problems of rectangular
plates under bending or combined bending and compression, Levy's solutions
are the only omes of a theoretically exact nature. His solutions ars,
however, limited to a few boundary conditions and the numerical results
can be obtained only after great labor.

The purpose of the present Investigation is to develop a simple
and yet sufficiently accurate method for the solution of the bending and
the combined bending and buckling problems for engineering purposes,
and this is accomplished by means of the finite-difference approximations.

Solving the partial differential equations by finite-difference
equations has been accomplished previously. Solving the resulting
difference equations, however, is still a problem. In the case of
linear difference equations, solutions by successive approximation
are always convergent and the work is only tedlous. Besides, Scuthwell's
relaxation method may be applied without too much trouble. But, in
order to sclve the nonlinesr difference equatlions, the successive-
approximation method cennot always be relied on because it does not
aelweys glve a convergent solution. The relaxation method, since it is
nothing but intelligent guessing, can be applied in only & few cases
and then wlth grest difficulties (reference 16).

A study of the finite-difference expresslons of the lerge-deflection
theory reveals that a technlique can be developed by meens of which the
system of nonlinsar difference equatlons cen be sclved with repid
convergence by successive approximation by using Crout's method of
solving e system of linear simultaneous equatiions (reference 24). By
way of illustration, a squere plate under uniform normal pressure with
boundary conditions approximating the riveted sheot-siringer panel
is studled by this method. Nondimensional deflectlons and stresses are
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given under various normal pressures. The results are consistent with
Levy's approximate mumerical solution for ideal, simple supported plates
(reference 19) and Way's approximate golution for ideal clamped edges
(reference 15), end the center deflsctlons check closely with the test

results by Head end Sechler (reference 23) for the ratio pah/Eh as
large as 120. The deviation for the ratio pau/Eh larger than 120

is probably due to the approximations employed in the derivation of
the basic differential equation.

The procedure 1s quite general; it may be applied to solve the
problems of rectengular plates of any length-width retio with various
boundery conditions under elther normal pressure or combined normal
pressure and side thrust.

The present investigatlon was originally carried out under the
direction of Professor Joseph S. Newell at the Daniel Guggenhelm
Aeronautical Laboratory of the Massachusetts Institute of Technology
and was completed at Brown University, under the gponsorship and with
the financlial support of the National Advisory Committee for Aeronautics,
whare the author was participating in the program for Advanced Instruction
and Research 1n Mechanics. The author was particularly fortunate to
receive frequent advice while working on this problem from Professor
Richard von Mises of Harvard University. The author is grateful to both
Professor Newell and Professor von Mises for their many valuable
suggestions.

SYMBOLS

a, b length and width of plate, respectively

h thickness of plate

X, ¥, 2 coordinates of a point in plate

w, v horizontel displacements of points in middle surface
in x- end y-directions, respectlvely (nond.imensione.
forms are ua/n®, va/nZ, respectively)

w deflection of middle surface from its initial plane
(nondimensionel form is w/h)

P normal load on plate per unit area (nondimensional
rorm is pe /EnY)

E, u Young's modulus and Poisson's ratio, respectively

En3
D flexural rigidity of plate
12(1 - u°)
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2. E L E
ax2 ay2
vuzail- all- L

)
$ —
axt a2 oyt
gy ' gy 'y Txy' membrane stresses in middle swrface (nondimensional
forms are oy 'a?/EhZ, cry'ae/Ehf, end Tm'ae/Ehe,
respectively)

ox", oy", Txy" extreme-fiber bending and shearing stresses
(nondimensional forms are o "a2/En, oy "s2 [ER®,
and Txy"aQ/Ehe, respectively)

membranse strains in middle surface (nondimensioneal
forms are ex'aa/hg, ey'ag/hg, and 73@"8’2/112’
respectively)
ex’y ey" , 73%’" extreme-fiber bending and shearing strains
(nondimensional forms are ey "a2/h2, ey"ae/he,
and 73%’"&2/112’ respectively)

F stress function (nondimensional form is F/Eh2)

A, Ag, cee, A" first-, second-, ..., to nth-order differences,
respectively

Ay by first-order differences in x- and y-directions,
respectively

FUNDAMENTAL DIFFERENTIAL EQUATIONS

The thickness of the plate 1s assumed small compared with its other
dimensions. The middle plane of the plate is taken to coincide with the
Xy-plane of the coordinate system and to be a plane of elastic symmetry.
After bending, the points of the middle plane are displaced and lie
on some surface which is called the middle surface of the plate. The
displacement of & point of the middle plame in the direction of
the z-axis w 1s called the deflection of the gilven point of the plate.

Consider the case 1n which the deflections are large in comparison
with the thickness of the plate but, at the same time, are small enough
to Justify the following assumptions:
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1. Lines normel to the middle surface before defcrmation remain
nornel to the middle surface after deformation.

2. The normal stress o, perpendicular to the faces of the plate
is negligible in comparison with the other normal stresses.

In order to investigate the state of strein In a bent plate, 1t
is supposed that the middle gurface is actually deformed and that
the deflecticns ere no longer small in comparison with the thickness
of the plate bul are still small as compared with the other dimensions.

Under these essumptions, the following fundemental partial

differential equations governing the deformation of thin plates cen be
derived from the compatibility and equilibrium conditions:

3 M ot L —Ca%DE 32y 92
=y p—=— + — =& - —

]

qu %< Bye Byh ) ox d3x2 ay27
sy, ot v g p (P Py P
e o2 Tk TDTD\GE 5 of x® Tax oy ax 3y
h3
where D = —  the median-fiber strosscs are
12(1 - ua)
N
X 2
ay
s o OF
v ax®
\ 3°F
T = -
Xy ox Jy



y_ b a 2(1 +p) °F
y E ox Jy

The extreme-fiber bending and shearing stresses are

o Eh daw %y
T T - @)\a2 TR

n Eh w aaf>
_En e u

v 2(1 - u?) ayz

__En _ Pw
Xy 2(1 + u) ox dy

These expressions can be made nondimensional by writing

I _ X
Fl__heE xl_a
w'=% V'=£

L 2
R
Eh

where a 1is the smaller side of the rectangular plate.

The differential equations then become

3! L o2 Ay _<52w' 2 2t Ry
dy

ax'[* eax.e ayl2 + ay.l’-l- B dx 12 ay|2

- N, h,

Yt o B B0 ey a0 - 2) r Pw
Ox ! 3x 12 5y'2 ayl ay'2 ax|2

Pre Bt 37! 82W'>
+ -
3 2 ay:Q ' dyt ' dy!

NACA TN No. 1k25
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If 2 = 0.1, which value is characteristic of aluminum alloys, and
the primes are dropped, the partial differential equations in nondimensional

form are
2
ahF+2 2'F +aﬁ=gx_a__%>/_§?l’§i‘ (1)
w a0t /) wR
4 L " o
Sw , , 0¥ O¥ _ 10.8p + 10.8 O v

o TR o T 52 ox2

d°F d°w 3°F  d%w

== -2 — 2
"2 P oy x oy (2)

The nondimensional median-fiber stresses are

gx| = Q?I 7
5y2
, _ OF
oE o
T Ve -_a_e.g_
J
end the nondimensional median-fiber strains are
'\
x = H
ayQ 312
- - ) g
€' = il ugy-é (1)
2
F
Y o -2(1 + p)
= 3y
J

The nondimensional extreme-fiber pending and shearing stresses are
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R S - afx_«)

o = - s
oo - @ \&2 MR
ro_ . 1 ée._‘.‘r ai.w 5
% = 2(1 - 12) \&y2 =2 7 (5)
" 1 3w
T = -
Xy 2(1 + u) Ox dy J

FORMULATION OF BOUNDARY CONDITIONS

The governing differential equations are 2 fourth-order simul-
taneous partial differential equations 1in two variables. In order to
obtain a unique solution in the case of rectangular pletes, there must
be four given boundary conditions et each edge.

Before proceeding to the actual case, two theoretical beoundary
conditions may be mentioned:

1. Simply supported plates, that is, plates having edges that can
rotate freely ebout the supvorts and can move freely along the supports

2. Clamped. or built-in plates, that is, pletes having edges that
are clamped rigldly egainst rotetion about the supports end at the same
time are prevented from having any displacements along the supports

Actually, it is to be expected that neither of these conditions will
be fulfilled exactly in a structure.

The bending problem will be considered next, in which the bottom
plating of a seaplane is to be studied. The behavicr of the sheet
approximates that of an infinite shoot supported on a homogensous
elastic network with rectangular fields of the samo rigidity as the
supporting framework of the scaplane.

Becausc of the symmetry of the rectangular ficlds, the displacement
in the plane of the sheet and the slope of the sheet relative to the
vlane of the network must be zero whorever the cheet vasses over the
center line of each supporting beam. Each rectenguler field will
therefore behave as s rectangular plate clamped eleng its Tour edges on
supports that are rigid enough in the plens of the shest to prevent
their displacement in that planc. At the seme time these supports must
have a rigidity normel to the plane of the cheet equal to that of
the actuval supports in the flying-boat bottou.
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The rigidity of the supports will lie somewhere between the
unattainable extremes of zero rigidity and infinite rigidity. The
extreme of infinite rigidity normal to the plene of the sheet is
one that may be approximated in actual designs. It can be shown that
the stress distribution in such a fixed-edge plate will, in most cases,
be less favorable than the stress distribution in the elestic-edge
plate. The strength of plates obtained from the theory will therefore
be on the safe side if applied in flying-boat design. Reference might
be made in this connection to a paver by Mesnager (reference 25), in
which it is shown that a rectangular plate with elastic edges of certain
flexibility will be less highly stressed than a clamped-edge plate. This
difference in stress may alsc be clearly seen by comparing the extreme-
fiber-stress calculations by Levy (reference 19) and Way (reference 15)
for simply supported plates and clamped plates.

The impact pressure on a flying-boat bottom in actual cases,
however, 1s not even approximately uniform over a portion of the sheet
covering several rectangular fields. Usually one rectangular panel of
the bottom plating would resist a higher impact pressure than the
surrounding panels, and the sheet 1s supported on beams of torsional
stiffness insufficlent to develop large moments elong the edges. The
high bending stresses at the edges characteristic of rigidly clamped
plates would then be absent. In order to approximate this condition,
the plate may be assumed to be simply supported so that it 1s free to
rotate about the supports. At the same time the rlveted jJolnts prevent
it from moving in the plane of the plate along and perpendicular to the
supports. According to the same considerations as in the case of rigidly
clamped edges, the result would be on the cafe slde. Thls case has
never before becn discussed and the study of such a problem seoms to
be of importance.

For the combined bending and buckling problems the same consider-
ations will hold. It is evident, however, that as soon as the side
thrust is applied, there are displacements perpendicular to the
supported edges in the plane of the plate. Gell (reference 26) has
found that a stiffener attached to a flat sheot cerrying a compressive
load contributed approximately the same elastic support to the sheet
as was required to give a simply supported edge (soe also reference 20,
p. 327). In combined bending and compression probloms, therefore, it
seems also important to study the ideal simply supported plates. The
analytical expressions for these boundary conditlons are Formulated in
the following discusslon.

Simply Supported Edge

If the edge y = O of the plate is simply supported, the deflection w
along this edge must be zero. At the same time this cdge can rotate freely

with respect to the x-axis; that 1s, thers 1s no bending moment M%
along thils edge. In this case, the analytical formulation of the hysilcal

boundary conditiocns is
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= 325 (6)
y=o

Similarly, if the edge x = 0 of the plate is simply supported, the
boundary conditions are

|
(@)

(Wxo =0
By,
ox® ay x—O

Since w =0 along y =0, Ow/dx and aaw/&x must be zero
also. The boundary conditions can therefore be written as

(W)y=0 =0

<?2w i (7)
3750

Similarly, on the edge x = 0

s

(Wxo =0
/5?> -0

\ox2 x=0

If the plate has ideal simply supported edges it must be free to
move along the supported edges in the plane cof the plate; that 1s, the

shearing Sureus along the edges in the plane of the plate is zero

<T > -
y-o

<TW ->po ;

]
o

|
@)
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<82F> ~
ox Jdy =0

r
ox dy 20

One more boundary condition 1s required to solve the plate problems
uniquely, and this may be obtained by specifying either the normal
stresses or the displacements along the edges.

or

|
O

|
@]

For a plate having zero-edge compression, the normal stresses along
the edges are zero. That 1ls,

or -
(@
ay x::O L
(8)
X2/ 0
The strain in the median plane 1s
du l/3w>2
1 22 s =
x T & QK\BX
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Therefore

2
@3_6'__],-5)_’
dx x 2 \9x
2
e'..-l'@f
¥ 2 \9y
end the displacement of the edges in the x-direction is

u = 6'-.1/..5...‘(2:[&](
L[;'=Consta‘nt-—x 2\ox/

A
Jy

while the displacement of the edges in the y-direction is
NN
v = Gy' - 'l §y> Jd;‘/'
x=Constant GV,

The sddition of side thrust may be expressed in terms of the
change in displacemsnt of the edges.

If ey ' end ey' are expressed in terms of the stress function F,

-

2
v > “"5’%‘13‘:) ax
\Jy:Constant | Oy Ox" ~

N -

1 7 2
th:Const&nt ax2 aya 2\

Clamped or Built-In Edge

If an edge of a plate 1s clamped, the deflection along this edge
is zero, and the plane tangent to the deflected middle surface along this
edge coincides with the initlal position of the middle plane of the plate.
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If the x-axis coincides with the clamped edge, the boundary
conditions are
_\

(W)ymo = © L

Gl
~

If the y-axis coilncides with the clamped edge, the boundary
conditions are

(10)

(Wzo = ©

&~

If the edge is clamped rigidly against any displacement along its
support, the strain in the median fibers must be zero along that edge.

The boundary conditions are
' =0
(y )x-o

C‘>y-o "°

or

0 i A WY
ox? pa-‘fa x=0
% F (u)
a—— - —— =
ay2 ua’:a)yso °
J

The one additional condition required is again furnished by
specifying the displacements along the edges as in equation (9).
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Riveted Panel with Normal Pressure Greeter then That of

Surrounding Panels

The boundary conditions which would approximate this situation
are, if y =0 1s one of the edges,

‘N
(W0 =0
aiv) o
ayzyao
& PR\ > (12)
s_y.é-ugx—eyﬂ_o
Pr_ % 1 WV,
x=Constant [312 uayz 2 <a¥> dy =0
J

The first two expressions are those of simply supported edges,
the third one glves the condition of zero strain along the supports,
and the last one specifies that the displacement along the edge is zero.

REVIEW OF PREVIOUS WORK

The large-deflection theory of flat plates is given by A. Foppl
(reference 1), and the difficulty of solving the nonlinear equations
has been noted by Theodore von Kermen (reference 2). The earliest
attempt to deal with these differential equations was , perhaps, made
by H. Hencky (references 3 and 4), who devised an approximate method
of solution for circular and square plates when the deflection is very
large, the bending stiffness being then negligible. Following the
seme procedure, Kaiser (reference 5) solved the case of a gimply supported
rlate with zero edge compression under laterel loading. His theoretical
result checked closely with hls experimental data.

In the case of circular plates with large deflections, because of
the radial symmetry, the two fundamental partial differential equations
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which contain the linsar biharmonic differential operator and quadratic
terms in the second derivatives can be reduced to a pair of ordinary
nonlinear differential equations, each of the second order. For both
the bending and the buckling problems, exact golutions are avallable
(references 8 to 12). The bending problem has been solved approximately
by Nedai (reference 6) and Timoshenko (reference 7) and exactly by

Way (reference B8) when the plate is under lateral pressure and edge
moment. Way gave a power-serles solution for & rather large range of
applied load. The buckling problem has been solved by Federhofer
(reference 9) and Friedrichs and Stoker (references 10 to 12). Federhofer
gave the solution for both simply supported and clamped edges which
ylelds accurate results up to values of N of about 1.25, where N 1is
the ratio of the pressure applied at the edge to the lowest critical
or Euler's pressure at which the buckling Just begins. Friedrichs

and Stoker gave a complete solution for the simply supported circular
plate for K up to infinity. To cover this range, they employ three
mothods. Each of the three methods 1s sultable for a particular range
of valuss of N: namely, the perturbation method for low N, the
power-gseries method for intermediats N, and the asymptotic solutlon
for N approaching infinity. There is no solution, however, for

the case of circular plates under combined lateral pressure and edge
thrust.

The exact solution for a thin, infinitely long, rectangular
strip with clamped or simply supported edges was obtained by Boobnoff
and Timoshenko (references 13 and 27), and the other cases were discussed
by Prescott (reference 14), Way (reference 15), Green and Southwell
(reference 16), Levy (references 17 and 19), and Levy and Greenmen
(reference 18).

Prescott glves an approximate gsolution for the simply supported
plate with no edge displacement; however, Prescott's approximation
is rather rough. Way presented a better approximate solution for the
clamped plates by using the Ritz energy method. Keiser (reference 5)
trensformed the differential equations into finite-difference equations
and solved them by the trial-and-error method. Green and Southwell
extended the finite-difference study into finer divisions and solved
the difference equations by means of the relaxation method.

levy (reference 19) gives a general solution for simply supported
plates, and numerical solutions are given for square and rectangular
plates with a width-span ratio of 3 to 1 under some combined lateral
and side loading conditions. Levy and Greenman (references 17 and 18)
extonded this solution for simply supported edges to clamped edges.
Their conditions are, however, limited to the case in which the edge
supports are assumed to clamp the plate rigidly against rotations and
displacements normal to the edge but to allow displacements parallel
to the edge. They presented a numerical solution for square and
rectangular plates with a width-span ratio of 3 to 1 under lateral
pressure.
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In summary the problem of rectangular plates with large deflections
has been solved by three methods: namely, the energy method, the finite-
difference-equations method, and the Fourler series method. These methods
are briefly outlined in the following paragraphs.

Energy Method

The method of attack used by Way (reference 15) is the Ritz
energy method. Expressions are assumed for the three displacements
in the form of algebraic polynomials satisfying the boundary conditions;
then, by means of minimizing the energy with respect to the coefficients,
a system of simulteneous equations is obtained, the solution of which
glves these coefficients.

The ensrgy expression for plates with large deflection is

2
v =\[1[\ (bagb -gw + 6 [%xz +uw® + vyg + vywyg

1 2 2 g w2
+ 0" v wB) 2 Uy Ty 4L

1l -p
2

+ (uy2 + 2uyv, + vx2 + 2uywxwy + QVxway)nl dx dy (13)

where u and v are the nondimensional horizontal displacements end w
Y
pa
is the nondimensional wvertical displacement, q = =, and the subscripts
16Dh
indicate partiel differentiation. In order that u, v, and w
satlsfy the boundary conditions for clamped odges, Way assumes (fig. 1):

~

]
i

(1 - x)(B2 - 72)x(bog + bopy? + bpgx? + b,x2y?)

vo= (1 - xB)(B - 32)yleng + eqay® + engx® + cppxyP) r (14)

1]

(1 - x)2(p? - ¥2)2(agy + aogy2 + &ong)
where B = g; u, Vv, W are posltive in the positive directions of X,
Yy, 2z, vrespectlively; and ay3, bij: €13j are numerical constants to be

determined later. For convenience, 1 i3 taken toc be the same as the
power of x, and ] that of y.

w

>
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When V is minimized with respect to the coefficients 8134,
by, and cy4, 11 simultaneous equations corresponding to the
11 constants, are obtained as follows:

_QL = 0: _QI_ = 0: ..QL =0 (15)
H = 0y =

Baoo 6&02 8&20

oV ) | ov ) <
— = 0; = 03 = 0; =0 (16)
aboo aho2 abeo ab22

_al_o. _B_Y__o. ﬂ_—o _al_._o (]_7)

= 0; = 05 = 0j =
g , %hp g Ocpy

These equations are not linear 1n the constants. The first three
equations (equation (15)) will contein terms of the third degree

in the a's. Equations (16) and (17) are linear in the b's and c's
and quadratic in the a's. Way solved equations (16) and (17) for b's
and c¢'s, respectively, in terms of a's and then substituted these
expressions in equation (15). There then are left three equations

of third degrse involving the a's alone. These were solved by Way
by successive approximations.

Way gives the numerical solutions for cases for which B =1,
1.5, and 2, for u = 0.3 up to q = 210. Since he assumsd the dis-
placements to be polynomials in x and ¥y of finite number of terms,
his solutions are essentially approximate. By comparing with Boobnoff's
exact solution for the infinite plate, Way estimated that the error of
his solution for B =2 1s about 10 percent on the conservative slde.
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Finite-Difference Methods of Solution

Kaiser writes the nondimensional Von Karmsn equations as follows:

N
2 2 2
V3 = _QEK_ . W v = -
S ox Oy x< é§§ &
VeF = S
F Fw PP P ¥y 2
o il ~ v I . R (18)
= =p -
12(1 - @) G
Vaw =M
S

and then transforms these five equations into finite-difference equations.
His procedure is to assume w's at all the rolints and then to sclve

for S's, F's, M's, and w's. If the calculated w's do not check
with the assumed ones, he asswms a new set of w's and repeats the
process. The work which this involves is very tedious. In fact, as

will be pointed out later, when the usual method of successive
approximations is used, the process is actually divergent. Kaiser

solved the simply supported square plate with zero edge compression

a
under a uniform lateral pressure of B 118.72. His numerical solutio:

N
Eh
checked with his experimental results with good accuracy .

Southwell and Green solved four examples of the problem by means
of a technique based on the relaxation method. The fundamental
requirements for use of the relaxation technlque are a simple finite-
difference pattern of the varisbles and a simple cxpression of the
boundary conditions. In using this, Southwell and Green expressed the
differential equations in terms of the displacements u, v, and w,
which then gave simple boundary conditions. Instead of using exact
relaxation patterns, they worked with the patterns which are given
by the linear terms of the differential equatlions end made corrections
from time to time, the nonlinear terms being corbined with the
"residuc.”
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%@f +%u<2~:§]+ L8 z@
IR TR H RGN T R
S

It 1s readlly seen that, in order tc obialn a simple expression
for the boundary conditions, not only 1s the nuwber of the partial
differential equations increesed frou two to three, but also the form
of the terms lnvolved becomss more complicated and the number of terms
is Increased. This technique proves very laborious in practice.

Equation (19), expressing conditions of equilibrium, could have
been derlved by minimizing the total potential energy V, which 1s
given by the expression

2
1V
ié 5= Il + Ip + I3 (20)
where
1
L =3 JFJQ%EQ) ax dy
I, = 3 el + o2+ cue e .+ 1o 6. ) dx dy
2 72 xx Yy Xyy ~n X
and

Iy = -a w dx dy

where a I1s the latleral loading.
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The relaxation technique consists first in assuming & set of
answers and then changing them according to the relsxation pattern
end bowndary conditions. To obtain a more rapld convergence, Southwell
and Green multiplied the given values of w by k eand substituted
them into the emsrgy expression to obtaln

12

v
T KT, + k“IQ + okl (21)

ey

which was then minimlzed wilth respect to k; that is, by setting

QI=O o}
X to give

KT, + uk312 - oy =0 (22)

From the third-order equation (equation (22)), k can be obtained and
a set of valueg for w which are closer to the true values can be
derived from veluss of k.

Fourier Series Methods of Solution

Levy end Greermman obtained general solutions of the rectangular
plates (fig. 2) under combined bending and side thrust with large
deflections by means of Fourier series. Thelr approach to these
problems is given in the followlng discussion.

Simply supported rectangular plates.- In order to satisfy the boundary
conditions, w 1s assumed to be glven by the Fourier serles

[ 00

- E E = iS4
w = wm,n gin m = sin n > (23)
n=1,2,3 n=1,2,3

The normal pressure mey be expressed as a Fourler series

0
pjo.8 ny
D, = __;_ g Pr,s sinr 2 sin s 3 (2b)

r=1,2,3 8=1,2,3
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For the compatibility equation to be satisfied, F must be glven by
D y hs! x?
N <SR A E E = ny
F . >+ b, q COS P g G058 Q4§ (25)
p=0,1,2 ¢=0,1,2

where Dx and f)y are constants equal to the average membrane pressure
in the x- and y-directions, respectively, and. where

E
Pp,q = 2 b gae(Bl+32+33+Bh+B5+B6+B7+BB+B9) (26)
@)
and
p-1 q-1 o :
— = = - - .2
B oS O [kle - ¥ - 0 - la - v 2l o gt
k=1 t=1
if q40 and p # 0.
By =0 if ¢g=0 or p = 0.
w -1 2
Bo=> > [kt(k +p)(a - t) +x(a - t)]“k,t“k+p,q-t
k=1 t=1
if q # 0.
BQ =0 if q = 0.
o g-1
2 2
B, = l:k+ kt(q - t) + (k + -t:lw
3 ;i; 2- (k + p)kt(q - t) + (k + p)(qa - t) Ic+p,tVk,q -t

if q#0 and p # 0.



ol NACA TN No. 1L25

p-1
B, =) i[k‘b(p - k) (t +q) + K2(t + q)ejwk,twp-k,w

k=1 t=1
if p # 0.
By =0 if p = 0.
p-l o
Bg =Z E [kt(t +a)(p - k) + K2t2]"k,t+q"’p—k,t
k=1 t=1

1f p#0 and q £o0.

B =0 1If p=0 or q =0.

Bg = ii [kt(k +p)(t +q) - K°(t + q>2:|“k,t“k+;;,t+q

k=1 t=l
if g # 0.
[} o0
; - 1247

B, Ect(t +q)(k + p) - K°t Yk, t+q k4D, t

k=1 t=1

1If q#0 and p # 0.

By=0 if p=0 or g =0.

[ 0
Bg = ZE l [kt(k +p)(t +q) - (k +,P)2(t + Q)Ejlwlﬁp,t"’k,“q

k=1 t=
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if q#0 and p # O,

Bg=0 1if p=0 or g =0.

- _ 2,2
By, _Z > I:(k +p)(t + @)kt - (k + p) t]Wk+p,t+qwk,t

k=1 t=1

if p # O.

jos}
1

0 if p = 0.

The equilibrium equation is satisfied if
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Dwr,s Tt s) - Pyltiy, T 35 " ByVr,e® 2

L r 8

ht 2
' na2p2 | Z Z (8 - )k - (r - K)t Pr-k,8-t"k, t
k=1 t=1

- i Z‘” [t(k +1r) - k(t + B)Jebk,twkﬂ',Hs
+ i 5: [(k +r)(t + 8) - kt]zbk,wswkw,t

0 Ld
‘ 2
k=1 t=0 ‘
© o 2
- Z Z [(t +8)k - (k+ 1)y Peer, t+a¥k ¢
k=l t=1
r 0 12
- Z Z I:tk +(r - x)(t + B)_J br-k,twk,t+s
k=1 t=0
Y o 2
+Z 2 [(t +8)k + (r - k)t Proic, t4a¥k, t
k=1 t=1

2
t)(k + ) + tk bk,s-t"k+r,t

+ '
N
[++]
— —1
o [}
. 1

2
t)k + t(k + r):l Picir, g4tV ¢ (27)
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When the lateral pressure is glven, p,. 4 can be determined.

Equation (27) represents a doubly infinite fémily of equations. In
each of the equations of the family, the coefficients by, , may be

b4

replaced by their values as given by equation (26). The resulting
equations will involve the known normal pressure coefficients Pr,s,

the cubes of the deflection coefficlents wp p, and the average

membrane pressures in the x- and the y-directions, ﬁx and D,
respectively. Values of P, and p, can be determined from {he
conditions that the plates are either subJjected to known edge compressions
or known edge displacements. The number of these equations 1is equal

to the number of unknown deflesctlon coefficients ¥m,ne

The procedure now is, with the known values of Pr s, to assume Wy 4
and to solve the other coefficients by successive approximation. However;
the work ilnvolved 1s tremendous, and it is very easy to make mistekes.

As illustrated by Levy in a relatively simple cage of a square plate,
1 six deflection coefficlents are used, then each equation contalns
60 third-order terms. And for each given applied normal pressure
these six 60-term, third-order equations must be solved by successive
approximations.

Clamped rectangular plates.- Levy and Greonman solved the case of the
clamped rectangular plate by assuming that the edges are clamped rigldly
against rotations and displacements normal to the edges but are permitted
to move freely parallel to ths edges.

The required edge moments my end my are replaced by an

auxillary pressure distribution pa(x,y) near the edges of the plate.
The auxlliary pressure can be expressed as a Fourler series as follows:

palx,y) = 2 —::-:xr sn = ) —E—;"s stn 3% (28)
r=l}3)5 S=l,3)5

By writing m, and my as Fourier series, where kg and k. are
coefficlents to be determinsd,

e < T
meZP ) eetn T
r=1,3,5
g (29)
2 %0 _
no= o > kol B
s=l;§,5
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Inserting equation (29) into equation (28) gives

o = =
Pa(x,y) =(l—;>p Z Z (rkg + sk,.) sin I:—E sin 8—3;1 (30)
r=1,3,5 8=1,3,5

On combining the auxiliary pressure pa(x,y) with the normal
pressure p,, equation (24), the following equation is obtained:

Pe(x,y) = Z Z Prg 8inr ? gin s ’-;-)Z (31)
r=1,2,3 8=1,2,3

where

2
Pr g = Gt) (rpky + spk.) + pr’s' (32)

Since the edge moments my and Iy have been replaced by the
auxiliery pressure distribution pa(x,y), the general solution for the

simply supported rectangular plate (equations (23) to (27)) can be
epplied to clamped plates, and the remaining problem is to determine
the values of ky; and k.. These values are obtained by use of the

boundary condition that the slope at the edges of the plate is zero.
Equating to zero the normal slopes along the edges gives

(=] o \

ow g nx
— = = W, i e
(ax>x=o,x=a 2 > Traam

m=1,3,5 n=1,3,5

> (33)

M 8
I8
o
b

&
»|8

G
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Equation (33) is equivalent to the set of egquatlons

(@
]

wl,l + 3Wl’3 + le,5 + e

O =w + 5 + aae
\3’1 + 3w3,3 ow

e
]

=
1

5,1 + 3w5’3 + 5w5,5 + ees

(34)

The deflaction coefficients wy , must now be solved from the
family of equationa (equation (27)) for tho linesar term in terms of the

Py

cubic terms and the pressure coefficients p,. . The expressicns

M
thus obtainsd are now substituted into equation (34), and the expressions

for pressure coefficlents p, g are obtained from equation (32).

£
Icr Wm’n

The

resulting family of equations’contains linear terms of pk,. and pkg

and the cubes of the deflectlon functions ¥y p.

The method of obtaining the required valuss of the deflection

coefficisnts wm,n and the edge-moment coefficisnis pi,. and hpk
W
consists in assuming valuss for —%*} and then solving for EEZ’
Eh

Wy
—Eii, «evy, Pkg, DKy ... by succesgive approximations from the
simultansous equations. The procsdure is even more laborious than

3

that

for simply supported plates. Two numerical solutions are given, namely
solutions of the bending vproblem for a square plate and for a rectangular

plate with length-width ratio of 1.5.

FINITE-DIFFERENCS IQUATIONS OF BOUNDARY -VALUZ PROBLEMS

Some fundamental concevts about the finite-difference approxi
may be worthy of mentlon belore the partial differential equations
converted into finite-difference sxoreszions.

Tt is asswsed that a function f£(x) of the veriable x 1is d
frr squidistant values of x. If X is one of the values for whi
is defined, f(x) 1s also dsfinsd for the valuwss of x + kX XX, W

mation
are

efin=d
ch f(x)
here Ax

is the interval betwson two successive values of x and k 1is an integer.

For the sake of simplicity, the valus of ths function y = f{x) f
x + kAXx may be written as:

flx + k &x) = Jx+kix

or
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The first difference or the difference of the first order Ay,

of y at the point x 1is now defined as the increment of the value
of y obtained 1n going from x to x + Ax:

&Yy = Yxarx ~ Ix

It 1s seen that the Incremsnt in the direction of Increasing x has
been arbitrarily chosen; Ay, could also be defined by the difference
Yx - ¥x-Ax- Thnls process 1s continued and the increment of the first

difference obtalned in going from x to x + Ax 1s called the
differgnce of sscond order of y at x; that is,

y
"
k
&
b
i
N
<

In general, the difference of order n 1s definsd by

n 1

n- n-
DYy =0 "Yxapnx - O lyx

If Ax 1s chosen equal to unity,

YxinAx = Yx4n

By the use of this notation, the sequence of differences becomes
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Nx = Jyu1 " Yy

A%’ =y - 2y

X+2 x+1 * yx

x T %43 T Wypo T Wy Ty

n 1
n r N
Ny, = g_ (-1) r———"""'(n Y Yxin-r (35)
r=0 : ‘

In many physical problems only differences of even order occur.
In such cases 1t is more convenient to define the differences

A?myx in the following way:

2
AVy =3x-1 -~ Ny * Iz

2 .
That 18, Ayy 1s the increment of the first difference taken on the
right- and left-hand sides of the point x. In goneral,

om -
2Ty = AEQ@ %Q (36)

In this case a difference of order 2m represents a linear expression
in yx_m, yI'IIH'l’ reey, yx’ see, yx+m"l, yx_'m'

In replacing partiel derivatives by the finite-difference
expressions, the differences corresponding to the changes of both the
coordinates x and y are considered. Wi1th the notations as shown
in figure 3, the first differences at a point Ay ,, in the x- and
the y-directions are, respectively: ?

A"m,n = ¥m+l,n T Ymon

S¥mon = ¥mn+l T "mon
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The three kinds of second differences are as follows:

%Iwm n

2yy¥m,n

Axy¥m,n

The three kinds

Amcx:::"m,n

Xyyyy*m,n

W
xXXyy m,n

= Axgw W

=¥miln T mn T Ype1n
2
= AW
m,n
wm,n+l - me,n + “m,n-1 > (37)

= OV m+l,n “ANVpn
Gm+l ,n+l " Ymtl n) (m,n+l

L]
V1 ,n+l m+l,n

n,2)

W + W
m,n+l m,n

J

of fourth differences, which will be used later, are:

\
L
= \J
m,n
= "mip,n " Mo a 6'wm,n - W30t Vnoon
y
= A.Y W
= ¥m,n+e T b'wm,n+l + 6"'m,n - me,n-l * ¥ n-o f (38)
= Axyzwm,n
Vm+l,n+l T 2"’m+l,n * wm+l,n-l B 2wm,n+1 * hwm,n
B wm,n-l + wm-l,n+1 - me—l,n * Wp-1,n-1
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Pertial derivatives may be approximated by finite differences as
follows:
"\
w oA w ¥
x ox’ oy &y
Lo AV Py A
2 W
R 7 (39)
dx 9y Ox Ay
L
e v v 4
Bhw - %2"
A
When these relations are used, the fundamental partial differential
equations (1) and (2) may be replaced by the following difference
equatlons: _
2 2
S B N e A
Ax Ax2 Ay? oyt Ax Ay, PN
L 2 Y 2r Ay
A"hw,LgA’Q’w +Ayw=1o.8p+1o.8 SOy g (ko)
Ax Al ME AY“ 2 Axe

JAEEAY T G

P ay? Ox by Ox
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If Ax =/Ay =Al, and the relations (37) and (38) are used,
equation (40) may be written as

+ EOFm,n B aFm--l_,n + Fm--2‘,n * Fponip - m,n+l

- &F

F m+l,n

mn+2,n

mn-1 * Fm,n-2 * Pl ne1l + Foeg n-1 ¥ Fpog p * Fp-1,n-1

2
= Gm+1’n+1 " ¥miln T Ymon+l t Vm,xD - Gm-e—l,n " pon * wm-l,r)

X Gm’m'l - 2wy o+ ‘"'m,n-—l) (k1)
and
"mip,n " Bwm+1,n + 20wy p " 8wm--l,n P ¥pon * ¥ nip " 8"'m‘,n+1

" “"m,n-1 + wm,n-z + me+1,n+1 + 2"m+l,n-l + me-l,n+l * me-l,n-l

L
= 10.8(A1) p + 10.8 {@m,nﬂ - erm,n + Fm’n_l>
X Gm+l,n " ¥y on * wm-l,n) + @mﬂ,n ~ eyt Fm-l,LD
X Gm,m-l T gt wm,n-]> - 2€m+l,n+l B Fm+ZL,n " Fnone * Fm,rD

X Gm+l,n+l “¥ml,n T ¥mn4 Y, )] (k2)

In actually writing these equations for each net point, it is more
convenient to employ the finite-difference pattern or so-called
relaxation pattern as shown in figure L rather than to substitute
directly into equations (41) and (42).

In terms of finite differences, the boundery conditions can be
formulated in the manner discussed in the following peragraphs.
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Simply Supported Edge

The boundary conditions for the simply supported edge y = = (0 are:

(w)y=0 =

Q‘ >y—o
and, for plates with zero edge compression:

&)

or, for plates with zero or known edge displacements:

Jx[§- g'%@gﬂh”

Iet n =0 denote the edge points along y = 0. The finite-
difference expressions for the boundary condltlons are:

Ym,0 = 0 w
. - (43)
S
J
=0
<%F>m,0
5 > (4k)
F =
<Ax >m,0 °
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for plates with zero edge compression and

k-1
R TN 0s)

n=0

where n =0 and n = k denote points along the two edges y = 0 and
Yy =Db, respectively, and 1 denotes any point along the line x = Constant
in the plate .

Clamped Edge
The boundary conditions for the clamped edge y = O axe:

(o™

Fr_ I
3y I.1312;”-0

"L WY,
RER-SGICE

With the same notations as were used for the simply supported edges,
the finite-difference expressions ere:
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Vp o =0 )
(Ayw)m,o =0
(AS’BF ) “Ax@m,o =0 g

Riveted Pansl with Normal Pressure Greater then That of
Surrounding Parnels-

The boundery conditions which approximete thls cese are:

if y =0 18 ons of the edges.

Expressed in terms of finite differences, these conditions
become :

37

(46)
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Vm,o = 0

(Ay% m,0 =0

(AvaF - “Axe%,o =0 ' (47)
k-1

nZ_o[%?F T - %myw)?} inO

J

The boundery-value problem which approximates the riveted sheet-
stringer panel subJjected to uniform normel pressure higher than that
of the swrrounding penels may be formulated in terms of finite
differences,

In order to start with e simpler case, the square flat plate will
be discussed, since, on account of symmetry, only one-eighth of the
plate need be studied.

The finite-difference approximetion of eny differentlial equation
requires that every point in the damain to which the equation applies
must satlsfy the initial differential equation. If the points to be
teken are Infinite in number, the solution of the difference equations

is the exact solution of the corresponding differential equations. But
the points to be taken are finite in number, the solution will be

approximate, and the degree of approximation will increase as the
number of points taken is reduced.

Since the diagonals of a square plate are axes of symmstry, if
the boundary condltions along the four sides axe the seme, wy . =W, 4
> 2

and Gi,k =€p 4o The conditions for zero edge displacements may
2
be put into different forms. Since

[ fon - [1@ oo

Y

2
v [

then

[}
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Now,
e s, o XE_FF Fr_ Fr
FF ¥
= + ) (1 - )
n ¥t
=\VF) (1 - w)
2 2
Note that V- = -l + é---. Equation (48) then bscomes
ax2 ay2

@1,0 + 2<V2F>i,1 + oo + 26721‘)1’ + eee + 2<V2F,i k-1

k-1
* 6’2@1,1: e - il Z Gi:n*‘l ) "1:n>2 ()
n

This simplification 1s nct necessary, but it is useful in applying the
relaxatlion method.

n = 1.- On referring to figure 5, 1t 1s seer that points 1' and 2'
are fictitious polnts placed outside the plate in order to give a
better approximetion to the boundary conditions.

By the use of p€ = 0.1 or p = 0.316028 for elurinur alloy,
the compatibllity equation becomes

20F, - 32F; + &, + 4F) = K, (£0)

where
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Then the equilibrium equation is

20wy - 32wy + By + Lwyo =p' + 10.8 ?(2Fl - QFO)(Ewl - 2wp)

- 2(w2 - 2wy + wo)(F2 - 2F; + FO{] (51)

where p' = 12(1 - pg)(Al)hp = 0.675p, sirce Al =

N1

The boundery conditions are:

(&) wy =0, wy =0

(b) wio - 2wy +Wg =0

L1}
(@]

(a) (bFy - W) + (Fg + 2F, + Fy0 = UFy) =8,

2 (ug - wo)®

now determines the values of w uniquely and the values ¢f F to within
an unknown constent. Since the actual value of the constant is irrelevant,
it may be defined by letting F, = O.

where Sl = (wl - wo)2 The boundary-value protlem

Solving w,i, wyr and Fy. from the boundary condltions gives
the following result:

Wll = -‘WO
W21 = "‘wl =0
Fyr = -F, + 2(1 - u)Fl
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When these values are substituted into equations (50), (51), and (4),
the resulting equations are

_ 2
16F, - 26.520824F, = -3w_
l6wo =p' + h3.2woFo ’ (52)
6 %"
-LF 1. LYF, = ————
o + 130T = e

J

The eight or nine significant figures 1n these equations are due to
computations made with a computing machine having 10 columns. In order
to get satlsfactory results in subsequent computations it is convenlent
to retaln a number of filgures beyond those normally considered Justi-
fiable because of the precislon of the basic data.

n = 2.- With reference to figure 6, points 3', L', and 5' are again
fictitious points. The compatibility equations are:

20F - 32F. + 8F_ + LF =K
0 1 2 3~ 0

-8F, + 25F, - 16F, - 8F3 + 6F) + F3‘ = K, > (53)

2F - 16F_ + 22F + LF - 16F + 2F_ + 2F , =K
0 1 2 3 4 5 4 2

where K,, K;, and K, are equal to (AXyW>2 - Axew Ay2w -at points O,
l, and 2, respectively.
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The equilibrium condlitlons are:
20wy - 32wy + 8w2 + 1+w3
=p' + 21.6 [(a,o' + BO')(wl -wg) - 7'(wg - 2wy + wg)]

-8y + 25w; = 16'w'2 - 8wz + 6wy + w3

1
el
+

10'8 q’l’(?"e - 2w1) + Bl'(WO - 2Wl + W3)
;o (54)

271'(wlL - W3 - Wy + wl):]

2wy - lel + 22wo + hw3 - l6w1+ + 2W5 + 2W)+|

=p' + 10.8 [@2' + BQGL; - 2y +"’D - 272'65 T vy +w2>]

J

where a', B', 7' are AxaF, AyzF, AWF at the respective points
indicated by the subscripts.

The conditions for zero edge displacements are:

'2F0-3Fl+ll—F2 ‘2F3+2F)++F3| =511
. (55)

where

1 P 2 2
o) = e |0 %0 b )|

1 2 2
% = 53mees (Mo M)t O - ve) J
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The boundary conditions are:
(a)w3=o, wy =0, w5 = 0
(b) V3l - 2"’3 +Vl= (0}
Wt - 2wy + Wy =0

w5' -2W5+Vu=0

(c) Fy - oF3 + F u(ar, - 2F3) =0

3I

F, - 2F), + F) p(F5 -Fy + F3) =0

Fh-2F5+F5| =0

For the same reason as explained in the case of n =1, let Fg = 0.
Solution of the boundary-conditions equations gives

(a) w3c = W,

Wyt = Mo
w5y =0
(6) F5| = "Fu
Foo= 2F) + p(F3 - 2F)) - F,
Fau = oF3 + n(2Fy, - 2F3) - F
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The combination of the foregoing equations (d) and (e) with equations (53),
(54), and (55) gives

\
20F0 -32Fl+85‘2+hF3=K0
-8F, + 24Fy - 16F, - 6.632U56F3 + 6.632456F), = K

-2F - 4Fy + UF, - 0.632U56F3 + 2.632456F) = S

Fy - 6F2 + 2.316228F3 + 1.3675thh = S,

and
- h
[20 + 21.6(ay" + By + 70'11 wo
- [32 + 21.6(ay' + By' + 270'i|wl + (8 + 21.670")w, = p’
-(8 +10.88; ")wy + [Qh +21.6(aq " + By " + 71')]wl
- i}6 +12.6(ay " + 7, ")]wy = p' s (57)
2wy - ;}6 + 10.8(a,' + 32'5 Wy
+ ;?o +21.6(ay’ + B, + 72'§]w2 - p'
J
where p' = 12(1 - pa)(am)“p = 0.0421875p, since Al = %.
n = 3.- Reference is made to figure 7 and to the fact that points 6',

7', 8', and 9' are fictitious points for reasons explained in the case
n = 1; then the compatibility equations are as follows:
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20Fg - 32F) + 8Fp + UF3 = K,
8o +25F) - 16F, - 8F3 + OF), + Fg = K

2FO-16F1+22F2+1+F3-16Fh+2F5+2F—(=I%

8
Fo-8Fl+lu.«"2+20F3-16be+21«“5-&'6+luti‘7+F6,=K3ﬁ (59)
3Fl'8F2"&‘3+23F)+"&‘5+2F6'&7‘7+3F‘8+F71 =K)+
2Fp + 2F3 -l6F,++20F5+l+F7 '16F8+2F9+9F8' = K5
J

where KX,, K, K., K,, and K,3 are equal to [@sz -AxgwAyzw]

at points 0, 1, 2, 3, 4, and 5, respectively.
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The equilibrium equations are:

20wy - 32wy + 8w2 + 1+w3 =p' + 21.6[(00' + BO')(wl - wo)
= 70'(w0 = 2wl + WE)-]

-8w0+25w1-16w2-8w3+6wh

=p'+ 10'8[?"'1'("'2 - wp) + B (g - 2w+ wg)
- 279wy - Wy - w3+ wh)]
vy - 16wy + 22w, + bwy - 16w, + 2wy

=p' + 10.8Ea.2' + 32') (wy - 2wy + W) - 272’(w2 - 2wy, + w5)jl

L -8wl+1+w2+20w3 -16u1++2w5-8w6+1&w7+w6.
=p' + 10.81?3'(2‘.-“_ - 2w3) + B3'(wl - 2wy + wg)
- 2r3'(wg - wy - Vg + W7):|
3wy - Bw, ’8"3*'23‘;4'&’5*2"6'8"7*3"8*“7'
=p'+ 10.8[%'(»:3 - 2wy + wWg) + By'(wp - 20y + W)
- 27", = w5 - w7 + vg)]
2w, + 2w3 - 16w, + 20W5 + uw7 - 16wg + 2wy + 2wg:

=p' + 10.8[(05' + 35")(Wh - 2w5 + w8) - 275'(w5 - 2wg + w9)1

L7

F (59)
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where a', B', and 7' are AIQF, AyQF, F at the respective points
corresponding to the subscripts, and p' = 12(1 - ug)(Al)hp = 0.00833333p,
since Al = %.

The condltions for zero edge displacements ars:

\
FO—hF2+3F3-3F4+2F5+F6-2F7+F8+F7,=82 F (60)
F) + 2F, - 2F3 - 2F), - 5F5 + Fg + 3F, + Fg + Fg = S5

where

» k-1 5
SO, T
i l'“mzo m+l,i m,i

The boundery conditions are:



NACA TN No. 1425

(C) F3 - 2F6 + F6|

Solutions of

(a)

(e)

where F

9
Of n'-'—'l.

Fl#-

F5 - 2F8+F8'

For
9

'H(Q-F’7'2F6)=O
2F7+F7. -p(F8+F6-2F7) =0
-p.(F9+F7—2F8) =0

- 2F 0

9+F8

boundary-conditions equations give

=—‘w)+

=-'w5

= -Fy + 1.3675“hF6 + 0-632h56F7

= -Fu + 1.367544F, + 0.316228:F6 + 0.3162281?8

T

= -F

5 + 1.36751+1+F8 + 0.316228F7

= -Fg

= 0 135 agsumed for the same reason as explalned 1n ths cage

L9
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Combination of the foregoing equations glves:

20F, - 32F) + &, + bF; = K,
'85'0 + 2%‘1 - 16F2 - 8F3 + 6Fu +F6 ==K1
2Fo - 16F) + 22F, + LFy - 16F) + Fg + 2F; = K,

Fo - 8y + bF, + 185 - 16F), + oF5 - 6.632U56F, + b .632456F, = Ky

3F) - &, - &5 + 22F) - & + 2.316228 - 6.632456F;

5
+ 3.316228Fg = Ky,

2F, + 2F3 - 16F) + 1&s + 4.632456F, - 13.264912Fg = K5

2Fg - 2F; + 4F, - GFy + UF) - 0.632U56Fg + 2.632456F, = 8,

Fo - WFp + 3F3 - UF), + 2Fs5 + 1.316028F¢ - 0.632456F,

+ 1.316228Fg = S,

Fy + 2Fp - 2F3 - 2F) - 6F + Fg + 3.316228F, + L.3675UkFg = S, //)

L (61)
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and

j

[20 + 21.6(ag" + By’ + 70'3"0 - [}2 + 21.6(ay" + Bo' + 7'0')Jwl
+ (8 + 21.67o>w2 + )+w3 =p!
- (8 + 10.8Bl>wo + [25 + 21.6(0,1' + Byt + 7lli}vl
- [16 + 21.6(a.l' + 71'EI Wp - [8 +10.8(8y " + 271'ﬂ"’3
+ (6 + 21.671')wh = p!
2wy - [16 + 10.8(a.2' + 62');]w1 + l:22 + 21.6(a," + By + 72'):]w2
+ lm3 - EL6 + 10.8(a.2' + [32' + h72'ﬂ“1+
+ (2 + 21-672')w5 = p'
Vo - (8 + 10.8{33>wl + lwg + [19 + 21.6(q3v + ;33' + 73-)Jw3
- [16 + 21.6(03' + 73'ﬂwu + 25 = p'
3wy - (8 + ].0.8[31")112 - (8 + 10.%')w3
+ [22 + 21.6(au' + B)" + 74')]"'& - [8 + 10.8(q1+' +27,") ws = p'

2w2 + 2w3 - [16 + 10.8(0.5' + 35')]w,+

51

>(62)

+ [18 + 2106(0-5' + Bs' + 75'):]W5 = p'
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METHOD OF SUCCESSIVE APPROXIMATIONS

Explanation

After the boundary-value problems are oxpressed in terms of
finite-difference equations, two sets of simultameous equations are
obtained. The flrst set consists of the compatibility equations and the
equatlons specifylng the condition of zero edge displacements. These
equations contaln linear terms of the nondimensional streass functlon F
and the second-order terms of the nondimensional deflection w, and
are of the form

OOFO + cOlFl + «ee + C Fn

8
&

clOFo + CllFl + ees + ClnFn = Kl

(63)

171

t | ] —
clOFO+c F +'“+°J_nFn“Sl

where Ki = (A,qw 2 (Ax%a (Ayzva at points O, 1, and so forth,

corresponding to the subscripts of K; Si l / (Axw> m, i)
- p. —

and cCny, Cqpy ¢+, ©'39, ©'11, +-- are given consta.nts.

The second set consists of the equilibrium equations , which contain
the linear terms of w with coefficlents involving linear terms in F
and are of the form

Goo + Doo%'o *+ DooR 0 + b 00?7 '9 WO
+ 601 + by’ + 'g1BY + DYny? '9"1
+ e + G.On + Dop@'a + d'opB'o + b"Ony'an =p'

S (64)
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vhere a' =24°F, B'=ASF, 7' =04 F atpoints 0, 1, . . .
corresponding to the subscripts of a', B', 7', and a5y, 801, - -
boo, bol, LI Y b'oo, b'Ol7 e o ey bnoo, b"Ol’ ¢ s e are 8iVBn
constants.

‘y

If a sot of values of w 1s assumed at each of the net polnts
and the values of K; and Sy are computed, equation (63) becomes

a gystem of linear simultansous equations in F and can therefore
be solved exactly by Crout's method for solving systems of linear
similtansous equations (reference 24). After the valuss of F have
been computed from equation (63), values of a', B', end 7' can
be found without any difficulty. Then equation (64) becomes another
system of linsar simulteneous equations and may be solved exactly by
Crout's method again. If the values of w found from equation (6k4)
check with those assumed, the problem is campletely solved.

In most cases, however, the values of w will not check with
each other. By following the usual method of successive approximations,
the computed w's will now replace the assumed ones and the cycle of
computations will be repeated. If the value of w at the end of the
cycle still does not check with the one assumed at the beginning of the
cycle, another cycle will be performed. In this problem, however, 1if
the ordinary method were followed, the results would be found to diverge,
oscillating to infinity. Therefore, a speclel procedure must be devised
to make the process converge.

A simple case will be examined first. In the boundary-value
problem in which n = 1 under the normal pressuwre p = 100, equation (52)
can easily be reduced to the form

Ll
" 16 + 37.6908,2

Yo

or
wo3 + 0.424507w, - 1.790888 = 0 (65)

The third-order algebraic equation can easily be solved, and the roots
of this equation are

Vg = 1.09854 and (-0.549127 T 1.1528781)



54 NACA TN No. 1425

For the physical problem, only the real root is of interest because
the imaginary roots do not have any physical meaning.

An attempt will now be made to solve equation (65) by the usual
mothod of successive approximations. It is assumed that

2 .
Wy = 1.200000, w,° = 1.440000

_ _671.5

= = 0.960516
Y0 = oo 7505

oo = 0.922591

If it is agsumed that w02 = 0.922591 for the second cycle and that
the value of wbe found from the second cycle is the value for the

third cycle, and so on, the following values of wo2 are found from
various cycles:

1.767416, 0.667554, 2.689324, and so forth.

These values are oscillatorily divergent. A plot of these values
against cycles shows that they oscillate about the true velus 1.206161,
and the true value is approximately the mean of the values obtained
from two consecutive cycles (fig. 8).

If w2 = %(1.&&0000 + 0.922591) = 1.181296 is taken as the
assumed value of w02 for the second cycle, and the mean of this

value and the value found from the second cycle are taken as the
assumed value for the third cycle, and so forth, the values of w02

are found from various cycles as follows:
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Cycles 2 3 L 5
ol assumed 1.181296  1.212550  1.204658 1.206524
wo?  found 1.243805  1.196766  1.208390 1.204526
Cycles 6 | 7

W,°  essumed 1.206075 1.206182

Wo2  found 1.206289 1.206131

This process 1s convergent and w, converges to the real root of
equation (65). The value of W, found at the end of the seventh cycle

1s 1.098240 and is accurate to four figures at the end of the fifth cycle,
in which case 1t is found to be 1.098010. The results are plotted
against cycles 1in figure G.

Tt is to be noted that Ky = -3wy° 1in the case of n =1. The
values obtalned by the method of successive approximations would
converge if K, were assumed to be the mean value of two consecutive
cycles. It is found that this convergent property is the same for n > 1.
If the mean of K's or S's found from two consecutive cycles 1is
taken, the values are convergent but are oscillatorily divergent if the
usual way of successive approximations is followed.

It may be pointed out here that for the special case n =1, Iif
the mean of the velues of w. from twg consecutive cycles 1s used, the
values are elso convergent, gnd if w.2 for the second cycle is
assumed to be equal to the sum of 0.6 times the assumed valus for the
first cycle and O.4 times the value found from the first cycle, and
so on, the convergence is much more rapid (fig. 10), but this result
is not true for the cases with n > 1.

The repidity of the convergence depends on the accuracy of the
assumed values of K's and S's for the first trial. The deflection w
from the lineer small-deflection theory cen easily be determined. When p
is small, the values of w 8o determined would give a first approximation
to the problem. It is convenlent, therefore, to start the computation
when p 1is small and then to consider the cases when p 1s large.

Also it is adviseble to begin with but a few net points and then
greduslly to increase the number of net polnts. For example, consider
case n = 1. When w, is found for a certain small p, a

curve of w5 against p can be plotted because the slope of the curve
at the origin can be determined from the small-deflection theory. For

a larger value of p, w5 cean now be estimated by extrepclation. For

n =2, the value of w,; found for n = 1 cen be used as a first trial.
However, W, and w3 are still difficult {o estimate. In order to

obtain rirst approximations to these quantities, the ratlos Wg/WO
and w3/wo way be found from the small-deflection theory and the values
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of W, and w3 computed by multiplying these ratios by the estimated

value of wn. When the deflections have been assumed at every point of
the net, the values of K and S can be computed. These are the values

which may be used as a first trial. By successive approximations, the
true velues of the w's are then determined. The velues of Vo and

the (wn/wo) 's are now plotted against p 1o estimate the corresponding

values at a larger p. The values estimated by extrapolation may be
used as the trial values corresponding to that p. The process is
repeated until the maximum p 1is reached. For n = 3, wo from n =2

is used as a first trial; the remainder of the procedure 1s the same
as before.

Sample Calculations

Finite-difference solutions of small-deflection theory.- The emsll-

deflection theory of the simply supporited square plate will be studied
first. The differential equation is

=2
V= 2 (66)
and the boundary conditions are
w = 0 along four evd.gesT

5_2."_’ =0 along X = +2 > 6
32 -5 (67)
2
Z—}% =0 along y = 1‘%

where a 1s the length of the sides.

With equatiﬁns (66) and (67) written nondimensionally by letting

1 . ¥ y _ P2 1 X t L 1 1 1
wi=4, P ::;11;, x' ==, and y 5 where w', p', and x
and y' &are nondimensional deflection, pressure, and lengths, respectively,

and with the primes dropped, the boundary-value problem is:
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v = 12(1 - 17

w=0 at x = f%, y = t%
2
Q-E =0 at x = +k
32 2

2
é—?—’ 0O at y:t.:!'.

o7

By retaining the notations previously used, the finite-difference

equations for the problem are

~
Axhw + zaxyzw + Ay“w =pt
(w) +L =0
=y
<512§>x-f% =0
(§§?E>y=f% -0
S

where p' = 12(1 - pg)(aa)“p.

(68)

For n =1 (fig. 5), the finite-difference equation, after the boundary

conditions are employed, becomes

— 1
leo =D
therefore,
Vo = 0.0625p’
= 0.04218%p

for p° = 0.1.
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For n =2 (fig. 6), the finite-difference equations, after the
boundery conditlons are inserted, become

EOW'O - 32Wl + 8W2 = p'
-8wg + 2kwy - 16w2 = p! (69)

When Crout's method 1s used to solve these equations the solutions
of equation (69) are

wo = 1.031250p' = 0.043506p
wy = 0.750000p' = 0.031641p
Wy = 0.546875p" = 0.023071p

where p2 is taken to be squal to 0.1l. For pu = 0.3,

Wy = 0.032989p

For n =3 (fig. 7), the finite-difference equations, after the
boundary conditions are employed, become

N
20w, = 32w, + 8w2 + hw3 =p!
-8wgy + 25w, - 16w2 - 8w3 + 6wu = pt
ow. - 16w, + 22w, + bw, - 16wy, + 2w = p'
0 1 b
: 3 ° > (70)

Vo - 8wl + hwg + 19w - l6w1+ + 2wy = !

3w1"8W2—8W +22W]+"'&15=p'

3
2wy + 2W3 - leh + 18w5 =p'
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The solutions of equation (70) are:

vy = 5.246672p" = 0.043722p
Wy = 4.597633p" = 0.038314p
w, = 4.031250p' = 0.0335%4p
Wy = 2.735207p"' = 0.022793p
W), = 2.40236 7p' = 0.020020p
s = 1.439164p' = 0.011993p

if ue ig assumed to be 0.1, If p is assumed to be 0.3, the answer is
Wy = 0.044208p

Timoshenko gives the exact value of wy for a simply supported
square plate (reference 27) as:

Therefore the solution by finite differences with n =3 18 1n srror
by 0.23 percent. This solution is seen to be sufficlently accurate for
engineering purposes. The agreement of the finite-difference approxi-
mtion with the more exact results of Timoshenko is sufficiently close
to encourage application of the finite-difference approximation to the
problems with large deflections.

The large-deflections problem, n = 2.- After the boundery conditions
sre inserted, the two sets of finlte-difference equations are:

'\
QOFO '32Fl+8F2+l+F3=KO
-8FO + 2WF; - l6F2 - 6.632&56F3 + 6.6321456Fu =K
oF, - 16F) + 20F, + k.632456F; - 13.264912F, = K, > (1)

OFy = UFy + 4F, - 0.632456F3 + 2.632456F), = 5

Fo - 6F, + 2.316228F3 + 1.3675U4F, = S
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[éo +21.6(an' + B’ + 70'{JV0 - [?2 + 21.6(ag" + Bo' + 27o'i}w1

+

(8 + 21.670')\,[2 = p'

A
(0]
+

10.831')11’0 + [-211- + 21.6((11' + B+ 71')]?11 »(72)

[;6 + 21.6(aq ' + 7l'i]w2 =p'

2w, [;6 + 10.8(a," + Bz'i]wi + [%0 + 21.6(as' + By + 72'i}wg =p'

~

It 18 to be noted that the terms of the left-hand side of equation (71
do not change if the assumed veluss of K and S are changed.
Equation (71) can be solved uniquely, therefore, in terms of K's
and S's. The given, auxiliary, and final matrices obtained by Crout's
method are given in tables 1, 2, and 3, respectively. More significant
figures than required are used to ensure good results.

The solutions of equation (71) are as follows:

~
Fop = -0.048703Ky - 0.265696K; - 0.225111K, - 0.3041145) - 0.309525S,
F) = -0.111203Ky - 0.307363K; - 0.235527K, - 0.262447S, - 0.2886925,
Fy = -0.103083K,; - 0.311962K; - 0.221052K, - 0.1628808; - 0.317642S, ¥ 73)
F3 = -0.189937Ky - 0.506498K; - 0.316561Ké - 0.2532u9sl - 0.1266245,
F), = -0.094968K, - 0.316561Ki - 0.269077Ké - 0.0633125l - 0.221593s,

J

For a numsrical example of the computation, let

p = 100

' = 0.0421875p = 4.218750

3
L]
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W W,

From the curves for wp~ p, ;l~ p, and ;?—)'v p (figs. 11 and 12),

0
it 1e estimated that

Wy = 1.135

W

L = 0.7535

WO

W

2 = 0.5775

¥o
The first trial values are

wl = 0.855222

v, = 0.655463

These values are written at the right-hand corners below the corre-
sponding net points. The finite-difference patterns are used as given

in figure 4, and @, B, 7, W ., - W,, and then K and S are

found et the net points (fig. 13). As an example,

ay = By = -2(1.135000 - 0.855222) = =0.559556
7o = 1.135000 + 0.655463 - 2 x 0.855222 = 0.080019
K, = (0.080019)2 - (-0.559556)% = -0.306700

Similarly, it is found that

Ky = -0.189997
K, = 0.221966
5 = 2.368276
S, = 1.373368

61
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From equation (73) the values of F's are obteined as follows:

F1 = -0.977802

F, = -0.780162

F3 = ’00689)4')”4-

Fh = -0.h2k723
These values are substituted In any one of the expressions (equation (71))
as & check and then are recorded at the net polnts, &s in figure 13.
Similerly, the values of a', B', end 7' are recorded below the
corresponding vaeluves of F.

Equetion (72) can now be written and the given matrix is

t Check

W w W =
2 P colwum

0 1

34.122771  -47.107213 8.98u4LY> 4,218750 0.218750
-12.26902k  36.930948 =20.392900 L.218750 8.48777h
2.000000 -19.408458 28.313451 4.218750 15.123743

The check colurm can be obtained by using the following relation:
Check columm
<4 + p!
10.831' + p'
6 + 21.6(as’ + Bp') + p'

The sum of the elermenis In & row should be equal to the value of the
element of the same row In the check columm. This procedure provides s
check for the substitution mede in the given matrix.
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The first approximation gives, therefore

Wy = 1.117078
= 0.8432025

A computation similar to the one outlined in the foregolng nunsrical
example glves

Ky = -0.29378L
Ki = -0.184115
K, = 0.214841
8, = 2.299072
S, = 1.33997k

As a second trial, assume

Ko = é(—o.3067oo - 0.293781) = -0.3002k1
K = %(-0.189997 - 0.184115) = -0.187056
K, = %(0.221966 + 0.214841) = 0.218404
5, = ]2—-(2.368@76 + 2.299072) = 24333673
Sy = %51.373368 + 1.339974) = 1.356671

The resulte of the second, third, and fourth trlals are shown
in figure 13. The corresponding assumed and computed values of the
fourth trial are
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Assumed Computed
K, -0.300446 -0 +300006
Ky -.187h07 ~.187h72
K, .218738 .218786
S 2.337941 2.338531
Sy 1.360090 1.360631

The first three values check with one another, and the results, correcte
to the third decimal place, are

VO = 1. 1269

The large-deflections problem, n = 3.~ When n is taken to be

greater than 2, the same procedure of computation as that in the case
of n=2 is still valid. As an exemple, the case of n =3 will be
considered, when the square plate 1s subjJected to a uniform pressure
of p = 100.

After using the boundary conditlons, the two sets of difference
equations (61) and (62) are obtained. Egquation (61) can be solved in
terms of K's and S's, and the results are given in table L.

w1 W W w)
From the curves of wy~ p, {’-6~p, G%“'P’ ;3,,,1,’ %~p,
w
and ‘-%'v p (figs. 12 and 1k4), the following values are obtained by

extrapolation:
VO = 1-121‘-7

1. 0.8%1
w0

W.
Gg = 0.7932

ki = 0.5516

v
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W,
o 0.5037

¥o

W
2 = 0.3497
0
For a first trial, 1t is assumed that

wp = 1.124700
W) = 0.999971

v 0.892112

2
3

0.620385

Again these values 8re written at the right-hand cormers below the
corresponding net points. With the computed values of «, B, 7,
Oyw, and Ayw, the following values are cbtained:

Ky = -0.061945

Ky = -0.052063

K, = -0.024186

K3 a =0.023043

Ky = 0.001252

K = 0.106245

Sq = 1.592696

S, = 1.282838

S. = 0.548700
By table 4 the values of F's are found to be

~1.095495
-1.028996

)
(e}
n

kx|
-
]
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F, = -0.950911

F, = '0-%8159

F), = -0.762520

Fg = ~0.505761

Fe = -0.675850

F., = -0.546620
The values of F's are written at the left-hand cormers below the
corresponding net points, and the values of a', B', and 7' are
computed.

When the values of a', B', and 7' are substituted into
equation (62) and it 1s noted that p' = 0.00833333p = 0.833333, the
glven matrix of the equations is obtained es in table 5 and the auxiliary
matrix as in table 6, and the solutions of equation (62) given by the
final matrix are
= 1.123384
0.998956
0.891L465

0.620342

« = O::
(] ] " !

«
= W
[}

0.565591
0.390999

It might be pointed out here that the check columm of the given metrix
mey be obtalned by a direct substitutlon by using the following relations:



NACA TN No. 1k25 67

Check columm

Pl
-1 +p'
-2 +p'
2 x 10.88)' + p'
1x 10.855- +p'
6 + 21.6(0.6' +7g') + 7'
This procedure would provide a way of checking the substitution in the
glven matrix, since the sum of the elements in any row should be equal
to the element of the same row in the check columm.
The valwes of Ky, Ky, K,, K3, Ky, K5, 55, 5, and S; are
found from the camputed values of w's. The mean valwes of the K's
and S's first assumed and those computed are used as the trial values

for the second cycle, and so on. At the end of the third trial, the
following assumed and computed values are obtained:

Assumed Computed
Ky -0.061763 ~0.061695
K - .051947 -.051894
K, - 024660 -.024799
Ky -.023377 -.023477
Ky, .00161k4 .001697
Ks .106177 10620
Sy 1.592106 1.592078
S 1.281878 1.281814

83 546560 546173
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These values check with one another to the fourth decimal place. The
deflections at the various net points, accurate to the fourth decimal
place, are

W = 1.12k0
wy = 0.9995
W, = 0.8920
w3 = 0.6207
w, = 0.5660
wg = 0.3915

The results of various trials are shown in figwre 15.

RELAXATION METHOD

-

When a more accurate result is needed, the plate must be divided
into a set of finer mets. The number of simuwltansous equations
increases as the number of nets is increased. In order to avoid the
solution of simultensous equations, Southwell's relaxation method
may be used. The so-called relaxation method 1s essentially a clever
scheme for gusssing the solution of a system of difference equations.
A brief description of the method and a numerical exsample, the small-
deflection problem of a square plate, are glven in appendix A.

The sclutlion of the gensral case of the large-deflection problems
of rectangular plates by the relexation msthod has been studled by Green
and Southwell and their method was outlined previocusly. Green and
Southwell worked with the three complicated equllibrium equations in
terms of the displacements u eand v and the deflection w. However,
it 1s satisfactory to use the two much slmpler equations in terms of the
stress function F and the deflection w.

The fundamental differential equations (1) and (2) can be rewritten
ag follows:

A
A

(74)

]
=

10.8p + 10.8k! (75)
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where

. (P 2 P P
(éx Jy, dx° dy?

o F Py F Ry Pw
dx2 3y oy ax2  dx dy ax Jy

In applying the relaxstion method, as usual, the domein of the problem
to be solved 1s first drawn, and the net points chosen. Since there
are two simltansous equations to be solved, two sheets of paper mey be
used, one for F and ome for w. A set of solutions of F and w are
guossed and are recorded on the F- and w-plames, respectively.

By starting from the assumed values of W, K can be computed
without difficulty. Equation (74) 1s then & linsar differential equation
for F, and the blharmonic relaxation pattern may be used. After the
residues at each point have been reduced to the desired extent, the
new veluss of F may be substituted into equation (75) and it may be
solved by the relaxation method. Equation %"{'5) leeds to a rather
complicated relaxation pattern for w. In actual computations the
biharmonic pattern may be used, the assumed veluss of W being used for
the computation of k'. By means of the relaxatlon process, the residuss
at all points are reduced somewhat. New values of k' are computed
and the residues are then corrected. The relaxation operation is applied
again until the values of w are determined to the desired accuracy.

The average values of the new K's and S's and the originally assumed
ones are now Used in the second cycle. The cycles are now repeated until
the final results have the desired accuracy.

In general, the boundary conditions for F are usually difficult
to handle. It 1s possible, however, to solve the boundary values of F
in terms of its values for interior points. The boundary values of F
vary from time to time as the interior values chang. The operation
is rather compliceted, but 1t can be handled.

In the cese of a square plate with given edge displacements, the

boundary conditions as given by equation (L49) may be used to some
edvantage. Equation (74) can be written as

V2

k

* )

(76)
VEF

It
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end the boundary conditions are given by

-

+ aee =
To,i + 2Tl, + 2$m-l 5 + T m, 1 Sy

m
2
- w@? ; (1 = a1, 2)°

7 (77)

(éx £ HAV /m, 1

-~

In using this form, not only are the boundary conditions much easier to
handle, but also the relaxation pattern is simplified from the bilharmonic
type to the harmonic type. The slmplification is obtained at the

expense of introducing one more equation into the system and therefore
consldering one more plane. The results obtained are given in figure 16.

DISCUSSION OF RESULTS

The bending problem of a square plate under uniform normal pressure,
with the edges prevented from displacements along the supports but free
to rotate about them, 1s studied by the finite-difference approximations.
The difference equatlons are solved by the method of successive approxi-
mation and by the relaxation method. The computation starts with n =1
to n =3, in which case the plate is divided into 36 square nﬁts wilth

25 inner points. The maxlmum normal pressure calculated is E—n 250.
Eh

After the values of w and F have been determined, the stresses
can be found by the following relations:

QEE ) AygF B!

o' = =
% ()% (m1)?

2
°F _ &F al
Yox2 (a2 ()2
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w_ > —
S u?)@‘gw ¥ ”A”%D (a1)2

Q
]

1

= - ( B)
T
_ 1
ay e u2)(A1)2(B + pa)

where o' and o" are the membrans stress and the extrems-fiber
bending stress, respectively. The total stresses o are the sum of
the membrane and bending stresses at the section and are maximum at
the extreme fiber of the plate. They are

— ] "
Oy = 0y + Ox

At the center of the square plate, a' =
the stresses are

3

B, and therefore

'—0'=a,l _ﬁ'
=YY (Ale - (Al)u

Ox

0" a_" a’ — B
T T o - w@)2 21 - p)(a)?

The deflections at various points determined in the cases n = 1,
n=2, and n =3 are tabulated in tables 7 to 9. The center deflectims
are plotted ageinst the normal pressure ratio In figure 12. The membrane
gtresses in the center of the plate and at the centers of the edges are
tebulated in table 10 and are plotted in figuwre 17. The bending and
total stresses are tabulated in table 11 and are plotted in figure 18.
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A study of the results shows that the maximuwn error in center
deflections 1s 0.47 percent for n = 2 in comparison with n = 3
and the maximum error in the center membrane stresses is 0.4 perceﬂt,

both values being conservative. Both maximm errors occurred at EEH = 250,
b Eh
The error 1n the center bending stresses ls 2 percent at B = 12.5
N Eh
and is 0.83 percent at EEZ = 250, both valuss being unsafe. The.error
Eh 4
in the center extreme-fiber stresses is 1.6 percent at Egn = 12.5
L Eh
e,
and 0.17 percent at = - 250, %bYoth values belng safe. The error in
Eh

the membrane stresses at the center of the sldes 1s 12 percent for both

2 au :
ax'aQ/Eh and oy'az/E'h2 at & - 12.5 and 8.9 percent for both

Ehhh
Ox'a2/Eh2 and oy'aQ/‘Eh2 at EEﬂ = 250, these values being umsafe.
Eh
One case of n = 4 has been solved by the relaxation method.
b v, Oy 'a? cyo'a2
At Bp =100, 1t 1s fownd that — = 1.1250, = = 4785,
Eh h Eh? Eh?
ooa2 le'&2 Gyl'a2
— = 11.39%, = 9.588, and = 3.00k. When the results
Eh Eh? En® pa
for n =3 are compared with those for n =4 at ~, = 100, the
Eh

center deflection has an error of 0.09 percent, the center membrane stress
has an error of 0.02 percent, the center total stress has an error of

0.5 percent, and the membrane stresses oy 'a®/Eh? and cy'aQ/Eh2 have

the errors of 4.2 percent and 4.1 percent, respectively, all values

being unsafe. Since in the present case only the center deflectlons and
stresses are to be investigated and the errors are sufficiently small

for englneering purposes, the case n = 3 1s consldered to be satisfactory
for the final results.

The center deflsctions obtained by Way (reference 15), Levy
(references 17 and 19), end Heed and Sechler (reference 235 are plotted
in figure 19 for comparison with the present results. The center
membrans, bending, and total stresses are plotted in figure 20 to
compere with the results by Levy (references 17 and 19). It is seen
from thess results that the center deflectlions are in good agreement with
tegt results from the California Institute of Technology up to

L
EQZ = 120. The theoretical results seem to be too low at higher pressures.
Eh



NACA TN No. 1425 73

It i1s interesting to note that the test results are really for
clamped-edge plates. The clamping effect seems to be only local, and
at the center of the plate the plate behaves just as though it were
simply supported; that is, the plate is free to rotate about its sdges.

From the point of view of the engineer designing the plate, the
total stresses at the center of the edges are still much larger in the
case of clemped edges than in all the other cases; hence, a design based
on those stresses would give a conservative structure. The center
deflections, however, would give an idea of the magnitude of the
washboarding of a boat bottom while a seaplans 1s taxying or landing.

CONCLUSIONS

The following conclusions may be drawn from & theoretical analysis
of an initially flat, rectangular plate with large deflectlons under
either normal pressure or combined normal pressure and side thrust:

1. The large-deflection problems of rectangular plates can be
solved epproximately by the present method with any boundary conditions
and to any degres of accuracy required. Although it is still difficult,
the present method is, nevertheless, simpler than the previously used
methods for glving the sams degree of accurecy.

2. For the square plate considered, case n = 3 gives results of
good accuracy, and the results are consistent with the exlsting theoriss.

3. The clamping effect of a clamped thin plate seems to be only
local. At the center, the plate behaves more like a plate with simply
supported edges; that is, the thin plate 1s approximately free to rotate
sbout its edges.

L L
4, The test results show that, at B 175 [ where 2 is
En* En*
nondimensional form for normal pressure), all the existing solutlons of
the differentiel equations give unsafe results for center deflection
for a square plate. This conclusion perhaps suggests the range in
which the differential equations may be applied.

5. The present results of the center deflections and membrans
N
a

stresses give good agreement with the test results when E-E < 120.
Eh

Masgsachusetts Institute of Technology
Cambridge, Mass., March L, 1946
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APPENDIX A
BRIEF DESCRIPTION OF RELAXATION MiSTHOD

The idea behind the treatment by the relaxation method 1s
essentially Jjust the same as that by Cross' method of moment distributlon
in the case of bending of continuous beams. It seems, therefore,
sasiest to explaln the relaxation method by & comparison wlth the
moment-distribution method, since the latter is woll accepted and is
familiar to most structural enginsers.

The redundant beem as shown in figure 21(a) is now examined. The
procedure for obtaining the redundant support moments by the moment-
distribution method is well known. The first step in the moment-
distribution analysis is to assume that the slope at each of the four
supports is zero. By this assumption, the end momonts at A, B,

C, and D can be found without difficulty. The result is shown

in figure 21(b). Here the boundary conditions at A and B are
satisfled, and the principle of continuity is alsoc satisfied. The
condition of equilibrium, however, is not satiasfied, since there are
unbalanced moments at B and C. Ths moment-distribution method now
offers a procedure to balance these unbalanced moments by a relaxation
based on consistent deformations. The analysls by the relaxation
method, in this case, would be essentially the seme. The moments at A,
B, C, and D are assumed to satlsfy the boundary conditions and the
condition of continuity. The unbalanced moments at B and C are
then distributed by the relaxation based on conslstent deformations.
The difference lies in that the relaxation method offers more freedom
in assuming the end moments and therefore could make the convergence of
the operations more rapid. On the other hand, however, it becomes
difficult to assume these values.

The method of moment distributions applies only to redundant
structures, but the application of the relaxation method extends much
further, and its application to the partial differential equations
has brought the study of engineering sciences intc a new era because
the boundary conditions are now no longer difficult to be described and
to be satisfied.

The procedure can be illustrated by a study of the small-deflecticn

]
theory of thin plates. Ietting w = ET' where w' and p are the

nondimensional deflection and pressure, respectively, gives the
following equilibrium equation in terms of the finite difference

Axuw + eﬁxygw +z§yuw = 12(1 - u2)(aa)“ (A1)
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In order to solve the problem, the domain to be investigated is drawn
end the net points chosen. Values of w are assumed to satisfy the
boundary conditions and are then written adjacent to each point of the
net. From these values of w, the residuals Q at points (m,n)

ere computed and recorded as follows:

m,n = 20Wy 5 - 8 "mtl,n * ¥m-1,n * ¥u,n+1 * Wm,n-1>

+e Ym+l,n+l * ¥m+l,n-1 + wm-l_,n+l * wm-l,n-l)

+ + W
Gm-va,n * ¥o2,n T ¥mynie * "'m,n-'a)

- 1201 - w?) a1t (A2)

The residuals Q thus computed cen be thought of as an wnbalanced

force which must e removed from the system. Now, Instead of settlng
up a specific iteration process, it 1s merely observed that if the
deflection at one point (m,n) 1is altered, all others remaining fixed,
the residuals will change according to the pattern of figure L, the
relexation pattern. Each changs of w at any point effects a redistri-
bution of the residusls Q among the net points, and such changes of w
are desired as will move all the unbalanced forces to the boundary.

For a simply supported plate, the deflection and bending moments
are zero along the edges. Equation (Al) can be written as

V‘?(Vaw) =p

letting V2w = M makes possible the formulation of the boundary-value
problem as follows:

v M

=P
(a3)
M = 0 along the four edges
and
Pw = M 1
' (Ab)

E
i

0 along the four edges
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The problems can now bse solved 1n two steps, that 1s, first, by
use of equation (A3) and then by use of equation (A4). This transformatio:
greatly reduces the labor required in applying the relaxation msthod
because the relaxation patiern of the harmonic or lLaplacian type is
much simpler than that of the biharmonic type.

As an example, the boundary-value problem is solved when the plate
is a square one. The process is coneidered with n = L. From the
previcus results as found from the calculations with n = 3, the valuss
of w at all the nst points can be assumed. By equation (AY4)

Mm,n =¥4ln * Ym-ln * Ymon+l ¥ ¥myn-1 uwm,n (A5)

The values of Mm,n are then recorded at the right of the corresponding
nst point, and the residuals

I
Qm,n = Mm+l,n + Mm-]_,n + M'm,n+l + Mm,n-]_ - ll'Mm’n - 12(1 - p2)(an) (A6)

are computed and are recorded at the left of these net points. The
results are shown in figures 22(a) and 22(b). For example,

My = 4w, - bwy = 4(0.0406) - 4(0.0437)
= -0.0124

M, = Wy * Wy ok Wg + w7i- by,
= 0,0377 + 0.0316 + 0.0231 + 0.0163 - 4(0.0295)
= -0.0093

Qo = UMy - UMy - 0.002637

= 4(-0.0117) - 4(-0.0124) - 0.002637

= 0.000163
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O
=
i

My + M3 + Mg + My - bMy - 0.002637

-0.0105 - 0.0093 - 0.0078 - 0.006k - 4(-0.0093) - 0.002637

0.001463

where 0.002637 = 12(1 - p2)(A1)¥, since p2 = 0.1 and AL = %

The largest counterbalanced M occurs in the vicinity of the
greatest deviation of the assumed values from the correct solution;
so changes are first made at this point. An examination of figure 22(b)
shows that the greatest resldual occurs at point 2. Since

Q, = 2M; + 2M), - UM, - 0.002637

& change of M, would change Qs by en amount equal to four times
(-25). Mathematically,

60y = -ty

where A denotes the amount of change. Adding -0.0004 to My while
assuning all the other values of M to remain unchanged gilves

M, = 0.0016, and Q, 1s now equal to -0.000637. If a nomenclature
similar to that In the method of moment distribution ie used, this
process can be called balancing the unbalanced Q. A symbol (bl) is put
at the slde of the value to Indicate ths first balancing. Now 1t is
obgerved that

Qy = Mg + 24, + M3 - kM) - 0.002637

and

Qy = Mo + M3 + Mg + My - M) - 0.002637

A change of MQ with all the other M's fixed would change Q; eand Qy,
by the relaticns as follows:
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0y = MM,
Ly, = My

Now, by relaxing the nets,

£, = 2(-0.0004) = -0.0008

Q) = -0.000k
and
Q, = 0.001263 - 0.0008 = 0.000L463
Q, = 0.001463 - 0.0004 = 0.001063

These operations may be called cerrying-over and be denoted by (cl).

The whole process consists of 20 balancing end carrying-over
operations by similar calcwlations. The detalled operations of the
computations are shown in figure 22(b). After the valuss of M's are
computed, the residuals are computed as follows:

+ W

1
= + - -
%n,n Ym+l,n * "m-l,n 7 Ymon+l ¥u,n-1 hwh,n Mn,n

The velues of w may be determined by a similar series of calculations
The detailed operations and computations are shown in figure 22(a).

The whole process consists of 11 balancing end carryling-over operations
The center deflection ratio thus obtained is, for u = 0.316228,

vy = 0.043790p

For u = 0.3,

0.043790 x %2dp

¥o

0.04k43p

which checks exactly with the exact analyticel solutlon.
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For thin plates with clamped edges, the boundary conditions are

N i

gﬁ =0, along x =73

=0, along y =

it

The relaxation pattern of the blharmonlc type must be used in this casse.
Although the pattern ls more complicated, the process 1s essentially the

S8Ie .

After the essential ldea of the relaxation methed 1s grasped, other
problems may be solved by rather obvious steps. It may be noted that
no question of convergence can occur in the general relaxation process
since no speclific instructions are glven. If, after some steps, the
reslduals get worse, the intelligent computer makes changes in the
opposite direction. These remerks, however, oversimplify the problem
somewhat because of two facts: filrst, the camputer may become confused
as to whether the reslduels are really better, and, secondly, there ls
always & questlion of whether a solution wilth zero residuals exists.
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TABLE 7.- CENTER DEFLECTIONS

pa.b' wo/h
;;1; n=1 n=2 n=3 n=14
c 0 0 0 | =me---
12.5 .3888 -Loé2 A055 | ------
25 584k .6092 6083 | =-=----
50 .8184 BuTh BUb0 | ~-----
75 9757 | 1.0052 | 1.003L | =---=-
100 1.0980 | 1.1269 | 1.1240 | 1.1250
150 1.2888 | 1.3145 | 1.3104 | =-=v--
200 1.4376 | 1.4616 | 1.4557 | =-=---
250 1.5623 | 1.5844 | 1.5770 | =-----

RATTONAI ADVISORY
COMMITTEE FOR AERCNAUTICS
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TABLE 8.- DEFLECTIONS AT VARIOUS POINTS

== 2]

P&M/Ehh wo/h wy /h w,/h
0 0 0 0
12.5 L4062 2980 .2198
25 6092 4508 «3363
50 <84Tl .6332 L4791
75 1.0052 7555 5766
100 1.1269 .8502 6528
150 1.3145 <9966 «T713
200 1.4616 1.1116 8648
250 1.5844 1.2076 <9431

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS
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TABLE 9.~ DEFLECTIONS AT VARIOUS POINTS

pat/en* | wo/n wifn | wyfn | wyfn | w/m | wg/n
0 ) 0 o 0 0 0
12.5 4055 <3564 <3136 «2139 1890 .1159
25 .6083 .5365 4738 3249 2892 .18e2
50 LBU60 | JThok .6650 L4592 4131 2711
5 1.0031 .8905 .7930 +5500 4986 .3370
100 1.1240 .9995 8920 6207 5660 3915
150 1.310k | 1.1677 | 1.0450 «7305 6717 4804
200 1.4k557 | 1.2988 | 1.16k1 .8164 .7551 .5531
250 1.5770 | 1.4081 | 1.2634 8880 8249 .61h9

COMMITTEE FOR AERONAUTICS

NATTONAL ADVISORY
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TABLE 10.- MEMBRANE STRESSES

[Su'bscript 0 denotes center of plate;
pubscript 1 denotes center of sides

G-

n o' - 329:25 9, '8 o, 'a?
pa’ | En? En2 Eh2 Eh2
"
n=2 n=3 n=2 n =3 n=2 n=23
o |o 0 0 0 0 0
12.5| .6103 6089 .3338 3795 | 1.055 | 1.200
25 | 1.38% | 1.377 <7612 857k | 207 | 2.711
50 2.695 2.683 1.484 1.661 4.693 5.254
75 3.806 3.792 2.096 2.341 6.628 T.401
100 4.802 L.785 2.643 2.943 8.357 9.305
150 6.566 | 6.542 3.613 4,001 | 11.43 12.65
200 8.136 8.103 L.473 4.929 14.15 15.59
250 9.575 9.533 5.264 5.778 | 16.64 18.27

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS
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TABLE 11.- EXTREME-FIBER BENDING AND

TOTAL STRESSES AT CENTER OF PLATE

Bending stresses, Totel stresses,
0"a2 c'a? ¢"a?
4 2 2 2
pa Eh Eh En
4
Eh n=2 n=3 n=2 n=3
0 0 0 0 0
12.5 2.530 2.582 3,140 | 3.191
25 3.708 3.781 5.092 | 5.158
50 5.010 5.087 7.705 | 7.770
75 5.845 5.928 9.651 | 9.720
100 6.475 6.55L 11.277 {11.339
150 7.439 7.513 14.005 |1L4.055
200 8.191 8.261 16.327 |16.364
250 8.817 8.801 18.392 [18.424

RATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS
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y
je 4 X »f+. 4 X +
¥ Am,nﬂ
ay
4
* Am—l,nA’",n Amu,n
ay NATIONAL ADVISORY
1 . COMMITTEE FOR AERONAUTICS
X
Figure 3.~ Finite-difference notation.
1]
= 1 ]
=2 1] =2/m,n s
m,n 5 [ =1
2 m,n
AX A 2
y Axy
L 1]
| 1] 2-8 2|
-4 1] - -
m,n m,n
| 1] - 2
2 2
X Ay
4 ) 4
AX 2Axy Ay

Figure 4.- Relaxation pattern.
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[ ojo T oo
P=i00, n=2
S,= 2368 276 ' SIEARRYE! l R A D e | EE TR |
5,2 11373368 S,=2.345 881
|- ASSUMED 5,= | 365002
2- COMPUTED
si=2.290072 | ,
S,= 1339974
, 780182 | .655 463 4247230 ., -170018 ] .853,907 - al9a18l0
o=@z 157799 | Ox={3=-455704 'z 155934 o= (b=-.456 219
: Tz 069284 | Y= 655463 | Y= 088818 Y = 653907
Ky 214 841 K=~ 219459
848112 N
X=p=- 452999
Y= 848112 >2
K= 214 841 |
: (Aw)2=,z7uss J
i‘ (Aw)l=.279173 l o o B 14/ l ) ]
-1.129 888 1135000 -977802 855222 -689444 Q -1 114,469 1128741 -964884 851595 - 880155 0
o'z s 304128 o =B =-530.356 o=-578 444 299570 X=P=- 554292 x=-.574 449
Y'z 048376 Y= 080019 ! =-398318 \ 044881 T= 079458 =-.395378
K4 -. 308 700 T = 109759 K o=~ 300 926 Y= .i97688
x= 136294 K,=-. 189997 o'z 134744 K,=-.188043
p'= 395280 p's 389332
Y'= 067081 T's 06807I
117,078 843225
x=p=- 547705} or=- 569372 NATIONAL ADVISORY
Y= .078 740 2 p=-.390226 COMMITTEE FOR AERONAUTICS
Ke=-.293781 Y= 195113
K=~ 184115/
T “olo o I T oo
| ;
|
ANIREN Rl EEA SRS A S| PO TH AR KIMATTON
S,= 2.336 108 S,z 233853 I
s,= 1.359343 $,= 1360863
I
i i
| |
‘ !
] |
- T T T372256 | 652 552 - 4206740 o - 771743 ' 652 848 -"420 40s}0
o'=pE 156423 | (=B=- 455280 xRS 156342 X=B=- 455439
T'= 089092 Y= 652 552 Y= 069067 T= 652 848
K= 218544 [ K .2187886
i i
|
|
276552 27e 720 !
e U . " o
-7 582 1126376 - 967415 849 824 - 882068 0 -1LI6797 1126977 -968739 .B50257 -.681858 O
= p= 300334 ox=(=- 533 104 o= - 573272 K== 300116 X=p=-.553440 =-.573 837
T's 044992 Y= 079280 B=-.394544 Y's 044938 Y= 07931t f=-394810
K,=- 299 839 Y= 197272 Ko=-. 300 008 Y= 197409
o'z 138180 K- 187265 o'z (35123 WE-18T74T2
B'= 39038 n'= 389992
'z 08823% T'= 066187
Figure 13.- Method of tabulationof @« , B, v , (W41 - Wp), K,S,and F. n = 2.



101

‘e =u d~ oB\nB
pue ‘d ~ oB\vB ‘d ~ oB\mB “d ~ OB\NB ‘d~ Om/Tm ‘d~ Om jo soaan)d -7 oanglg
W43
052 002 0S| °d ool 0s

NACA TN No. 1425

(0 )4
—— oe
O; . T.\\\\\\\\\l\\\\\lJ
W
) ov
- S
t?y Y
-
Oom ‘M
€ 09
SOILNVNOYIY ¥OJ 7 33LLINNOD
ANOSIAQY TYNOILYN
oL
Om
Zu L —
| o) V 08
.y 4
OB\.||ﬂil% 06



102 NACA TN No. 1425

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

S,-/282 838

S5, =152 696
/
S3=.5¢8 700

/' ASSUrED

e CoONrTPUTED
S5,2/.590 /165
Se=s2800804 2
Syz . 595095
(faw), =.333 308
-50576/\ .393 308 -.239729 (O

-<=,9’-7 009273\ 285~.220 /05
Y=~0263a3|Y- .39¥ 308
A= 10G 245

. 330 99
wefSn-.2/6 JOT
Y= .390 999
Kg= /06 098

Faw), = . /07 B59 (aw) s.325 60/ (Aw), = 5¢e.517
-950 9//| .89 e -762 520 .56G S// ~506 620 |0
g’ /O BOGI(~E:-2/TTI2 X '=.027 5O ) w:-.290 9/0
Y's .ocassafr: .52 398 A= 157120, p:-.119 329
Ko»—~02¢ 786G Y's 050/32 Y= ./73 203
Ke= .00 852
(AW)s =.107 497 (O)e= . 325 &7 (AwW)y =./77¢ 592
.89/ ¢6S5 565 59/
o2pzx-.2/8 38> o=~ 239 7/7
r= .s8/ 282 A=-.119 849/
Ka= 024 805 Y= /74 592
Kec 001 754
AW, =.124 729 (AwW) -.379 586 (AW) ~ .620 308
-1.095495 (/24790 -~1028 996 .99 97/ ~-.868/5% .620385 -e75850 O

B B IIA K Be- 7P I8 s 099 BDE o«{1-.239857 L' .03/472 o=-.240 799
Y's .o158G ¥= .0/6 870 P .156/70 pi-2/5TI8 P .2//278 A=-.107 798
K,2-.06/642 Y%+ o02755¢ Y= .033985 Y .02359/ Ys 053879

K=-.082 063 Ky=~-.023093
(A yrlg=.r29 428 (Aw)z =.378 G4 (A W)z = .620 3v&
L/23 3849 . 998 956 .20 392
«:8ax-.298 856 oLs-.259 /186G = - 241728
r= .o/6 937 B=a-.214 982 B=-_ 109502
K= 06/ 642 Y= .03z 740 Y= .05q 75/
L =-.0%5/ 864 Hy=—.023 472

(a) First approximation.

Figure 15.- Results of various approximations. p = 100: n = 3.
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NATIONAL ADVISORY

S,21.592 79/ COMMITTEE FOR AERONAUTICS

Sa=r282 296
53 = . 596 229

-.50989¢ .39/ 965 =.239 8058 O

'@z 009 1/3 (X2 82- 208 GrO
2-.0269688| Y= -39/ 965
n: /06 208

SO7 554 326 057
-.9997/0|. 892 2/7 -76/4972|.566 /20 -.595872 O

oA 110215 | pz-.8/8 593 o'z 027362 =-. 2490 023

Ye 068390 | r= /51943 P 3098/ |B=-/9 0@
Ka-029 826 Yr .0%09/|Y= /79655
M= .00/ 7249

/89 52/ 378 do9
-1.099 165 (/27 £92 -1.027733 . 99977/ - 867069 .620 867 -.¢75 oqo O

2$eB's /38 86T € 38 *~299042 (> OSV2I2 M +-. 254383 «'= .03/365 «:z-.29/ 963
Y's 011891 Yz .06 9GT B 156096 8=--.2/5 /08 = .2///91 S=-./10945¢
AK=z-.06/17349 Y's 0279 v: .052 807 Y: .023%57/ Y= .OS4747

H=-091 93/ H=-023996

(b) Second approximation.

Figure 15.- Continued.
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104
olo
NATIONAL ADVISORY
S, = 1.592 o7e COMMITTEE FOR AERONAUTICS
Sy =/.28! Orv
Sy = 596 773
~.5049 9/7 | .39/ 4%6 -.239/69|0
w2 009053 |Kega-216 P96
Y=-.02¢ 589 | r= 3% 956
An ./06 2o¥
107,811 .325 9@y
-.999 937|.852 033 -.7646/7.%6¢6 ov6 -.5985 97840
WUafa /10 268|%B1-.2/0 176 «'x .O87 3/9| = - 2890 O59
rs 068380 r: ./s1937  S's /5,039 |Ac-.1/9 850
Ma~ 024799 yr's .0S0//¢8| Yy ./7¢4 550
K= -00/697
/24 482 .378 758
~LO2TIR 953 5949 ~ 6T - 620 M6 -.6752/7 ©

-1037 4945 l/2¢4026
®'cs .03/3¢7 Xa\.29/ 978

W3 /B2 0% «r8:-.298 961 o't .0V EE0 «31-.2593/G
r's .0/ ¢o8 ra= .0/ 37/ B's 1% 110 PS:-2/5022 A= 2//322 Pr-./08900
Y's 023578 y: .0O8¢ 700

K2=06/ 655 Fr= .O21606 Y« .052 8!
Az-.051 89 =-023 977

(¢) Third approximation.

Figure 15.- Concluded.
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____________________ NATIONAL AODVISORY
{- ' 1|- -{ T -= COMMITTEE FOR AERONAUTICS
AU I A
I I
| ! I | [
l I ! | e 4
0 1| /1676
|
|
|
S AR P o
-.3#635  |-./$678 ; 0826/
|
I
S ) 2 _ ___ _4' 2’
=-.75240 |~.57/09 - 38909 |--/R372
|
|
I
2 4 > . L rr°
-~/ 0007/ ~. 89092 |~.74578 = I8I/S |--393/9
|
|
!
(o) / I é 0 _Vyo’
~/.07950 —~s0f8lf ~ 94299 -~8//26 ~. 66484 —.47255

(¢) Domain of problem, F-plane.

Figure 16.-

Concluded.
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(a) Redundant beam.
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(b) End moments for zero slope at each support.

Figure 21.- Moment-distribution method.
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(a) Vow = M; Q'=V2w-M.

Figure 22.- Solution of small-deflection theory by relaxation method.
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