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SUMMARY

A previous report gave calculations for the pressure distri-—
bution over thin oblique airfoils at supersonic speed. The present
report extends the calculations to subsonic speeds.

It is found that the flows again can be obtained by the super—
position of elementary conical flow fields. In the case of the
swept-back wing the pressure distributions remain qualitatively
similar at subsonic and supersonic speeds. Thus a distribution
similar to the Ackeret type of distribution appears on the root
sections of the swept-back wing at M = 0. The resulting positive
pressure drag on the root section is balanced by negative drags on
outboard sections.

INTRODUCTION

So far as is known, attempts to extend airfoil pressure—
distribution calculations to three—dimensional flow have been
confined to cases of thin lifting surfaces. It has generally been
agsumed that the component of the pressure distribution arising from
the thickness of the airfoil will be but little affected by the
finite span, or aspect ratio, of the wing. This supposition is
borne out by the known incompressible—flow solutions for flat
ellipsoids. These solutions show that the usual variations of
aspect ratio produce small effects.

Compressible—flow theory shows however that the effects of
plan form become more pronounced at higher speeds. The theory
indicates a progressive reduction of the equivalent aspect ratioc as
the Mach number approaches 1.0. Hence at these speeds the three—
dimensional character of the flow can no longer be neglected. Of
particular interest are the deviations from two-dimensional flow near
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the root sections of a swept—back wing, since the adverse effects of
compressibility may arise first in this region.

In the present report three—dimensional flows are obtained from
a distribution of "pressure sources" in the chord plane of the airfoil.
The shapes thus obtained are symmetrical airfoils at zero lift.
The calculations are simplified by considering airfoils composed of
conical or cylindrical surfaces In these cases the sources can be
arranged into lines of uniform strength following the generators of
the surface. The relation between the strengths of the line sources
and the shape of the airfoil is the same as in reference 1, that is,
each line source produces a deflection of the streamlines crossing
over the source. The pressure field of the line source again can be
represented by systems of straight rays of equal pressure (isobars)
radiating from the ends of the line source.

In general, the present development follows closely that of
reference 1 and the reader should consult that report for addi-
tional details of the method. The solutions are given explicitly
for M =0 but are extended to other Mach numbers by the well-known
Prandtl transformation.

THE OBLIQUE LINE SOURCE

It is well known that an individual velocity component of a
potential flow will satisfy the same differential equavcion as the
potential. In the approximations of the thin-airfoil theory the
pressure depends only on the individual component wu, that is,

2 - 3 (1)

while the slope of the surface depends only on the individual
component w, that is

B% & (2)

<=

(See eppendix for symbols.) Hence in the thin-airfoil theory it is
of ten more convenient to deal directly with the velocities u and

w as solutions of Laplace's equation than to derive these components
from a velocity potential Q.

Since u is proportional to the pressure, a solution of Laplace's
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equation can represent directly the pressure distribution, hence

the term "pressure potential." In this terminology, the fundamental
solution
ik % = e (3)

g T

represents a unit point source of pressure rather than a point
source of fluid.

To get the effect of a row of sources, or a line source, along
the x-axis between the points a and b it is necessary to integrate
equation (3):

Nnb
u = o 48 === = ot il 5v - S10NTY - i (4)

r/a o (x=g)2+y°42 f ¥ae= o gEres

The pressure Tield of the finite line source thus consists of the
sum of two conical pressure fields radiating from the ends of the
line source. (See fig. 1.) In the supersonic case (reference 1)
the radial isobars forming the conical field were confined to the
downstream Mach cone. Here however the isobars extend over the
whole space.>r

If the direction of flight is along the axis of the source
(x~axis), the flow will satisfy the boundary condition for a body
of revolution. However, if the line source is turned out to a
position oblique to the stream, the boundary shape will be distorted
and, if the angle of obliquity is large enough to place the line
source well outside the diameter of the original body, the figure

lThe conical pressure field for either the subsonic or the super—
sonic line source may be obtained directly from the general solu=
tions of Laplace's equations of zero degree in Xx,y,z given by
W.F. Donkin. (See reference 2, page 357.) The general solution is

— F(i y +iz >
x++/ x2+y°2422
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formed will be an oblique wedge. The nose angle of the wedge is
formed where the streamlines of the main flow crogs the line source.

At supersonic speeds the expression for the oblique line source
was obtained by applying an equivalent of the Lorentz transformation
for which the wave equation is invariant. The equivalent trans—
formation for Laplace's equation is a rotation of the axes, given by

x! = x +my

y' =y —-mx

M1 + m* 2z

where m is the slope of the new axes relative to the old. (Note

that a change of scale is admitted for convenience.) The geometry

of the pressure field relative to the line source is not altered in
any way by this rotation an? the isocbars behave as though they were
rigidly attached to the ends of the source. For a line source with
one end at the origin we have

z'

1]

= sinh~l ——Xo (5)
/A

This field is illustrated in figure 2 for the plane z = 0. As
m—> othe ¥X— and y-axes interchange and there is obtained

u = sim™ —L— (6)
x2+ze

for a line source along Jv.

See footnote 1, pg. 3.

The solution corresponding to the subsonic line source is

4 — x
U= —R.P. 10g —mlotieee = sinh™? o
xw x¢+:j,-¢+zl_ A y4+22

while the field for the supersonic source is given by

THEZ - cosh™ ———

u=-—R.P. log

e i e i i e i e e




NACA TN No. 1340 5

The vertical velocity w near 2z = 0O, which determines the
shape of the boundary, may be found by integrating u with respect
to x and then differentiating the resulting velocity potential
with respect to =z

W=§Q=:‘?—fxudx (7)
02, 0% fous

Evaluation of this integral for the overlapping fields from two
ends of a line source gives

e 4 (8)

m

over the area of the x, y plane behind the line source.

The figure formed by the streamlines crossing a line source is
thus a wedge—shaped body having an cblique leading edge and extending
indefinitely dowmstream. It is evident from equation (3) that the
infinitely wide wedge cannct be treated in subsonic flow, since it
creates an infinite pressure disturbance at all points.

The slope of the wedge surface away from the chord plane is
given by

(9)

cxrm

b
I

<=

With this relation and equation (8) the pressure coefficient near
the plane z = O may be expressed in terms of the slope

AP . L m_ dz ~1 x'-b! -1 x'—a!
== = = —=_ &£ ( ginh £8P _ginh Al 10
q J(,\/l+m:- ax < ly'l y ly‘ l (39

where |y'| indicates the absolute magnitude of y'. Following the
thin-airfoil theory, the pressure over the chord plane (z—>0) is
taken as the pressure over the actual airfoil surface.

B i
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ATRFOILS BOUNDED BY PIANE SURFACES

It was seen that the effect of a line source in the pressure
field is to cause a deflection of the streamlines crossing the source.
The deflection thus produced is equal and opposite at points above
and below the chord pleng sothat the source spreads the streamlines
apart. If the source ig followed by a sink of equal strength, an
e¢qual opposite deflection of the streamlines will occur as they
cross over the sink. The figure formed by the streamlines near the
plane z = 0 will thus be a plate of uniform thickness with a
beveled leading edge.® (Seo fig. 3)

The pressure distribution over such a beveled edge may be
obtained very simply by superimposing the pressures laid off on
radial isobars originating from the four corners of the bevel.
Figure 3 illustratcs this process for a bevel having a square plan
form. Only isobars from one tip are shown because of the symmetry
of the figure.

In figure 3 the line source and the line sink are parallel to
the y-axis, hence

u = sinh™l Lk o ginphdTmls o ginplodill 4 gipnt <Xl . (12)
|x+1 | |x+1] |1 lx—ll

It can be scon that if the aspect ratio of the figure is increased
to a large valuo the cnds of the line sources will be separated by
a great distance and the isobars in intermediate regions will
approach parallel straight lines, hence the flow field approaches
a cylindrical or two—dimensional form. At the same time the
argumonts y#1l/|x#l| . in equation (11) become y#n/xil eand 1n
takes on very large values so that

sinh=1 JEb. >4 10g 2 L2
| x£1 | |x£1 |

O

2According to the thin-airfoil theory the thickness of the figure
ends abruptly at the ends of the source lines. A more exact
considoration would be expected to show some rounding at the tips
of the wedge as indicated in figure 3.
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and equation (11) is found to approach the Legendre function Qo,
that is

Wh= 2siog

= . ~
)=k a0 () (12)

(See reference 3, pg. 110.)

This expression when combined with equation (8) agrecs with the two-—
dimensional potential function for the wedge, that is,

- (u—iw) = 4 Q4 (x)z2ni Py (x) (13)
(See fig. 4.)

The isobars at right angles to the axis of the line source are
lines of zero pressure, hence the rays originating at the tip of a
rectangular wing contribute nothing to the pressure distribution at
this tip. The whole pressure distribution at one tip is thus obtained
by considering only those isobars radiating from the opposite tip.

It is evident that in the case of a long narrow rectangular wing
the pressures at either tip will be approximately one-half the
pressures over the middle portion of the wing.

In case the wing is oblique the tip sections will no longer
be at right angles to the axes of the source lines and the rays
originating from the adjacent ends of the source lines will contri-
bute to the pressure over the tip. It can be shown that this compo-
nent of the tip pressure distribution is similar in form to the
Ackeret type of distribution, that is, the pressure at any point
of the surface is proportional to the slope of the surface at that
point.

Consider first the sloping surface formed by a pair of oblique
source—sink lines. The tip section lies along the lines of constant
pressure of megnitude proportional to sinh™1 l/m. Between the
source and sink the pressurss are additive, so that

o _ 2 n_ 4 (1%)
q

42 winp—1 &
s R .

Ahead of or behind this section the pressures cancel.
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In case of a curved airfoil surface the chord can be divided
into elements composed of source—sink pairs the strengths of which
are proportional to the slope of the surface at the point in question.
Each pair then contributes a pressure proportional to the local slope
and contributes no pressure at other points. Hence, equation (14)
epplies when dz/dx is variable along the chord.

The foregoing arguments of course apply only at the tip
section of the oblique wing. At some distance from the tip section
the overlapping isobars radiating from the tip again produce a
quasi-cylindrical pressure field as in the case of the rectangular
wing. Thus the resultant pressure distribution at either Lin of &
long obligue wing consists of two components, one given by equation
(14) and of the Ackeret type while the other component is equal to
one-half the normal two-dimensional pressure distribution associated
with the airfoil section.

Figure 5 shows the pressures over a beveled—edge profile
having 45° sweepback. The pressure distribution over the root
section is given by

&p =4 _m _.z_Xr wtatvied 5 ]
q st :\ﬁ_TmE d.X LQO (X) Slnh m PO (x) (15)

at a great distance from either root or tip by

B2 A e =

and at the tip by

Ap =2 a - 1
75 = wiimE E% { Qo (x) + sinh™ = Po (x)] (17)

To take account of the effect of compressibility we make use
of the Pranditl transformation, increasing both the x dimensions
i

and the pressure coefficients by the factor u;l—M . Replacing m

by «1-M= cot A, where A 1is the angle of sweepback, equation
(16) reduces to
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Ap ! 1 dz
I - Qo (x) (18)
p/2(V cos A)® % f1-(M cos A)2 A(x cos A)

Thus at a great distance from either roct or tip the pressures follow
a variation indicated by the normal component of velocity V cos A.

At the root section a component representing the Ackeret type
of pressure distribution is added to equation (18). This component

i8

4 .—_..._.__..__...l 2 dz e n

pot sinh Ps (x 1
/1M cos A)2 d(x cos A) JIMZ cos A o (x) (19)
The factor sinnm2 1 shows a logarithmic infinity at

V1M cos A
M = 1.0. Hence the prcssure on the root section increases more
repidly with Mach number than do the pressures at other seoctions
of the swept—back wing. Furthermore, the shape of the pressurs
distribution over the root section approaches the Ackeret shape
more closely as the Mach number approaches 1.0. As shown in
reference 1 the pressure distribution on the root section is exactly
this shape at superscnic speeds, that is,

R G 1 dz cosh“](‘/-‘-——————-—l )Po (x)
q cos2 A n //l—(M cos A)2 d(x cos A) M2~1 cos A.

(20)

Since sinh™ —>cosh™) for large values of the argument, the
swept~back airfoil shows no discontinuity in the type of pressure
distribution on passing through the speed of sound. It will be
evident that similar reasoning can be applied to the tip sectionms.

ATRFOIL OF BICONVEX SECTION

The use of a finite number of sources and sinks results in
airfoil sections composed of straight segments. Such sections are
undesirable, since they show infinite pressure peaks at the bends
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in the surface. Surfaces having continuous curvature require
continuous distribution of sources and sinks alined with the generators
of the surface. The simplest of these is the biconvex profile in
which the upper and lower surfaces are parabolic arcs and have

constant curvature. Such a profile requires line sources of finite
strength to form the desired angles of intersection of the arcs at

the leading and trailing edges together with a uniform distribution

of sinks along the chord plane between the two sources.

The pressure ficld for a uniform sheet of linc sources is
obtained by integrating the field of a single line source in the X
direction. This integral is

B
1y =/ sinh? X ax = Wt y sinh™2-X — L gyt gipht X: (21)
w1 Edl m byl m |7

he integration for a source sheet is actually somewhat simpler if
the interference of a bilaterally symmetrical arrangement of sources
is considered simultaneously. The influonce of the symmetrical, or
conjugate, arrangement is obtained by substituting -m for m in

=

oquation (21). Denoting x-my by X' and y+ux by F' we have

Lol e { SR =1 ! sinh —l
() / <\b nh :fT + si ‘ﬁﬂ’) X
= L (# gimm™? Z— - y' sinn™? —X'r-‘ (22)
i 4l RA

To obtain a complete swept—back wing it is necessary to add
a number of component pressure fields as cxplained in reference 1.
For an infinite swept—back wing with lendlng and trailing edges at

y' = +m ﬁnd -m, Trespectively, on one side, and at §' = +m
end -m, respoctively, on the other side, there is obtained
i m 75\ rv' /g o B .48 frh e
o il i ( sin o1 = B 1
9 T JTHmZ \Chpye B\ Vytem | y*+m|
e s N\
'/ - _T'-1 Sedit i b b ULl
+ £ ( sinh b — sinh £ )
! T =i
m K !y‘—ﬂl (5 4m] v
e ) L
{ < v |
+QQ';¥6-~‘;+9Q,1(4,,1- 3 (23)
\FERE X, N e
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where (%amax is the thickness—chord ratio of the biconvex profile.

The terms Q3 %%:> represent the pressure distribution on the

biconvex airfoll in two—dimensional flow. The eppearance of these
terms is the result of the assumption that the tips are removed to
a great distance.

At the root section (y = 0) equation (23) reduces to

ol
il
V)

«7:%1—-5 %/mﬁx [’* Q (x) = 4 sinn™ L1y (x):l (24)
- . L

Figure 6 shows preasurc distributions at various stations along
the span for a biconvex wing with 60° swoepback. The curves assume
the two-dimensional form at a relatively short distance (y 2 %c)
from the root scction, and similar behavior is to be expected near
the tips. Honce the assumption of infinite aspect ratio should
apply very nearly at any scction situated more than one-half chord
length from either iroot or tip.

Figure 7 shows the offect of Mach number: on the pressures
over the root section end illustrates the progressive change to the
supersonic type as the Mach numbor approaches 1.0. It can be seen
that an increase in Mach number will not only increase the distor—
tion of the pressure distribution but will increase the extent of
the distortion along the span.

An interceting point to be notcd is that not all sections of
the swept-back wing have zero prossurc drag. A positive drag appears
on the root sections and a negative drag on the tip sections. Hence
the spanwise drag distribution is qualitatively similar to that at
supersonic speeds though, of course, the net subsonic pressure drag
is zero.

Ames Acronautical Lﬁboratoryi
National Advisory Committec for Aeronautics,
Moffett Field, Calif., May 1947,
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APPENDIX
Symbols
v flight velocity
M Mach number
Z.¥:2 coordinates
3 point on x—axis
n point on y—axis
o disturbance, velocity potential

u,v,w disturbance velocity components

P local pressure
q dynamic prcssure %072)
o] air density

Pn,Qn Legendro functions
D differontial operator (d/dx)

t thickness of wing

Q

chord of wing (measured along x)

m slope of line source (absolute valuc)
X! X + ny
y' y — mx
ol X — my
3! y + mx

BB, Real part

NACA TN No. 1340
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