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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1526

A GENERAL SMALL~DEFLECTION THEORY FOR
FLAT SANDWICH PLATES

By Charles Libove and S. B. Batdorf
SUMMARY

A small—-deflection theory 1g developed for the elastic behavior of
orthotropic flat plates 1n which deflections due to shear are taken into
account. In this theory, which covers all types of flat sandwich
construction, a plate is characterlzed by seven physical constants (five
stiffnesses and two Polsson ratios) of which six are independent. Both
the energy expression and the differentlal equations are developed.
Boundary conditions corresponding to zimply supported, clamped, and
elastically restrained edges are considered.

INTRODUCTION

The advent of high-—speed flight and the concurrent necessity of
maintaining aerodynamically smooth surfaces under high stress have led
to the increased study of sandwlch plate construction as a possible
gubstitute for sheet—stringer construction in alrplane design. A sand—
wich plate consists essentially of a relatively thick, low—-density, low—
stiffness core bonded betweesn two thin sheets of high—stiffness material.
Materials that have been considered for the core include balsa wood,
hard foam rubber, cellulose acetate, resin—impregnated cloth fashioned
into a honey comb, corrugated metal sheet, and even closely spaced stiffeners
of the conventional type. The face sheets may be of metal, plywood,
wood—pulp plastic, or some other type of high-stiffness material.

Bacause of the low—stiffness core, the sandwich plate will, in
general, experience appreciable deflection due to shear. Furthermore,
because the face sheets or core (or both) may have orthotropic stretching
proparties, the sandwich plate will in general be orthotropic in its
flexural properties. As a result, ordinary plate theory, which is based
on ths assumptions that the plate ig isotropic and that deflections due to
chear may be neglected, cannnt be used to determine the stresses, deflec—
tions, or buckling loads of sandwich plates.,

A general small—deflection theory for flat orthotropic plates 1is
1herelsre developed in which deflections due to shear are taken into
acrount. The thsory 1s applicable to any type of orthotropic or isotropic
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gsandwich that behaves essentlally as a plate, provlided certain physical
constants are known. These physical constants (two flexural stiffnesses,
two shear gtiffnesses, a twisting stiffness, and two Polsson ratilos
defined in terms of curvatures) serve to describe the plate deformations
assoclated with simple loading conditions and may be regarded as fundamental
propertles of the plate. For simpler types of sandwlch construction the
physical constants can be evaluated theoretically from the geometry and
physical properties of the materials used. For more complicated types

of construction, these constants can be evaluated by means of slmple tests
on gamples of the assembled sandwich, as described in appendix A. A
reciprocal relatlonshlp between the flexural stiffnesses and Polgson
ratios 1s derived in appendix B.

Ag 1s the case with ordinary plate theory, the orthotroplic plate
theory consists of two partis, each complete in itself. These parts are
a set of six differential equatlons, three of which express the equilibrium
of an infinitesimal plate element and three of which relate the curvatures
and twist of the element to the forces and moments acting upon 1t, and
an expression for the total potential energy of the system comprising the
plate and the forces actlng upon it. The slx differential equations
involve six varlables. However, 1t is shown how these simultaneous
equations can be reduced to a single equatlon of sixth order Iinvolving
any one of the variables alone. In appendlix C the ccnsistency between the
differential equations and the potentlal energy expression is shown by
a variational method.

The conslderation of deflectlons due to shear makes necessary the
gpecificatlon of one more boundary condition than in ordinary plate
theory. This fact was first appreclated by Reissner 1in reference 1.
Because of some arbltrariness in the choice of the additional boundary
condition, two types of slmple support and two types of clamped edges
are possible. Furthermore, three boundary condltions can be specifiled
for a free edge, In contrast to ordinary plate theory. Boundary
conditions more general than freedom, simple support, or clamping are
congldered in appendix C.. '

A number of investlgations related to the problem of orthotroplc—
or isotropic—eandwich—plate analysis have been made previously. Theories
for the bending of orthotropic plates due to lateral loads and buckling
due to edge loads, neglecting deflections due to shear, are given in
references 2, 3, and 4 and pages 380-384 of reference 5. The effect of
shear on the bending of homogeneous isotropic plates and isotropic
sandwich plates due to lateral load is considered in reference 6. The
effect of gshear on the bending due to uniform lateral load and buckling
due to edge compression of simply—supported lsotropic sandwich plates
with homogeneous cores is considered in investigations by Hopkins and
Pearson and by Leggett and Hopkins. A rough method of taking deflections
due to ghear into account in the buckling of simply—supported ortho—
troplic sandwich plates is used in reference 7.
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The present theory mey be regarded es & noturel extension to plates
of the eprroximate theory used in pages 170-17!: of reference 8 to take
into account deflections dve to shear in a beam. The theory of this paper
is more general than the aforementioned theories in that 1t applies to
orthotropic or isotropic sandwich plates with hamogeneous or non—
homogenecus cores and with arbitrary boundery conditions, it presents
both the differentisl ecuations and the energy expression for the plate,
and it 1s cpplicable to problems that involve lateral as well as edge
loeds. The differential equations of the present theory are reduced to
gpecial forms in order that they may be compared with the equations
obtained in references 5 and 6.

The detailed development of the theory camprises most of the following
sections and the appendixes. The malin parts of the theorv are summarized
briefly In a section entitled "RECAPITULATION OF PRINCIPAL RESULTS."

SYMBOLS

X, ¥, 2 orthogonal coordinates; 2z measured normal to plane of
plate and x and y parallel to principal axes of
Tlexural syrmetry, inches

W deflection of middle surface of plate, measured in
z—direction, inches

q intensity of lateral loading, povnds per equare inch

Qy intensity of internsal shear actingin z—direction in a
cross section originally parallel to yz—plane,
pounds per inch

Qy intensity of internal shear acting in z—direction in o
ross gectlon origlinally parallel to xz—plane,
pounds per inch

Lg. intensity of internal bending moment acting upon a cross
i section originally pareallel to yz—plene, inch-—pounds
per inch

L%. intensity of internal bending moment acting vpon a cross
sectlion originally parallel to xz—plane, inch—pourde
per inch

b&y intensity of internmsl twisting mament acting in a cross
gsection originally parallel to yz—plane or xz—plane,
inch—pounds per inch
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Intensity of middle-plane tensile force parallel to
X7z—plane, pounds per inch

intensity of middle-plane tensile force parallel to
yz—plane, pounds per inch

intensity of middle-plane shearing force parallel to
yz—plane and xz—plane, pounds per inch

flexural stiffnesses of plate with anticlastic bending

unrestrained, inch—pounds ( Curvature >

twisting stiffness of plate, inch—pounds

Twisting moment/inch
Twist

flexural stiffness of ordinary plate, inch—pounds

shear stiffnesses of plate, pounds per inch

Polsson ratlios for plate, defined in terms of curvatures
Poisson ratlio for ordinary plate

shear-strain angles due to shears 0, and Qy»
respectively, radians

thickness of plate, inches

length and width, respectively, of rectangular plate,
inches

total potential energy oi system, inch-pounds

strain energy of bending of plate, inch-pounds
potential energy of external loads, inch-pounds

displacements in x—direction and y—direclion, respectively.
of a point In middle surface of plate, inches

differenticl operators

SIGH CONVENTION

The sign convention and notation used in the »nresent paper 1s,
wherever convenient, the same ag that used by Timochenko in reference 5.
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The x—-, y—, and z—exes of an orthogonal coordinate system are oriented
so that the xy—-plane coincides with the undistorted middle plane of the
plate. Deflections w are measured normal to the xy-plane and are
positive in the positive direction of the z-axis. The lateral load q
is also positive in the direction of the z—axis.

The internal shears Q, and Qy, moments M, My, and Mxy’

end middle-plane forces Nx’ N&, and Niy are shown in figure 1 actling

in their positive directions upon an infinitesimal element of length dx
and width dy cut from the unloaded plate by planes parallel to the xz—
and yz-planes. Only the forces and maments acting on two adjecent faces
of the element are shown. The forces and moments on the opposlte faces

differ fram those on the faces shown only by Infinitesimal amounts. The
directions in which they act, however, are opposite (e.g., moment My dy

on the face shown is counterclockwise; moment M, dy on the opposite

face would be shown acting clockwise). The twisting moment and middle-
plane shearing force acting on any cross section are known, from
equilibrium considerations, to be equal to the twlsting moment and middle—
plane shearing force acting on a cross section at right angles. The
symbols Mxy and Niy therefore appear in both of the faces shown in

figure 1.

For convenlence, in this report the z—direction is sometimes referred
to as the vertical direction and planes parallel to the xy~plane are some—
times referred to as horizontal planes.

PHYSICAL CONSTANTS

The physical properties of the plate are described by means of
seven constants: the flexural stiffnesses D, and Dy, the twisting
stiffness ny, the transverse shear stlffnesses DQx ard DQy’ and

the Polsson ratios uy and by e Definitions of these constants are

obtained by considering the distortions of the differentlial element orf
figure 1 under simple loading conditions.

Iet all forces and moments acting on the element be zero, except
for the moments M, acting on two opposite faces, The effect of My 1is

to produce & primary curvature Q—E in the middle surface of the element

x
and also & secondary curvature %E% which is a Poisson effect. Ther Dy is
y
defined as the negative of the ratio of moment to primary curvature cr
M
Dy = ——X (1la)
T
~ 5
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when only M, is acting, and by 1s defined as the negative of the ratio
of Poisson curvature to primary curvature or

3%
2

s
N

(1b)

L&:.—

when only M, 1is acting. No other distortlions are assumed but 52—‘2!
3x
and l%% when M, acts. The minus signs are introduced in order to

& :
make Dy, and u, essentlally positive quantities.

Similarly, I)y and uy are defined as

(1c)

17

&
o

(14)

[ 2l

n

when only My is acting.

If now all of the forces and maments are equal to zero except
M!Q' acting on all four faces, the only distortion produced is a twist

82w

———=—; &and Dyy is defined as the ratio of twisting mament to twist or
ox dy

D, = —k— (le)

when only Mxy is acting.
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The transverse shear stlffness DQx 1s defined by lettling only

the shears Qy &act on opposite faces of the element (except for an
infinltesimal moment of magnitude Qy dy dx required for equilibrium).

The distortion is assumed for the mament to be essentially a sliding of
cone face of the element with respect to the opposite face, both faces
renaining plane. As a result of this sliding, the two faces parallel
to the xz—plane are distorted from their rectangular shape into
parallelograms by an amount yy, whlch is the shear angle measured in

the xz—-plane. The shear stiffness Dq, 18 defined as the ratlio of
shear to shear angle or

Doy = g! (1f)

7x

when only Qy 1s acting. If the sides of the element are kept parallel
to the z—saxis, the slope of the middle surface is

QE: =
ox ’x

when only Qp 1s acting.

In a similar manner, the shear stiffness DQy is defined as the

ratio of the shear on the faces parallel to the xz—plane to the shear
angle measured in the yz—plane when only C:Z,y is acting or

Q
= A
DQ,y 7 (1g)

wien only Qy is acting. If all sldes of the element are kept parallel
to the z—axis, the slope produced is

LA

oy Y DQy
when only Qy 1s actlng.

The constants Just discussed serve to delfine the orthotroplc
sandwich plate; they can be evaluated theoretlcally 1f the properties
of the camponent parts of the sandwich are known and il the
plate is of simple enough construction. In any event, the constants
can be detemmined experimentally by means ol bending tests and twisting
tests on beams and panels of the same sandwich construction as the plate.
A description of the tests required is glven in appendix A.

Although seven physical constants have been discussed, they need
rot all be independently determined for if any three of the four
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constants Dy, Dy, Hy, and Wy are ¥nown the fourth can bhe evaluated
from the relationship

HxDy = tyDy (2)

This relationship, based on a generalization of Maxwell's reciprocal law,
is derived in appendix B.

The shear stiffnesses DQx and IJQy merit some additional discussion.

The distortion due to shear was assuwmed to be a sliding of the cross
sections over each other, the cross sections remaining plane and the shear
strains remaining constant for the entire thickness of the plate and equal
to the shear angle y, or 7 . Actually, if the plate is continuous enough
for cross sections to exist a% all, under shear the cross sections generally
tend to warp out of their plane conditions (p. 170 of reference 8); this
warping makes the shear angle, as defined for equations (1f) and (lg),
meaningless. The shear strain varies with depth and an average shear strain
will have to be used as the effective shear angle Y oOr Yy for purposes
of defining effective shear stifiness DQx or DQy’ If the experimental

method is used (see appendix A), this difficulty 1s not encountered because,
instead of a shear angle, curvatures are measured, and the stiffnesses
obtained are autamatically the effective stiffnesses,

Despite the general tendency of cross sections under shear to warp,
the assumption that they remain plane (though not normal to the middle
surface) can be shown to be practically correct for those sandwiches in
which the stiffness of the core is very small campared with the stiffness
of the faces (e.g., metalite, honeycamb). For such sandwiches the shear
stiffnesses DQx and DQy can be readily calculated, because the faces

mey be assumed to take all the direct bending stress and the vertical shear
may therefore be assumed uniformly distributed in the core, The shear
angles yy and Ty willl then be constant throughout the core.

For those sandwiches in which cross sections under shear may not
be assumed to remain plane, the tendency of these cross sections to warp
introduces a further complication which can, however, be resolved by means
of a Justifiable simplifying assumption. This camplication is due to the
fact that 1f the cross—sectional warping is partially or campletely
prevented the effect will be to Increase the shear stifrlness DQx or

DQy' The shear stiffnesses, thus, depend not only on the properties of

the plate materials but also on the degree of restraint against crosa—
sectional warping. For the purpose of the present theory the shear
stlffnesses DQx and DQy are assumed to be constant throughout the plate

and have the values they would have 1f cross sections were allowed to warp
freely. The error caused by this assumption will be mainly local in
character, being most pronounced in the reglon of a concentrated lateral
load, where a sudden change in the shear tends to produce a sudden change
in the degree of warping which 1s prevented by continuity of the plate.
The error will probably be negligible in the case of distributed loads,
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for which there are only gradual changes in the shear. A discussion of
this error in connection with beams is contained in pages 173-1Th of
reference 8 and in reference 9.

DIFFERENTIAL EQUATTORS FOR PLATE

Distortion Equations

Equations can be derived relating the curvatures g—%’é and %
2 x y
and the twist -a-i-—g- at any point in the plate to the lnternal shears

J
and moments acting at that point.
3w

Equation for the curvature —5 An expression can be obtained

2
for the total curvature %Zg in the x~direction by adding together the

contributions mede by each of the shears and moments acting separately:
From equation (la) the curvature contributed by My 1s found to be

2.
Equations (1lc) and (14) can be solved for the contribution to ol

by My which is &2
li])y

Finally, the equation followling equation (1f) indicates that the
existence of gﬁ produces a curvature in the middle plane equal to
agX

The moment ;and the shear Q,y make no contribution to S—e—;
X
Addition of the three component curvatures gives
2 oQ
e
ox p 4 vy QX X

Equation for the curvature §-2l-2'.— Similar considerations give
J

the curvature in the y—direction as
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% M¢ 1 9
‘a‘yﬁ‘%wva;% (30)

Q%W
dx dy
is obtained by first writing an expression for the twisting mament Mxy
in terms of the distortions of the element dx dy.

d%w

Equation for the twist .— An expression for the twist Py
x Oy

let the mlddle surface of the element be distorted so that it
acquires a twist _bE!_. Further assume that each line element normal

oy
to this middle surface before its distortion (a) first rotates so as
to remain normal to 1t after its distortion, (b) then rotates through
an angle 7yx 1n a plane parallel to the xz—plane, and (c) then rotates

through an angle 7 in a plane parallel to the yz-plane. (Rotations
J

(b) and (c) produce parallelogram-type distortions of cross sections
and are therefore denoted as shear angles y, and 7y')

Distortion of the element as a result of rotations of type (a) ie
shown in figure 2(a). Distortion of the element due to rotations of
type (b) is shown in figure 2(b) on the assumption that y; 1s zero

at the center of the element and is changing uniformly in the y—direction.
Distortion of the element due to rotation of type (c¢) is shown in
figure 2(c) on the assumption that 7y 18 zero at the center of the

element and changing uniformly in the x—direction. The magnitudes of
the displacements shown on figure 2 are obtalned by considerations of
gecmetry, the detalls of which are not gliven,

The twisting mament M,y acting on all four créss s8stions of

the differential element is proportional to the shear strain of the
upper and lower surfaces, because this type of strain, ’*“+oughout the

thickness of the element, produces the horizontal sh 4 couples
that make up Mxy‘ By superposition of the three d.. s shown
in figure 2, the shear strain in the upper (or lower) ce can be
written as

or

D% 1 drx _1 éZz)
X dy 29y 2
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and therefore,

Substitution for 1y, and 7y 1in terms of Q; and Qy (equations (1f)
and (lg)) gives

My =t (D 1 13%_;;L§i
™3y 2Dy dy 2 Dg, ox
vhere h' 1s e proportionality constant absorbing h. When Qx
and ere both set equal to zero, the above equation must reduce

to equation (le), because only M,q is acting on the differential
element. The constant h' 1s therefore ildentified as Dyy and the
equation for twistling mament becomes

oo ( i iR )

Solution for Siiw_ yields the following equation analogous to the

v
equations alreedy obtained for a-g-“I and ng:
dx2 d3y°

Mo 10 %% 1 2 %Yy (3¢)
dx 9y Dyy 2Dq Oy 2Danx

Equilibrium Equations

The element dx dy must be in equilibrlum under all the forces
and maments acting upon it., This condltion implies that certain
relationships must exist among these forces and mamente. These
relaticnships can be derived by considering the changes that occur in
the forces and moments fram one face to the opposite and writing the
equations of equilibriwum for the element. The equations are the same
as in ordinary plate theory. For equilibrium ol forces in the
x— and y—directions, these equations are obtalned from equations (196)
of reference 5:
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a.;n}..;.a—lng:O (!4—8,)
-a—l&-+§h=o (Lb)
oy ox

The equation for equilibrium of vertical forces 1s given at the top
of page 305 of reference 5 as

2
3y _26%+2_?=_<q+nxﬁ+nyaﬁ+%§3;;> (58)
N

3 ox dy 3x2 dy2

And the equation for equilibrium of maments about the y— and x-8xes
1s obtained from equations (188) and (189) of reference 5 as

Qy=_?£%n+§‘x (5¢)

(Equations (5) are also derived in appendix C by minimization of the
potential energy.) NOte that the left—hand side of equation (5a) can,
by virtue of equations (5b) and (5c), be simplified to

3, 9y
> &

If, as is custamary in small-deflection theory, the middle—plane
stresses Ny, Ny, and ny are assumed to be unchanged in the course of

the plate's deflection and equal to their initial values before
application of lateral loed, then equations (L) are automatically
satisfied and equations (3) and (5) constitute the six fundamental
differential equations that determine the forces, maments, and
distortions throughout the orthotropic plate. They cen be used in
their present form or in the alternate form obtained in the following
section.
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Alternate Form of the Differential Equations
The fundemental differential equations (3) and (5) can be

transformed so as to separate variables. Equations (3) are first
solved for My, My, and Myy to obtain

[
oD j3afw_ & d (dw _ Y
Mx = 1 - [bx(bx DQx>+uy dy\ Oy (62)

|
My=___..]3:f__’§_ M_ S\, 2 3.1-&..) (6b)

1- gy | Oy dy DQy dx \dx Do, /|
- dw d fow _ &%
MW"%DIV[&\%_%>+B—¥'<SE"5Q; } (6e)

d )
With the left—hand side of equation (5a) simplified to 3_:3 + le and

the above expressions for M., My, and MW substituted into

equations (5b) and (5¢), equations (5) become, after same regrouping
of terms,
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33 Dy 33 33
- - 1L + w
P Loy S EC o o)

N 1 E& 62 s Dyux 52 o
L‘Q DQx x ¥y (1- “x-“y)DQ,x ox dy

. %Dgg[ ae . DX 622 _1 Qy -0
L DQ'y 312 (l - “JCLLY)DQ,.Y dy

These three equations can be solved to obtalin a differential equation
for w alone in terms of q, an equation for Qy alone in terms of q,

and an equation for Qy alone 1n terms of q. Thils separation ls
accomplished most easily, for the case in which Ny, Ny, and Nyxy are

constant throughout the plate, by treating the three differential equatilons
as though they were algebraic equations and solving for w, Qx, and

Qy by means of determinants. The terms in the determinants are the
differential—operator coefficlents of w, Qy, and @, appearing in

the three equations. In expanding these determinants, the rule for
multiplication of linear operators must be used. For example,

QE? o _ 3k
d3y< dx oy  Ox dy3

As a result of such a solution, the following differentlal equations are
obtained for w, Qy, and Qy:

[Dlw = - [M]q (72)
[D)ay = - [T]q (7v)
[D]O’y = - [Plq (7c)

wvhers [D], [M], [N], and [P] are differential operators defined
es
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ke dly 3y 1 32y 32y 32y >
+ 2 + =={ q + Ny — + — + 2N
b2 y? oyt D( 32 Y

which is the same as equation (197) of reference 5.

4 Isotropic sandwich plates, deflections due to shear considered.— The

~ differential equations for isotropic sandwich plates are obtained in reference 6
by use of Castigliano's theorem of least work for the cese in which the
middle—surface forces Ny, Ny, and Nky are zero. The equilibrium

differential equations of reference & are equivalent to equations (5) of
the present paper. Equations (10a), (10d4), (10e), and (10f) of reference 6
can be solved simultaneocusly to obtain the following equations for the
curvatures and twist in terms of the vertical shears and maments (the
notation is that of reference £):

3w _ My LYy 19v, 1 <avJc . %)
dy

- o el e | ———
™2  D(1-v2) D(1-v3) cCgax 3x

3w M,

3y? D(1 - v2) D(1-v2) Cgdy Cp\dx 2y

1
|
|
|
|
5

3% ____H +1/avx+av1
3x Jdy D(1 - v) 203\\8y ox

The symbols H, Vy, and Vy in the above equations correspond to
'Mxy’ Qx, and Qy, respectively, in the notation of the present paper.
The quantities D, Cg, C,, and v are physical constants for the plate.

The above equations are seen to be identical in form to equatlons (3) of
the present paper (if DQx is set equal to DQy for isotropy 1n the x-

1 V. V.
and y- directions) except for the additional term -C——<—g;—x- + g—l> in
n Y

each curvature equation. This term arises from the consideration of
stresses and strains 1n the vertical directlion, which were neglected in
the present paper on the ground that they have a negligible effect on the
over—all flexural behavlior of the plate and are only important in the
neighborhood of concentrated loads. Setting C, equal to infinity makes
the equations derived from reference 6 completely ldentical in form to
equations (3) of the present paper. It should be mentioned that the
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quantity w as used in reference 6 is not the deflection of the middle
surface but "a weighted average across the thickness of the deflections
of all points of the plate which lie on a normal to the middle surface."

BOUNDARY CONDITIONS

The boundary conditions are first dlscussed for those types of
edge support most commonly assumed in practice, namely complete freedom,
simple support, and clamping. (More general kinds of support are
considered in appendix C.) These supports are characterized by the
condition that no work is done by the moments and vertlcal forces at
the boundary. A boundary parallel to the y—axis is considered; the
conditlions for a boundary parallel to the x—axis can be obtalned by
replacing x by y and vice versa, except in the subscripts of

Mg end Nyy.

Free edge.— The boundary conditions for a free unloaded edge
parallel to the y-axis express the condlitions of zero bending moments,
zero twisting moment, and zero vertical force,or

My =0 (9a)
Mey =0 (9b)
Q =0 (9¢)

If the free edge carries load, the middle-—plane forces Ny and ny

will not in general be zero and the boundary condition of zero net
vertical force becomes

ow Aw _ '
Qx+NXa—x'+ng§—o (9C)

instead of equation (9c).

Simply supported edge.— The principal boundary conditions for a
simply supported edge parallel to the y-axis are w = O and My = O.
If to these two conditions is added the restriction that there is no
y—displacement of points in the boundary, then the shear angle Yy is

zero and therefore 91— = 0. If, on the other hand, the support at the

Y
boundary is applied only to the middle surface at the boundary and no

horizontal forces are applied to prevent the y—displacement of other
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points in the boundary, then Mxy: which is made up of such horizontal

forces, must be zero. Two different types of simple support thus emerge.
For simple support in which all points 1n the boundary are prevented
from moving parellel to the edge, the conditlions are

w=0 (10a)
M, =0 (10b)
ﬁz—z = 0 (10c)

For simple support in which all polnts in the boundary, except those
in the middle surface, are free to move parallel to the edge, the
conditions are

w=0 (11a)
My =0 (11v)
My =0 (11c)

Of the two types of simple support, the first (equations (10)) is more
likely to occur in practice.

Clamped edge.— The principal conditions characterizing a clamped
edge parallel to the y—exis are zero deflection of the middle surface
and zero rotation of the cross sections making up the boundary
(i.6., the boundary plane remains parallel to the z-axis). The require—
ment of zero deflection 1s satisfied by letting w = 0 =at the boundary.
The requirement that boundary cross sections remain parallel to the

z—axis 1ls satisfied by letting g% = 53K, as the equation following
Qx

equation (1f) indicates. (Note that *f deflections due to shear are

neglected by letting DQx = o, +thén the last boundary condition

reduces to g¥ = 0, which 1s familiar in ordinary plate theory.) Just
as in the case of simple support, the third boundary conditlon is

elther 5§§ =0 or M,‘,_y = 0 depending on whether or not points in the
boundary (other than those points in the middle surface) are prevented
from moving parallel to the edge. Thus, two types of clamping are
possible. For a clamped edge in which the points in the boundary of
the plate are prevented f{rom moving parallel to the edge, the
ccnditlions are
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w=0 (12a)

%‘i'%é;” (12b)
D_Q1=O (12¢c)
Sy

For & clemped edge in which the points in the boundary (except those in
the middle surface) are free to move parallel to the edge, the
conditions axre

W = O (135')
w _ 8¢ _
- o 0 (13b)

My =0 (13c)

The latter type of clemping is very unlikely to occur in practice,
because any practical type of restraint that keeps the boundary from
rotating has to be applied over an appreciable part of the thickness
of the edge and therefore prevents most points in the boundary from
moving freely parallel to the edge.

The boundary conditions Just discussed, as well as boundary
conditions corresponding to more general types of support, are
derived in appendix C by a variational method.

POTENTTAL- ENERGY EXPRESSION

Strain Energy

An expression can be obtalned for the strain energy V; produced

by the moments My, My, and Myxy eand the shears Qx and Qy by
considering the work done by these moments and shears in distorting the
differential element of figure 1.

The work of the moments M, dy is equal to %iMx dy times the
counterclockwise rotation of the right—hand face ;ith respect to the
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left—hand face of the element. This rotatlon is made up of two parts:
the rotation caused by the moment M, 1itself and the Poisson rotation

caused by the moment My. The sum of these two parts is
(- % + uygl dx. (Note that although the term éﬂx makes a contri-
Dx Dy dx

bution to the curvature of the middle surface, this term represents a
rate of change of sllding rather than a rate of change of rotation and
therefore makes no contribution to the rotation orf one face with respect
to the opposite.) The work of the mcments My 18 therefore

2 Dx Dy
or
1/ M°
Y i) *

Similarly, the work of the mdments' My is

—é-('éf- - ux%>dx dy (v)

The work of those moments Mky acting in the faces parallel to
to the xz—plane is equal to %Mxy dx tilmes the clockwise rotation of

the nearer face (as seen in fig. 1) with respect to the farther face.
This rotation is made up of the two parts shown in figures 2(a) and 2(b)
and 1s equal to

O™ .. _ Ix
ox oy ¥ oy &

or, replacing 7y by 1ts equlvalent in terms of Q, (equation (1f)),

< d°w 1 be>dy

3 3y Do, o

The work of the moments Mxy parallel to the xz—plane is therefore
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Sty 2o L %) ax gy
axay Do, ¥

Similarly, the work of those moments Mxy parallel to the yz—plane is

Rw 1 Ry dx
m(a”y Dan‘) v

The total work of the maments Mxy is, by adding the last two
expressions,

o 0o
Mxy<62w_}le 1 1 %%\ oy oy

3x oy 2 Dq, oy T2 Dq, ox

The factor in parentheses is simply %51; fram the equation preceding
Xy

equation (3c), and the work of the moments MKY therefore becames

M. 2
-&Q—D dx dy (c)
Xy
The work of the shears Qy 18 ;Qx dy times the downward

distance through which the right-hand face slides with respect to the
left—hand face. This distance 1s 7yx dx and work is therefore

%Qxyx dx dy. Replacement of Tx by its equivalent in terms of Qx
glves

£ ax dy (d)

ol

for the work of the shears Qy. Similarly, the work of the shears Qy
is

02
L2 ax gy (e)
0

Tntegration of the enercy expressions (a) to (e) over the entire
rlate gives, as the total stirain energy due Lo bending and shear,
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B My W 1N
»® Dx Dy Do X
R _ My, Mg, 10y
dy2 Dy Dy Doy %
3w Mgy 1134 11 Ny
X dy Dygy 2Dg %y 2quax

relating distortions to distorting moments and forces, and

aQ _a_ox d°w Q% Q%%
i § I —
3 5y 1+ N g+ Ny oo+ By 55
My, Ay
O =~ dy +ax
Qy:-aimﬁ_“.z
dx oy

for equilibrium.

3. The first three equations can be solved for Mx’ My, and
MQ’ to obtain

D oW Q
My = = —X% __.._._L
l-p.xu.y a::( Q’x) DQ‘y]
oo B [2 %, iﬂ-k)]
1 - ugpy | O \O¥ qu) o Do,

pel(-5) 33 2)

Substitution of these expressions into the last three equations and
solution of the resulting equations by means of operational determinants
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glves the followlng differential equations with variables separated, for
the case in which Ny, Ny, and ny are constant throughout the plate:

[Dlw = — [Mlq
[Dlax = — [Nlq
[D]Qy = — [Plq

where [D], ([M], [N], and [P] are differential operators defined
by equations (8).

4. Three types of support commonly assumed at the boundaries of
a plate are no support (free edge), simple support , and clamping.
These types of support can be described in terms of deflectlon, shears,
and moments for an edge parallel to the y—exis ag follows:
For a free edge,

Mg = 0
Qx+Nxsﬁx+NW%=o

For a gimply supported edge at which the support is applied over the
entire thickness,

7

For a simply supported edge at which the support is applied only to
the middle surface,
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For a clamped edge at which the support is applied over the entire
thickness,

For a clamped edge at which the support 1s applied only to the
middle surface (a type of support very unlikely to be met in practice),

The conditions for an edge parallel to the x—axis can be written by
replacing x by y and vice versa, except in the subscripts of

Mxy and Nky'

Boundary conditions can also be written for more genera- types
of support. (See appendix C.)

5. The potentlial energy of & plate in which the middle—surface
forces are assumed to remain unchanged in the course of the plate's
deflection and for which the moments and vertical forces at the
bouniaries do no work is
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APPENDTX B

DERIVATION OF RELATIONSHIP Hny = uny

Betti's reciprocal theorem (reference 10) can be expressed as
follows: ILet two groups of forces be applied to a structure, each
group of forces producing distortions that are directly proportional
to the magnitude of the forces; then the work of the flrst group of
forces ecting through the displacements produced by the second group
i1s equal to the work of the second group acting through the displace-—
ments produced by the first.

The structure to which this principle 1s applled 1s the element
dx dy of figure 1. Let the Tirst group of forces consist of the
maments My dy. The distortions produced are the curvatures

QEE and Q2w where, from equations (la) and (1b),

x° dy<
9% _ _Mx
dx? Dy
and
By2 XD
pe

The second group of forces are the moments MV dx, and the distortions

2
produced by the group are the crrvatures QE% and. o where, from
dy 3x®

equations (1lc) and (14),

342

dy Dy
and

2 _, !

3x2 Dy

The work done by the first group of forces My dy in association with

the curvature uyg&l produced by the second group 1s
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_w&% ax dy

Simllarly, the work done by the second group of forces My dx in
association with the curvature ux'l-); produced by the first group is

-My dx ux%i dé/)
or
Uy .
"MxMyﬁ'; dx dy

Equating the expressions for the two works and eliminating the cammon
factor —-MxMy dx dy glves

P

LI

from which is obtained equation (2).
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2Mx 2 e~ + S;gl = —<:q + Ny %;% + Ny g;g + Myy 3%
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)

> (C2)

By virtue of the last two of equations (c2), (gﬂéﬂ — a._gﬂM ) and
X y

<§—MX — % in the line integrals can be replaced by Q and Q,
X

respectively. ZEquating the line integrals to zero then gives the

following boundary conditions required to insure that &V

dw dw 5
X

Qx-*-Nx-é—i-&Nw-a—y-—, or ow = 0

— 0
My =M, or 5[ _2% )-o0
ax DQx

|
(@]

— Qs
Mey = Mgy or S ov _ Yy
% Do,

Qy+I‘Iy%w-+Nm%w£=§u or o&w = O

0:

N

L (c3)

> (ch)
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Equationsw(ce) are the differential equations that must be
satisfied 1f the potential energy is to be a minimum. They will be
recognized as the equations of equilibrium, equations (5).

Equations (C3) and (C4) are the boundary conditions that must
be satisfied 1f the potential energy is to be a minimum. The left—
hand groups of equations (C3) and (C4) imply that the limiting values
of the intermal forces and moments, as the edge of the plate is
approached, must be in equilibrium with certain prescribed forces and
maments externally applied at the edge (the prescribed forces and
maoments belng designated by means of the horizontal bars). The right—
hand groups of equations (C3) and (Ck) imply that the displacements at
the edge must have certain prescribed values.

The boundary conditions given by equations (9) to (13) for free,
simply supported, and clamped edges parallel to the y—eaxis are special
cases of equations (C3). For example, the boundary conditions for a
simply supported edge (equations (10))can be obtained from equation (C3)

Q

to be zero
DQy

by prescribing the values of w, My, and (g? -

at the boundaries x = O,=a.

If a plate is elastically supported at the boundaries, the elastlc
support may sometimes be conveniently thought of as made up of three
rows of closely spaced discrete springs at each edge: a row of
deflectlional springs, a row of rotational springs, and a row of torsional
springs, having the known stiffnesses per inch kj, ko, and k3,

which may vary along the edge. For this type of support the vertical
shear reaction at any polint along the edge 1ls proportional to the
vertical deflection at that point and the twisting and bending moment
reactions are porportional to the corresponding rotations of an
originally vertical line element in the edge. The boundary conditions
for this type of support can be obtained from equations (C3) and (CL)
by setting '

Qe = kv at x =0

Qx="kl" at x =& ¢
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il
®

ﬁx=k2<%—§-§;> at x

M = ﬂ—%— a X
My k3(:ay DQy t

|t}
o

-Mm=—k3 %—%‘f—y) at x =a

§y=klw at y =0

Q=-kw at y=0D

F%,:—kz QE—-Q—'y—— at

y=0
3y~ Do,

%:kg(%—?) at y:b
%y

My =13 L S W
ox DQI

The signs in the above boundary conditions follow as a result of the
directions assumed for positive shears and maments.

L5
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APPENDIX D

DERIVATION OF EQUATION (15) FOR THE POTENTIAL ENERGY

OF THE EXTERNAL FORCES

A rectangular plate the edges of which are x = 0,a and
y = 0,b 1s considered (fig. 6). The boundary conditions assumed
are the usual conditions corresponding to zero work by the reactions;
that 1s, each edge 1s either free, simply supported, or clamped.

The horizontal loads Ny, Ny, and Nky are assumed first to

be applied at the boundaries wlth no lateral load. As a result the
middle plane (and all horizontal planes) of the plate stretches; thus,
the conastant stretching energy discussed previously in connection
with the strain energy of the plate is produced, and slight shifts

in the peints of applicatlon of the edge forces N, Ny, end ny
are caused. These new positions of the points of application are
used as the arbitrary fixed reference points in any future measure—
ments of the potential energy of the horizontal edge forces.

If the lateral load q 1s now applied, the middle surface acquires
the displacements w(x,y) in the z-direction, u(x,y) in the
x-direction, and v(x,y) in the y—direction. As a result of these
displacements, the lateral load acquires the potential energy

b Na
- gw dx dy (a)
0 Jo
and the edge forces acqulire the potential energy
b a a
0 0 0]

The moments and vertical forces at the boundaries do no work and
therefore acquire no potential energy during deflectlon.

b
+
0

a
+

b
) dx (b)
0

qu N}wv Ny v I\IJQ/U

0

By use of the formula for integration by parts, expression (b)
for the potential energy of the edge forces can be rewrltten in terms
of the interior forces and displacements as



NACA TN No. 1526 L7

b
Au ov du . ov
- o (2 %)
‘[:f (Bx+5y e
b AN AN
_Lfv(_§+$ﬁ ax dy (c)

In the development of the differentiel equations and in this section
the middle—surface stresses Ny, Ny, and ny are assumed to remaln
unchanged in the course of the plate's deflection. Equations (4) for
equilibrium of horizontal force, consequently, remain satisfied at

all times, and, therefore, the last two integrals of expression (c)
venish. Furthermore, the assumption that the middle—surface stresses
remain unchanged implies that no stretching of the middle surface
during deflection occurs., In order to prevent such stretching the
horizontal displacements u and v can be shown (p. 313, reference 5)
to be related to the vertical displacements W &s follows:

2
F--33)

M Iy MW
S i xETTxSy

The first and only remaining integral of expression (c) therefore
becomes

%Lbﬁa{nx(%>2+ny<%)2+emmg-g—g—";]dxdy (a)
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Addition of expressions(a) and (d) gives, as the total potential
energy of the externmal forces,

ff [—qu+Nx(%>2+Ny(%>2+ mvm%%] ax dy (D1)

Vo =

=

Although the derivation was carried out for the special case of
a rectanguler plate, equation (D1) also applies to a plate of any
shape in which the middle—surface stresses remain unchanged during
deflection. Equation (D1) is identical with equation (15).
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Figure 1.- Forces and moments acting on differential element dx dy.
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Figure 2.- Distortions of element dx dy in twisting.

ol



02 NACA TN No. 1526

> X

Figure 3.- Test to determine Dy and u,.
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Figure 4.- Test to determine DQx'



NACA TN No. 1526 o3

Figure 6.~ Rectangular plate with horizontal forces applied
- to boundaries,
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