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mcl! OF cHmlYwIsE LOCATION OF MXH41JM THICKNESS OK THE

SUPERSONIC WAVE DRAG OF SWEFT6MJK WINGS

By Kenneth Margolis

On the basis of the Mneari zed theory of supersonic flow, equations
are derived for the wave drag of sweptback untapered wings at zero lift
with thin doulh+mdge sections and arbitrery chordwise location of
maximum thiclmess. Calcuhtions ere ~esented for a representative
supersonic plan form.

-.

The optimum location of msxhm.unthickness for untapered supersonic
wings is found to be at 50 percent chord, a symmetrical.variation in
wing wave-drag coefficient being exhibited about this minimum value.
The drag vsriation is slight when considerable sweep beh~ the Mach
li~s is present and the variation is wked at Mach numbers where the
wiug approaches or is swept ahead of the Mach ltnes.

.

It is found that for tapered plan fcmms the sweep of the line of
meximum thiclmess iS an

.
thiclmess is C~COrnOd.

important sweep parameter insof%r as &ag due-to

INTNDUCTION

A recent application (reference 1) of the linearized theory to the

) calculation of supersonic wave drag at zero lift of delta wings Indicates
that minimum hag for any double=wedge delta wing with sufficient “sweep
behind the Mach lines is obtained with location of maximun thtchess at
10 to 20 percent chord. (In reference 1 and in the present paper the
conventional definition of “delta plan forms” is mcdified to include
those with sweptback trailing edges.) Far a given delta plan form, a
variation in mexlmuwthiclmess location necesstii.lyImplies a verfation
in the sweep of the Ilne of maximum thiclmess and, therefore, no general
predictions can be made for the drag effects induced by each parameter
considered se~ately. h fact, there is evidence (see reference 2) to
suggest that the sweep of the maxhun+thickness line msy be en importantD
sweep parameter tisofer as drag due to.thickness is concerned. Hence,
the problem of isolating the effects of chcmltise location of ~“fiun
thickness immediately presents itself.. .—

——— — -,



2 NACA TliNO. 1543

This problem is treated in the present paper by applying the method
of reference 3 to derive We generalized wam+drag equations of sweptback
untapered wings at zero lift having thin doubl~wedge seotions with
srbitrsz’ymaximum-thiclmess location. The wing tips are chosen parallel
to the direction of flight and the range of supersonic Mach number for
which the wing is swept ahead of and swept behind the Mach lines is COP
sidered. Typical distributions of,section wave drag andwhgwaw+drag
calculations ere presented. Comparlsbns are made with two-dimensional
theory and with results obtained for tapered wings..

SYMBOIS

X,y, z Cextesian coordinates

v velocity in flight direction

P density of air

Ap prest3ureincrement

P M&mrlmnce-veloclty potential.

dz/dx

e

c

h

t

A

?n

%

d=q

s

.
slope of airfoil surface

ha&wedge angle “

churd length, measured in flight direction

location of maximum thiclmess, measured from lesding edge

msxfmumthiclmess of section

angle of sweep, de~ees

S1OW of leading edge (cotA )

span of wing

wing area
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cd
tip

Cd

%

% tip

%

(/)as~ect ratio b2 S

taper ratio (ratio of tip chord to root chord)

section wav~ag coefficient at spanwise station y
exclusive of tip effect . .

increment in section wave-drag coefficient at spansdse
station y due to tip

section wav~ag coefficient at apanwlse station y

(
c% + cd~~p

)

wing wav+ag coefficient exclusive of tip effect

increment in wing wav-ag coefficient due to tip

wing wav~ag coefficient
(% + %ip )

ANALYSIS

3

The analysis is essentially that used in references 2 W 3. For
convenience, a brief outline of the basic equations is ~esented.

—— .

The assumptions of small disturbances and a constsncy of sonic
velocity throughout the fluid lead to the Mneerized equation for the
velocity potential q —

(H?),=+,m+,zz=o . (1)

where M is the Mach number of the flow and the derivatives sre taken
with respect to the variables x, y, and z of the Csrtes5an coordinate
system. On the basis of this Unesr theory, a solution for a uniform
sweptback line of sources In the pressure field is derived in reference 3.
The pressure field associated with this solution corresponds to that over
a semi-infinite sweptback airfoil of wedge section. The pressure coef-
ficient Ap/q at a spanwise station y a& point x along
for L@~It~

Ap
:tsne—=- COS3F ;,; @*y

q
& -“[

the’wtidge “–””

(2a)

.-.
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and for Dd3>l

.

.

where m is the slope of the leading edge

wedge angle (tan 8 % O since the angle is
and the origin of the line source is taken

between the leadtng edge and the Mach cone

of the ting,

smalJ.), B =
at (0,0). In

.
.—

(2b)

(3 ~s the half-

the real prt of COS-l x - mB2Y is constant and equal to n.
j31y-mxl

Equation (2b) then reduces to

(2C)

The distribution of pressure over swept.backwings of desired plan
form and profile is obtained by appro~iate superposition of wedge-type
solutions. In order to satisf’y the boundery condition over the surface
of an untapered wing of double-wedge section, semi-fnfinite llne sources
ere placed af the leading and trailing edge of the wing end a semi-
infinite line sink is placed along the line of msximumthlclmess. The
strengths of these lines are proportional to the wedge angle~; therefore,
in superimposing solutions of the type given in equations (2), the
appropriate e for each line source and s~nk must be found. The correct
wedge angles necessary to obtain a doubl-wedge section of length c,
msxinmm thiclmess t, end location of maximm thickness h are (see
ffg. 1)

. .

—.

,

.
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‘Leading =
line source

e
mailing =
line source

c ()~Zii C

c ()t2(c - h) :
1

(3)

5

e “-h)(:) jLine a.nk = @c

(It is ccmmenient to express the angles b terms of the eectim thiclmess

ratio ~ as can be seen by rsference to the drag integrals.) At the

tip where the wing is cut off In the flight direction, reversed distri-
butions of these sinks and sources ere placed so as to cancel e3iactlythe
et?fectsof the original distribution farther spenwiBe than the tip.
Figure 1 shows the distr~butions of sinks and sources for an untapered
wing of clcublewedge section end Identifies the system of exes ani symbols
associated with the derivation of the drag equations.

The disturbances cauged by the elementary line sources snd sinks are
llmited to the regions enclosed by their Mach cones; the Mach line con-
figuration is presented in figure 2. For purposes of simplification the
wings considered were restricted to those with no tip effects other than
the effects each tip exerts on its own half of the wing.

The pressme coefficients obtained from superposition of solutions
given inequs,tions (2) are converted into drag coefficients by the
follcwiqg relations: “

(4)‘

where b is the wing span;
of the airfoil surface; snd
traili~ edge, respectively.

DERIVATION

—

S is the wing erea; dz/dx Is the slope
L.E. M T.E. denote leading edge -

OF GENERAUZED EQUATIONS

—.

The &rag equatfons are derived for half of the wing since the
drag is distributed symmetrically over both halves. The imluced effects
of the opposite Iutlf’+ingare represented by the conjugate terms In the. ..



:ntegrtis of the drag I.ntegralm. (The ccmjugate terms are obtained by coneiderhg the SPtrical
errangenmnt pf line sources and line Bioks beluw the z?-axis. )

For a doubl~edge profile, ~
()

c t” frcxu the leadlng edge to the.Z-, maximuwthlcknees location

alla U=-*(;)
ax

nom the maximm-thickzwss locationto tb” trailing edge. The generalized

equat i one $ exclusive of tip ef f eot sj are obtained us f olJxws: (See fig. 3 for hfmmathn pertinent
to inte~ation limits. )

For mP$l,

ml

I

● P 1’ I
8 #

(
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l’, h’

where A, B, and C) which refer to the pressures resulting froM the leadlng line sourcesj line sinks,
and trailing line sources, respectiwly, are as follows:

B=cosd x-h-@2
~[Y - M(X - h)l‘ + c“’-%%?%

c=ccslrl~+c~l x-c+@%
ply- lu(x-c] BIY +4X - C)l

For D@>l,

I

I

I
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where D and E, which refer to the pressures resultlng from the leading
line sources and from the line sinks, respectively, are as follows:

D -1 x- 2Y + co~-l= Coa
ply -@ml

E .cos-lp;y-hu~x:~)l +

It should be noted thek equations (5) give the drag for plan forms where
the tip is placed farther spanwise than the points of intersection
between the &ch lines end the leading end the t~’ailjngedges (see f~g. 3).
Deletion of certajn integrals and apwaprfate chenges in the y-limits of
other ~nte~als may be tie for configurations%-herethe tip is placed
nearer the root chcmd. Equations (~) are evaluated end the resulting
section wave-drag and wing wave-drag formulae for all untapered phn forms
are presented in a~pendix A. I

It was stated previously that the wings considered have no t~p effects
other than those each tip exerts on ~ts own half of the wing; that is, the
h%ch llnes f’rcmone tlp do not enclose any part of the opposite ‘half-wing.
This cond~tion ~s exmressed mathematical~v as follows:

.

For mj3$ 1, the aspect ratio
,

.

and for @al, the aspect ratio

(6a)

(6b)

.

The wave-drag contribution of the tip for J@= 1 is (see fjg. 3)

.

.



NACA m No. 1543 9

.

.

.

1-m Faxdy
d(l+m)-yll

1

w

d
nil

/

y+mc
C3 m GaxdY (7)

- %h(c - h md{l+ll$)+llk-h~ d(l+mp)+h-yP
l+l@

where F and G, which refer to the pressures resulting from the leading
line sink and from the line sowrce, respectively, are as follows:

2( _~
F=cosh-l -d-n@

P}Y-=1

For E@> 1, equation (7) is

- end the inverse

the inverse cosine function

Stfll valid if ~ tS changed to

hyperbolic function cosh-l is c-d tO

-1
Cos .

Equation (7) is evaluated end the results presented in appendix B.
The total wav~ag coefficients ere then obta~ned by the following
relations:
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n ‘%+3+
.

(8)

It i8 fOUnd that ~ Is identically equal to zero and, hence,
tlp

~ = ~ for wings eatiefying the aspect-ratio limitations imposed in

equatio-m (6).

When the expression for ~ is differentiated with respect to

in order to find an optimum maxf~thickness location, It ie found

(-)

as >0
(9)

bh h=;

h

that

and that the drag function is minimized at this value of h independently
of the other parameters. It is also seen from the drag e~uatlons that
the distributions are symmetrical about this minimump~in~.

RESULTS AND DISCUSSION

For calculation purposes, en untapered plan fa’m of aspect ratio
sweepback of 600 has been used. Equation (9) idicates that the

.

.

2

trends obtained for this representative plan formare e@mlly valid far
sJS untapered wings with double-wedge profiles. The results may he
assumed to have qualitative application to curved profiles without cusps.

Section wave &rag.- Spanwise distributions of section wave-drag
coefficient are shown in figures h and 5 fcm Mach numbers of 1.414 and 3$
respectively. At a Mach number of 1.414 the wing Is swept behind the
Mach lines, and at a Kch number of 3 the wing is swept ahead of the
Mach Mnes. In each figure maximuuwthickness locatfons are vsried from
20 percent chmd to 80 percent chmd, Variations in maximum-thickness
location need actually only be C’onsfderedup to 50 percent chord; the
results for any srbitrsry percent chord k ad (100 - k) sre equal
because of symmtry considerations.

‘see Y%%Yh2c%%?$’)When the wing is swept behind the Mach lines
the drag forces on a wing panel moves noticeably inbosrd with forwsrd

.

9,

.



or rearward shift of the maximum thickness from the midpoint position.
When the wing is swept ~ead of the Mach lines (fig. 5), little change
is noted in the centroid.

Wing wave dr~ .- Variation of wing wav~ag coefficient with l&ch
number is shown in figure 6. As was mentioned previously in the
mathematical discussion of the drag equations, the symmetrical goction
is seen to be the optimum profile for en untapered plan fo~ insofar as
minimum drag is concerned. The mxiation of wing warn-drag coefficient
with msxi~thickness location does not appear to b_.too significant
when the wing is swept fer behind the Mach lines; however, as the
“critical” condition is approached (that is~ @ = 1) the vaiati~
becomes more noticeable. There is seen to be a ~ked drag v=lation
with maximuwthickness location in this region and for Mach numbers where
the wing is swept ahead of the Mach lines.

Figme ? is, in effect, a cross plot of figure 6 and ~esents vsxi-
ation of wing wave-drag coefficient with msximun+thiobmss location for
&ch nunbers of 1.414 and 3. The previous remsrks sre aleerly illustrated
in this figure by the flat curve at the lower ~ch number and by the curve
with a well~efined minimum at the higher Mach znukber.

with two-diJ!JQIMiQ the= - IX’ m approaches infinity
(tha,tjcis, a rectangular plan form), the -g equation reduces to

%

(t/c)2 = ~+- h(c ~ h)

c (lo)

which is exactly the result obtained by Ackeret for two-dimensional
flow (see reference 4). This result is expected since the plan forms
considered have zero increment in wing wa~e drag due to the wing tip.
The twtiimensional (Ackeret solution) end tlretiimensicnal. (swep%
back wing) results, therefae, exhibit the seinequalitative drag effects ‘--”-
due to veriation in ~fmumAhickness location - that is, a drag vari-
ation symmetrical about a minimum value at 50 percent chord. Of course
the quantitative results are quite different, the thre~imensional
value being lower when considerable sweep beh~nd the Mach lines is present
@ the twtiimensional value being less fm other conditions. Figure 8
&esents the ver<ation of twcdimensional drag with &ch number for
different maxinmwthichess locations. Comparison with the three-
dimensionsl result for the wing of aspect ratio 2 and sweepback of 600
is also indicate? in this figure.

Ccmperison witfitamred winRs.- The results presented in reference 1
. ‘ for a given delta plan form (X = 0) indicate an optimum maximum-

thic’~ss location at 10 to 20 percent chord when the wing is swept
sufficiently behind the Mach lines. The results obtained in the present

.

.
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“investigationfor untawred wings (X = 1) indicate en optimum mexz
thickness Iooation at ~0 percent chord. Hence, the optimum location fm
any arbitrary and conventimal tapered wing (O ~ X ~ 1) with sufficient
sweep behind the Mach lines approaches the I&percent to 2&percent value .
for small taper ratios (large taper) end the 5&percent value for large
taper ratios (small taper).

For a given delta plan form, the sweep of the maximum-thiclmess lfne
vsries with the location of mzucimumthickness and thus no ~ediction can
be made for the tiag effects induced %y each perameter considered sepa-
rately. For en untapered wing, however, the effects of maximm!+bhickness
location are isolated since the sweep of the mexhun-thickness line
remains constant. Inasmnch as the present results tndicate sn adverse
drag effect due to ehifting the maxl~thickness location forwerd of the
50-percent location, the optimum location of maximum thickness for the
delta w!ngs of reference 1 of between 10 and 20 percent chord must result
from the lncreaeed sweep of the line of maximum thiclmees at the forward
location. ‘Thesweep of the line of maximum thickness thus appears to be
an important sweep pexsmeter for tapered wings insofer as drag due to
thickness is concerned. This inference is further supported in reference 2
in which the section wave-drsg coefficient at
found to be a function of the Mach number and
thiclmess line and is found to be independent
edge sweep.

CONCLUSIONS

the roo~-of tapered wings is
the sweep of the maximum-
of leadin&.edge and traiMng-

.

!I!he following conclusions refer specifically to nonlifting wings
with doubl*wed@ ~offles but may be assumeil to have application tQ
curved supersonic profiles without cusps:

1. The opt- locatim of maxhmm thiclmess for untapered supersonic
wings is at 50 percent chord, a symmetrical veriation in wing wave+lrag
coefficient being exhibited about this minimum value similer to that found
in ttiimensional supersonic flow.

2. The variation of wing wave-drag coefficient with mex-thfckness
location is slight when the wing is swept fsr behind the Mach lines and
is marked at Mach numters where the wing approaches or is swept ahead of
the Mach lines.

*
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3. The sweep of the line of maximum thiclmess is ariimportant
sweep parameter for tapered wings insofar as drag due to thickness is
concerned.

Iangley Memoriel Aeronautical Laboratory
National Advisov Committee for Aeronautics

~ey Field, Vs., Ootober 31, 1947
●
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APPENDIX A

llWUXJATIONQE’EQUATIONS (5) FOR SECTION WAVE DRAG MD WING

()
WAVX DRAG EXCLUSIVE GF.TIP EFFECTS *$ ~ 0.5

section wag fen? @ ~ 1

..-O .A

4m(t/c)2 ~

=A+B

for
.

o~y+J!!!L

l-n@

mh <y~ti,
1 -I@ 1 -m

=A+B+C m(c-h) <y< mc
1 -m =1 -U

=A+B+C+D

where .

+

+

C3

F+m(c-h’

2B2) + m(c - h)
&h(c - h)2 In

cosh-l ~~ + m
Mp[z?y + m(c - h]

\

(C - h) cosh-~ ‘(1 - ‘2~2) + ‘(c - ‘) I

&[+
c2(c2_ Ch +

h2) z
h2(c - h)2 m

m<(c - h)p J

Cosh-’ w + c Cosh-:y”- 5$) + ‘c1

.

$= 0.5; for 3>0.5,*The equations are symmetrical about the point

()
use the same formulas and perform calculations for $ *W = I - $ .
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d
B=hh2(c - h) [ %= ‘“”@%?@i=F- ‘ Cosh-’yyiy’ - ‘q

c= C3

{a-m’ ‘)

c- coeh-l Y(1 +m2f#l -m[c-lil
kh(c - h)2 m E@[~ - m(c - h)l

- (C - h) cosh-l Y(7 “m%a - ‘(c -
#(C – h)B

“}

D=”& [W c~sh-l Y(l + m2f32)_ -1 y(l -
= - C cosh

$~2] -

ti(~ - mc) m2c$ _ “1

sect5.oaDrsg fca’ m$>l

+~cdm=. +,+c f. o~Ys.+l--

=C+2D” ~<y<JJxL
m-l ‘mB-l

mc
=D —<y<-

n$-1

where

A=
C3

[

=~ ~~8-1 7(

1

1 +m2#) +mh+,h cos-l?(l-m2P2) +mh

kh2(c -h) m @(* + *) m2h$

C3

l-+m(c-h’

-ly(l + m2B2)B= COB + m{c hl

hh(c - h)2 m
M[a + m(c - h~

-1 Y(1 - D%2)+ m(c -
+ (C - h) COS

h)\

m2(c - h)p. J
.



Wi~ hag for R@ <1

far”

=A+B

=A+B+C

=A+B+C+D

O<nd. <=Ysiii#f

1
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.

where

17

.

.

.

.

=3

[--

M(1 - m2~2) + h(3 - E2P2)
Am

16h(c -h)
cosh-l

1 - Inapz

+ ti ~@”l ‘(1 + ‘2@2)+h
h @(2d + h)

d(l-m2p2) + h

mhj3

[ 2d+ (c - h)]2
+ cosh_ld(l+m2p2) + c-h

c- h n@(2d+ c-h)

4d(1 -#@) + (c-h)(3 -#62) ~o~h_~d(l_m282) + c_h
+

1 - m2fi2 Bl(c-

kd(l - m2@2) + c(3 - m2~2) cosh_l d(~ _ &!B2) + c

1 - mapa mop

-- cosh-l ‘(1 + ‘2~2) + c
c m$(2d + c)

_ 8d2(c2 -ch+h2]
Coarl 1 + ln2p2

(C - h)ch a

+ 2
Idd2(l - m2~2) + 2cd + c2

v1
_m2B2 ‘

- ~d2(l -m2f32) + 2dh + h2 -

.

d2(l - m2@2) + 2d(c -h)+(c- h)21]
=3

B=—

[

H ..sh-l ‘(1 + m2~2) - h
16h(c -h) h mp(2d -h)

d2(l -m2p2) -2dh+h2

-

4d{l - m2j32)- h(3 -m2~2)

1

cosh-l ‘(l ‘m2~2) -h”
1- &j2 nihp
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~3c.—
16h(c. - h) r2d+h-c)2 ~osh-l d(l + m2@2) - (c - h)

c- h mp(2d + h - c)

- 2d(c -h)+ (c- h)2

w

4d(l-m2B2) -(c- h)(3-m2B2) ~osh_ld(l-m2p2] -(c-h

~ _ &p2 m(c - h)~

‘1

and

r
&3

I

4d(l - m2~2) - c(3 - m2~2)~.
16h(c -h)

coeh-1 ‘(1 - m2~2) _ c

1 _ ~2p2 mop

- u .o.~-l
c

d(l + m2p2) - c _2~d2(l-m2@2) -2cd + C2
@(2d - C)

J=

, 1

Wing Drag for m~> 1

T@-%
8m(t/c)2 m = A + B + c

=B+C

= c

=D

for

MC—<&<-
mp-1

.

.
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16h (C - h)

.

.

+ (2d + h)2
~

co~l d(l + m2p2) + h+ 2 (1-m2~2) + 2hd + h2

m~(2d + h)
d-

[m h(m2~2- 3) + 4d(I!$2@2- 1)] \

m2p2 - 1

B.
mcs

{
(2d + C - h)2 ~o~-l d(l + m2~2) + c - h

16h(c -h) c- h n@(2d + c- h)

2 ~dz(l
+

-mz~z) + 2d(c-h) + (c-h)2

Jz

(c - h)(m2~2 - 3) +4d(m2# -1) _l
+

~2B2 -~
Cos

.

[
x (ln2j32- 3)(h - C) - hd(m2~2 - 1)]

+

I&a -1

}

*(C - h)

c= mc3

{

[m8d(m2~2T 1) + c(m262 - 3j
16h(c -h) m2~2- 1

m2~2)+ 2cd + C2 _ (2d + C)2

c

CoS-l ‘(l + m*B2) + c“-
C mP(2d + C)

c(m2$2 - 3) + 4d(ra2p2- 1) _l
~2p2 _ ~

COB !Ml
m$c c}
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4h(c - h)
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wmgDr&gfw@=l

743 ~5/2

%8m(t/c)2 = 6h3/2(c _ ~)3/2 [
(2d+ c-h) 312 m

.

.

.

.
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For aspeckratio limitations, see equationa (6).

Saction drag, mp <1

QQ!&$ifC%ip=*+B+C

where A is emluated in the region mi(l + m13

l+llfl
‘-m~y~mi mxlisequalto

[

c’ LGia2{,_
hh(o - h) m

B is evaluated in the region

ma)Coah-1 J + ‘(” - d) + ~ ~~-1 (1 - m2p2) ( y-ti)+mc

D@(I&i - y) m’cp 1
H@ -1-I@) - m(o - h

‘$y~d andis equalto
1+*

, .

[

43 -(y_E@ co~h-l y + ‘(c - ‘-h) + (C _ hj co.~-l ‘1- “p’)$y-ti) + ‘(c - h
bh(c - h)2 m I@(Id - y) mz(c - h)p ‘1’i~

. .



ad C is evaluated in the reglcm @(l + U@..=JUy$nd enaisequlllto R

l+n@ “

[

_J-- LGii@,. .
h2(C - h) m

Section drag, D@ >1

-cd ..:, +,
4m(t/c)2 tip

where A is eveluated in the region
mi(l+mw-mc~y:ti

l*Il@
d is equal to

~2
[E

m2132- 1

1
(y - nil) Cosh-1 y: ‘& -Yd) + c COF ‘1 - m2~2&B- ‘) + m

hh(c - h)
m

B is evaluated h the region
@(l + @) - lll(C - h)

l+m$

. I . , .
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and C iB evaluated in the regicm ‘(1 + ‘) -*:ysl!d anaisequdto
l+M

I

* ,

-J

[
J=% -ml) Cofd yJ($--y’p -1 (l -q: - ‘)+ml

~.— +h Cos
.

hh2(c - h) m ~
&

The incremnt in wing wave drag caueed by
cases satisfying the aspec~ratio Mmltatima.

the tip is identically” equal to zero f’or all

I

1.

8
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Figure 6.- Variation of wing wave-drag coefficient with Mach number for various

maximum-thickness locations. Aspect ratio, 2; taper ratio, 1; sweepback
angle, 60°.
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Figure 8.- Two -dimensional variation of wing wave-drag coefficient
with Mach number for various maximum-thickness locations and
‘comparison with three-dimensional result for untapered wing.
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