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VALUE PROBLEMS IN SUPERSONIC FLOW

By Max. A. Heaslet and Harvard Lomax

SUMMARY

A direct analogy is established between the use of source—sink
and doublet distributions in the solution of arbitrary boundary value
problems in subsonic wing theory and the corresponding problems in
supersonic theory. The concept of the “finite part" of an integral
is introduced and used in the calculation of the improper integrals
assoclated with supersonic doublet distributions. The general
equations developed are shown to include several previously pub—
lished results and particular examples are given for the loading on
rolling and pitching triangular wings with supersonic leading edges.

INTRODUCTION

The problem of finding pressure distributions over airfoils of
arbitrary shape and plan form or of finding airfoils which have
arbitrary pressure distributions is one of the most fundamental
problems in aerodynamic theory. At the present time the most
important and satisfactory approach to problems of this type is
provided by the methods of so—called thin-airfoil theory. The
essential assumptions in this theory are that the perturbation
velocities induced by the airfoil are small relative to the free—
stream velocity and that the boundary conditions can be specified
in a fixed reference <plane.

Under the assumptions of thin—airfoil theory the theoretical
analysis of a problem in wing theory resolves itself into the task
of determining the solution of a second—order linear partial
differential equation with prescribed boundary conditions. In the
case of purely subsonic flow, Laplace's equation in three dimensions
must be considered, while in purely supersonic flow the differential
equation which arises is algebraically equivalent to the two—
dimensional wave equation of mathematical physics. The classical
solutions of these two equations have been developed along two
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distinct limes: first by use of orthogonal functions which can be
derived In terms of the boundary conditions, and altermatively by
means of Green's theorem which in turn utilizes a known particular
solution of the partlal differential equation together with the
glven boundary conditions,

One particular solution associated with ILaplace's equation and
subsonic asrodynamics has been found to be outstanding in its
mathematical usefulness and, when ldentified with the veloocity
potential, has a physical interpretation which can supply, in direct
application, added insight into the nature of the problem. This
function is referred to as the "fundamental solution™ and can be
developed fram the concept of a so—called source. A concaomitant
development to the source potential 1s the doublet potential, and
appropriate distributions of these functions are kmown to be
sufficient for the solution of all problems in subsonic wing theory.

The extension of the use of the fundamental solution to problems
ir purely superscnic flow Introduces mathematical difficultles which
differ eassentiaily from those encountered at low speeds. Both the
source and the doublet potentials possess singularities on their
conical oharacteristic surfaces or Mach cones and, in the case of
the doublet, the singularity is of higher order than can be treated
by elementary mathematical methods. In the historical development
of the solutiona of the wave equation this trouble was circumvented J
by replacing the source potential by other particular solutions of
the differentisl equation. As an example, Volterra (reference 1)

introduced the integral of the fundamental solution and in that way

reduced the order of the singularities involved. The analytical

development of Velterra's theory presents no inherent difficulties

(e.g., reference 2) but the physical significance of the particular

golution is lost, the direct analogy with subsonic theory no longer

exists, and a certain amount of mathematical inefficlency arises

since, after using the integral of the source potential, it 1s

found necessary to resort at the end of the analysis to taking a

final derivative,

In this report, following methods introduced by Hadamard
(reference 3), & general solution to the thin-eirfoil problem
in supersonic theory will be given in terms of the distribution of
gources and doublets over the given reference plane. Furthermore,
a discussion of the nature of the boundary values required will be |
glven. For properly set problems in wave theory it has been found
necessary to specify, usually, both the required function and its
derivative with respect to time along the boundary considered. In |
aerodynamic applications of the wave equation agsgoclated with «
11fting surface theory and thickness distributions it will be shown |
that only a knowledge of the unknown function or its normal |
derivative along the boundary 1s needed since a relationship between 2 ‘
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the two functions will be established on the boundary surface.

In the theoretical portion of the report a brief presentation
will be made of the differential equations involved and the two forms
of the fundamental solution. An outline 1z then given of the types
of boundary value problems encountered and, since the purpose of the
report 1s to extend the concepts of thin-eirfoil theory which are
used In subsonic theory to problems arising in supersonic theory, a
discussion will be given of the subsonic development ag a basis for
the analogy which exists between the methods of solution corresponding
to the two regimes of flow. In the discussion of the purely supersonic
cage i1t will be shown that the Introduction of the concept of
"finite part" will provide a technique whereby the improper integrals
arising from the use of doublets may be evaluated in a straight—
forward mennmer. The applications of the theoretical developments
will include the rederivation of same previously published results
and will also comtain the calculation of load distributions for
rolling and pitching triangular wings with leading edges swept ahead
of the Mach come fram the vertex of the triangles.

SYMBOIS
b span of wing
c chord of wing
M free—stream Mach number
n normal to arbitrary surface

njNg,na d.ii’ecticm cogines of normal n

P static pressure
¥ rate of roll about X-exls
q free—estream dynamic pressure
Q rate of pitch about Y-axis
1 fundamental solution of equation (3)
¥
[(1"‘11)2"'(1"‘11)2‘*(2—31)2 ]
% fundemental solution of equation (k&)
o

[ (2t ) 2(372) 2 221) 2] %
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arbltrary region of integration
gurface enclesing region R

perturbation velocities in direction of X—, Y-, and Z-axss,
regpectively

free—gtream velocity

Cartesian coordinates in original space varilables

trangformed system of coordinates

J 1M

infinitesimal used in analysis

surface along which stream enters induced field of wing

conormal to arbitrary surface

direction cosines of conormal

varisble representing either acceleration potential,
velocity potential, or any of the three perturbation
velocity components

gurface on which boundary conditions are glven

perturbation veloclty potential

variable representing either acceleration potential,

velocity potential, or any of the three perturbation
velocity components

pressure coefficient

load coefficient

moment about X—axis
rolling-mament coefficient

gb X wing area

3C /®(Fb /2V)
2 62 62
differential operator <:—-—5 + =5 + g
x oy oz
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2 2 2 2
[] differential t <? e 9 .>
operator = al
x> 52 922

] sign denoting "finite part" of integral

Subscripts
u subscript denoting value of variable on upper surface of
wing |
|
/) subscript denoting value of variable on lower surface of
wing
3 subscript denoting variable of Integration
e subscript on r denoting fundamental solution in supersonic
flow
Superscript

superscript denoting value of variable on opposite side
of T from fixed point (x,y,z)

THEORETICAL DEVELOPMENT
Linearized Equations and Boundary Conditions

The linearization of the second—order differential equation for
compressible fluld flow 1s developed under the assumptions of thin—
alrfoll or small-perturbation.theory. If the velocity vector of the
free stream 1s parallel to and in the direction of the positive
X—axis, the resulting differential equation is expressible in the

form

02a 02q 02
+ + &

0 1)
dx2 Y@ oz® (

(1-M%)

where (I represents a veloclity potential, acceleration potential, or
any one of the perturbation velocities while M 1is the constant
value of the free—stream Mach number. Assuming the plane of symmetry
of the airfoil to 1lle in the XY plane, the boundary conditions
assoclated with equation (1) are given for Z=0. Moreover, if

u, v, and w represent, respectively, the perturbation velocity
components along the X, Y, and Z-axes, and if the velocity of the
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free stream i1s V, the direction cosines of any stream line are
proportional to the point functions V + u(X, Y, 2), v(X, Y, 2),

Ap
and w(X, Y, Z) while pressure coefficient T 1s given by the
relation

Ap 2u

ikl (2)

Detailed discussions of these results may be found in reference 4,

Introducing the affine transformations

R =R
v = WH1M2) ¥
z =/ E(1 M) 2
where the signs under the radicals are chosen so that real values

result, it follows that in the subsonic case (M<1l) equation (1)
reduces to

d3q ¥ d93q N 02q N

=0 3)
ox2 Jy2 0z2 (
while the supersonic case (M>1) yields
320 320 320
3 i gl (1)

dx2 Jy2 22

The fundamental solution associated with equation (3) is

il
2 2 DN
2= [(xx) + (31) + (222)"] 2 (5)
or, in terms of the original space variables,
= &
il
== [(T%)% + p¥(¥=)%+ p3(2-2,)%] 2 (58)

where

BZ = (L — M?)
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When the wave equation 1s to be considered the fundamental solution

* takes the form

o

ol [(x=x1)2 - (y51)2 - (2—21)3] 2 (6)

e
or

1
= = [(50)2 = p3(¥-11)2 - p(2-21)2] 2 (68)
where °
= = (M% - 1)

These fundamental solutions represent, respectively, in subsonic

and supersonic flow the velocity potentials at the point (x,y,z) or
(X,Y,Z) of unit sources situated at the point (x;,y1,z1) or
(X1,Y1,Z1). The velocity potential of a doublet may be obtained by
taking a directional derivative of the source potential, the
direction of the axis of the doublet colnciding with the direction
along which the derivative 1s taken. These two functione will be
geen to be of paramount importance when Green's theorem i1s applied
to the given boundary conditions.

It remalns now to mention the types of boundary conditions which
appear in problems associated with wing theory. As a convenience to
the development of the theory the normalized forms (equations (3)
and (4))of equation (1) will be used and boundary conditions will be

-agsumed known with respect to the x,y,z coordinate system. Retransfor—

mation to theX,Y,Z system of axes can be made quite simply wherever
needed in application. In order to define the boundary conditioms,

two subscripts will be introduced: the first, u, denotes the value
of the required function on the upper surface, that is the limit of

the function as 2z approaches zero from the positive direction; the
second, 1, denotes the value on the lower surface, that is, the

limit of the required function as 2z approaches zero from the negative
direction.

Using these definitions the three boundary value problems of
principal interest can be defined as follows:

1. Symmetrical nonlifting airfoil.— In this case wy, = wy =0
over all of the xy—plane except for the region occupied by the
alrfoll where 2w, = —2w; = &w = f(x,y) the function being determined

by the geometry of the wing. Over all of the xy—plane, 2JAu = O.

2, Lifting plate with specified loading.— It is given that
Ma-=uy —uyp = 0 over the xy-plane except for the region occupied
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by the airfoil where Au = f(x,y), the function being determined by
the specified loading. Moreover, Aw = O everywhere,

3. Lifting plate with specified camber, twist, and angle of
incidence.— Over the xy—plane Aw = O everywhere., And, except for
the region occupied by the airfoil, Au = 0. Over the region occupied
by the airfoll w = f(x,y) where f(x,y) 1is determined by the given
camber, twist, and angle of incidence.

It should be pointed out that the problems considered here differ
from the usual type of boundary value problem encountered. In the
gso-called Dirichlet or Neumann problems, which arise in commection
with Laplace's equation, the value of the normal derivative of the
function or of the function itself is specified along the boundary
while the Cauchy problem for second—order partial differential
equations involves the knowledge of both the function and a derivative.
Except for one case in the aerodynamic problems listed above, no
absolute values are given but rather the jump in the value of the
function along the boundary is prescribed.

Boundary Value Problems in Purely Subsonic Flow

Since the purpose of this report is to extend the concepts of
thin—airfoil theory which are used in subsonic theory to problems
ariging in supersonic theory, some discussion of the former will be
given to provide lucidity as well as to furnish a basis for the
analogy which will be shown to exist between the methods of solution
arising in the two regimes of flow.

The method whereby the solutions of the given problems can be
effected 1s provided by Green's theorem which relates a volume
integral over a region R to a surface integral over the surface
S enclosing R, If o, 9 are any two functions which, together
with their first and second derivatives,are finite and single—valued
throughout R, then for the subsonic case

fsf {%—di&f_/;f[ovzn-nvzc]cm (7)

82 82 32
where the Laplacian operator, ¢2 e &2 T s

introduced and the directional derivatives on the left side are
taken along the normal n, drawn inward, to the surface S. 1
Identifying now the function o with the fundamental solution =

and specifying that Q satisfies Laplace's equation, equation (7)
gsimplifies to give
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[/EE)22 e
S on dn

=0 (xx2)2 + (392)2 + (222)2T %

where

H{=

The variables of integration in the equation are x3;, yi1, z1, while
X, ¥, z are the coordinates of a point P either inside or outside of

the region of integration.
If the point P is assumed to be inside the region of integration,

1t 1s evident that the function % becames infinite at P, and it 1s
i

necessary to exclude this point from the region if formula (8) is to
apply. Describing a spherical surface £ with radius € about the
point P, and considering the integral over the two surfaces I and S
which enclose the region, it can be shown that in the limit as

€ —> 0 equation (8) becomes

g [[HE e o

The physical significance of this last relation follows immediately:

the term % represents a fluld source and the term 9 ;nr)
represents a doublet with its axls lying along the normal to S, both
source and doublet being situated at the surface point x3, y1, Z1.
The value of the function Q at the point x, y, z 1s therefore given
ag an Integral of a source and doublet distribution, the strengths of
the two being determined directly from the respective boundary values

of Q and Q_Q.
on

Equation (9) expresses the value of @ in terms of the surface

values of Q and % but this relation does not imply that a

knowledge of both these variables is necessary for the determination
of Q2. As can be shown easily, another condition may be established
which relates the two surface values., Applying equation (8) to the
cage where P lies outside the reglon of integration, 1t follows that

the integral 1s equal to zero and that Q and %3 on the surface
are functionally dependent.
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Sufficlient Information 1s now at hand to provide a solution for
the thin—-airfoll-boundary value problems. Consider the region R
bounded by the xy—plane and a hemigpherical dome of infinite radius
lying above this plane. For all problems to which the results will
be applied, the value of @ may be assumed equal to zero at infinity.
The contribution of the surface integral over the hemisphere is thus
zero and, from equation (9)

U Ol

where the Integration extends over the entire plane. The directional
derivatives are necessarily in the direction of the positive z—axis
and subscripts are again Introduced to denote conditions on the upper
side of the plane. Keeping P fixed and integrating over the lower
gide of the xy-plane, it follows that

o--ief 350k ) ] o

where the negative direction of the normal may be ignored since the
integral 1s equal to zero., Subtracting these two equations gives
the expression

W/ FIC Y NARITC) N

the integral extending now only over the area + for which the
integrand does not vanish. Equation (10) is the basic equation from
which all solutions in subsonic wing theory will be developed. It
should be pointed out that the derivation proceeded from the
assumption that the point (x,y,z) lay above the xy-plane. When
(x,y,z) lies below the xy—plane, however, the derivation can be
carried through in exactly the same manner. Such a development
reveals that equation (10) is general and that no restriction need
be imposed on the position of (x, y, z) relative to the reference
plane.

As a particular application of equation (10) consider a thin
symmetrical airfoil at zero angle of attack and set 9 = ® where
® 1s the perturbation velocity potentlial. Conditions of symmetry

demand that @, = ¢, = ¢&; = ; while %Qn w, and %Ql = Wi.
z z
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Y Thus, 1f wy; — w} = Aw

o=—f;f[Aw-ll;dndn (11)

and the velocity potential 1s given by a distribution of source
potentials, This distribution can be immediately related to the
slope of the basic section by means of the equation

The symmetric airfoil can also be treated by replacing O by
the perturbationy velocity w and In the case of the thin 1ifting
surface with glven loading the function Q can be set equal to u,
Employing, respectively, conditiona of symmetry and irrotationality,

Q i
1t follows that ?}3— o vanishes and, after setting AQ=a, — @,
z z

equation (10) becomes

Q (1:7:2-) = —l‘ AQQ“ G) dx; dy: (12)
)-H( T aZ

Boundary Value Problems in Purely Supersonic Flow

Applications of Green's Theorem.— The problem to be discussed
at this point is the extent to which an analogue to equation (10) can
be developed for supersonic flow fields. The first step in the
presentation is, once more, the introduction of Green's theorem for
equation (1) after it has been modified to the form given by equa—
tion (4). Employing the operator

2 62 aa az
O - dx2  oy2 Oz2

Green's theorem now becomes

éf(“%g'“%ag“‘ffl?fﬂﬂec—v D20>cm (13)
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where U 1s the so—called conormal to the surface S and has

direction cosines equal to v_., v., v such that

2l e

Y, =1,, U =n,, Vg = ng (14)

where njy, nz, nas are the direction cosines of the normal to the
surface S (fig. 1). (The conormal at any. point X, yi, zy of &
surface 1s the mirror image in the plane x = x; of the normal
through the same point.) If ¢ and o are perfectly arbitrary
functions, aside from satisfying the usual conditions of single—
valuedness, etc., equation (13) represents an identity and this. fact
will be useful at a later time. For immediate purposes, however, o«
and Q will be chosen as solutions of the differential equation under
congideration so that

[o=o-

and, consequently,

uéf(n—— =0 (15)

The use of equations (13) and (15) depends upon an understanding
of the physical nature of supersonic flow fields. The essential
feature of such flow is the presence of Mach cones which correspond
to the characteristic cones arising in the mathematical study of the
wave equation. In accordance with these concepts a disturbance in
the flow field can affect the flow only within its aftercone, that
is, the cone with vertex at the point of disturbance and with axis
extending in the direction of the undisturbed stream velocity
vector; conversely, a point in the flow field can be affected only
by disturbances which emanate from points within its forecone,

When the disturbances are generated by a wing 1t 1is, moreover,
necessary to speak more specifically about the nature of the leading
edge of the wing. For all cages considered here the assumption will
be made that the plan form is a polygon, that is, is composed of
straight line segments. If the wing i1s swept ahead of the foremost
Mach cone, the cones arising at the leading edge will have as
envelope a wedge—shaped surface passing through and extending back
from the leading edge, while if the wing 1s swept back of the
foremost Mach cone this cone will be the surface along which the
alr first experiences perturbatiens or disturbances. Thus, a
point P with coordinates x, y, z is affected by all disturbances
lying within its forecone I' and at the same time behind the forward
surface A, the nature of the latter surface belng dictated by the

leading edge. In figures 2(a) and 2(b) these surfaces, along with
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the disturbance plame T, are indicated for two different wing plan
forms., In the applications of equation (13) the volume integral is
limited to the portion of space common to the surfaces Fy N, .and T

and the surface Integral involves a discussion of conditions on these
surfaces.

Up to this point the analogy between the subsonic and supersonic
cases, insofar as the use of Green's theorem is concerned, is quite
apparent. The principal difference which occurred was brought about by
the use of the true normal in the subsonic field together with the fact
that the xy-plane was covered by a hemispherical dome of infinite radius;
whereas, in the supersonic field, the concept of the conormal was
introduced and the volume to be considered was that enclosed within
a finite region. In continuing the analogy, however, far more
formidable obstacles arise. To begin with, the discussion of o and
Q over the surface in the subsonic case was relatively simple. Thus,
with no limitations of generality Q could be assumed zero at
infinity and AQ was specified completely in the xy—plane. But in
the supersonic case, although AQ can be assumed known in the xy—plane
and, as will be seen later, Q2 may be evaluated on the forward boundary
of the region, nothing is known of Q on the forecone TI'. Hence g
must be chosen properly so that the knowledge of Q@ 1s unnecessary on
I'. The most obvious choice of ¢ would be a particular solution of
equation (4) which would make o = O on I and this is in fact the
choice used by Volterra (reference 1) and applied to aerodynamic
problems in reference 2. However, if the analogy 1s to be maintained
the choice of o 1is not arbitrary but must be the three—dimensional
supersonic source corresponding to the fundamental solution

. in subsonic theory. But such a solution, - =
r

e
Ak
[ (¥x3)2 - (377y1)2 = (2-21)2] 2 Dbecomes infinite along the
forecone I' which has the equation (xx;)2 — (y—y.)2 — (z-z1)2 = 0.

It 1s Just this difficulty which apparently invalidates any further—
ance of the analogy and the prediction in advance of an aerodynamic
shape from a distribution of sources and doublets in supersonic flow,
However, 1t is also precisely this difficulty which is overcome by
Hadamard's general methods.

Extension of analogy by Hadamard's Method.— The full develop—
ment of Hadamard's methods cannot be given here, but a rough sketch
of his reasoning will perhaps be useful. The basis of his arguments
stems from equation (13). First it is admitted that the right—hand
side of equation (13) will tend to infinity as the surface S
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approaches I' go that %— is not a regular solution to Daﬂ =0
(¢]

on I'. However, as has been mentioned, equation (13) still must hold
whether or not o or @ satisfy the wave equation and thus it still
provides an equality. Hence, 'if the surface integral tends to
Infinity so also must the volume integral., Further, equation (13)
implies that these infinite portions just cancel since the difference
of the two integrations must always give zero. To deal with such a
problem quantitatively by the usual mathematical techniques would
require the study of a limiting process for each new boundary value
problem., Hadamard's contribution was the introduction and Justifica~
tion of a concept which removed the necessity for studying the
Infinite portions involved. This concept is best presented by. .

means of a new notation, thus the sign [ is used and is
to be read "the finite part of."

Using this concept it 1s possible to show that if o were set

equal to -1'-, then equation (13) could be written

INCEEET

St . 2l

go that the "finite parts" of each side of the equation would be
equal. Such a notation would, of course, in general be meaningless
since In discarding arbitrarily a part which tended to infinity it
would be possible, by proper combinations, to obtaln as a remainder
any finite value. The fact is, however, that the integrals involved
in equation (16) tend to infinity only at a limit of the integration
and this 1limit always involves the forecone I'. It was consequently
possible to devise a manipulative technique to handle equation (16)
without considering the singularities individually. It might be
mentioned, without stressing the correspondence, that a treatment of
improper integrals is also employed in the use of Cauchy's principal
value, In subsonic thin-eirfoil theory and lifting-line theory
integrals of the latter type are well known in the form
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° £(x0)dxo
) =/ ASRIESS o< x<c
[o) X—Xq

I, certainly tends to infinity as x, approaches x but the use
of Cauchy's principal value allows the very large values of the
Integrand obtalned when x; 1s on either side of x to Just cancel
in such a way that I; 1s finite and unique. So again the

integral
X  A(x)dx
a/2

( xo-x)

Ia =

is finite and unique and given by Hadamard in the form

b [ OMD)AG) | 2A(xo)
T da (1T (xge) P

It is actually possible to gemeralize the idea of "finite part) to the
cagse when the exponent in the denominator is of the form J + — where
J 1s a positive integer but such a generalization 1s not needed for

aerodynamic applications and will therefore be omitted.

In actual calculation, the evaluation of the Integral I, can
be shortened considerably. Thus, if the indefinite integral of

S

is written in the form f(x)+C then

I. 14 [fx A(x1)-A(x5) ar 2A(xo) J
a

X —> X, (10—11)3/2 (Io—&) L

= lim [ F(x)+C—F(a)-C— —EA;(—{‘LJ
X —> Xg (xo—x) /

It follows that if C 1s chosen so that

2A(xp) K F(x):’

e = lim [
Xo—X

x-—>xo
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then the expression for I, may be written Ip = ~[F(a)+C] .
When C 1is chosen in this manner, the notation for the calculation
may thus be modified to the form

fxo A(x)dx _f* A(x)dx
a  (xgx)®/2 Jg (x5-x)3/2

where the asterisk indicates that the upper limit is not substituted
into the indefinite integral, F(x) + C,

The techmique for the calculation of the finite part has
therefore been reduced to three simple steps: first, the indefinite
integral F(x) + C 1s determined, second, the constant C in the
Indefinite integral is evaluated by means of a limiting process,
third, the lower 1limit of the integral 1s substituted into the

Indefinite integral and a minus sign prefixed. As an example,
congider the integral

fxo xdx 0 f* xdx
a (x3x?)3/2 Vg (x,2x2)3/2

(eoo?) 1/2+ C and

o . lim [ 1 > 3 J" 5
T X — x, (EIO)I/T(xQ—x)Té (xo2x2)1/2]

go that, finally,

*

f X _(#(a) + €] = —=L
a

(x,2=x2)3/2 (x,2-a2)1/2

With the aid of this artifice the analogy between the subsonic
and supersonic cases can be continued with relative ease. Thus 5 in
equation (16) the right—hand member is zero provided we exclude the
point P fram the volume of integration. This can be done most easily
by limiting the integration to the x; = constant plane, a distance ¢
upstream fram P, The portion of this plane intersected by the come,
and thus the section over which the integration must be carried, will
be denoted by & (fig. 3).
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As drawn, figure 3 shows a cross section in a y; = constant
plane for the special case when P is located directly behind and
above the foremost disturbance. Applying equation (16) to the
reglons above and below the disturbance surface T (plane of the
alrfoil) yields the two equations

e |

h’[f/;[‘%(% _1%_0% ]ds (17)

and

Sl lrs @ -22]e-0 o

where the prime indicates the surface value of @ on the opposite
gide of v from P.

The integration over X can be computed for € very small.
For convenience, consider P to be the origin; then it follows that
gsince the conormal is in the x; direction and the area element can

zZ
be written 7y dy d@ where 6 = arc tan;£ and 7=£12+212, the
1

right side of equation (17) will give
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Q(x,y,z)/ﬁ d# 72?'3 T ———=arE

|
\
m\
= - 1

O
g)loz
<
QH Il—-‘
\I/
ol i
AN
12 e R |

&

1}

'_l

E‘

& i U

4 {208 ,y,Z)f 4 y dy
o o Je2 — yp2

-—€y d7 oa(x,y,z) P€ &
= lim QTTQ(x,y,Z)\‘[ 3/2 +2m +/" gl = ETTQ(x,y,z)
& n b [e" ox; o JeZ _ 72

‘ Hence the value of Q at the point P, Q(x,y,z) can be determined

‘ fram equation (17) with the restriction implied by equation (18).
Further, since only the "finite part" is considered, the integration
over I' ylelds zero and the two equations combine to give

|

EE D el s
rc Bz aZ aZ rc * E

aix,y,

(HOEE Ry e R
x L v\, 'rcSB T ox AL do' _;;—8-17
(19)

The only remaining difference between the subsonic solution for the
distribution of sources and doublets, equation (10), and the super—
gonic solution, equation (19), is the integration over surface A\.
The detailed discussion of the contribution of the surface integrals
over A will be deferred to Appendix A. It must suffice for the
present to remark that in all applications the integrals over A 1in
equation (19) are either zero or combine to give zero. It therefore
follows that
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fﬂi@&*i—? ‘("u‘m)':;@;c)} axy dy,

(20)

i
Q(x’Y:z) BT
2x

and the complete analogue to equation (10) has been established through
the use of the concept of finite part.

APPLICATIORS
Interpretation of Previous Results

As a means of Indicating the various problems to which equation (20)
can be applied, three previously published results will be discussed.
These applications Include, first, the expression for the perturbation
velocity potential of a symmetrical nonlifting eirfoil (reference 6),
second, the calculation of pressure distribution over a semi—infinite
wedge with leading edge swept back of the foremost Mach cone
(reference 5) and, third, the integral equation method for determining
the load distribution over a 1lifting surface of arbitrary slope
(reference 7).

As in the case of equation (11) for subsonic flow, let Q
represent velocity potential ® and consider the cage of a symmetrical
wing at zero angle of attack,

Then %ﬁl&: Wy and —29—7'=w1, where W, and w; are
z z

induced vertical velocities on the upper and lower surfaces,

regpectively. Moreover, @ e Qz = 0 for the symmetrical case so

that, since w, — w; = 2 w,

1
=

7

f widxl dya

T Yo

The integral in this equation is finite at I' so the finite part
sign may be disregarded and

o=-%f[§1:axldyl (21)
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This equation agrees with results given by Puckett in reference 6.
As another example consider the solution used by R.T. Jones
in reference 5 for a nonlifting symmetrical wing. Setting @

equal to w 1in equation (20) and using the fact that w and u
are related by the expression

z
u = é—\/P w dz
OX Joo

it follows that

Zo]

Ramh o [ ffwu§—<l—>dxl dys (22)
T Ox . oz -

For a wedge swept behind the forward Mach cone and having as the

equation of its leading edge the relation X3 = my;, the

expression for u may be written in the form

Wy d z 4 f* Z dx;
e ;—'S; " 0 i J1 [(xx1)2 - (y=y1)2 — 22]3/2
Jx2 — y2 E 1 V=Yl

where

Performing the integration with respect to x;, 1t follows that

Ji
zZ ¥ - (x = £%) ay,
u:&if zd_zfl m
T Ox = o

S = [(551)2 + 221 f (x = L)2= (3o51)2 — 22

and, after reversing the order of integration
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Y z - (x - -yml) zdz

" ey
A ax»[ yl/ [ 5—y2)2+23 [(x — LYo (3-31) 22

J - )2 3)?

w,d  ph /(x—g—}-)z—(y—yl)z—zz—k (x - I2)
= |
2n o

e — In — dy
3 T T } I
. (x = 2202 = (352)2 — 22 + k (x — L)
J1 Ji -
where k =1 for x>E— and =1 for x<m— . Taking the partial

derivative with respect to x and noting that the value of the logarithm
at the upper limit is zero, the value of the induced veloclity is

u=—ﬁ[i/1====—=&====
§ (x =12 = (y = 51)2 - 22

and integration yilelds the final result

Wiy m (x —my) =& (1 —m2)(x2 - y2 - 22)
u=— in

1t.Jl—mZ »[(mx-—y)2+z2(l—m2)

Ap 2u Wy
Denoting pressure coefficient — by -5 and setting T equal

to <%z-i;> the slope of the surface, this may be written
o

&p_2 (& m (x = my) — /(T - n?)(x% - 32 - z3)
2.2 @) P TS (23)

Equation (23) gives the pressure coefficient at any point in the
f1eld produced by a wedge swept behind the Mach cone. When 2z 1s
get equal to zero the pressure distribution over the wedge itself is
dstermined and the equation corresponds exactly with equation (12)
of reference 5.
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When loading is to be prescribed over a thin 1lifting surface, Q
may be assumed equal to the perturbation velocity u. A direct
consequence of this assumption is that in equation (20)

Bﬂu BQZ

————

dz oz
since, from conditions of irrotationality,

dw, dw, 3wy dy
d2 dx dx oz

By definition

s S, RURE

q T g v
and load distribution in coefficient form, ACP » 18 gilven by the
relation
MP = @—-— — AP--;—
q q

go that

mp = - 312 + 3 = — 2 f

v v v

Equation (20) can therefore be written in the form

e
T (o}
\/]:; Ap z dx; dy, (2k)

~/[ (11’--151):a = (Y‘Yl)z - z%]8

If equation (24) 1s transformed to the original space variables,
the relation for u is

u 1
v hx

e
Lz
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ff {(X_xl)e A:P — 3/2 (83)

[(¥Y1)% + ZZJ}

Equation (25) is valid for arbitrary plan forms with known load
distributions. Particular examples which may be worked out with
relative ease are the lifting surfaces carrying constant load. Once
u 1s known the value of w can be determined from the integral

>e
W = é— udx
oz

and from w the ordinate z of the surface as a function of x and

y 1s given by
= Y
z = - dx
déie. Ve

where 1l.e. denotes the leading edge. A discussion of trapezoidal,
rectangular, and triangular plan forms with constant loading is
glven 1n reference 2 although the method of derivation 1s different.

u X ¥.2)
V

Interest in constantly loaded wings has been based primarily
on the fact that in certaln cases they can be combined to produce
surfaces of glven camber. Thus, a superposition of trapezoidal plan
forms of variable rake, the constant loading over each trapezoid
being a functlon of its rake angle, can be used to produce a flat
plate of trapezoidal or rectangular plan form at an arbitrary angle
of attack. In thls case the loading as a function of rake angle is
determined so that induced vertical velocity is kept constant. For
problems in conical flow a lifting element can be constructed by
subtracting from a constantly loaded right triangle with angle of
sweep equal to © the constantly loaded right triangle with sweep
angle equal to & — dd., The resultant element carries a constant
load and has a sweep angle equal to 8. By summing these elements
1t 1s possible to find the load distribution as a function of B
such that certain flat 1lifting surfaces at angles of attack are
formed. In reference 2, triangular wings swept back of the Mach
cone were studied by this method for arbitrary angles of yaw. Brown
(reference 7) has used this same lifting element to study the more
restrictive case of the symmetrical triangular wing.

A brief discussion of differences existing between the methods
for producing the swept—back 1lifting element will shed some light
on the various lines of attack. The approach used in reference 2
is essentlally mathematical in that a particular solution of the
partial differential equation i1s ueed 1n conjunction with Green's
theorem to satisfy the boundary conditions of the problem. The
principal criticism of such a method is that the physical
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Interpretation is missing. The use of equation (25), however,
removes all such criticisms for precisely as in the case of
incompressible flow the lifting element is created by distributing
doublets over the wing. In Brown's solution it was necessary for
him to determine first a line of sources by means of an integration
along the line and then to form the doublet line by differentiating
along the normal to the line, The order of differentiation for
incompressible flow is immaterial, since the limits in the integral
are 1ndependent of the posltion of the point P at X, Y, Z. Super—
sonic flow destroys this property and it is only after the introduc—
tion of the concept of "finite part" that the derivative of an integral
may be written as the integral of the differential coefficient of the
integrand. Equation (25) thus simplifies the analysis and at the
same time maintains the analogy with previous work.

Load Distribution for Rolling Wing

The usefulness of equation (20) is not at all restricted to a
gynthesis of previously known solutions. As an example of its
generality consider its application to the problem of the rolling
wing with leading edge swept ahead of the Mach cone. Figure 4
shows the boundary conditions involved. The value of w 1is
gpecified over the wing and, since the Mach cone is behind the
leading edge, the value of the perturbation velocities u, v, and w
are of course zero ahead of the leading edge. Assume for the
moment that a symmetrical body at zero angle of attack 1s considered.
It follows that if @, =w,  and 0, = w, then equation (20) can

be written in the form
8 1
f[ v (2 )an &, (26)
oz By

gince, for reasons of symmetry, the normal gradients of w on the
two surfaces are egqual. Using now the fact that the Mach cone is
behind the leading edge then the pressure over the upper surface is
independent of the shape of the lower surface and equation (26)

may be applied directly to the rolling flat plate if wy 1s
determined from the given induced velocity on either the upper or
lower surface. This method of approach, of course, limits the
solution to casges where the leading edge 1s ahead of the Mach cone.

AL
W= -
T

If the rate of roll is given as P radians per second then
2wy = 2PY; and equation (26) becomes
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B
W= -
x

B< Y Z dY, dX;
Sl (27
T [ (2X,)2 - B2 (¥-Y,)2 - p2 22 1%/

The area T 1in equation (27) is that contalned between the leading
edge and the trace of the forecone on the XY—plane. Figure 5(a)
gshows the configuration for three traces corresponding to forecones
from the points P, Pp, and Pz . The region containing the
point P, 1s distinguished from that containing P; and Ps by
the fact that T for P lies ahead of the Mach cone from the apex
and, furthermore, entirely on the right of the x; axis. The
regions corresponding to P; and Pz differ in the fact that when
integrating from +o to z to find wu, the upper limit of the
integral in the first case 1s the Mach come X2 — p3Y2 — g%22 = 0
whereas in the latter case the upper limit is the leading-edge

wedge Z = o (£1g. 5(b)).

/ 2,2

m B =1

The solution must be carried out separately for each of these
reglons but only the details for the region corresponding to Py
need be given here since the others are similar.

Tt follows that the induced velocity u at the point P is
given as the sum of the triple integrals.

25

2 o o
p%z.,dX
u=é_.£f dZOf Yllele oY4AlL
X xJy (X=X, ) 2-p2(¥~T1 ) 2-B%2,7 ]

% Jrepeye A(1,Z,) i

A(_l:zo)

& i~ * B2 X3
= —f b %0 Ylle_/C 3/2
OL %% JE= B2 1 (3 ) 2-3(¥-2) 28%° ]

Y
Zo¥ (X + & El) dy,

2pye
(28)

8/2

Z o)
e P
o 9P Z ok N O T
Z ox n/% ¢ “[(k,zo) [(Y—=Y,)2+2,2] (X+k§—l-)2_‘32(Y—Y1)2_52Z02
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where A(k, Z,) 1s the value of Y; determined by the intersection
of the forecone with the leading edge on the right and left sides
with k equal respectively to —l and +l. See fig. 5(a).) Thus

| x

| i _‘(kﬁ + BRY). + kB »/(x +k§)2 +z02(ﬁ§—52)
ey g

| ag=t?

ma

After reversing the order of integration and integrating with
respect to Zo, it follows that

3 Y
" d 0 (X+k=) — / (X+kgr) 2—32(Y_y1)2_62zé
Moo z o Y,4dY,1n
k=1, 1 e e (232) +y/ (THgh) 2p2(v-v,) 25 %2

Moreover, since the integrand is zero at Y; = A(k,Z) ’che
derivative with respect to X can be taken inside the integral and

Z L fo Y, dY, 2
u=f ;k - ——

T A(k,Z) ./(X + GEIF — P8 (Ba)= — p* 2F

Integrating in this equation and combining terms it follows that
induced velocity u 1s given by the expression

p 2 M +X gy + X .
Tx " wEEa) (dﬁzl) a.rcsin 2 2 2> E]
J (mX+Y)2 + (1-m2 p2)z
_,;ma ApT < [a.rcsin( —— 1 R >+g- }
(n®p2-1)°/2 B/ (mX=¥)2 + (1-m2p>)z>"

(29)
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Setting Z = 0 1n equation (29), pressure coefficient

Ap 2u
-~ = — — 18 given by the expression
q v
p 2P [ mpY-X mp%Y - X
—_—= — 1 575 arc sin [ J
¢ W (m2p2 — 1) >/ B(zX — Y)
mpY + X mB% + X ] mp3Y x
- in| ————— 0
(@2 — D)2 " [ Bax +¥) J | (@2 - 1)/ s

when X>BY .

This solution holds in both regions containing the points P;-
and Pg . However, in the region ahead of the Mach come but still
on the wing (reglon corresponding to Pz) it is easy to show that

2. L 2y _
e g e ) (31)

where §<x< BY. Figure 6 shows a spanwise plot of - &2 por
q
m=2 and B = 1. '

 Equations (30) and (31) provide sufficient information for the
calculation of the s:tability derivative for damping in roll, C1p°

Integration of the load distribution ylelds-the result that

bcl 3

IR e c—

C =
" /) 38

Load Distribution for Pitching Wing
Another simple application of equation (20) is found in the

golution to the problem of the pitching wing. Figure 7 shows the
boundary condition involved which is that the vertical induced
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velocity be a linear function of X;. If Q 1s the rate of pitech in
radlans per second, then w = QX; on the wing. Again the golution
is obtained only for wings which have leading edges swept ahead of
the Mach cone. (Although solutions can be obtained for leading edges
swept behind the Mach cone, they involve integral equations and do
nothing to illustrate further the direct methods of this report,)

In the rolling wing case, Q was set equal to perturbation
velocity w and as a result a distribution of doublets was used
in equations (27) and (28). As an example of the manmer in which
source—sink distributions may be used for the same type of problem,
equation (22) will be applied in the present case. Since the wing
1s swept ahead of the foremost Mach come » Induced effects on the
upper and lower surface are independent and

0 --2 /[ S S (32)
T/ (3X1)2 - B2 (Y-1,)2 — p2 22

Agaln three regions containing the points P;, P, and Ps; are
distinguished (fig. 5(a)) and the solutions will be derived only
| for the region containing P,. Integrating first with respect to
Y, and then differentiating with respect to X yilelds

¥.2) Y—lanX
u=§=—%(x—ﬁz)+—:-52kf Xlg}-{-a.rcsin & dX,
ka1 '[(X—Xl)2 — B2z2
(33)
where p— = 3
X — 8Ykm — Bk /(Xm—kY)a + 2% (1n%p3)
B(k,Z) =m :
l = m2B2

Considering the limit as Z —> O and integrating gives:
Ap 2u

(since — = — —
q
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Ao\ ¥ om
<T> 2a fa'p 5y 92 o v J(x2p2r2) (wpay) - X (2-m3p 2)

— arc sin

“ pY-B

m¥(2-mp %)=y _B?.D

mX(2-mZs3)+Y <X+B2'Im
+ s Gln]

2 e (3%4)

Formula (34) is valid for the regions P
1 and Ps of figure a).
For the region P, the solution is: . ™

Ap\V
<T>§E (maﬂz—l) 8/2 _ Y — 2Xm + xmsBz (35)

_ Equations (34) and (35) provide sufficient information for the
caiculation of the stability derivative for the damping in pitch mg.

Ap 1/Qb

Values of <;— -é;— as determined from these equations are
q

plotted in figure 8 for m =2 and B = 1.

Ames Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif.

APPENDIX A
Discussion of Conditions on Surface A

By definition A 1s the surface on which the streamlines of the
flow first experience pressure disturbances, that is, the surface
along which the stream first becomes aware of the exlistence of the
wing. Figures 2(a) and 2(b) were introduced to show the nature of
the configurations involved for two different plan forms. It is
apparent that when the wing is swept ahead of the foremost Mach cone
the wedge—like form of A 1s comparable to the wedge appearing in
purely two—dimensional problems while the wing swept back of the Mach
cone has for its surface a conical surface and thus may be thought of
as involving a purely three—dimensional problem.
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In order to determine the value of ® on A 1t is sufficient
to impose the condition that the tangential component of velocity is
continuous across A . Such a condition represents no essential
restriction since it is an immediate consequence of continuity of
mass flow and continuity of the tangential component of momentum
across the surface. As a result of this condition, however, it
follows that the tangential component of the perturbation velocity
is zero on the downstream surface of )\ since it is obviously zero
on the upstream surface. Moreover, velocity being equel to the
gradient of the velocity potential the perturbation—velocity potential
must be equal to a constant on A . But an arbitrary constant can be
added or subtracted from the velocity potential so that with no loss
of generality the value of ® on A can be assumed equal to zero

and, since the conormal lies on the surface \ , g% is also zero.

The complete analogue to equation (10) has now been developed for

= 0 8o that
EG-)-en i (Hew

When Q 1s equal to one of the perturbation—velocity
components, it is obvious that boundary conditions over A and T
cannot be considered to be absolutely arbitrary since it is
necessary to include the added restriction that the resultant
potential & also satisfies the equation

Q(x,y,z) =

(A1)

320 - 320 3%0 .
dx°  dy° 3z

Considering first the case where the wing is swept behind the Mach
cone, it follows that

x J
(0] =f u(xlsyyz)ixl f v(nylJz)dyl

v z2+y2 v x2—z2

Z
= V(x:ygzl)dzl
x2_y2
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and, after evaluating the partial derivatives of ¢ and substituting
in the given differential equation, direct calculation leads to the
conclusion that on A the following differential equations hold

2yau1+2zéu—’~+u1=o
y oz

2xézi+2zéy-}-+v1=0
ox z

2xawl+2y L4+w =0
ox dy

where wu;, Vi, and w; are the values of u, v, and w on A.
The gemeral solutions of these linear partial differential equations
can be written as follows

1 - 4 ) z 9 x
111=——'——f1<>: Vi = f2<—>, W =——— f5 <_Y->
Jisr e ¢ Jromz & Wy

It has been stated, however, that the tangential component of the
total perturbation—velocity vector vanishes on A , or, in
analytical terms

luy +mvy; + nwy =0

where 1, m, n are direction numbers of any tangent to A and
therefore satlsfy the relation

94X -my-nz =0

Substituting the known expressions for wu;, vi, Wi, it follows that

1 y

y m Z Z n X X
4 £y (L) 4 S P [ 2 )4+ B £ (=)= 0
Y. J[y2+z2 z 2 [x2:72 X xn/x2+y2 J.

or, using a different notation,




30 NACA TN No. 1515 .

§x1€->+z¥ra<§>+§ra G)-o (r2)

Consider now the speclal case when 1 =0 and m = — 9;— Undsr

these condltions
80 that

8ince the variables -zx- and ; are separated, the solution of this
equation may be written

VA X X
Fz <i>= K and FS G): K;

where K 18 a constant. Returning now to the case where L, m, and
n are in the ratio x: y: 2z, direct substitution into equation (A2)

glves
RO SO
so that
Iy, <§>+x§+;x§.= 0
and

nE)--53(3)




NACA TN No. 1515 33

This equation can, however, be written in the form

F, (%) .

2 o K
1
v g

Ml

from which it follows that K =0 and F, = Fa=F =0, All
perturbation velocity components are seen to be zero, consequently

equation (Al) is valid for all cases in which the wing is swept back
of the Mach come.

A discussion of conditions on the surface A will next be given
for the case where the leading edge of the wing lies along the y—exis
(fig, 2(a)) and where 2 represents u or w. The perturbation—
velocity potential @& may be gilven by the relation

X
MI,YJZ) =\_/; u(xlyy:z) dxy
z

where the plus and minus signs in the limit apply, respectively, to
conditions above and below the xy-plane., Since ¢ must satisfy
the basic differential equation, an added restriction is imposed on
u and as a result of this condition it can be shown that

_a..“.lgo
dz

where u; 1is the value of u on either the lower or upper surface
of the wedge. It follows that the values of u on the two surfaces
are

up = £3(x,y) and u; = f£a(x,y)

and, since the solution is independent of 2z, and x 1is
proportional to 2z 1n both cases, the final expressions are

up = £3(y) and u; = £a(y)

If ¢ (x,y,z) 1s defined as an integral involving w, the same type
of analysis leads to the conclusion that w on the two surfaces can
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also be expressed as functions of y alone. Perturbation velocity
v will not be considered for this type of leading edge since the
Inolusion of u and w oovers all cammonly used boundary conditions.

It remains to substitute the results Just obtained into equa—
tion (19) in order to study the contribution of the integrals over
A . Apparently only one term in each integrand need be considered
since the conormal 1s perpendicular to the y-exis and the gradient of
2 1n that direction vanishes. As a preliminary step to setting up
the integrals it 1s convenlent to introduce a new coordinate system
x", y", 2" which is obtained by rotating the axlal system about the
y-exis so that the x"— and z"—axes lie respectively in the lower and
upper wedge planes while the y"-axis coincides with the y-axia.
The transformation of variables is

x" = -L' (11-21)

2" = i o8 (x1+21)

2

When Q = u, the last two integrals in equation (19) may now be
written

ik [ 7 yedzozz 9 A (L. "
= [‘é—/?a;? fl(h)dn»/; dz ! c>dz

/”y+J x2-z2 fz(!l)dJlj:ozixa? <?]_(;> ax"

£
2x Yy —o/x222

Substituting for r,, this expression becomes
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1l y+ N 1222 ( . 3 dz "
- £ i 2
ELW n ! yl)dyl Sz7 ’/"====?==Tz=======:====l=-.._:
(x = gom= 2%) "~(y-y1) "2 “Tee

g+ 2222 *

&
e fa(n)dnf 2 dx?

2% Jy— /x372 ox"
o ~/(1 - % x") 2—(y—y.) 3~(z + % xM)2

or
,/ 2
iy T+ JXZ2 fi(y1)dya

Xy W xr(yy,) 22

i yh/ x222  f£(yi)dy:

2x

= w ey

It is apparent that i1f £;(y) = — f2(y) the integrals combine to

glve zero so that equation (Al) may again be used in all calculations;
moreover, the same condition applies when O = w., The assumption
that f3(y) = — f2(y) 1s equivalent to postulating that in all cases
fi1(y) and fo(y) are odd functions of y. In application, however,
this property 1s always maintalned.

It remains finally to consider the case when the leading edge
of a wing 1s swept ahead of the Mach cone and when 18 a
perturbation-velocity component. As a means of avolding unnecessary
complication in treating the problem it 1s possible to substitute
first the transformation (reference 5)

§=—y+mx
n=-X+my

t = J/m2] 2
where the leading edge has the equation y =mx, z = 0, and

m >1, Direct calculation shows that the basic differential equa~
tion and the Mach come are invariant under the transformation and
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that in the new oblique coordinate system the leading edge lies
along the mn-ax!s while the planes of the wedge becoms

E+ t=0

Because of the invariant properties of the transformation, and the
fact that the 2z = O plane is fixed, equation (19) is applicable
directly to the boundary value problem for the swept wing in the
new coordinate system. The treatment of the integrals over A can
therefore be developed algebraically in exactly the same mammer that
applied to the previous case, hence u and w are constant along
the lines

g:g:O, ﬂ:ConBt

and, again, if conditions of skew symmetry are maintained above and
below the z = £ = O plane the integration over the surfaces A
cancel. Thus equation (20) is seen to be valid for Q egqual to
perturbation-velocity potential or perturbation velocity for all
types of striaght leading-edge configurations. And this 1s the
complete analogue of the subsonic theory.
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(a) rectangular plan form

Figure 2,— Mach forecone from point P(X,Y,Z) intersecting surface =

XY plane
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FIGURE 3 — CROSS SECTION THROUGH £LLEG/ON oF
NTECRATION USED 70 OB7AIN LQUATION /8.
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(b) SECTIONS SHOWNG O/ISTR/IBUTION.
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