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TECHNICAL NOTE NO. 1543°

EFFECT OF CHORDWISE LOCATION OF MAXTMUM THICKNESS ON THE
SUPERSONIC WAVE DRAG OF SWEPTBACK WINGS

By Kenneth Margolis
SUMMARY

Onn the basis of the linearlzed theory of supersonic flow, eguations
are derived for the wave drag of sweptback untapered wings at zero 1lift
with thin double—wedge sections and arbitrary chordwise location of
maximum thickness. Calculations sre presented for a representative
supersonic plan form,

The optimum location of maximum thickness for untapered supersonic
wings is found to be at 50 percent chord, a symmetrical variation in
wing wave—drag coefficient being exhibited about this minimum value.
The drag veriation 1s slight when considerable sweep behind the Mach
lines i1s present and the varliation is marked at Mach numbers where the
wing approaches or is swept ahead of the Mach lines,

It is found that for tapered plan forms the sweep of the line of
meximum thickness is an important sweep parameter insofar as drag due to
thickness is concerned,

INTRODUCTION

A vecent application (reference 1) of the lineerized theory to the
calculation of supersonic wave drag at zero 1ift of delta wings indica.tes
behind the Mach lines 1s obtained with location of meximim thickness at
10 to 20 percent chord. (In reference 1 snd in the present paper the
conventional definition of "delta plan forms" is modified to include
those with sweptback trailing edges.) For a given delta plan form, a
veriation in meximun—thickness location necessarily implies a variation
in the sweep of the line of meximum thickness and, thsrefore, no general
predictions can be made for the drag effects induced by each psrameter
considered seperately. In fact, there is evidence (see reference 2) to
suggest that the sweep of the maximum-thickness line mey be an important
sweep paremeter Insofer as dreg due to.thickness 1s concerned. Hence,
the problem of isolating the effects of chordwise location of maximim
thickness immediately presents itself,
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This problem ig treated in the present paper by applying the method
of reference 3 to derive the generalized wave—drag equations of sweptback .
untapered wings at zero 1ift having thin double~wedge sections with
arbitrary maximm-thickness location. The wing tips are chosen parallel
to the direction of flight and the range of supersonic Mach number for
which the wing is swept ahead of and swept behind the Mach lines is con—
sidered. Typicel distributions of -section wave dreg and wing wave—drag
calculations are presented. Compariséns are made with two-dimensional
theory and with results obtalned for tapered wings.

SYMBOLS

X,¥s2 Cartesian coordinates
v velocity in flight direction
p dengity of air
Ap presgure increment
a dynamic pressure (%pvz ) '
¢ disturbance~velocity potential i
M. Mach number o _ . _
B = \/ﬁ -1
dz/ax slope of ailrfoil surface
] half-wedge angle . B
c chord length, measured in f£light direction '
h location of maximum thickness, measured from leading edge
t mex {mum thickness of section
A angle of sweep, degrees
m slore of leading edge (cot A) )
b span of wing . ' .
a = 2/2

m

S wing area
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A aspect ratio (b2/8>
A taper ratio (ratio of tip chord to root chord)
cdh section wave—drag coefficient at spanwise station ¥
exclusive of tip effect . -
Cq increment in section wave—drag coefficient at spanwise
tip station y due to tip
cq sectlon wave-drag coefficlent at spanwise station ¥y
(cdeo + o, ip)
(.':110 wing wave-drag coefficient exclusive of tip effect )
Cp 1p increment in wing wave—drag coefficient due to tip
Cp wing wave—drag coefficient <0Dm + th ip)
ANATYSTS

The anéJ:rsis is essentially that used in references 2 and 3, For
convenience, a brief outline of the basic equations is presented.

The assumptions of small disturbances and a constancy of sonic
velocity throughout the fluld lead to the linearized equation for the
velocity potential o

(1-L&2>q> +o__+9 =0 . (1)

xx ¥y zZ

where M 1is the Mech number of the flow and the derivatives are taken
with respect to the varisbles x, y, and z of the Cartesian coordinate
system, On the basis of this linear theory, a solution for a uniform
sweptback line of sources In the pressure fleld is derived in reference 3,
The pressure field assoclated wilth this solution corresponds to that over
2 semi—infinite sweptback airfoil of wedge section. The pressure coel—
ficlent Ap/q at a spenwlse station y eand point x along the wedge

for mg< 1 1s '

2
&p_2 tan 6 ————e cosh—l ooy (2a)
g = 1 — 282 Bly — mx|
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ang for m>1

tan & (2b)

e .
q

A

wvhere m 31e the slope of the leading edge of the wing, 6 1s the half-

[ 2
wedge engle (tan 8 ¥ 6 eince the angle is smell), B = M -1,
and the origin of the line source is teken at (0,0), In the region

between the leading edge and the Mach cone (that is, % X<y < mx),

2, . -
the reel part of cos T -%;:LE@L% is constant and equal to .
Bly — mx

Equation (2b) then reduces to

m
&2 .5 tan 6 ———m  (2¢)

b V meﬁz -1

The distribution of pressure over sweptback wings of desired plan
form and proflle 1s obtained by eppropriate superposition of wedge—type
solutions, In order to satisfy the boundery condition over the surface
of an untapered wing of docuble~wedge sectlion, semi—infinite line sources
are placed af the leading and treiling edge of the wing ani a semi-
infinite line sink 1s placed along the line of maximum thickness., The
strengths of these lines are proportional to the wedge angles; therefore,
in superimposing solutions of the type given in equations (2), the
sppropriate 6 for each line source and sink must be found., The correct
wvedge angles necessary to obtain a double~wedge section of ‘'length ¢,
meximum thickness t, and location of meximum thickness h are (see
fige 1)

’
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e =S [8) w
Leading 2h \ e

line source

Otrailing - 2(c — ) <3> ; (3)

line source

) 0 .-._.‘i____<'.t’.>
Line sink 2h(c — h) c )

(It is convenient to express the angles in terms of the sectlon thickness

ratlo % as can be seen by reference to the drag integrals.) At the

tip vhere the wing ls cut off in the flight direction, reversed distri-
butions of these sinks and socurces are placed so0 as to cancel exactly the
effects of the orlginal distribution farther spamwise than the tip.

Figure 1 shows the dlstributions of sinks and sources for an untapered
wing of double—wedge section and ldentifles the system of axes and symbols
eagociated with the derivation of the drag equations.

The disturbances caused by the elementary line sources and sinks are
limited to the regions enclosed by their Mach cones; the Mach line con—
figuration ie presented in figure 2. For purposes of simplification the
wings consldered were restricted to those with no tip effects other than
the effects each tip exerts on 1ts own helf of the wing.

The pressure coefficients obtained from superposition of solutions
given in equations (2) are converted into drag coefficients by the
following relations: R

b/2 bf2 PT.E . _
2 4 4p dz .
5 |, °‘1°d""§fo -[L.E @ &= =Y *

where b 1s the wing span; S 1is the wing area; dz/dx is the slope
of the alrfoll swrface; and L.,E, and T.E., dencte leading edge and
trailing edge, respectively.

DERIVATION OF GENERALIZED EQUATIONS

The drag equations are derived for half of the wing since the
drag is distributed symmstrically over both halves., The induced effacts
of the opposite half—wing are represente_d ‘py the conjugate terms in the



‘ntegrands of the drag integrelas. (The comjugete terms are obtalned by considering the s:vme’tmical o
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For a double-ﬂwedge profile, == = Fch' (—E) from the leading edge to the maximum—thickness location
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and :—E 5(—':—5-)-( ) from the meximum~thickness location to the treiling edge., The generalized
c -

equations, exclusive of tip effects, are obtainsd as follows! (See fig. 3 for information pertinent

to integretion limits,)

Far mB g1,

ya n2a2 x\/l ~ 22 [b/2

JID\,'J."'JII

= czg c dy
8m(t/c)2 o bm(t /)2 e
2 ﬂmﬂ P S L /c%ﬂﬁ?m@
Jy/m hh(c — h) Jo Jli"—g ¥?(c ~ h) '\Jo Bth
nln‘l pl‘;.:.?i 3 nmd "_y_‘%c_ c fﬁ%&%—’- ‘E:-?E
B > B ax C dx
1_2@15 }y/m ax d:’j bn(c — n)2 Jo J}_%m_}_l i k(c ~ n)2 UO JyB+c ©

'_Fﬁ
&
P
B
g
.
B
o
T sl
g
&
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where A, B, and C, which refer to the pressures resulting from the leading line sources, line sinks,

and tralling line sources, reapectively, are as follows:

=COBh1!——ﬁ+ cogh"lm-

Bly - mx Bly + mx]|

B = cophit X h- mﬂy +coah—lx_h+mpeyﬁ
Bly — m{x — 1) Bly + m{x — h)

o o courl £ oY, ot 5= sy
Bly — m(z— o) Bly + m(x - c)|

For mB> 1,

SYnEe - 1 « \np® — 1 L‘"/Q .o iy

Ba(t/o)2 D, " hm(t/o)?

porom | yB
! ludy+£n%! dx dy)- hh(c—h)L andx &7

n

m mp-1
p;l:-:I Hh / f ﬁgl ft ;mc -
uh B2 4 Jya D x dy - _hh—(_c" = h)\ i Jw D &x dy

md ™ c3sx 2l yh+h 1d 7_%@ ] -
* .chl fl:t!‘..h i/ A Y g lo o F 9 fnlop) .Lwh ix &
m n
o .

D

mp—1
_wh  yime \ m(c-h) y+mc

3
+rmﬂ-l[nfnﬂlﬂ¥+‘r‘:7—cﬁrmﬁ—l rnEdIﬂ;r {5b)
do Jtnn 4h(c —- )= Yy Uyﬂ+h

ERST *OM ML VOVN
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where D and E, which refer to the pressures resulting from the leading
line sources and from the line sinks, respectlvely, are as follows:

2 E
D=ocogt =TT | ol X+ DB
Bly — mx) Bly + mx]|

- ~]1 X=—h e~ mﬁgy ~1 X=h+ m325
E=cos oy otz =0 T % By sz = B

It should be noted thet equations (5) give the drag for rlan forms where
the tip is placed farther spanwise than the points of intersection

between the Mach lines and the leading and the trailing edges (see fig. 3).
Deletion of certain Integrals end appropriate chenges In the y-llmits of
other Integrals msy be mede for configurations where the tip 1s placed
neerer the root chord., Egquations (5) are evaluated snd the resulting
section wave—drag and wing wave-drag formmlas for all untapered plan forms
are presented in eppendlx A.

It wes stated previously that the wings considered have no tip effects
other than those each tip exerts on ites own helf of the wing; that is, the
Moch lines frem one tip do not encloge any part of the opposite half—wing.
This condition is exvressed methematlcelly as follows:

For mB < 1, the aspect ratio

A>1 (€s)
=B
and for mp>1, the aspect ratio
A> =i (6b)

The weve—~drag contribution of the tip for mB < 1 is (see fig, 3)
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7S 'm,, = ﬂ\/I_——mg_é_E b/2
m(t/e)

am(t/c)® Dip

+mB
y+uh
= — o2 fm f m F dx dy
52 %ﬂ a(1+mB)—yB

- - ! e f = F ax dy
k(e - n) A (1+mB)—yB

1+mB
- z
+ fmd(l+m5)—mh fy+mh F dx &y
1+mB m

Jime
G dx dy (7

&3 J‘m =
Th(c — B)2 |md(1+ 1+;§ =h) Ja(1+mp)+h-yB

wvhere F and G, which refer to the pressures resulting from the leading
line sink and from the line source, respectively, are as follows:

_ a2
Bly — mx|

F = cosh’l —

2
G =cogirl X =& —h—mb =3
Bly —m(x—-1

For mB> 1, equation (7) is still valid if N1- méﬁé is changed to

V m252 -~ 1 and the inversé hyperbolic function coshi1 1s changed to

the inverse cosine function cos—l.

Equetion (7) is evaluated and the results presented in appendix B.

The total wave~drag coefficients are then obtained by the following
relations:
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cd = Od_w + cd‘tip

(8)
% = %, * %,

It is found that thip is identically equal to zero and, hence,

Cp = CID,, for wings satisfying the aspect—ratio limitations imposed in
equations (6).

When the expression for CD is differentiated with respect to h
in order to find an optimum maximm-thickness location, it is found that

ac.D .
(—a—h)h: o o (9)

2

and that the drag function is minimized at this value of h Independently
of the other parameters., It 1s also seen from the dreg equations that
the dlstributions are symmetrical about this minimum point.

RESULTS AND DISCUSSION

For calculation purposes, an untapered plan form of aspect ratio 2
and sweepback of 60° has been used., Equation (9) indicates that the
trends obtained for this representative plan form are equelly valld for
all untapered wilngs wlth double—~wedge profiles, The results may be
assumed to have qualitatlive application to curved profiles wlithout cusps,

Section weye dreg — Spanwise distributions of section wave—drag
coefficlent are shown in figures % end 5 for Mach mumbers of 1,41t and 3,
respectively. At a Mach number of 1.%414 the wing is swept behind the
Mach lines, and at a Mach number of 3 the wing is swept ahead of the
Mach lines, In each figure meximm-thickness locations are varled from
20 percent chord to 80 percent chord, Vearlaetions in meximum-thickness
location need actually only be considered up to 50 percent chord; the
results for any arbitrary percent chord k and (100 — k) are equal
tecause of symmetry considerations, (See drag equations in appendix A,)
When the wing is swept behind the Mach lines (fig. 4), the centroid of
the drag forces on a wing panel moves notlceably inboerd with forward
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or resrward shift of the maximum thickness from the midpoint position.
When the wing is swept ahead of the Mach lines (fig. 5), little change
is noted in the centroid,

Wing wave drag.— Veriation of wing wave—drag coefficient with Mach

number is shown in figure 6., As was mentioned previously in the _
mathematical discussion of the drag equatlons, the symmetrical section
is Been to be the optimum profile for an untapered plen form insofar as
minimum drag is concerned. The variation of wilng wave—drag coefficient
with meximm—thickness location does not appear to be too significent
when the wing is swept far behind the Mach lines; however, as the
"eritical™ condition is approached (that is, mf = 1) the veriation
becomes more noticeable, There ls seen to be a marked drag veriation
with meximm—thickness location in this reglion and for Mach numbers where
the wing is swept shead of the Mach lines.

Figure 7 is, in effect, a cross plot of figure 6 and presents vari-—
ation of wing wave—drag coefficient with maximum-thickness locatlon for
Mach numbers of 1.1l and 3, The previous remarks are clearly illustrated
in this figure by the flat curve at the lower Mach number and by the curve
with a well—defined minimum st the higher Mach muiber, o

Cp 1 g2

(t/c)2 VM2 -1 h(c-h)

which is exactly the result obitained by Ackeret for two-dimensional
flow (see reference L), Thie result is expected since the plan forms
considered have zero Increment in wing wave drag due to the wing tilp.
The two-dimensional (Ackeret solution) and three—dimensional (swept—
back wing) results, therefore, exhibit the same qualitative drag effects
due to veriation in meximum—thickness location — that is, a drag vari-—
ation symmetrical about a minimum value at 50 percent chord. Of course
the quentitative results ere quite different, the three—dimensional
value being lower when considerable sweep behind the Mach lines is present
and the two—dimensional value being less for other conditions. Figure 8
presents the variation of two-dimensional drag with Mach number for
different maximum-thickness locations, Comparison with the three—
dimensional result for the wing of aspect ratio 2 and sweepback of 60°
is also indicated in this figure.

(10)

Comparison with tapered wings.— The results presented In reference 1l
' for & given delta plan form (A = 0) indicate an optimmm maximm—
thickness location at 10 to 20 percent chord when the wing is swept
sufficlently behind the Mach lines, The results obtained in the present
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‘investigation for untapered wings (A = 1) indicate an optimm maximm-
thickness location at 50 percent chord. Hence, the optimum location for
any erbitrary and conventional tapered wing (0 § A S 1) with sufficient
gsweep behind the Mach lines approaches the 1O-percent to 20-percent value
for small taper ratios (large taper) and the 50—percent value for large
taper ratios (emall taper).

For a glven delta plan form, the sweep of the maximim—thickness line
varies with the location of maximum thickness and thus no prediction can
be mede for the drag effects induced by each parameter considered sepe—
rately. For an untapered wing, however, the effects of maximim-thickness
location are isolated since the sweep of the maximmm-thickness line
remains constent. TInasmich as the present results indlcate an adverse
drag effect due to shifting the mex!imum-thickness locetion forwerd of the
50-percent location, the optimm location of maximum thickness for the
delte wings of reference 1 of between 10 and 20 percent chord must result
from the increased sweep of the line of maximum thickness at the forward
location. The sweep of the lline of meximum thickness thus appears to be
an lmportent sweep parameter for tapered wings insofar as drag due to
thickness is concermed., This inference is further supported in reference 2
in which the sectlon weve—drag coefficient at the root of tapered wings is
found to be a functlon of the Mach number and the sweep of the maximum-—
thickness line and is found to be independent of leading-edge and trailing—
edge Bweep.

CONCLUSIONS

The followlng conclusions refer specifically to nonlifting wings
with double—wedge profiles but may be assumed to have application to
curved supersonic profiles without cusps:

1, The optimum locetlon of msximm thickness for untapered supersonic
wings is at 50 percent chord, a symmetrical veristion in wing wave—drag
coefficient being exhibited sbout this minimum velue similar to that found
in two—dimensional supersonic flow,

2, The varilation of wing wave—drsg coefficlent with meximm—thickness
location is slight when the wing 1s swept far behind the Mach lines and
is marked at Mach numbers where the wing approaches or is swept ahead of
the Mach lines,
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3. The sweep of the line of maximum thickness is an important
sweep parsmeter for tapered wings insofar as drag due to thickness is
concerned.,

Lengley Memorial Aeronsutical Isboratory
KRational Advisory Committee for Aeronsutics .
Jangley Field, Va., October 31, 19hT
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APPENDIX A
EVALUATION OF EQUATIONS (5) FOR SECTION WAVE DRAG AND WING
£ ]
WAVE DRAG EXCLUSIVE OF TIP EFFECTS| £ < 0.5

Section Dreg for mf< 1

,f 2.2 T B ) o . ’

bm(t/c)2 e . 1-mp
=A+ B mh <y§mc—h
1—mB l-—mB
=A+B4+0C mlc"mg)<y5_i.LmB
=A+B+C+D E—E%E<y<eo
where
3 2,2 2,2
AmemS (20 410 ooep~t X+ B 4+ 1k | 3 cospt X1 =8 + mh
hha(c—h)[ ™ w(2y +mm) O 22h8
+ -—-——-—-03 > 2 tmlc—Dh) coshi—t 2g? —
kn(c — h) n mg[2y+m(c-h)]

i1 x(1 = 2°8%) + m(c — h)
#%(c — h)B

2 232 232
- c 2y + me ~1 y(1 + m + =1 y(1 — m=B=) 4+ mc
Tilo = 5) l: - cosh -Y-(——(——-L)—)—H By + mo +cC gosh I ]

_cPleP —ch+ B ¥ coshi—t 1+ 1B
h2(c _ h)2 m 2mB

+ (¢ = h) cos

*¥The equations are symmetrical ebout the point L. 0.5; for :g=> 0.5,

c
use the same formulas and perform calculations for (%)new =1 -3
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B = 2c3 I:g[—’m_hcosh—ly(l"'mgﬁg)_mh—hcosh—l (1 = u%°) =
2(c—1n) | = 18

c3 {QY =mlc = h) copyl Tl * nPP) - =

" in(c - )2 m mB[2y — m(c — b)]
~ (c — h) cosh = = =
r?(c — h)B
and
2 2p2 2
2r =g -1 ¥(1 + 2°8%) = me _ 1Y(1-m28)-—
D= h(c-—hS[ cost mB(2y ~ mc) ¢ cost” ch B .
Section Drag for mf> 1
= B c g .
m(t/0)2 G 7T T o OLTE@ETe
=B+C+D —mh . mlc—h)
mg -1 = m8-1
m8 -1 “mp -1
=D me <y <=
mp — 1
~ where
- e3 2y+mhcos—11(1+m2$32)+mh+hcos]_y(l m32)+m.h
4h%(c — h) n mB(2y + mh) 22hp

B¢ oy + mle = 1) ool X1+ u282) + mlc —h).
Lh(c — h)2 m mB[Qy + n(c - h)]

1 (1 — 226%) + m(c — 1) |
uw?(c — h)p

+ (¢ = h) cos
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6o =® |2vime qoql 3L %8 +me , o cogl ML= BOBY) & me
Lh(c — h) m mB(2y + mc) mecp

- S
kh(c — h)

Wing Drag for mf < 1

@ = A Por ' 0 < ml < 22
8n(t/o)2 D ' : ST—mp

mh m{c ~ h)

+ T mdl < T —mp
=A+B+C mle—h) ooy

+ B+ T <™ ST

A+B+C4+D lm" <m<e
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where

2.2 202
mo3 Q-2 + (-2 a0 o wP2) ap
16h(c - h) 1 — n2g? mh§

A=

L (24 + h)2 cosh™> &( + 5°p%) + h
h mp(24 + h)

2
24 + - K 2.2 -
+[ (e )] cosh—t d(l + m“g=) + ¢ —h
c—-h mp(2d + ¢ - h)

M1 -u2) + (c-H)(3-u2?) a1 -uBP) +o-h

l_mgﬁg m{c — h)B

ka(1 - meﬁa) + ¢c(3 -~ m2132) cosh—1 a(1 — m?p?) + ¢

1 - m2p? mof
_ (24 + c)e cosh—t a(l + m252) + c
c np(2d + c)

2, 2 2 22
_8dc—ch+h)cosh_11+mﬁ
(¢ = h)ch 2mg

+o—i [\/d2(1 - mzsa) + 20d + c°

\’1 _ m232

—Va2(1 - 2°6%) + 2an + h® — Va2(1 - u2p) + 2d(c — ) + (c - h)2}}

2 252y _
_ __mec3 (24 —1)° .1 8Q@ +m6%) -n
16h(c = h) h mp(24 — h)

. o\ a?(1 — nPs?) — 2an + K2
1 - 22

2 2.2 )
kd (1 - m“p%) - n(3 - u°p) cosp=L &1 ~mPg%) — h
1 - n?g2 mhp
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me3 (2 +n=c)® a1 +n?P) — (c —h)
16h(c - h) c—~-h mpg(2d + h — ¢)

=

. 2Va2(1 — n2p2) — 2d(c — h) + (¢ = h)2

V1 - m232

_ ka1 - mPp?) ~ (c - h)(3 - mBe?) conn-l 41 = m262) — (o — n)

and
- 161'1!;lc h) : B) = of3 — a'e") cosh—1 (L = n?p2) — ¢

2
_(2a-0)2 1 a0 +wP®) — o 2VaP(1 ~ nPe?) — 2cd + o2
C

=6 (Ed <) Yer

Wing Drag for mg > 1

xSVm2§2_lCD=A+B+C £ < mh
sm(t/c)a ), or °<m = mB—l
=B+ C mh < mi <m._—._h;l

_ mg ~ 1 * mp -1

=0 1_nj_c_—__£l<md < me
mpg - 1 *mp -1

=D R e <ma < =
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where
.o me3 s -3) + W@ -1) g eeey Ly
16h(c — h) m2p2 — 1 mhp

(24 + h)2 1 41+ n6®) + b 2Va?(1 — »%p?) + 2nd + 1P
R cosT =R+ my
m2B2 -1

_ x[h(naﬁa - 3) + ba(="p® - 1)]

maﬁa -1

3 ERY 2.2 _
B = me (24 + ¢ = 1) cos_;|_d.(l+mﬁ)+c h
16h(c - h) c—-nh mp(2d + ¢ = h)

. 2\/a2(1 - n?g2) + 2d(c ~ h) + (c — h)2
m232 -1

fc — h) (2?2 — 3) + 4a(m®p2 - 1) . 2.2
+ cosl 4l —p"8") + c—h

o2 ~ 1 mp(c — h)

, AL=8? = 3)m - o) — baw® - 1))
n?g2 — 1

c = me3 :t[&'l(meﬁe -1) + c(1:|1252 - 3)]
16h(c — h) mepe -1

_ 2\Ja2(1 — 226®) + 2cd + @ (24 + c)2 cog=L &L * n2g?) + c
(mgs—_g 1 o mp(2d + c)

o(mp” - 3) + ha(Pp® 1) 11 = 2262) + }
- cose
mfBe

maﬁa -1
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o OO
h(c — h)

Wing Dreg for mB = 1

8 me>/2 { 3/2
—_ = (2a ~ h) \ ch
8m(+t/c)? S 6032 — w3 L ° )
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For aspect-ratio limitations, see equations (6).
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Section drag, mp < 1
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and C 1s eveluated in the region WUl MEL—Ih <y <m and is equal to
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Section dreg, mp > 1
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. . 4w e 1n s mi(1 A) - - a3 A i s
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The increment in wing wave drag caumed by the tip is identicelly equal to zero for all

cases satisfying the aspect—ratio limitations,
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Figure 1.- Symbols, wedge angles, and distributions of sinks and sources for

an untapered wing.
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Figure 2.- Mach line configurations for untapered plan forms.
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Figure 3.- Information pertinent to integration limits in equations (5) and (7).
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Figure 6.,- Variation of wing wave-drag coefficient with Mach number for various

maximum-~thickness locations.
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Figure 7.- Varlation of wing wave-drag coefficient with maximum-
thickness location. Taper ratio, 1; aspect ratio, 2; sweepback
angle, 60°.
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Figure 8.- Two-dimensional variation of wing wave-drag coefficient
with Mach number for various maximum-thickness locations and
comparison with three-dimensional result for untapered wing.
Aspect ratio, 2; sweepback angle, 60°.



