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SUMMARY 

A direct analogy is established between the use of source-sink 
and doublet distributions in the solution of arbitrary boundary value 
problema in subsonic wing theory and the corresponding problema in 
supersonic theory. The concept of the "finite part" of an integral 
is introduced and used in the calculation of the improper integrals 
associated with supersonic doublet distributions. The general 
equations developed are shown to include several previously pub
lished results and particular examples are given for the loading on 
rolling and pitching triangular wings with supersonic leading edges. 

INTRODUCTION 

The problem of finding pressure distributions over airfoils of 
arbitrary shape and plan form or of finding airfoils which have 
arbitrary pressure distributions is one of the most fundamental 
problema in aerodynamic theory. At the present time the most 
important and satisfactory approach to problems of this type is 
provided by the methods of so-called thin-airfoil theory. The 
essential assumptions in this theory are that the perturbation 
velocities induced by the airfoil are small relative to the free
stream velocity and that the boundary conditions can be specified 
in a fixed reference ~plane. 

Under the assumptions of thin-airfoil theory the theoretical 
analysis of a problem in wing theory resolves itself into the task 
of determining the solution of a s6cond-order linear partial 
differential equation with prescribed boundary conditions. In the 
case of purely subsonic flow, Laplace's equation in three dimensioos 
must be considered, whlle in purely supe~sonic flow the differentia l 
equation which arises is algebraically equivalent to the two
dimensIonal wave equation of mathematical physics. The clasalcal 
solutions of .these two eqQatlons have been developed along two 
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distinct l1n$s. firBt by use of orthogonal funotionB whioh can be 
derived in terms of the bounda.r;y conditions, and alternatively by 
means of Green's theorem which in turn utilizes a known particular 
solution of the partial differential equation together with the 
given b01md.a.I7 conditions. 

One particular solution associated with Laplace's equation an~ 
subsonic aerodJnamios has been f01md to be outstanding in its 
mathematical usefulness and, when identified with the velooity 
potential, has a ph7sical interpretation which oan supply J in direct 
application, added insight into the nature of the problem. This 
f1motion is referred to as the "f1mda.mental solutionrt and can be 
developed fram the concept of a so-<lalled source. A concomitant 
deTelopment to the source potential is the doublet potential, and 
appropriate distributions of these funotions are known to be 
suffioient for the solution of all problema in subsonic wing theoq. 

The ext~nsion of the use of the fundamental solution to problema 
in purely supersonic floy introduoes mathematical difficulties which 
differ eSBentia..l.l;y from those enoountered at law speeds. Both the 
source and the doublet potentials possess singularities on their 
oonical ohe.raoteristio surfaces or Mach cones and, in the case of 
the dOublet, the singularit,. is of higher order than oan be treated 
b,. elementary mathematioal methods. In the historical development 
of the soluticms of the 'Wave equation this trouble was circumvented 
by replacing the source potential by other particular solutions of 
the different1a..l equation. As an example , Volterra (referenoe 1) 
introduoed the integral of the fundamental solution and in that way 
reduced the order of the singularities involved. The analytical 
development of V~lterrats theoryyresentsno inherent difficulties 
(e. g. JI reference 2) but the Ph181cal significance of the partioular 
solution is lost, the direot analog,- with subsonic theory no longer 
exists, and a oertain amount of mathemati oal inefficiency ari ses 
since, after usina the integrel of the source potential, it is 
found neoessary to resort at the end of the analysis to taking a 
final derivative . 

In this report, following methods introduced by Had.ama.rd 
(reference 3) , a general solution to the thin-airfoil problem 
in supersonio theoq will be given in terms of the distribution of 
sources and doublets over the given reference plane. Furthermore, 
a disoussion of the nature of the boundary values required will be 
given. For properly set problema in waye theory it has been found 
necessary to speoify, usually, both the required function and its 
deriv~tive with respect to time along the boundary considered. In 
aerod1namic applications of the wave equati on associated with 
lifting surface theory and thickness distri butions it will be shown 
that only a knowledge of the unknown funct i on or its normal 
derivative along the boundary is needed s i nce a relationship between 
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the two functions will be established on the boundaI7 surface. 

In the theoretical portion of the report a brief presentation 
will be made of the differential equations involved and the two forms 
of the fundamental solution. An outline is then given of the types 
of boundary value problems encountered and, since the purpose of the 
report is to extend the concepts of thin-airfoil theoq which are 
used in subsonic theoq to problema arising in supersonic theory 1 a 
discussion will be given of the subsonic development as a basis for 
the analogy which exists between the methl3ds of solution corresponding 
to the two regimes of flow. In the discussion of the purel;r supersonid 
case it will be shown that the introduction of the concept o~ 
"finite part" will provide a technique whereby the tmproper integrals 
arising fram the use of doublets rIJa:3' be evaluated in a straight,
forward menner. The applications of the theoretioal developments 
will include the rederivation of same previousl,. published results 
and will also contain the oaloulation of load distributions tor 
rolling and pitching triangular wings with leading edges swept ahead 
of the Mach cone fram the vertex of the triangles. 
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span crt wing 

ohord ot wing 

tree-tJtream Maoh number 

normal to arb i trar]' surface 

direotion cosines o~ nar.mal n 

static pressure 

rate ot roll about X-axis 

fre~tream d.1nUtlc pressure 

rate of pitoh about Y-axis 

fundameJ'l'tal solution of equation (3) 

[(x-X1,)2+(1-y~)2+(Z-,z1)2 ] -i 

fundamental solution of equation (4) 

[ (X-Xl) 2-{;r-;r~) 2-{ Z-:Zl) 2] -i 
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arbitrary region of integration 

surface enclosing region R 

perturbation velooities in direction of X-, Y-, and z-axes, 
respeotivelT 

free-etream velooit~ 

Cartesian coordinates in original spaoe variables 

tranafo:rmed s~stem of coordinates 

j I X2-l1 

1nfinites:lllla.l used in analysis 

surface along whioh stream enters induoed field of wing 

oonormal to arbi trar~ surfaoe 

direction oosinea of oonormal 

?ar1&ble representing either a~oeleration potential, 
Tell;')City potential, or ~ of the three perturbation 
Telocit~ oomponents 

surface on whioh boundar~ conditions are given 

perturbation velocit7 potential 

variable representing either acoeleration potential, 
Telocl~ potential, or ~ ot the three perturbation 
veloei ty components 

pressure coefficient 

load coeffioient 

(
moment about X-e.:x:iS) 

rol1in~oment coeffioient 
qb X wing area 

'. 
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2 o 
sign denoting "finite part" of integral 

Subscripts 

u 

1. 

c 

subscript denoting value of variable on upper surface of 
wing 

subscript denoting value of variable on lower surface of 
wing 

subscript denoting variable of integration 

subscript on r denoting fundamental solution in supersonic 
flow 

Superscript 

superscript denoting value of variable on opposite side 
of T from fi:x:ed point (:x:,y,z) 

THEORETICAL DEVELOPMENT 

Linearized Equations and Boundary Conditions 

The linearization of the second-order differential equation for 
oompressible fluid flow is developed under the assumptions of thin
airfoil or amall-perturbation.theory. If the velocity vector of the 
free stream is parallel to and in the direction of the positive 
X~is, the resulting differential equation is expressible in the 
form 

(1) 

where n represents a velocity potential, acceleration potential, or 
any one of the perturbation velocities while M is the constant 
value of the free-etream Mach number. Assuming the plane of symmetry 
of the airfoil to lie in the XY plane, the boundary conditions 
associated with equation (1) are given for Z:O. Moreover, if 
u, v, and w represent, respectively, the perturbation velocity 
components along the X, Y, and Z-axes, and if the velocity ot the 

5 
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free stream is V, the direction cosines of any stream line are 
proportional to the point functions V + u(X, Y, Z), veX, Y, z), 

and w(X, Y, Z) 
relation 

while pressure coefficient 

!:sp 2u 
q-=-y-

!:sp 

q is given by the 

(2) 

Detailed discussions of these results may be found in reference 4. 

Introducing the affine transformations 

y = J±(1-M2) Y 

z = J ± (1-M2) Z 

where the signs under the rad~cals are chosen so that real values 
result, it follows that in the subsonic case (M<l) equation (1) 
reduces to 

d2,n d2,n d~,n 
0 -+-+--= 

dX2 dy2 dZ 2 

while the supersonic case (M>l) yields 

d2,n d2,n d2,n 
-----= 0 
dX2 dy2 dZ 2 

The fundamental solution associated with equation (3) is 

or, in terms of the original space variables, 

where 

1 
F= 

_1.. 

[(X-XJ.)2 + ~2(Y_YJJ2+ ~2(Z-ZJ.)2] 2 

(4) 

(5a) 
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When the wave equation is to be considered the ·fundamental solution 
take s the form 

1 
-= 

or 

1 

1 
[ (X-Xl) 2 - (y-;h) 2 . - (z-z 1) 2 f 2" ( 6) 

-= 

1 

2 
(6a) 

where 

These fundamental solutions represent, respectively, in subsonic 
and supersonic flow the velocity potentials at the pOint (x,y,z) or 
(X,Y,Z) of unit sources situated at the point (Xl,Yl,Zl) or 
(Xl ,Yl ,Zl)' The velocity potential of a doublet may be obtained by 
taking a directional derivative of the source potential, the 
direction of the axis of the doublet cOinciding with the direction 
along which the derivative is taken. These two functions will be 
seen to be of paramount importance when Green's theorem is applied 
to the given boundary conditions. 

It remains now to mention the types of boundary conditions which 
appear in problems associated with wing theory. As a convenience to 
the development of the theory the normalized forms (equations (3) 
and (4)) of equation (1) will be used and boundary conditions will be 
assumed known with respect to the x,y,z coordinate system. Retransfor
mat10n to theX,Y,Z system of axes can be made quite simply wherever 
needed in application. In order to define the boundary conditions, 
two subscripts will be introduced: the first, u, denotes the value 
of the required function on the upper surface, that is the limit of 
the function as z approaches zero from the positiye direction; the 
second, 1, denotes the value on the lower surface, that is, the 
limit of the required function as z approaches zero from the negative 
direction. 

Using these definitions the three boundary value problems of 
principal interest can be defined as follows: 

1. Symmetrical nonlifting airfoil.- In this case Wu = w~ = 0 
over all of the xy-plane exoept for the region occupied by the 
airfoil where 2wu = -2w~ = ~w = f(XJy) the function being determined 

by the geometry of the wing. Over all of the xy-plane, 6u = O. 

2. Lifting plate with specified loading.- It 1e given that 
6u .= Uu - u~ = 0 over the xy-pla.ne ex~ept for the region occupied 
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by the airfoil where Du = f(x,y), 
the specified loading. Moreover, 

the function being determined by 
~ = 0 everywhere. 

3. Lifting plate with specified camber, twist, and angle of 
incidence.- Over the xy-plane ~ = 0 everywhere. And, except for 
the region occupied by the airfoil, Du = O. Over the region occupied 
by the airfoil w = f(x,y) where f(x,y) is determined by the given 
camber, twist, and angle of incidence. 

It should be pointed out that the problema considered here differ 
fram the usual type of boundary value problem encountered. In the 
so-called Dirichlet or Neumann problema, which arise in connection 
with Laplace's equation, the value of the normal derivative of the 
function or of the function itself is specified along the boundary 
while the Cauchy problem for second-order partial differential 
equations involves the knowledge of both the function and a derivative. 
Except for one case in the aerodynamic problems listed above, no 
absolute values are given but rather the jump in the value of the 
function along the boundary is prescribed. 

Boundary Value Problema in Purely Subsonic Flow 

Since the purpose of this report is to extend the concepts of 
thin-airfoil theory which are used in subsonic theory to problems 
arising in supersonic theory, some discussion of the former will be 
given to provide luoidity as well as to furnish a basis for the 
analogy which will be shown to exist between the methods of solution 
arising in the two regimes of flow. 

The method whereby the solutions of the given problema can be 
effected is provided by Green's theorem which relates a volume 
integral over a region R to a surface integral over the surface 
S enclosing R. If a, n are any two functions which, together 
with their first and second derivatives, are finite and single-valued 
throughout R, then for the subsonic case 

where the Laplacian operator, is 

, 
introduced and the directional derivatives on the left side are 
taken along the normal n, drawn inward, to the surface S. 1 
Identifying now the function a with the fundamental solution r 

and specifying that n satisfies Laplace's equation, equation (7) 
simplifies to give 
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(8) 

where 

The variables of' integration in the equation are x~, y-~, z~, while 
x, y-, z are the coordinates of a point P 6"i ther inside or outside of 
the region of' integration. 

If the point P is assumed to be inside the region of integration, 

it is evident t.hat the function 1. becomes infinite at P, and it is 
r 

necessary to exclude this point from the region if formula (8) is to 
apply-. Describing a spherical surface E with radius € about the 
point P, and considering the integral over the tva surfaces E and S 
which enclose the region, it can be shown that in the limit as 
€ -> 0 equation (8) becomes 

The physical significance of this last relation follows 1mme dia tely-: 

the 1 o(l/r} term - represents a fluid source and the term 
r ~ 

represents a doublet with its axis ly-ing along the normal to S, both 
source and doublet being situated at the surfaoe point x~, y-~, z~. 
The value of the function n at the point x, y-, z is therefore given 
as an integral of a source and doublet distribution, the strengths of 
the tva being determined directly" from the respective boundary- values 

of n and 

Equation (9) expresses the value of n in terms of the surface 

values of n and ~ but this relation does not imply that a 

knowledge of both these variables is necessary- for the determination 
of n. As can be shown easily, another condition may be established 
which relates the two surface values. Applying equation (8) to the 
case where P lies outside the region of integration, it follows that 

the integral is equal to zero and that n and : on the surface, 

are functionally dependent. 
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Sufficient information is now at hand to provide a solution for 
the th1n-a1rfoll-boundary value problema. Consider the region R 
bounded by the xy-plane and a hemiapherical dome of infinite radius 
lying above this plane. For all problems to which the results will 
be applied, the value of n may be assumed equal to zero at infinity. 
The contribution of the surface integral over the hemisphere is thus 
zero and, from equation (9) 

where the integration extends over the entire plane. The directional 
derivatives are necessarily in the direction of the positive z-sxis 
and subscripts "are again introduced to denote conditions on the upper 
side of the plane. Keeping P fixed and integrating over the lower 
side of the xy-plane, it follows that 

where the negative direction of the normal may be ignored since the 
integral is equal to zero. Subtracting these two equations gives 
the e :x:pre s s ion 

the integral extending now only over the area T for which the 
integrand does not vanish. Equation (10) is the basic equation from 
which all solutions in subsonic wing theory will be developed. It 
should be pointed out that the derivation proceeded from the 
assumption that the point (x,y,z) lay above the xy-plane. When 
(x,y, z) lies below the xy-plane, however, the deri"f8.tlon can be 
carried through in exactly the same manner. Such a development 
reveals that equation (10) is general and that no restriction need 
be imposed on the position of (x, y, z) relative to the reference 
plane • 

As a particular application of equation (10) consider a thin 
symmetrical airfoil at zero angle of attack and set n = ~ where 
~ is the perturbation velocity potential. Conditions of symmetry 

demand that rlu = ~u = ~7, = n7, while onu = Wu and Onl = v~. oz oz 
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and the velocity potential is given by a distribution of source 
potentials. This distribution can be 1mmed1ately related to the 
slope of the basic section by means of the equation 

Wu W1 (~ -=--= -
V V u 

11 

(11) 

The symmetric airfoil can also be treated by replacing 0 by 
the perturbatiDD vel.ooity w and in the case of the thin lifting 
surface with given loading the function 0 can be set equal to u. 
l:mploying, respectively, conditions of SJ'llllIlBtr;r and irrotationa.l.it,., 

it follows that cH1u_ dOl vanishes and, after setting I::!. 0= 0u - 0., oz dZ .. 
equation (10) becomes 

(12) 

Bound.a.r;r Value Problema in Purely Supersonio Flow 

Applications of Green's Theorem.- The problem to be disoussed 
at this point 1s the extent to which an analogue to eQuation (10) can 
be developed for supersonic flow fields. The first step in the 
presentation ls, once more, the introduction of Green's theorem for 
equation (1) after it has been modified to the form given by equa
tion (4). Employing the opera tor 

Green's theorem now becomes 
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where '\) is the so-called conormal to the surface S and has 
direction cosines equal to '\)1' '\)2' '\)3 such that 

where nl, n2, n3 are the direction cosines of the normal to the 
surface S (fig. 1). (The conormal at any point Xl, Yl, Zl of a 
surface is the mirror ima~ in the plane X = Xl of the normal 
through the same pOint.) If cr and n are perfectly arbitrary 
functions, aside fram satisfying the usual conditions of single
valuedness, etc., equation (13) represents an identity and this. fact 
will be useful at a later time. For 1mmediate purposes, however, cr 
and n will be chosen as solutions of the differential equation under 
consideration so that 

2 2 

Ocr o n = 0 

and, consequently, 

The use of equations (13) and (15) depends upon an understanding 
of the physical nature of supersonic flow fields. The essential 
feature of such flow is the presence of Mach cones which correspond 
to the characteristic cones arising in the mathematical study of the 
wave equation. In accordance with these concepts a disturbance in 
the flow field can affect the flow only within its aftercone, that 
is, the cone with vertex at the point of disturbance and with axis 
extending in the direction of the undisturbed stream velocity 
vector; conversely, a point in the flow field can be affected only 
by disturbances which emanate fram points within its forecone. 

When the disturbances are ~nerated by a wing it is, moreover, 
necessary to speak more specifically about the nature of the leading 
edge of the wing. For all cases considered here the assumption will 
be made that the plan form is a polygon, that is, is composed of 
straight line segments. If the wing is swept ahead of the foremost 
Mach cone, the cone saris ing at the leading edge will have as 
envelope a wed~haped surface passing through and extending back 
fram the leading edge, while if the wing is swept back of the 
foremost Mach cone this cone will be the surface along which the 
air first experiences perturbatiens or' disturbances. Thus, a 
point P with coordinates x, y, Z is affected by all disturbances 
lying within its forecone r and at the same time behind the forward 
surface A., the nature of the latter surface being dictated by the 
leading edge. In figures 2(a) and 2(b) these surfaces, along with 
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the disturbance plane T, are indicated for two different wing plan 
forms. In the applications of equation (13) the volume integral is 
limited to the portion of space common to the surfaces r, A, and T 
and the surface integral involves a discussion of conditions on these 
surfaces. 

Up to this point the analogy between the subsonic and supersonic 
cases, insofar as the use of Green's theor em is concerned, i s quite 
appar ent. The principal difference which occurr ed was brought about by 
the use of the true normal in the subsonic field together with the fact 
that the xy-plane was covered by a hemisphe r ical dome of infinite radius; 
whe r eas, in the supersonic field, the concept of the conormal was 
introduced and the volume to be considered was that enclosed within 
a finite region. In continuing the analogy, however, far more 
formidable obstacles arise. To begin with, the discussion of cr and 
n over the surface in the subsonic case was relatively simple. Thus, 
wi th no limitations of generality n could be assumed zero at 
infinity and till was specified completely in the xy-plane. But in 
the supersonic case , although ~n can be assumed known in the xy-:plane 
and, as will be seen later, n nw.:y be evaluated on the forward boundary 
of the region, nothing is known of n on the forecone r. Hence cr 
must be chosen properly so that the knowledge of n is unnecessary on 
r. The most obvious choice of cr would be a particular solution of 
equation (4) which would make cr = 0 on r and this is in fact the 
choice used by Volterra (reference 1) and applied to aero~ic 
problems in reference 2. However, if the analogy is to be maintained 
the choice of cr is not arbitrary but must be the three-dimensional 
supersonic source corresponding to the fundamental solution 

1 1 in subsonic theory. But such a solution, -= 
r 

_.;L 
[ (X-Xl.) 2 - (y-Yl.) 2 - (Z-Zl.) 2] 2 becomes infinite along the 

forecone r which has the equation (X-Xl.) 2 - (y-Yl.) 2 - (Z-Zl.)2 = o. 

It is Just this difficulty whioh apparently invalida.tes any further
ance of the analogy and the prediction in advance of an aerodynamic 
shape from a distribution of sources and doublets in supersonic flow. 
However, it is also precisely this difficulty which is overcome by 
Hadamard's general methods. 

Extension of analogy by Hadamard's Method.- The full develop
ment of Hadamard's methods cannot be given here, but a rough. sketch 
of his reasoning will perhaps be useful. The basis of his arguments 
stems from equation (13). First it is admitted that the right-hand 
side of equation (13) will tend to infinity as the surface S 
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approaches r so that 1 is not a regular solution to D 2 n = 0 
rc 

on r. However, as has been mentioned, equation (13) still must hold 
whether or not C1 or n satisfy the wa"Ve equation and thus it still 
provides an equality. Hence, 'if the surface integral tends to 
infinity so also must the volume integral. Further, equation (13) 
implies that these infinite portions just cancel since the difference 
of the two integrations must always give zero. To deal with such a 
problem quantitatively by the usual mathematical techniques would 
require the study of a limiting process for each new boundary value 
problem . Hadamard's contribution was the introduction and justifica
tion of a concept which removed the necessity for studying the 
infinite portions involved. This concept is best presented ,by 

means of a new notation, thus the sign I is used and is 
to be read "the f ini te part of." 

Using this concept it is possible to show that if a were set 

equal to then equation (13) could be written 

= (16) 

so that the "finite parts" of eaoh side of the equation would be 
equal. Such a notation would, of course, in general be meaningless 
since in discarding arbitrarily a part which tended to infinity it 
would be possible, by proper combinations, to obtain as a remainder 
.e.I,lJ: finite value. The fact is, however, that the integrals involved 
i n equation (16) tend to infinity only at a limit of the integration 
and this limit always involves the forecone r. It was consequently 
possible to devise a manipulative technique to handle equation (16) 
without considering the singularities individually. It might be 
mentioned, without stressing the correspondence, that a treatment of 
improper integrals is also employed in the use of Cauchy's principal 
value. In subsonic thin-airfoil theory and lifting-line theory 
integrals of the latter type are well known in the form 

• 
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0< x <c 

11 certainly tends to infinity as Xo approaches x but the use 
of Cauchy1s principal value allows the very lares values of the 
integrand obtained when Xo is on either side of x to Just cancel 
in such a way that 11 is finite and unique. So again the 
integral 

A(x)dx 

( )
3/2 

xo-x 

is finite and unique and given by Hadamard in the form 

It is actually possible to esneralize the idea of "finite part~ to the 
case when the exponent in the denominator is of the form J + '2 where 
J is a positive integer but such a esneralization is not needed for 
aero~ic applications and will therefore be omitted. 

In actual calculation, the evaluation of the integral 12 can 
be shortened considerably. Thus, if the indefinite integral of 

f Aex)cb: 
(Xa-X)~72 

is written in the form f(x)+c then 

= lim 
x --? Xo 

[ 
F (x) +C-F (a) --c- _2A_(_Xo.;...)_] 

( )
1/2 

XC-X 

It follows that if C is chosen so that 

C = F(x) J 
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then the expreSsion for I2 "JIJ8.J' be written 12 = -[F(a);<:] • 
When C is ohosen in this manner, the notation for the calculation 
TIJB.:3' thus be modified to the form 

where the asterisk indicates that the upper limit is not substituted 
into the indefinite integral, F(x) + C. 

The technique for the caloulation of the finite part has 
therefore been reduced to three simple steps: first, the indefinite 
integral :rex) + C is determined, second, the oonstant C in the 
indefinite integral is evaluated b;y means of a limiting prooess, 
third, the lower limit of the integral is substituted into the 
indefinite integral and a minus sign prefixed. As an example, 
oonsider the integral 

1 
In this oase F(x) + C = -----+ C 

(XO~2)1/2 
and 

With the aid of this artifioe the analogy between the subsonic 
and supersonic cases oan be continued with relative ease. Thus, in 
equation (16) the right-hand member is zero provided we exclude the 
point P fram. the volume of integration. This oan be done most easi1;r 
by l1lniting the integration to the Xl = oonstant plane, a distanoe € 

upstream fram. P. The portion of this plane intersected by the cone, 
and thus the section over which the integration must be carried, will 
be denoted by I: (fig. 3). 

I 

~ 
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As drawn, figure S shows a cross section in a y~ = constant 
plane for the special case when P is located directly behind and 
above the foremost disturbance. Applying equation (16) to the 
regions above and below the disturbance surface T (plane of the 
airfoil) yields the two equations 

and 

• 

1 on 

1 on 
- rc OU JdS 

JdS 

17 

(18) 

where the pr1me indicates the surface value of n on the opposite 
side of T from. P. 

The integration over .E can be computed for € very small. 
For convenience, consider P to be the origin; then it follows that 
since the conormaJ. is in the x~ direction and the area element can 

be written 1 dl dB where e = arc tan ~ and 1 = JY~2 + Z~2, 
y~ 

right side of equation (17) will give 

the 
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lim [ 
€ -~ 0 

{
21T {€ _€ Y dy 

u(x,y,z) de [2 2]3/2 
o 0 € - Y 

dn(x,y,z)l
21T

· 1€ y dy } 
d e -'0;:::::==::::" 

dxl. 0 0 /€2 - r2 
+ 

* { 1 -€ 'J dy dU(x,Y'zi€ Y dy } 
= lim 21Tn(x,y,z) 2 2 3/2 +.21T = 21Tn(x,y,z) 

€ _~ 0 [ € - Y ] dXl. 0 /€2 _ y2 

Hence the value of n at the point P, n (x,y,z) can be determined 
fram equation (17) with the restriction implied by equation (18). 
Further, since only the "finite part" is considered, the integration 
over r yields zero and the two equations combine to give 

1 

2J{ 

1 
= -- If [ ~(dn - dni\_ ~(~) (n-n') ] dxl. dyl. 

T rc dZ dZ) dZ rc 

The only remaining difference between the subsonic solution for the 
distribution of sources and doublets, equation (10), and the super
sonic solution, equation (19), is the integration over surface A. 
The detailed discussion of the contribution of the surface integrals 
over A will be deferred to Appendix A. It must suffice for the 
present to remark that in all applications the integrals over A in 
equation (19) are either zero or cambine to give zero. It therefore 
follows that 



NAeA TN No. 1515 

n(x,y,z) = 1 

21t 

19 

(20) 

and the complete analogue to equation (10) has been established through 
the use of the concept of finite part. 

APPLICATIONS 

Interpretation of Previous Results 

As a means of indicating the various problems to whioh equation (20) 
can be applied, three previously published results will be discussed. 
These applications include, first, the expression for the perturbation 
velocity potential of a symmetrical nonlifting airfoil (reference 6), 
second, the calculation of pressure distribution over a semi-infinite 
wedge with leading edge swept back of the foremost Mach cone 
(re:ference 5) and, third, the integral equation method for determining 
the load distribution over a lifting surface of arbitrary slope 
(reference 7). 

As in the case of equation (11) for subsonic flow, let n 
represent velocity potential ~ and consider the case o:f a symmetrical 
wing at zero angle of attack. 

dnu Then = Wu 
dZ 

where are 

induced vertical velocities on the upper and lower surface~ 

respectively. Moreover, ~ u -~l = b for the symmetrical case so 

that, since Wu - wl = 2 wu ' 

The integral in this equation is :finite at r so the finite part 
sign may be disregarded and 

(21) 
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This e~uation agrees with results given by Puckett in reference 6. 

As another example consider the solution used by R.T. Jones 
in reference 5 for a nonlifting symmetrical wing. Setting n 
e~ua1 to w in e~uation (20) and using the fact that wand u 
are related by the expression 

it follows that 

d [Z u=l- dz 
rc dx 

: If Wu ~ (~) dxl. dyl. 
T dz rc 

For a wedge swept behind the forward Mach cone and having as the 
equation of its leading edge the relation Xl. = myl., the 
expression for u may be written in the form 

where 

x j y2 
Yl. = ; - y - (x - ;) 

1 

2 
+ z 

, 
.J.. 

Z dxl. 

1 (- - 1) 
m2 

Performing the integration with respe~t to xl., it follows that 

and, after reversing the order of integrat i on 

(22) 
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z 

dY1! 
j-(x-_-~-l )-2-_-(-Y_-Y-l-)-2 

- (x -~) zdz 

= k Wu ~ 'lY~ "Ln [ 
21t ox 0 

J (x - ~) 2 - (Y-Y1) 2 - .2 - k (X - ~) ] 

j (X _ !1)2 _ (Y-Yl.)2 _ z2 + k (X _ !1) ely1 

where k = 1 for 
Yl. x>- and -1 for 
m 

Yl. x<- . 
m Taking the partial 

derivative with respect to x and noting that the value of the logarithm 
at the upper limit is zero, the value of the induced velocit~ ie 

and integration yields the final result 

Wu m (x - my) -J (1 - m2)(x2 _,-2 - z2) 
U = - ~===== "Ln --~==========---

1t jl-m2 j(mx _ 1')2 + Z2 (1-m2 ) 

2u w 
Denoting pressure coefficient 4> 

- by 
q 

V and setting ;- equal 

to (~o the slope of the surface, this may be written 

Equation (23) gives the pressure coefficient at any point in the 
field produced by a wedge swept behind the Mach cone. When z is 
set equal to zero the pressure distribution over the wedge itself is 
determined and the equation corresponds exactly with equation (12) 
of reference 5. 
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When loadlng is to be prescribed over a thin lifting surface, n 
ma.y be assumed equal to the perturbation velocity u. A direct 
consequence of this assumption is that in equation (20) 

since, fram conditions of irrotationality, 

~~ Owu Ow?, ou?, 
-= :;::::-=--
oz OX ox oz 

By definition 

.0.I>u 2Uu .0.I>~ 2u?, 
-=--, 

q V 
--=. ~-

q V 

and load distribution in ooefficient form, ~p' i s given by the 
relation 

4>?, .0.I>u 
=---

q q 

so that 
2u?, ~ ru 

~p=--+-=-2'-
V V V 

Equation (20) can therefore be written .in the form 

~ 7 - ~ f' r ~p ~ ( 1 ) dxl. dyl. 
V 41( JT oz \;c 

1 

= 4:n: I~ (24) 

If equation (24) is transformed to the original space variables, 
the relation for u is 
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u (X, Y,Z) 
V ~:Jl 

23 

{ (x-xJ.) 2 _ [32 [(Y-YJ.)2 + Z2]} 3/2 
(25) 

E~uation (25) is valid for arbitrary plan forms with known load 
distributions. Particular e:mmples which may be worked out with 
relative ease are the lifting surfaces carrying constant load. Once 
u is known the value of w can be determined fram. the integral 

w = ~lx udx 
oz 00 

and from w the ordinate z of the surface as a function of x and 
y is given by 

z - rx ! dx 
JLe. V 0 

where 1..e. denotes the leading edge. A discussion of trapezoidal, 
rectangular, and triangular plan forms with constant loading is 
given in reference 2 although the method of derivation is different. 

Interest in constantly loaded wings has been based primarily 
on the fact that in certain cases they can be combined to produce 
surfaces of given camber. Thus, a superposition of trapezoidal plan 
forms of variable rake, the constant loading over each trapezoid 
being a function of its rake angle, can be used to produce a flat 
plate of trapezoidal or rectangular plan form at an arbitrary angle 
of attack. In this case the loading as a function of rake angle is 
determined so that induced vertical velocity is kept constant. For 
problems in conical flow a lifting element can be constructed by 
subtracting from a constantly loaded right triangle with angle of 
sweep e~ual to 5 the constantly loaded right triangle with sweep 
angle equal to 5 - d5. The resultant element carries a constant 
load and bas a sweep angle e~ual to 5. By summing these elements 
it is possible to find the load distribution as a function of 5 
such that certain flat lifting surfaces at angles of attack are 
formed. In referenoe 2, triangular wings swept back of the Mach 
cone were studied by this method for arbitrary angles of yaw. Brown 
(reference 7) has used this same lifting element to study the more 
restrictive case of the symmetrical triangular wing. 

A brief discussion of differences existing between the methods 
for producing the swept-back lifting element will shed some light 
on the various lines of attack. The approach used in reference 2 
is essentially mathematical in that a particular solution of the 
partial differential e~uation is used in conjunction with Green's 
theorem to satisfy the boundary conditions of the problem. The 
principal criticism of such a method is that the physical 
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interpretation i8 missing. The use of equatIon (25), however, 
removes all such criticisms for precisely as in the case of 
incompressible flow the lifting element is crea.ted by distributing 
doublets over the wing. In Brown's solution it was necessary for 
him to determine first a line of sources by means of an integration 
along the line and then to form the doublet line by differentiating 
along the normal to the line. The order of differentiation for 
incompressible flow is immaterial, since the limits in the integral 
are independent of the position of the point P at X, Y, Z. Super
sonic flow destroys this property and it is only after the introduc
tion of the concept of "finite part" that the derivative of an integral 
may be written as the integral of the differential coefficient of the 
integrand. Equation (25) thus simplifies the analysis and at the 
same time maintains the analogy with previous work. 

Load Distribution for Rolling Wing 

The usefulness of equation (20) is not at all restricted to a 
synthesis of previously known solutions. As an example of its 
generality consider its applioation to the problem of the rolling 
wing with leading edge swept ahead of the Mach cone. Figure 4 
shows the boundary conditions involved. The value of w is 
specified over the wing and, since the Mach cone is behind the 
leading edge, the value of the perturbation velocities u, v, and w 
are of course zero ahead of the leading edge. Assume for the 
moment that a symmetrical body at zero angle of attack is considered. 
It follows that if 0u = Wu and n ~ = w1. then equation (20) can 
be written in the form 

(26) 
I 

w= 
1C 

since, for reasons of symmetry, the normal gradients of w on the 
two surfaces are equal. Using now the fact that the Mach cone is 
behind the leading edge then the pressure over the upper surface is 
independent of the shape of the lower surface and equation (26) 
may be applied directly to the rolling flat plate if Wu is 
determined fram. the given induced velocity on either the upper or 
lower surface. This method of approach, of course, limits the 
solution to cases where the leading edge is ahead of the Mach cone. 

If the rate of roll is given as P radians per second then 
2wu = 2PYl. and equation (26) becomes 
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~ Y~Z dY~ dX~ 

(27) 
[ (X-Xl) 2 _ ~2 (Y-Yl)2 _ ~2 Z2 ]3/2 

The area T in equation (27) is that contained between the leading 
edge and the trace of the forecone on the XY-'plane. Figure 5(a) 
shows the configuration for three tracea corres'ponding to forecanes 
fram the 'points Pl , P 2 , and P 3 • The region containing the 
'point P 2 ia distinguished fram that containing Pl and Ps by 
the fact that T for P2 11es ahead of the Maoh cone from the apex 
and, furthermore, entirely on the right of the Xl axis. The 
regions corresponding to Pl and Ps differ in the fact that when 
integrating fram +co to z to find u, the u'p'per lim1 t of the 
integral in the first case is the Mach cone X2 - 132y2 - 132z2 = 0 
whereas in the latter case the upper limit is the leading-edge 

mX - Y 
wedge Z = (fig.5(b)). 

jm2~2_1 
The solution must be carried out separately for each of these 
regions but only the details for the region corres'ponding to Pl 
need be given here since the others are similar. 

It follows that the induced velocity u at the point P is 
given as the sum of the tri'ple integrals. 

=L 
k=-l,l 

(a8) 

25 
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where A(k, Zo) is the value of Y1 determined .py the intersection 
of the forecone with the leading edge on the right and left sides 
with k equal respectively to -1 and +1. See fig. 5(a).) Thus 

After reversing the order af integration and integrating with 
respect to Zo' it follows that 

u=\ k
P a fO 

L 2:Jt ax A(k z) 
k = -1, 1 ' 

Moreover, since the integrand is zero at Y1 = A(k,Z) the 
derivative with respect to X can be taken inside the integral and 

k :z: -1,1 

Integrating in this equation and combining terms it follmre that 
induced 'velocity u is given by the expression 

] 
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Setting Z = 0 in equation (29), pressure coefficient 
AI> 2u 
-- = - -- is given by the expression 

q V 

I:sp 2P __ = _:m2 

q 1CV 
{ 

n$~ - X [ :mt3~ - X ] 
------.- arc sin 
(:m2~2 _ 1) 3/2 t3(:mX _ y) 

D$2y + X 
- arc (m2 t3 2 _ 1) 3/2 

when X> t3y • 

This solution holds in both regians containing the points p~ . 
and P~. However, in the region ahead of the Mach cone but sti ll 
on the wing (region corresponding to P 2 ) it is easy- to show that 

(31) 

where !. <X< ~Y. Figure 6 shows a spanwise plot of . tip for 
m q 

m = 2 and ~ = 1. 

Equations (30) and (31) provide sufficient information for the 
calculation of the a~abilit;r derivative for damping in roll, C~ll. 

Integrat1on 'of the load distribution y-ields -the result that 

dC~ 1 
C~ :: ,.---

p o(Pb/2V) 3~ 

Load D1stribution for Pitching Wing 

Another s1.Jl:p1e application of equation (20) is found in the 
solution to the problem of the pitching wing. Figure 7 shows the 
boundary condition involved which is that the vertical induced 
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velocity be a linear function of Xl_ If Q i8 the rate of pitch in 
radians per second, then w = QXl on the wing. Again the solution 
is obtained only for wings which have leading edges swept ahead of 
the Mach cone. (Although solutions can be obtained for leading edges 
swept behind the Mach cone) they involve integral equations and do 
nothing to illustrate further the direct methods of this report.) 

In the rolling wing case, n was set equal to perturbation 
velocity w and as a result a distribution of doublets was used 
in equations (27) and (28). As an example of the manner in which 
source-eink distributions may be used for the same type of problem, 
equation (22) will be applied in the present case 0 Since the wing 
is swept ahead of the foremost Mach cone, induced effects on the 
upper and lower surface are independent and 

Again three regions containing the points P1 , P2 , and Ps are 
distinguished (fig. 5(a)) and the solutions will be derived only 
for the region containing P1 0 Integrating first with respect to 
Yl and then differentiating with respect to X yields 

j (k,Z) 

u = ~ = - ~ (X-13Z) + s.. \' k Xl ~ arc aX ~ n~ ~ oX o k=-l, 1 

Y-kmX1 
sin dXl 

J(X-Xl)2 - ~2Z2 
(33) 

where 
X - ~~ - f3k JCXIIHcY)2 + Z2 (1-m

2
f32) 

B(k,Z) = m ----------------
1 - m2f32 

Considering the limit as Z -> 0 and integrating gives: 

4l 2u 
(since q = --V) 
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(4)) V 2 2 3/2 2m J 
- - (m 13 -1) = - (X~2y2) (m2~2-.l) _ mX(2-m2~ 2) 
q 2Q ~ p 

mX(~2132)_y 

·1nG~ - aro 
J( 

mX(2~2132)+y (X+~~ ) + arc sin (34) 
1{ t3Y+/3mx: 

Formula (34) is valid for the regions P1 and P3 of figure 5(a). 
For the region P2 the solution ia: 

Equations (34) and (35) provide sufficient information for the 
calculation of the stability derivative for the damping in pitch mq. 

Values of c:) (l~ ) as determined from. these equations are 

plotted in figure 8 for m = 2 and ~ = 1. 

Ames Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Moffett Field, Calif. 

APPENDIX A 

. Discussion of Conditions on Surface A 

By definition A is the surface on which the streamlines of the 
flow first experience pressure disturbances, that is, the surface 
along which the stream first becomes aware of the existence of the 
wing. Figures 2(a) and 2(b) were introduced to show the nature of 
the configurations involved for two different plan foI'JIll). It 1s 
a~parent that when the wing is swept ahead of the foremost Mach cone 
the wedge-like form of A is c~parable to the wedge appearing in 
purely two-dimensional problems while the wing swept back of the Mach 
cone has for its surface a conical surface and thus may be thought of 
as involving a purely three-dimensional problem. 

29 
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In order to determine the value of ~ on A it is sufficient 
to impose the condition that the tangential component of velocity is 
continuous across A. Such a condition represents no essential 
restriction since it is an immediate conse~uence of continuity of 
mass flow and continuity of the tangential component of momentum 
across the surface. As a result of this condition, however, it 
follows that the tangential component of the perturbation velocity 
is zero on the downstream surface of A since it is obviously zero 
on the upstream surface. Moreover, velocity being e~ual to the 
gradient of the velocity potential the perturbation-velocity potential 
must be e~ual to a constant on A. But an arbitrary constant can be 
added or subtracted from the velocity potential so that with no 108s 
of generality the value of ~ on A can be assumed e~ual to zero 

and, since the conormal lies on the surface A, ~ is also zero. 

The complete analogue to e~uation (10) has npw been developed for 
n ~ so that 

n(x,y, z) 

When n is e~ual to one of the perturbation-velocity 
components, it is obvious that boundary conditions over A and T 
cannot be considered to be absolutely arbitrary since it is 
necessary to include the added restriction that the resultant 
potential ~ also satisfies the e~uation 

::0 0 

(Al) 

Considering first the case where the wing is swept behind the Maoh 
cone, it follows that 
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and, after evaluating the partial derivatives of ~ and substituting 
in the given differential equation, direct calculation leads to the 
conclusion that on ~ the following differential equations hold 

2 du~ em . 
y-+ 2z ~+ u~ = 0 

dY dZ 

dVl OVI 
0 2x --- + 2z --- + vI = 

OX dZ 

Ow 2 X ::::!.l. + Owl 2Y-+Wl = 0 
ox oy 

where u~, v~, and w~ are the val1).eS of u, v, and w on ~. 
The general solutions of these linear partial differential equations 
can be written as follows 

1 
Ul = -;::== f 1 J y2+ Z2 

(~), v, = J 1 f 2 (i) , 
x2+z 2 ~ 

It has been stated, however, that the tangential component of the 
total perturbation-velocity vector vanishes on ~, or, in 
analyt ical terms 

lUI + mv~ + nw~ = 0 

where 1, m, n are direction numbers of any tangent to ~ and 
therefore sati~fy the relation 

.' 

~x - my - nz = 0 

Substituting the known expressions for Ul, v~, WI, it follows that 

or, using a different notation, 
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ConBider now the Bpeci61 case when 

theBe conditione 

eo that 

1. '" 0 

NACA TN No. 1515 

nz 
anJ. m '"' - To Under 

(A2) 

Since the variables z 
x 

equation rna.., be written 

and x are separated, the solution of this 

where K is a constant ° Returning now to the case where 1., m, and 
n are in the ratio x: ..,: z, direct substitution into equation(A2) 
gives 

so that 

and 
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This equation can,. however, be written in the fonn 

from which it follows that K = 0 and Fl. = 1'2 = Fs = O. All 
perturbation velocity components are seen to be zero, consequently 
equation (Al) is valid for all cases in which the wing is swept back 
or the Mach cone. 

A discussion of conditions on the surface ~ will next be given 
for the case where the leading edge of the wing lies along the ,.~is 
(fig. 2(a)) and where n represents u or w. The perturbation
velocity potential ~ may be given by the relation 

where the plus and minus signs in the limit apply,respective1.7, to 
condi tions above and below the XJ"-illane. Since ~ must aatisfT 
the basic differential equation, an added restriction is imposed on 
u and as a result of this oondition it can be ehown that 

where Ul. ie the value of u on either the lower or upper surfaoe 
of the wedge. It followe that the values of u on the two surfaces 
are 

and, since the solution is independent of z, and x is 
proportional to z in both cases, the final expressions are 

If ~ (x,y,z) is defined as an integral involving w, the same type 
of analysis leads to the oonclusion that w on the two surfaces can 
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also be expressed as functions of y alone. Perturbation velooity 
v will not be oonsidered. for this type of leading edge sinoe the 
inolusion of u and w oovers all commonly used boundary oonditions. 

It remains to substitute the results JUBt obtained into equa
tion (19) in order to study the oontribution of the integrals over 
"'. Apparently only one term in each integrand need be oonsidered 
since the cono:nnal is perpendicular to the y-e.xis and the gradient of 
n in that direction vanishes. As a preliminary step to setting up 
the integralB it is convenient to introduoe a new coordinate Bystem 
x", y", zIt which is obtained by rotating the axial system about the 
y-e.xis so that the x"_ and ZI1_axes lie respectively in the lower and 
upper wedge planes while the y"-a:x:ia coinoides with the ;r-e.xia. 
The transformation of variables is 

When n '" u J 

written 

1 
-2; 

the last two integrals m equation (19) "IIlB:! now be 

Substituting for rCJ this expression becomes 
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dz ,I 

or 

It is apparent that if' f~(y) = - f2(Y) the integrals combine to 
give zero so that equation (Al) rnay again be used in all calculations; 
moreover, the same condition applies when n = w. The assumption 
that f~(y) = - f2(Y) is equivalent to postulating that in all cases 
f~(,.) and f2(y) are odd f1mctions of y. In application, however, 
this property is always maintained. 

It remains finally to consider the case when the leading edge 
of a wing is swept ahead of the Mach cone and when n is a 
perturbation-ve10city cOlIIponent. As a means of avoiding 1mnecessary 
complication in treating the problem it is possible to substitute 
first the transformation (reference 5) 

e =-y+:mx 
1l=-x+llIiY 

where the leading edge has the equation y = mx, z = 0, and 
m >1. Direct calculation shows that the basic differential equa,.
tion and the Mach cone are invariant tmd.er the transformation and 
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that in the new oblique coordinate system the leading edge lies 
along the 1')-6.X~_s while the planes of the wedge became 

~ '+ ~ = 0 

Because of the invariant properties of the transformation, and the 
fact that the z = 0 plane is fixed, equation (19) is applicable 
directly to the boundary value problem for the swept wing in the 
new coordinate sYBtem. The treatment of the integralB over ~ can 
therefore be developed algebraically in exactly the Bame manner that 
applied to the previouB caBe, hence u and w are const~t along 
the lineB 

~ '+ ~ = 0, T} = conet 

and, again, if conditions of skew symmetr.y- are maintained above and 
below the z = S = 0 plane the integration over the BurfaceB ~ 
cancel. Thus equation (20) iB Been to be valid for n equal to 
perturbation_velocity potential or perturbation velocity for all 
typeB of Btriaght leading-edge configurationB. And thiB is the 
complete ~alogue of the BubBonic theory. 
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