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By Joseph Marin, J. H. Faupel, V. L. Dutton,
and M. W. Brossman

SUMMARY

The obJect of this investigation was to determine the yield
strength, ultimate strength, ductility, and plastic stress-strain
relations for 24S-T aluminum alloy when subJjected to blaxial gtresses.
Both blaxial stresses considered were tensile and the influence of various
biaxial stress ratios on the mechanical pProperties was determined.
Biaxlial tensile stresses were produced in a tubular specimen by a
speclally designed testing machine. This testing machine applies both
an axlal tensile load and internal pressure to the tubular specimen,
thereby producing biaxial tensile stresses in the tube wall. Strains
were measured in the plastic range up to rupture by means of special
electric SR-4 clip gages. Nominal stress-strain diagrams for the elastic
range and true stress-strain dilagrams for the Plastic range were plotted
for various bilaxial stress ratios.

The data were interpreted by a generalized St. Venant theory in an
attempt to predict the biaxial stress-strain relations in terms of the
uniaxial tensile stress-strain relations. The stress-strain relations,
as predicted for combined stresses by this theory agree approximately
with the test results. The yield-strength values, as determined by
tests, agree quite well with the distortion energy theory, and the
ultimate and fracture strengths agree well with the maximum stress theory.

Stress-strain data were obtained from flat control specimens cut
from the tubular specimens and compared with tension test data obtained
from tubular specimens. Except for ductility values, the results show
that the tension test results for these control specimens agree with the
values for the longitudinal tension tests on the tubular specimens.

INTRODUCTION

Alrcraft members may be subjected to stresses beyond the yield
strength of the material. In many cases the stresses are not gimple
stresses acting in one direction, but the stresses act in several
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directions; that is, the blaxlal stresses often occur in place of
uniaxial stresses. It is of importance, therefore, to determine the
plastic stress-strain relations and the mechanical properties in alr-
craft materials subJjected to combined stresses.

During World War IT, biaxial stress plasticity studies were made
on sheet aluminum alloys for the purpose of obtaining basic information
which could be used to improve forming operations. It 1s hoped that
the results given In this report also may be of value in forming problems.

In obtaining the plastic stress-strailn relations to rupture for vari-
ous biaxial stress ratios, information is obtained to show the Influence
of the bilaxial stress ratio on the yleld strength, ultimate strength,
true fracture strength, and ductility. It is of great importance to know
the influence of blaxlal stresses on strength and ductility, since the
factor of safety and resulting design stresses selected may be appreciably
modified by considering the combined stress effect.

In this investigation stress-strain data and mechanical propertles
for various ratios of biaxial tensile stresses were determined for
24S-T gluminum alloy by subjecting a tubular specimen to axial tension
and internal pressure. Professor K. J. DeJuhasz gave valuable suggestions
on the design of the testing machine. The special testing machine and
strain-measuring equipment were bullt by Messrs. S. S. Eckley, E. Grove,
and H. Johnson. Messrs. J. H. Faupel, V. L. Dutton, and M. W. Broseman,
performed the tests and computed and plotted the test data. The techni-
cal assistance given by the foregoing individuals in making possible
this investigation is greatly appreciated. The testing machine was
designed by Joseph Marin, who directed the project and prepared this
report.

This work was conducted at The Penngylvania State College under the
sponsorship and with the financial assistance of the Natlonal Advisory
Committee for Aeronautics.

SYMBOLS
A cross-gectional area, square inches
Ag original cross-sectional area of tension specimen,

square inches

d original internal diameter of tubular specimen, inches

d:p internal diameter of tubular specimen in plastic range,
inches
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external diameter of tubular specimen in plastic
range, inches

percent error in measured strains in plastic range,
inches

Young's modulus of elasticity, psi

equivalent-offset strain for combined stresses,
inches per inch

offset strain for tension, inches per inch
nominal uniaxial unit strain, inches per inch

longitudinal and lateral nominal strains in elastic
range, respectlively, inches per inch

longitudinal and lateral nominal strains in plastic
range, respectively, inches per inch

total axial force, pounds
experimental constant for gimple tension
transverse gsensitivity constant of SR-4 gages

plasticity modulus <§-§>

gage length of tension specimen in plastic range,
inches

original gage length of tension specimen, inches
Poisson's ratio

strain-hardening coefficient for simple tension
internal pressure, psi

axlal tension load, pounds

nominal reduction in area of tension specimen
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true reduction in area of tension specimen

original wall thickness of tubular specimen, inches

wall thickness of tubular specimen in plastic range,
inches

principal stress ratios
true stress 1n simple tension, psi

equlvalent unlaxial yield stress as defined by
distortion energy theory, psi

yield stress 1n simple tension, psi
nominal ultimate stress in simple tension, psi
true rupture stress in simple tension, psi

true longitudinal and lateral principal stresses,
respectively, psi

elagstic longitudinal and lateral principal stresses,
respectively, psi

yield longitudinal and lateral principal stresses,
respectively, psi

nominal ultimate longitudinal and lateral principal
stresses, respectively, psi

true rupture longitudinal and lateral principal stresses,
respectively, psi

stress components, psi

gignificant stress, psi

shear stress component, psi

principal shear stresses, psi

true rupture stress in shear, psi

principal shear strains, inches per inch
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€ true strain in simple tension, inches per inch
el, Gg’ 63 true principal strains, inches per inch
€ slgnificant strain, inches per inch
81, 62 apparent recorded meagured straina in longitudinal
and lateral directions, respectively, inches per inch
o stress ratio <?Ee/°le or 02/b1>

B stress ratio <63/Ul>

DESCRIPTION OF MATERTAL

The material tested in this investigation was a fully heat-treated
aluminum alloy designated 2LS-T. The material was supplied in tubular
extruded form in lengths of 16 feet with an internal diameter of 2 inches
and a wall thickness of 1/4 inch. The nominal chemical composition, in
addition to aluminum and normal impurities, consists of 4.4 percent
copper, 1.5 percent magnesium, and 0.6 percent manganese. The mechanical
properties, as furnished by the manufacturer, are: tensile strength,
68,000 pei; yield strength (0.2-percent offset), 44,000 psi; modulus of
elasticity, 10.6 X 105 psi; percent elongation (in 2 in.), 14 percent;
and Polsson's ratio, 0.33.

Tensile control tests were made on flat specimens machined from the
walls of the tubular extrusions. These tests were made to obtain more
accurate values of the tensile properties and to make possible the
correlation of the combined-stress test results with tensile tests on
speclmensg of the usual type. The dimensions of these control specimens
are shown 1n figure 1. The longltudinal direction of these specimens
coincided with the longitudinal direction of the tubular extrusions
from which they were cut. The tension tests were made on a 60,000-pound
hydraulic machine, and strains were measured to rupture. Elastic strains
were measured with SR-L electric strain gages and plastic strains were
measured by using clip gages as described for the combined-stress tests.
Four specimens were selected from each of the three 16-foot tube lengths
used for the combined-stress tests. Figure 2 shows the nominal stress-
strain diagrams for the 12 specimens tested. The values of moduli of
elasticity and tensile yleld strengths based on 0.2-percent offset, as
obtailned from figure 2, are given in table 1. The nominal values of
tenslle ultimate strength and percent elongation based on the original
specimen dimensions are also given in table 1.
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Figure 3 shows the true stress-strain diagrams for the tension con-
trol specimens based on the changing dimensions; the values of stress
and strain used are defined by equations (A10) end (A8) in appendix A.
Tension tests on many metals (references 1 and 2)ehow that in the plastic
range there is an approximate linear relation between the true stress o
and true strain € when they are plotted on logarithmic paper; that is,
the relation o = ke®* 1s a good approximation. In order to determine the
constants k and n in this equation, the true stress-strain data
ghown in figure 3 were plotted on logarithmic graph paper, as shown in
figure 4. The values of the material constants k and n, as obtained
from figure 4, are given in table 1. The values of these constants were
obtained in order to correlate the plastic stress-strain data on tension
specimens of usual dimensions with the simple tenslon test data of
tubular specimens.

TEST PROCEDURE

Test Specimen

The biaxlal-stress test specimens were machined from tubular
sections having an inside diameter of 2 inches and wall thickness
of 1/4 inch. The dimensions of the machined specimen are shown in
figure 5. The specimen used had an over-all length of 16 inches, with
an intermediate length of 11 inches of reduced wall thickness equal to
0.100 £ 0.002 inch. The internal surface was left in the extruded form.
The wall thickness of the tubular specimens was measured with the
apparatus shown in figure 6. This apparatus is similar to a device
developed by the National Bureau of Standards for this purpose . With this
equipment the reading on a 0.0001-inch dial is recorded when the dial
plunger is in contact with the protrusion P on the rod, as shown in
figure 6. The tubular specimen is then supported on the rod protrusion
by placing the specimen over the rod. With the specimen in this position
a reading on the dial indicator is recorded. The difference in the dial
readings is then a measure of the wall thickmess. Wall-thickness values
were in this way measured for six positions around the circumference
and at five equal intervals along the tube length. The ratio of wall
thickness to dlameter of the specimen was 0.05, so that the biaxial
stresses throughout the wall were essentially uniform. The diameter-
length ratio of the specimen was about 0.18, thereby providing a
sufficlently long section of the specimen free from the bending stresses
produced by end restraints.
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Testing Machine

A special testing machine was designed and built for applying
internal pressures and axial tensile loads to the tubular specimens.
Figure 7 shows a schematic drawing of the testing machine, and figures 8
and 9 are photographs showing, respectively, the equipment for applying
the axial load and the intermal pressure. The axial tensile load is
applied to the specimen S by means of a direct-current motor M, a
speed-reducing unit U, a vertical pulling rod R, and a lever L.

The axlal load 1s measured by a dynamometer D. The lever L +transmits
the load to the specimen through spherical seats S' +to insure axiality
of loading. The fulcrum F of the lever and the ends of the lever are

provided with bearings. The pulling rod R was provided with a spheri-
cal seat and a universal Joint to eliminate bending.

The intermal pressure was applied by an injection pump unit P
(figs. 7 and 9). The oil used to apply the internal pressure was a
"hydraulic pressurizing oi%" of 154 S.8.U. viscosity at 100° F and
had a pour point below -LO~ F. The oil was supplied by the pump P
through a high-pressure pipe line to the lower pulling head H and into
the specimen S. The rate of pressure application was controlled by the
rheostat of a motor-generator set and by means of a release valve which
discharged surplus oll into the oil supply reservoir. The oil pressure
wag measured by 10,000-psi, 5000-psi, and 2000-psi U. S. Bourdon gages G.
Three pressure gages were used to obtain the necessary accuracy of
pressure measurement during various stages of loading. The low-pressure
gage was located at the end of the pressure line so that it could be shut
off by a check valve when the pressure exceeded 2000 psi. A check valve
was also provided between the 5000- and 10,000-psi gages to shut off the -
5000-psi gage when pressures exceeding 5000 psi were applied.

The axiality of the load was checked by using three SR-4 electric
strain gages cemented at 120° intervals around the circumference of a
tubular specimen. The plate supporting the upper spherical seat was
then shifted until the strain readings on the three strain gages were
equal. The machine was calibrated for axial loading by inserting a cali-
brated rod with SR-L4 gages in place of the specimen S and recording
the readings on the dynamometer D. The axial load on the specimen was
measured within 100 pounds. The pressure gages were calibrated before
testing and were found to have a maximum error of about 2 percent.

Method of Measuring Strains

The elastic strains were measured over a gage length of 13/16 inch
by means of SR-4 electric strain gages. Three longitudinal and three
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transverse elastic gages (elastic gages refer to gages used to measure
elastic strains) were located at intervals of 120° around the circumference
and at three locations along the length of the specimen, as shown by the
developed view of the specimen in figure 10. The strain gages were
cemented to the specimens in accordance with the procedure prescribed by
their manufacturer. Figure 11 is a photograph of a tubular specimen
with the elastic SR-4 gages. In order to compensate for changes in
specimen dimensions due to temperature changes, the elastic gages were
connected to an unstressed dummy specimen of the same material as the
specimen. The wiring diagram used for measuring the gstrains 1s given

in figure 12, and figure 13 shows the strain-measuring apparatus. The
gages are connected through a swltch box B so that each gage can be
successively switched into the circuit connected with the strain indi-
cator I, which in turn records the strain directly in microinches per
inch.

The SR-L4 gages have a maximum range of about 0.015 inch per inch so
that they could not be used to measure the plastic strains covering the
entire plastic range of the material. It was necessary, therefore, to
develop special plastic strain-measuring equipment for this purpose.
Clip-type gages were used to measure the longitudinal and lateral plastic
strains, as shown in figures 14 and 15. A clip gage consists of a channel-
shaped phosphor-bronze strip to which SR-4 electric strain gages are
cemented on the upper and lower surfaces of the clip-gage bridge (Eig. 1H)G
By means of this arrangement an additional temperature-compensating gage
is not required and increased sensitivity is obtained. By means of these
clip gages a large strain at the pivot points of the clip is reduced to
a small measurable strain at the bridge of the clip. The attachment of
the clip gages to the tubular specimen introduced a problem, gince 1t
was considered inadvisable to solder lugs onto the specimens for attaching
the clip gages. For this reason, special clip-gage attachments were
devised, as shown in figuree 14 and 13. The longitudinal and lateral clip
gages were capable of measuring strains to 0.00005 inch per inch. The
longitudinal clip gages were calibrated by using a vernier scale, as
shown in figure 16. The calibration was made by taking simultaneous
readings on the micrometer and the Sk-4 strain indicator. The longi-
tudinal clip gages had a gage length of about 2 inches. The lateral
clip gages were calibrated by the stepped-tube device shown in figure 17.
The stepped tube consists of an accurately machined tube with lengths of
various dlameters. By recording the reading of the SR-4 indicator for
corresponding accurately known diameters of the tube, the calibration of
the lateral strain gages was made possible.

The longlitudinal clip gages were applied to the specimen in a pre-
gtrained condition, since tensile stresses in the specimen reduced the
strain on the gage. The lateral clip gages were applled with various
amounts of prestrain, the amount depending upon the blaxial state of
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stress under test; that is, various amounts of prestraln were necessary
because in some tests the specimens reduced in diameter, whereas in others
there was an increase in diameter. ZFinal strains at rupture were measured
to 0.01 inch by means of dividers and a scale.

Method of Testing

The elastic SR-4 clip gages were first attached to a tubular specimen
and connected to the switching box and strain indicator, as shown in
figure 13. O0il was then pumped through the specimen to remove any air
that might be trapped in the specimen. The discharge outlet in the
pulling head of the testing machine was then sealed and a protection
shield was placed over the specimen end of the testing machine. Strain
readings for the six elastic and six plastic strain gages corresponding
to zero loading were then recorded. The specimen was loaded to pre-
determined values of axial load and internmal pressure to produce a given
principal stress ratio in the specimen. Strain readings were recorded
for selected load intervals to rupture, with the stress ratio maintained
essentially constant. Fracture loads were recorded also, but because of
the high rate of deformation it was impossible to obtain strain readings
immediately preceding fracture. Strain readings for each load increment
required less than 1 minuate, and the time of testing averaged about
1 hour.

TEST RESULTS

Conventional Stress-Strain Results

The conventional stress-strain diagrams are shown in figures 18
and 19. These dlagrams represent the nominal stress-strain data and are
based on the original dimensions and gage length. The strain values
were obtained from the SR-U4 gages cemented to the specimens. In
figure 18, a refers to the stress ratio dQe/dle’ where Gle is the

longlitudinal stress and 9, is the lateral, transverse, or clrcumfer-
e (of
2e

T O represents a tubular
le

ential stress; that is, a value of

specimen subJected only to axial tension without intermal pressure.

Strain values in figures 18 and 19 are plotted for only the strains
nearest the point of rupture of the specimen. At least three specimens
were tested for each principal stress ratio. The equation for the nominal
longitudinal stresses plotted in figure 18 is
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- i -
ook * pd° + YR

= {f[(d e dgl - bt(d + t)

(@

The values of the nominal lateral stresses plotted in figure 19 were
determined by the equation for a thick-walled tube, since the use of the
formulas for a thin-walled tube produces an error of about 5 percent in

the stresses; that is, the maximum value of the lateral principal stresses
is (reference 3)

2
t t
1+ QE + 2<E>
g =Pt (2)
2e 2% 4+
1+ 3
The value of % = 0.05 for the tubes tested, so that the circumfer-
ential stress is defined approximately by \
_ d
Ope = 1.05 rg{ (3)

Since o0p, = pd/2t 1s the lateral stress for a thin-walled tube, the

error produced by neglecting the variation in stress throughout the wall
is 5 percent.

The nominal conventional strains were determined from the readings
from the SR-4 indicator and the original gage length of the specimen. For
gome strain readings it was necessary to correct the readings for the
lateral sensitivity and for the "combined-stress effect," since the calil-
bration constant supplied by the manufacturer is based on a simple tensgion
calibration on a steel specimen with a Poisson's ratio of 0.285. Equations
for calculating the strains in terms of the apparent measured strains
corrected for the combined-stress effect and Poisson's ratio were
developed by Baumberger(reference 4). The application of these equations
18 given in appendix B. The straight dashed lines in figures 18 and 19
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correspond to the stress-strain relations based on the elastig equations
for blaxial stresses, if a modulus of elasticity of 10.3 X 10° psi is
used.

The yield-strength values for axial tension (o = 0) were determined
by using an offset strain of 0.002 inch per inch, as indicated in
figure 18. For the combined-stress tests an equivalent offset was used,
as proposed by Marin(veferences 5 and 6) The equivalent-offset strain is
a strain value corresponding to the uniaxial strain offset of 0.002 inch
per inch but providing for the biaxial state of stress. The value of the
equivalent-offset strain in terms of the uniaxial offset strain is

e
O = S s g + ¢ (4)
& -+ o
where
cy yield strength in simple tension, psi
et offset strain for temsion (0.0002 in./in. for
test results reported herein)
€e equivalent-offset strain for a particular stress ratio

Equation (4) determines the offset strains used in figures 18 and 19
to determine the yleld-stress values. Table 2 glves the values of these
yield stresses for each of the biaxial stress ratios. A comparison of
the blaxlal with the uniaxial yield strengths, based on the tensile yield
strength as determined in the longitudinal direction, is shown by the
lagt two columns of table 2. The values in these columns represent the
stress ratios x = le/cy and y = cgy/cy. For a particular stress

ratio, when either x or y 1s greater than 1, then the yield strength
for the stress ratio 1s greater than the unilaxial longitudinal tensile
yield strength.

Plagtic Stress-Strain Results
The stress-strain dlagrams for the plastic range are shown in

figures 20 and 21. These diagrams represent true stress-strain values
based on changing gage lengths and dimensions of specimens in the plastic
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range. As in figures 18 and 19, the data in figures 20 and 21 are
plotted for only the strains nearest the point of rupture. TFor each
principal stress ratio at least three specimens were tested.

The true plastic strains were determined by clip gages and from the
readings of the SR-4 indicator. The conversion of the readings of the
SR-4 indicator to unit plastic strains was made as follows: (1) Let
w1 equal a glven strain reading in inches glven by the calibrating

device (stepped tube or vernier scale) and X1 equal the strain reading

on the SR-4 indicator corresponding to the strain w on the calibrating
device. Then wy/x, equals the strain in inches per division on the

SR-4 indicator. (2) Let y; equal the gage length for the clip gage in

inches. Then wl/x equals the strain in inches per inch per division

¥

1=
on the SR-4 indicator. (3) Let Z1 equal a given strain reading on the
SR-4 indicator as measured for a tubular specimen under test. Then the

unit strain on the specimen in inches per inch is

W

1 ik
D= L z (5)
xlyl 1

The unit plastic strain, as determined by equation (5), is the nominal
strain based on the original gage length. Appendix A shows that the

true strain ¢ 1n terms of the nominal strain e' 1is given by the
equation

e = loge(l +e') (6)

If e, and e, are the nominal longitudinal and lateral strains, respec-
tively, as detSrmined by equation (5), then the true strains are

loge(l e

€ 2)
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The true strains, as defined by equation (7), are plotted in figures 20
and 21.

The stresses for the plastic range were determined by basing them
on the varying dimensions, since, for the higher plastic strain values,
the changes 1n dimensions become appreciable. The true longitudinal
gtress can be expressed by equation (1) for the nominal stress provided
that the thickness t and diameter d are replaced by their true values.
That is, the true longitudinal stress is

2
D kp/
= _EE_;i___jL (8)

- bt (a4 + tp)

The determination of the wall thickness tp and diameter dp is

glven in appendix C. Appendix C shows that the wall thickness tp is

approximately

t

tP S F e1 + es (9)

where t 1s the original wall thickness and e; and e, are the

nominal strains in the longitudinal and lateral directions, respectively.
The intermal diameter dp is shown in appendix C to be

d, = (@ +2t)(1 + o) - 2t (10)

where tp i1s the new wall thickness as given by equation (9). Equation (8)

can nov be used to determine the longitudinal stresses since the dimensions
tp and dj can be found by equations (9) and (10). The true lateral
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gtresses were calculated by using the stress formula for a thin-walled
tube, namely,

O = EEP (11)

2 of
P

An analysis of the stress distribution for a thick-walled tube sub-
Jected to plastic flow shows that, for the ratio of wall thickness to
diameter of 1:20 used in these tests, a small amount of plastic flow
yields essentially a uniformly distributed lateral stress. This is also
indicated by the fact that for the elastic range the correction produced
by a consideration of the thick-walled-cylinder theory produces only a
5-percent error (equation (3)). The values of the diameter dp and

wall thickness tp used in equation (11) were determined by equations (9)
and (10).

The true stress-straln diagrams plotted in figures 20 and 21 are
based on stresses and strains as calculated by equations (7) to (10).
In order to determine the fracture points shown in figures 20 and 21,
the measured true strains at rupture were corrected for the elastic
strailns corresponding to the stresses Just prior to rupture. This

correction appears to be Justified since the remaining strains plotted
include an elastic strain.

On the basis of the data plotted in figures 20 and 21, tables 3
to 6 were prepared. These tables show, for the various principal stress
ratios, the nominal values of the ultimate stresses, percent elongation,
and the true fracture stresses and true strains at fracture. These
tables also give a comparison of the mechanical properties for the various
ratios of biaxial stresses with the value for uniaxial longitudinal
tension. Figure 22 shows the typical types of fracture for the various
gtress ratios considered.

ANATYSTS AND DISCUSSION

Biaxial Yield Strength
The difference in uniaxial tensile yield-strength values 1n the
longitudinal and lateral directions, as given in table 2 for stress

ratios of o and O, makes it difficult to compare the actual yield-
strength values for various stress ratios with values predicted by the
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avallable theories of fallure. The difficulty is present since the
various theories of failure available assume equal tenslile yield strengths
in the directions of the two biaxial stresses; that i1s, the theories
assume an isotropic and homogeneous material. Figure 23(a) gives a com-
parison of the yield strengths for various blaxial stresses with the
stress, shear, and distortion energy theories of failure (references 5
and 6). The comparison shown in figure 23(a) is based on the uniaxial
tensile strength in the longitudinal direction. In figure 23(a) the
stresses are considered to be blaxial and the radial stress 1s neglected.
Figure 23(a) shows that, except for the influence of the directional
properties of the tubes, the distortion energy theory is a good
approximation.

Figure 23(b) glves a comparison between the distortion energy theory
and the test results with the radial stress included. This comparison
is made by representing the equlvalent unilaxial stress

defined by equation (A23) as a ratio of the uniaxial tensile yleld
strength Oy for the varlous bilaxial stress ratios; that 1s, 1in

figure 23(b), i1f the distortion theory applies, the ratilo oe/oy

should be 1.0 as indicated. A consideration of the three-dimensional
stress effect (fig. 23(b)) shows that the distortion energy theory gives
a good approximation to the test results.

Plastic Stress-Strain Results

A theory called the generalized St. Venant theory has been proposed.
With this theory it 1s possible to predict the true stress-strain
relation under combined stresses in terms of true stress-strain relations
in simple tension. The theory defines a stress and strain, called the
gignificant stress and strain (references 7 to lh), as a function of the
principal true stresses and strains. These quantities are also referred
to as the "effective stress-strain"” and "octahedral shear stress-strain
relation" in various reporte. The values of the significant stress and
strain are derlved in appendix A and are shown to be, respectively,



16 NACA TN No. 1536

Q|
1l

% [(01 - 02)2 + (02 - p)2 + (Gl - p)z] (12)

m
|

_ L/ 2 2
_J§<sl +5162+€2> (13)

where €, and €, are the true longitudinal and lateral strains,
respectively.

Values of the significant stress and strain, as given by equations (12)
and (13), are plotted in figure 24 for each specimen and stress ratio. By
the generallzed St. Venant theory the significant stress-strain relations
should all agree and coincide with the uniaxial tenslle true stress-strain
relation. Figure 25 shows the average curve for each principal stress
ratio as obtained from figure 24 but plotted with the same origin. The
uniaxial tensile true stress-straln diagram i1s also shown in figure 25
for purposes of comparison. It appears from figure 25 that the generalized
St. Venant theory, together with the uniaxial true stress-strain relation,
may be used to define approximately the true stress-strain relation for
24S-T aluminum alloy subJjected to biaxial tensile stresses.

Biaxlial Ultimate Strength

Table 3 gives values of the nominal ultimate stresses for various
principal stress ratios based on the original dimensions of the specimen.
Figure 26 gives a comparison between the biaxial ultimate strengths and
the values from the stress theory of failure. Figure 26 shows that the
maxlmum stress theory is a good approximation since average test values
are within L4 percent of the theoretical values defined by this theory.

Biaxial Fracture Strengths

Table 4 gives values of the true fracture strengths, and figure 27
glves a comparison of these stresses with values predicted by the stress
theory of failure. Figure 27 shows that the maximum stress theory is a
good approximation. Except for one stress ratio, the average test results
agree with the theory within 3 percent.
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Ductility

Values of the measured nominal and true ductilities are given in
table 5 for the direction of the maximum stress. A comparison of the
ductilities for biaxial tensile stresses with uniaxial values shows
that there is an appreciable reduction in ductllity. A reduction in
ductility for blaxial tensile stress is also predicted by the generalized
St. Venant Theory (equation (AL5)). Theoretical values of true ductility,
as determined by equation (A46), were calculated. These values do not
agree with the observed values. DPossible reasons for this discrepancy
are the presence of a nonuniform state of stress at the necked-down
gection of the specimen, the observation of an average rather than a
local strain by using a 2-inch gage length, or the inadequacy of the
theory. The foregoing reasons may also explain the reason that predicted
strains at points of instability, as determined by equations (A56)
and (A6l), glve unreasonable values.

Control Tension Tests

Table 6 gives the mechanical properties of the tension control
specimens and the uniaxial tension properties as obtained from tests of
the tubular specimens. A comparison of the nominal ultimate stresses
and the true fracture stress values for the three types of tension test
shown in table 6 shows that the values for the tension control specimens
fall between the values for the longitudinal and lateral tensile strength
values of the tubular specimens. The true ductility in the longitudinal
direction of the tubes was found to be somewhat greater than the values
for the other tension tests. The true stress-strain results obtalned
from the uniaxial tension tests of the tubes were plotted logarithmically
as shown in figure 28, and the values of k and n obtained from
figure 28 are given in table 6. A comparison of the values of k and n
for the three types of tension test shows that there is little difference
between the values of these constants.

CONCTLUSIONS
For the 24S-T aluminum alloy tested, the following conclusions can

be made:

1. The yield strengths for blaxlal tension may be predicted approxi-
mately by the distortion energy theory.

2. The values of the nominal bilaxial ultimate stresses for biaxial
tension agree well with values based on the maximum stress theory.

3. The values of the true blaxial fracture stresses for blaxlal
tension agree well with values based on the maximum stress theory.
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4, There is a decrease in nominal and true ductility for biaxial
tension compared with unlaxial tension. However, the test values do not
agree with the theoretical values based on the generalized St. Venant
Theory .

5. The generalized St. Venant theory can be used to predict approxi-
mately blaxlal stress-strain relations in the plastic range by using the
stress-strain relations in simple tension.

The Pennsylvania State College
State College, Pa., March 17, 1947
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APPENDIX A
STRESS -STRATN PLASTICITY RELATIONS FOR COMBINED STRESSES

The obJect of the following analysis is to present the currently
accepted theory used for predicting the stress-strailn relations for
combined stresses in the plastic range. In developing this analysis the
following relations are determined:

1. True stress-strain relation for simple tension in the plastic
range

2. The relation defining the beginning of necking for simple tension

3. The stress relation defining the beginning of yilelding for com-
bined stresses

4, The stress-straln relation for comblned stresses 1n the plastic
range

5. The strain equations for combined stresses in the plastic range
6. Fracture-strength relations for combined stresses
T. Ductility relations for combined stresses

8. Stress and strain values at beginning of necking for combined
stresses

The yleld strength, rupture strength, and ductility for combined
gtresses are determined by use of the true stress-strain relation in
gimple tension. In addition, the plastic stress-strain relations under
comblined stresses are determined by use of the true stress-strain
relation in simple tension.

True Stress-Strain Relation for Simple Tension

in the Plastic Range

Figure 29 shows a tension test bar of uniform cross section with an
original gage length LO and cross-sectional area AO. When a uniaxial

tension load P 1is applied there i1s a change in gage length or strain
AL, and a change in cross-sectional area AAO. If the load remains
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in the elastic range the strain and reduction in area are defined,
respectively, by

AL
ey = —L—g (A1)
and
NA
= s
qQ = AO (Ae)

That 1s, e, and q are the axlal strain and reduction in area,
respectively, as usually defined.

For large deformations which occur in the plastic range beyond the
yield-stress value, the guantities AL, and AA, become relatively

large compared with the values LO and A, . For large strains 1t is

then necessary to correct equations (Al) and (A2) to include the influence
of a changing gage length and cross-sectional area. If for a load P

the gage length becomes L and the cross-sectional area becomes A,

then the true strain € and true reduction in area q~ are

L
dL L
€ = — = 108 e (A3)
l/; L ® 1,
(0]
and
A A
ql = k/'-A @EA = ]_oge IO (A)-l-)
(0]

Equations (A3) and (AL) define the true strain and true reduction in area,
respectively, as dlstinguished from equations (Al) and (A2), which define
the nominal strain and reduction in area. For elastic strains the values
of e, and € and q and ql are essentially equal.
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2

In the plastic range, for most ductile engineering materialas, the
volume remains consteant. That 1is,

or

A
0 L
s f; (A5)

On placing the value of AO/A from equation (A5) in equation (A3), the
right-hand side of equation (A3) is the same as the right-hand side of
equation (Ak4), or,

(46)

Equation (A6) shows that in the plastic range the true strain
the true reduction in area ql.

€ equals

The true straln can be related to the nominal strain by noting that
in equation (Al)

ALo L - Lo L
L, Bt G
or
f? =1+ ep (AT)
o
Placing the value of L/IO from equation (A7) in equation (A3),
€ = logy (1 + e,) (A8)
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The true reduction in area ql can be related to the nominal reduction

in area q by noting that in equation (A2)

Ao - A X A
q:-———-: - —
A Aq
or
A
KO__l_q (Ag)

Placing the value of A/Ao from equation (A9) in equation (A4) yields

ql = - logg(1 - q)

The relation given by equation (A6), namely, that the true axlal
strain is equal to the true reduction in area, has led to an improved
method of determining the true stress-strain relation in simple tension
since 1t is possible by simple lateral measurements on the specimen
during the test to determine c%anges in cross-sectional dimensions or
the true reduction 1in area q~.

By obtaining the cross-sectional dimensions of a tensile specimen

at various intervals of load to rupture, the true stress o = %

A
0
and the true strain ¢ = q1 = loge | can be determined and a true

gtress-strain relation can be plotted. For flat specimens 1t is more
convenient to measure the axlal strains in place of the change in cross-
gectional dimensions. In this case the true strain is given by

equation (A3) and the true stress is given by equations (A5) and (A7) as

B
Sl il w el W (1 + eo) (A10)

Many tests (references 1 and 2) of ductile metals show that when the
true stress and true strain are plotted on logarithmic paper the points
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fall approximately on a straight line (fig. 30); that is, the true
stress-strain relation for simple tension may be assumed as given by

o = ke™ (A11)

where k and n are experimental constants and n 1s called the strain
hardening coefficient.

For some ductile materials the true stress-strain data depart
slightly from a straight line at the lower and upper stress values when
plotted on logarithmic paper. Corrections (references 15 and 16) to the
stress and strain values have been proposed to compensate for these dis-
crepancies. These corrections include the adjustment of the strain values
to exclude the elastic strains and the correction for the stresses at
loads near rupture due to the necking-down of the specimen.

Relation Defining Beginning of Necking
for Simple Tension

The unstable condition of plastic deformation which occurs Just
prior to necking-down in a tension specimen is usually observed in a
tension test; that is, the load in a tension test increases at a
decreasing rate to a maximum value and then decreases until fracture
occurs. At the maximum load the deformation becomes localized and the
specimen necks down. Two opposing influences are present in the simple
tension specimen. One 1s the influence of strain hardening, which tends
to Increase the load-carrying capacity of the specimen. Opposing this
stralghtening effect 1s the decrease in the cross-sectional area of the
specimen due to the elongation of the specimen. At beginning of necking
the rate of increase of load-carrying capacity due to work hardening
becomes less than the rate of decrease of load-carrying capacity produced
by the decreasing cross section. This point of maximum load is defined
by the condition dP = O, that is, when there is no change in the load P.
The point at which this instability occurs can be determined by the
following analysis: If P 1s the tensile load, o 1s the stress, and
A 1s the area, then

P = Ao (A12)
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By equations (Al4) and (A6),

A
_ 0
€ = log, T
or > (A13)
5
A = Aoe
/
From equations (A1l2) and (Al3),
P=Ae o (A1L)

Since P 1s a function of both stress o and straln ¢,

dp = ae do + P de (A15)
do de
From equation (Alk),
oP _ A o=
oo 2
and
oP - "
52 = - AOOG
oP oP
Placing these values of — and 5 in equation (Al5) results in
o €.
dP = (Ae™%)(do - ode) (A16)

The beginning of necking 1s defined by placing dP = 0 1in
equation {A16). Then since Age~° 1s not zero, do - ode = 0, or

do _
o= g . (A17)

that 1s, necking or instability occurs at the load corresponding to the
point where the slope of the true stress-strain curve equals numerically
the stress for that point (fig. 31). This point A can be located on
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the true stress-strain curve graphically. That is, since the slope at

A=99-88 43 TB<0g, if T 1s made oqual to 1 inch per inch,

ae BC
the point A defines the condition given by equation (Al17). It is more
convenlent, however, to define the point A in terms of the strain. In
order to do this, the value of the stress as given by equation (All) is
substituted in equation (A17). Then

nkel-1 — kel
or (A18)
€E=n

By equation (A18) the strain at the limit of uniform extension or beginning
of necking is given by the value of the strain hardening exponent nj that
is, in figure 31 OB = n defines the point A.

Stress Relation Defining Beginning of
Yielding for Combined Stresses

For ductile metals subjJected to biaxial stresses, as shown in
figure 32(a), tests show that the stress relation defining the beginning
of ylelding is approximately defined by the distortion or shear energy
theory (references 5 and 6). That 1is, "

2 2 2 2
Ox - Ox0y + 0" + 3T = o, (A19)

where o, Oy, and Txy are the combined-stress components as shown

in figure 32(a) and o is the yield stress for simple tension. In

o
terms of the principal stresses, as shown in figure 32(b), equation (A19)
becomes

0. - 0.0_ + 02 =g ° (A20)

That 18 0 1f oy is the greater of the two principal stresses 01 and
02, then for a given value of 02 the value of 01 determined by
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equation (A20) represents the value of o1 at which ylelding occurs under
2
‘a blaxial state of stress. If equation (A20) is divided by Oy . it

becomes

¥ -xy +3y2 =1 (A21)

where x and y are the stress ratios x = Ul/dy and y = co/cy.

Equation (A21) is represented graphically by the ellipse in figure 33.
Points inside this ellipse represent stress values below yielding, and a
point on the ellipse represents stress values at which yielding begins.

Determination of Yield-Stress Value
Based on Combined-Stress Test Data

In & combined-stress test such as a tube subjected to internal
pressure and axlal loading, the nominal strains are measured in the
direction of the maximum principal stress and a stress-strain dlagram
01 - €1 1s plotted as shown in figure 34. In order to define the yield-

stress value for o4, several methods have been used. A rational approxi-

mate method which correlates the determination of the yleld stress
under combined stresses to the ASTM offset yield stress for simple tension

1s based on the determination of an equivalent-offset strain e, for com-

bined stresses. That is, an offset strain e, (fig. 34(a)) which 1is
equivalent to the offset strain e, for simple tension is determined.
The value of thls offset strain has been shown to be (references 5 and 6)

6 = %? 1 . L - + ey (A22)
1-a+ a?
whers
E modulus of elasticity in simple tension
o principal stress ratio <02/01>
et offset strain value for defining yield stress in

gimple tension
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The procedure to be used in applying equation (A22) 1g as follows.
For simple tension, as shown in figure 34(b), the yleld stress is
determined on the basgis of the offset strain €4 in the usual manner as

specified by the ASTM standards. By equation (A22), for a glven stress
ratio «a, corresponding to the combined-stress test considered, the
value of ey 1s determined. With this value of e, the value of the

yield stress o0y, 1s obtalned as shown in figure 34(a). The experi-
mental value Oly may then be compared with the theoretically predicted
value as given by equation (A20).

For trilaxial stresses defined by three principal stresses 0y,
37 as shown in figure 35 beginning of ylelding by the dis-
tortion energy theory is given by the equation

O and o

(Ul & 02)2 - <02 . c3>2 % (c3 = 01)2 = 2cy2 (A23)

that is, 1if 017 1s the largest of the principal stresses, then the value
of o as determined by equation (A23) for particular values of o

for beginning of ylelding.

l’
and 03,

2

repregents the value of oy

Stregss-Straln Relation for Combined Stresses
in the Plastic Range

A generalized St. Venant theory which predicts stress-strain
relations for combined stresses in the plastic range has been proposed.
These stress-straln relations are determined on the basis of the following
assumptions:

(1) The directions of the principal strains €, €, end €

coincide with the directions of the principal stresses o (o

b e~ i

and 03.

(2) The volume remains constant in the plastic range. For constancy
of volume or no change in volume,

G+ o+ €3=0 (A2L)
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(3) The ratios of the three principal shear strains to the principal
shear stresses are equal and equal to a quantity ky determined by the

tension test. The principal shear stresses and strains can be shown to
be, respectively,

o, = O
S S
3 2
(0 -0
1
72=__32 y (A25)
O~ = 0
T=-£——-3-
L 2
/
and
73=61_€2
7p =€, - elF (A26)
7l=€2—€3

=== ===2k (A27)

Placing the values of the shear stresses and strains from equations (A25)
and (A26) 1in equation (A27) gives

= 3 = 3 _ = kl (A28)

Solving equations (A24) and (A28) eimultaneously for €15 €y and ¢
yields

»*
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Equation (A29) defines the plastic strains £ e o and 63 in terms

of the principal stresses 01, Op, O3 and a plasticity modulus k;.

For the case of simple tension 02 = 03 =0, cl =0,

and €. = €,
A !

Then by the first equation of equation (A29)

(A30)

Placing the value of ky in equation (A29) gives




30 NACA TN No. 1536

Squaring both sides of equation (A31) and adding the numerators and
denominators of the resulting equations yields

) 2 2 2
El + 62 + €3 > 2

or

Qi m

\/ . [_(01 - 02>2 + (02 ) 03)2 +‘<03 ] “1)2]’ (a32)

Equation (A32) defines the relation between the principal plastic stresses
and strains in terms of the stress and strain in simple tension.
Equation (A32) may be written as

€
= : (A33)

and

A CREA R N Ry O 2

The strain € and stress ¢ as given by equations (A34) and (A35)
will be called the significant stress and strain (references 7 to 11).
Combined-stress test data may be represented in terms of ¢ and € as
ghown in figure 36 where G and € are calculated by equations (A34)
and (A35). Then by this theory and according to equation (A32) the
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combined-stress curve in figure 36 should coincide with the stress-strain
plot o - € for simple tension.

The stress o and strain € have also been called the effective
stress and strain by Dorn (reference 12). Furthermore, the significant
stress and strain can be shown to be the same as the octahedral shear
stress and strain as defined by Nadai (reference lh), when the octahedral
shear stress and straln are replaced in terms of the normal stress and
strain as given in equations (A33) to (A35).

A comparison of the significant stress value o as given by
equation (A35) with the expression for the distortion energy theory as
glven by equation (A23) shows that © represents a uniaxial stress value
with an elastic distortion energy value equal to the elastic distortion
energy produced by the combined stresses Ul’ 02, and 03; that 1s,

in plotting the significant stress-strain diagram the significant stress
values glive a plot of the square root of the elastic distortion energy
multiplied by a constant. The identity between the gignificant stress
and strain and the true stress-strain relation in tension assumed by this
generallized St. Venant theory implies that the stress-strain relation in
the plastic range under combined stresses is a function of the elastic
distortion energy represented by these combined stresses.

Strain Equations for Combined Stresses

By assuming that the generalized St. Venant theory as defined by
equations (A33) to (A35) applies, the & - & relation coincides with the
0 - € relation and equation (All) may be written

5= xtf . (A36)
Then
i-n 2 2 .

S (5) F T (ol s 02> ¥ (02 - c3> + <03 -0 ) 2n(A. :

o kl/.n k1/:n e 4
Since § = S,
= e

iy 1-n
g i (Sl - 02)2 % <02 - 03)2 + <c3 - 01)2 Zn (438)



32 NACA TN No. 1536

On placing the value of € /o from equation (A38) in equation (A31l), the
principal plastic strains in terms of the stresses are

0-.‘1/1’1 ﬁl’ w
€l=<f> <a2+82-a8-a,-8+1) en <1-g-g>
l-n
oq 1/n =00
€2=<—£> (a2+82—aﬁ—a-8+l)2n <a2; (A39)
g, \1/n i-n
1
e3=<i> (a2+62—a8-a—6+1) 2n <Bg;>
where o and B are the principal stress ratios
a = 02/01
(ALO)
B=03/Ul

where o0 1s selected as the maximum principal stress so that «
and B are less than 1.
Equation (A39) completely defines the plastic principal strains in

terms of the principal stresses and the tension constants k and n.
For blaxial stresses, o3 = 0O or B =0, and equation (A39) becomes

-
1l-n

o = (%)l/n (ag e 1) on <1 ) §>
) = <c%l>l/n (- a+1) S Qx . ;> (A41)
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Equations (A39) and (AL4l) give the plastic principal strains in terms of
the principal gtresses.

Fracture Strength Relations for Combined Stresses

There are not sufficient test data to confirm definitely a theory
predicting stresses at fracture under combined stresses; however, test
data for ductile materials subjected to biaxial tension and biaxial
tension and compression are in closest agreement with the shear theory of

fallure., 1IFf Gl is the greatest principal stress and 03 is the alge-

braically smallest principal stress, then by the shear theory of rupture
(references 5 and 6),

o'1'“0'3='I' =Ur
2 Sats
or
UL = = .0 AL2
58 3 4 i ( )
where 0, 1s the rupture stress in simple tension.
For blaxial tensile stresses, gy = O and equation (A42) becomes
0, =0, (A43)
For blaxial tensile and compressive stresses with cl:> Ty s Gl in

tension, o3 1n compression, and o, = 0, equation (A42) applies.

Figure 37 is a graphlcal representation of the shear theory for biaxial
stresses. For biaxial tensile stregses equation (A43) shows that the
shear and stress theories are identical.

Ductility Relatlons for Combined Stresses

The ductility or maximum principal strain is determined by
equation (A39) if the value for 0y at rupture is substituted. From

equation (A42) this value of o, 1is
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0’1 = 0'3 + 0’r
or gq= gt Bcrl
or Op
g, = (ALL)
17 @-p
By using this value of 0y in equation (A39) the strains at rupture are
l-n
i Or e 2 2 on a _ B
€1r=ll—m] (G, +B"CIB"0,-B+1) <l_é-é>
l-n
1/n ==0
or 2 P on B l>
€ = — v - - - 1 -
- [k(l—ﬁ)} [+ -cb-a-prl)® (a-3-5 ()
_ l-n
| o l/n —
= r 2 2 on oh et
€np = | mmm— a“ + B -af-a-B+1 (B----)
For biaxial stresses, 03 =0, B =0, and equation (A45) reduces to
1-n
1/n =
o]
Elr= <;r> ((Iz =R CURT l) e2n <l - g'>
1l-n
o \L/n B —
Eor = <f> (ag - a4+ l) en <a - %> (AL6)
1-n
o l/fl —
1
e (@)@ oo ) = (343)
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Stress and Strain Values at Beginning of Necking
for Combined Stresses

In order to determine the stresses and strains at beginning of necking,
a procedure similar to that used for simple tension is applied. As for
the case of simple tension, the beginning of necking 1s the point where
the rate of strain hardening, which tends %to increase the load resistance,
is balanced by the decrease in load resistance caused by the decrease in
the cross section. At this point a maximum load is reached which is
followsd by a decrease in load to rupture. The condition defining this
point of instability is illustrated in the followlng paragraphs for the
thin-walled cylinder subjected to intermal pressure and axial load. For
other members subjected to combined stresses a similar procedure can be
used to determine the condition of instability.

Figure 38 shows a thin-walled cylinder subjected to an internal
pressure p and an axial load P, If t and d are the initial wall
thickness and internal dlameter, respectively, and 1, and d.p represent

the values of these dimensions in the plastic range, then for a thin-
walled cylinder the longitudinal stress oy and the clrcumferential

gtress Op are

oy = I%LE 4 Pt (AkT)
e
and
o, = EEE (A48)
e 2tp

In order to determine the instability condition, it is necessary to dis-
tinguish two cases, one in which o, 1s the greatest stress and the

other in which 0y is the greatest stress.

Cage 1 (02 > 01).- For 0 >0y & limiting pressure value p

determines the instability and the stress o, 1s used. Equation (AL48)
may be expressed in terms of the true strain € by noting that

'tp =% e-€1-62 (A)+9)
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o
dp =d e (A50)
where €y and €, are the true strains in the longitudinal and cir-
cumferential directions, respectively. (See appendix C.)

Placing values
of tp and d, from equations (A49) and (A50) in equation (AL8) gives

D
€
1
% '€2<2+g7 >
202<a>6 2

= (A51)
By equation (AL1),
=
'l _1-af2 _2-a
- = A2
€& a-1/2 2a-1 (452)

where
=80
o =0, /o

Placing the value of 61/62 as glven by equation (A52) in equation (AL9)
gives

p-ony (§)e (%) (453)

The condition defining instability or beginning of necking i1s determined
by the equation

dp =0
or
dp = ) o, + X de, = 0 (A5L)
| oo 2 e
‘ 2 2

Using the value of p from equation (A53) 1in equation (A54) gives
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do
2 3a
T, "Bg - 1% (455)
where
a = 0'2/0‘1

Equation (A55) shows that necking or instability occurs where the
slope of the true stress-strain curve for 0, equals 3a/2a - 1 multiplied

by the stress o,. Since by equation (Akl) oy = f(o.)€2n,

do
2 L n=1
ﬁ = nf(d.) 62

By using the value of é%l from equation (A55)
P2

. 2a, = 1 ; 7z
5, T =il (A5€)

that 1s, by equation (A55) instability occurs at a strain value o
defined by equation (A56).

Case 2 (o7 > 0p) .- For 01 > 0p, & limiting axial load defines insta-

bility. The total axial force is
F =g @ptpcl (A57)

Placing values of ty and 4, from equations (A49) and (A50) 1in
equation (A48) gives

=€
F=mndte 10'1 (A58)
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For instability,

dF = Ed_o’l-q. §d€1=0 (A59)

From equations (A58) and (A59),

dcl
‘Ei =Hoq) (AAO)

For instability in the axial direction the point of instability is
defined when the slope of the true stress-strain curve o, - €, equals

the stress op. BSince by equation (A1) o = f(o)eln,
doq/de; = nf(a)e ™7t

By using the value of doj/de; from equation (A60),

€ =n (A61)

Equation (A6l) determines the point of instability as the point on the
€ - G curve where €, equals the constant n.
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APPENDIX B

CORRECTION OF MEASURED ETASTIC STRAINS FOR LATERAL SENSITIVITY
AND COMBINED-STRESS EFFECT

Baumberger (reference 3) shows that the correct stralns, in terms of

the measured strains based on the manufacturer's calibration. by using
a simple tensile stress and steel, are

3 81 - kgd
01e = (L - ka) (P _ kaPo) & (l - uks> (51 # k562>

(l k52> > (B1)

(1 - “ks><§2 % ksal>

®2¢ = 5 ~ <1 i “ks> (52 i ks81>
G-

)

where ®16 and ey, 8re the corrected elastic strains in the longi-

tudinal and lateral directions. The correction to the measured strains
can be more convenlently determined than by using equation (Bl); that
1s, the percent error in the measured strains can be found directly by
solving equation (Bl) for the measured strain 8;; that 1s,

€le +_ks €oe

8y = (B2)
2 1 - pk >
<l - %y >< 8
The percent error in the strain ©96 is then
e - 5 e + k e
le 1 le s 2e
B = —— 100 = [1 - 100 (B3)

©1e (1 : ksé><l ] “ks>81e
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But since e, = (Gle - ud28>/‘E and e, = (028 = Wle)/E; equation (B3)
can be written

kg - M +(°le/°2e> <l B ks“>
B, = 10005 - :

(BL)

(o)
Since kg = 0.021 for the SR-4 gages used, <l - ks_> is approximately
equal to 1, and equation (B4) becomes

(W2 - 1) e

r = o
R
2e

For the aluminum alloy tested, un = 0.33, 80 that equation (B5) reduces
to

Er o= 1.9 (B6)
1 - 0.33a

where a equals the principal stress ratio OQJo'le. For a given

principal stress ratio a, equation (B6) determines the percent correction
to be applied to the measured elastic strains.
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APPENDIX C

EQUATTIONS FOR WALL THICKNESS AND DIAMETER OF TUBULAR SPECIMEN

IN THE PLASTIC RANGE

In the plastic range of stresses the original values of the wall
thickness t and internal diameter d can no longer be used to calculate
the stresses, and the actual values of the wall thickness tP and in-

ternal diameter dp must be used.

The true unit strain in the direction of the wall thickness tp is,

by using the definition of true strain (appendix A),

€, = log

t
9 2 : (c1)
t

Since the volume 1s assumed to be constant in the plastic range,
€l+ €2+ E3=O

or (c2)

From equations (C1l) and (C2),

tp = t logg (- gy €2> (@3)

The relations between the true strains €1 and €5 in the lateral

and longitudinal directlons in terms of the nominal strains e and €
in these directions are (appendix A)
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m
I

= log, (1 + e;) (ck)

m
Il

o = logg L e 92) (c5)

By adding equations (CL4) and (C5) and taking the antilogarithm of the
resulting equation,

loge'l (- €1 - €2> = L (cé)

(2 +e1)(2 + &)

From equations (C3) and (C6),

By = k = . (c7)

P ( \
(l + el)(l + 92) 1+ el + 82 + el e

2

since eje, 1s small compared with e; and ey, equation (CT) may be

written

= & (c8)

The internal diameter dp in the plastic range equals the external
diameter minus twice the wall thickness, or

d, = d_ - 2t (C9)

The external diameter dp' in terms of the nominal lateral strain
eo 1s equal to

dp' = (a+ 2t)(1 + ep) (€10)
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From equations (C9) and (C10) the internal diameter becomes

dp = (a4 2t)(1 + en) - 2ty

where t, 1s determined by equation (C8).

X

43

(c11)
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TABIE 1.- MECHANICAL PROPERTIES OF 24S-T ATUMINUM AIIOY BASED ON TENSION CONTROL TESTS

ﬁ)esignations B, C, and D in first column refer to specimens cut from tubes B, C, and D]

Nominal stress-strain- results True stress-strain results
Yield stress Ultimate Modulus of Elongation Fracture True Conatant
Specimen (0.2-percent offset) stress elasticity in 2 in. stress ductility K & Constant,
(psi) (pel) (psil) (percent) (psi) (in./in.) (psi) &
15 S R T2 3103 Il eemeaaeaee 9.4 80.0 x 103 10,8 102 | ceemmmmeal P
7~ : T (e —— 2.4 | eeeeeeeee- 8.6 79.0 9.0 | @ cemeeeeee- s
B | 0 ceememme-- 72.9 | o meeemeee-- oo 79.4 e Al eeeeecas o
T 72.0 | ememmeeee- 8.6 78.6 L ——-
Averags 48.5 x 103 72.1 10.6 x 100 8.6 79.3 9.6 1.20 X 107 0.18
TIC | mmemmeeee- 75.0 | eemmeeeee- 10.2 83.5 10.8 | eeeemeeee- -———-
T2C | meeemmeee- T B 8.6 80.5 8.5 | meeemmeee- ———
1 T R 7.8 T7.4 8.1 | emmmemeee- -
The | 000 eememeeee- 69.8 |  ccmcece--- 6.3 76, 9.2 | eemeeee-e- o
Average 50.0 72.6 10.8 8.2 79.5 9.2 1.15 0.16
L E 72.0 | emmmmee——e- 8.6 78.5 S ———-
2D | 0 eceecmeee-- 7.8 |  cememeeea- 8.6 80.2 9.5 |  ceeeeeeee- ———-
™D | 0 eeemeeee- /-1 "SR (R 7.8 78.4 7.9 | eeeeemaee- ——ec Z
M | edemaee- Sha e 6.3 72.0 S e —— (Bg
Average 50.0 TAD 10.8 7.8 T3 8.2 1.08 0.15 >
‘ —
Over-all =,
average 49.5 T2R0 1) 8.2 T 9.0 1.14 0.16 o
e
H
()]
(Jy)
o))




TABLE 2.— YIELD STRESSES FOR VARIOUS RATTIOS OF BIAXTAL STRESSES

St it S‘{i:;-t: 'f:ield sii:l.: Stress ratios
ratio, L ) Stress, : ) o g
oy 1y o2y 3y i 7%2 2 }?z
%% (psi) (pei) (psi) " 4 ¥
1L
0 0 0 1.00 0
(longitudinal tension) 47.5 x 103
.25 49.8 13.0 X 103 -1.3 X 303 1.05 .27
.50 SULT 26.6 2.9 1.15 .56
.75 53.9 §1.4 4.2 133 .87
1.00 49.7 51l =5.1 1.04 10T
A53 39.7 53«8 -5.4 .84 Loli3
2.00 23.6 47.3 4.9 .50 1.00
® 0 43.2 4.3 0 .91
(transverse tension)

Z
>
Q
>
=
=
2
&

=
(S]]
o
(@)}

LY
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TABIE 3.- NOMINAL ULTIMATE STRESSES FOR VARIOUS BIAXTAL STRESS RATIOS
Biaxial Nominal ultimate Nominal ultimate Stress Stress
stress rg.tio, Specimen stress, 0y, stress, O mtig, mtig,
o= (pei) (pei) x== |y= —2u
L Uu %
0 B8 8.3 x 103 0 1.00 0
(longitudinal tension) B10 31.0 0 1.03 0
€10 78.0 0 1.00 0
D8 75.9 0 .97 0
D10 7.9 0 1.00 0
Average o, = 78.2 0 1500 0
.25 8ps 8.8 17.9 x 103 .88 .23
Chk 8l4.6 23.6 .98 .30
DL 76.6 20.0 .98 .26
Average 80.6 21.8 .98 .28
5 B3 79.4 k2.0 1,00 .5k
c5 8.5 k2.0 1.03 .54
&ps5 71.8 37.5 .92 .48
Average 80.0 42.0 1.02 Sk
S5 BT 78.0 61.5 1.00 .79
cé 82.9 64.0 1.06 .82
(o] 8.0 62.5 1.02 .80
D6 83.0 64.6 1.06 .83
Average 81.0 63.2 1.0k4 el
1.00 B4 6155 64.0 .79 82
shl 62.0 64.5 .79 .82
D1 56.5 59.0 72 +T5
Average 60.0 62.5 STt .80
1.33 B2 45.2 63.0 .58 .81
€3 Lo.k4 56 .4 $52 <12
c8 46.0 6k4.0 .59 .82
D3 46.0 6h.1 .59 .82
Average Ll L 61.9 o .79
250 B6 29.4 61.5 .38 .79
c2 29.6 62.0 .38 .79
D2 30.8 61.5 .39 .79
Average 29.9 61.7 .38 .79
B9 0 63.5 0 .81
P c9 0 62.5 0 .80
(transverse tension) D9 0 61.5 0 .79
Average o 62.5 0 .80
&Values not included in determining averages.
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TABLE 4.- TRUE FRACTURE STRESSES FOR VARIOUS BIAXIAL STRESS RATIOS

49

Biaxial True True Stress Stress
atreas rgtio, 8pecimen fracture streases, fmcturz stresaes, mt%’o, mtéo’
= .._2. Ulr er X = __1£ y = _2_1'
1 (pei) (pei) Or Op
0 B8 9.6 x 103 0 1.02 0
(longitudinal B10 92.5 0 1.02 0
tension) Cc10 89.0 o} .99 o}
D8 88.0 0 .98 0
D10 91.2 0 1.00 0
Average Ur = 90.7 0 1.00 0
.25 ap5 74.9 18.9 x 103 .83 .21
ch 89.4 2h.1 .99 2
D4 81.8 2051 .90 .23
Average 85.6 22.4 .95 25
.50 B3 87.6 46.1 .96 .51
c5 88.8 5 .98 50
aps5 75540 39.2 .83 43
Average 88.2 45.9 9T Sk
.5 BT Phl el 75.2 1.00 .83
cé 94.8 T52 1.04 .83
CT 92.4 Th. k4 1..01 .82
D6 95.2 650 1.05 .84
Average 93 .4 ok 103 .83
1.0 B4 71.8 79.0 .79 .87
oL 76443 7.3 .79 .85
D1 62.3 66.8 .69 ol
Average 68.6 T4 .4 .76 + 602
1.33 B2 51.0 715 56 .79
c3 47.0 67.6 252 .75
c8 Slid T8 .60 .85
D3 53.1 (522 .59 .83
Average 51.3 73,0 A5 el
2 B6 33.3 66.6 37 o3
62 36.8 73.6 A1 .81
D2 36.8 3.7 Ry ~oil
Average 35.6 71.3 .39 .78
B9 0 T2 0 .85
© c9 0 72.3 0 80
(transverse tension) D9 0 76.2 0 8L
Average 0 1542 0 .83
8Values not included in determining averages.
NACA _—~

N
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TABIE 5.- NOMINAL AND TRUE DUCTILITY VATUES FOR VARIOUS BIAXTAL

STRESS RATIOS

Blaxial Nominal True
. g 1 Specimen ductility ductility
BLEOSBRLAL O (in./in.) (in./in.)

0 B8 15.6 x 1072 14,5 x 10-2
(longitudinal B10 13.9 13.0
tension) c10 15,2 4.1
D8 14,1 alE) il
D10 1.1 13.1
Average 14.6 13.6
.25 B5 9.3 8.9
ch 6.3 6.1
D4 Te8 T 5
Average i) Ts5
.50 B3 10.8 10.2
Cc5 Tts) T5
D5 4.0 4.5
Average 7.5 Tl
olfe) B7 12,5 11.8
c6 9.5 9.1
oy 10.9 10.3
D6 9.2 8.8
Average 10.5 10.0
1.0 BL T8 Te>
Cl 6.4 652
D1 LS5 L.y
Average 6.2 6.0
1.33 B2 k.9 4.8
c3 1205 1158
c8 1989 13.0
D3 6.8 6.6
Average 9.5 9.1
2.0 B6 6.4 6.2
c2 8.6 8.2
D2 8.6, 8.2
Average 7.9 7.5
B9 10.0 9.5
® c9 7.8 TS
(transverse tension) D9 10.7 10.2
Average 9.5 9.1




TABIE 6.« TRUE STRESS-STRAIN CONSTANTS FOR UNIAXTAL

TENSION TESTS

Direction Nominal True True Constant,
Of ultimate fracture ductilit k Conatant y
stress e een stress stress (1n./1n.{ (psi) =
(pel) (psi)
Longitudinal B8 78.3 92.6 BB - Gaasiman | e e
(tubes) B10 81.0 92.5 1850 - b= mcanvdes Mletainacs.
€10 78.0 89.0 L1 R SRR e ST PRI BT e
D8 75.9 88.0 I W | S
D10 T1s9 91.2 1) SR P ER USRS, ST T
Average 78.2 90.7 13.6 1.1k x 107 0.22
Transverse B9 63.5 702 Qlet T e e S e e
(tubes) c9 62.5 72.3 s R CRRRE RSP, N RS
D9 61.5 76.2 B o e R s
Average 62.7 52 9.1 1.15 .19
Specimen from
Longltudtnal sp62;2253fr0m 1241 79.3 9.6 1.20 .18
(control tube C T2.6 79.5 9.3 1.15 -16
test) Specimen from
tube D s 7.3 8.2 1.08 15
Average 72.0 78.7 9.0 1.1k4 .16
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Figure 1.-

Tensile control specimen,

+ 0.0005

Q|

WF

All dimensions are in inches,
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Figure 2.- Conventional stress-strain diagrams for tension control specimens.
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Figure 3.- True stress-strain diagrams for tension control specimens.
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Figure 4.-

True strain, in./in.

Plastic true stress-strain relations for tension control specimens.
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Figure 5.- Biaxial-stress specimen. All dimensions are in inches.
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Figure 6.- Apparatus for measuring wall thickness of biaxial-stress specimens.
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Figure 7.- Schematic drawing of testing machine for application of internal pressures and
axial loads to a tubular specimen,
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Figure 8.- Biaxial testing machine showing method of applying axial load.
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Figure 9.- Apparatus for application of internal pressure to tubular specimen.
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1\ A
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® Clip-gage location (plastic-range gages)

XXA Elastic -range-gage location

17
:8888%
r

Location along longitudinal axis of tubular specimen, in.
®

T

3 /\/ AN N
0 5 L 3 2 1 0

Location around circumference TNACA

Figure 10.- Developed surface of tubular specimen showing location
of elastic-range and plastic-range gages.
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Figure 11.- Tubular specimen showing SR-4 electric strain gages for

measuring elastic strains.







Compensating-gage terminals (bottom SR-4 gage on clip - compression side)
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Elastic-range gages (1 to 6)
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1 N L Reference switch’ Gage factor
, e . sSwitch
5 Measuring
Moving strain
3 J) indicator
Compensatin
4 .
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5 : On
SR-4 strain gage
recording instrument Switch
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1N \ \_r
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— 7 T Common
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] 8 M
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9 | 3 Switching unit
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Figure 12.-

Wiring diagram for strain measurements.
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Figure 13.- Strain-measuring apparatus.
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Figure 14.- Clip gage: for measurement of plastic strains.
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Figure 15.- Longitudinal and lateral strain-measuring devices. All measurements are in inches,
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Figure 16.- Vernier device for calibrating longitudinal clip gages.
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Figure 17.- Stepped-tube device for calibrating lateral clip gages.







NACA TN No. 1536 79
6x/104 ’A//
o) [ Aﬂy
- s I Al
o] e #
/ %
oA A f //
7 XAy, AT 1/
4 / A /
AR A :
1|/ , ;S /
i ofl |/ ]
3 5
/ L1/ g1l
/1 1/ ; :
T A7
/ / /
Al i R /
R o g
A | 41
rara K Gale Fl |/
o =0 25 50 /
go .00l Nomiral strairy, in./in. l
EGX/O" T /\JJ% =
2 o | s
y o] S ==
. W
3/ : / / / e dnpst |
=3 / ot
{ R 5 WY
/ igj / o //l
) : / £

L

/

2
s
L
L
v

[

—= =75
|

| /
/ I
J

/ 133

20
!

S

001\ Neminal strairy in./in.

Figure 18.— Longitudinal nominal stress-strain diagrams.

WA



80 NACA TN No. 1536

6x/04

\
\
:

//,L — 4
/
I

s il |7
AN j /
/ \ ,
@] [
] 1
| Ip] 7 ,
a

> 2. 25 s | [z 10 / g
80 : :
E .00/| Nominal strair, in./in.
3 6x/0%
BN

S
< e} e

i S
g

= ~
DI
~®
N~

3_1?=/.:?3 20 o8 W O RS

)

L.OD/ Nominal strain, in./in.

Figure 19.— Lateral nominal stress-strain diagrams.




NACA TN No. 1536 81

10x10 4+
9 R 5(7_, AR
WEEEES e SElEs
_&a) el | I R
8 —O1— P ~ o =
| opéer] —T°
: 3;?\.: y T A // i
U A B&O—
cm‘“‘i/ : s
6 »ol.x 7
! P a
5_7/ 3
4
LA J
2 i
s 2o 25
o i :
IS l-"#’ﬁ | 7rue strain in/in.
210x10%
§ ,,%%———SR———"R—A
9 | o |1 //rv‘
8 piletr Lo e
Er e
7 436”# & = FmR///
a
m/‘e - o4 /F
. A P L
A 9 g
/ 5 %DR
A
: ¢ A =]
4 TR F
H e
2 .
f s
> % g
. il 5
f—,’fzﬁg 75 Y0 3733 qu
L@’ij True strain, in./in.

Figure 20.— Longitudinal true stress—strain diagrams. R denotes rupture point.
g g 9 p p T;[‘,‘ACA:?




82 NACA TN No. 1536

9x/I04
8
&‘ bER B+—T f*F
L7 LR L
7
ot ]
6 i ot
4 A2
5 g Sai
% m | o
R ) é
G
% oBR
3
el | :
2IeR 2 &
é ‘
! /
)
Q G2
7, G % 50 75 10
8 loos| True strain, in./in.
*E T .
0 9x/0F .
3
i
(S
’ sl | [ =
— - R ",
7 = B == /0/ | /’_/ = ‘(//
Bla +—1 R > AR L //o/
6 < Sati | Ay —1
L ol
. A L] e %5 0<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>