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SUMMARY

A small-deflection theory is developed for t_e elastic behavior of

orthotroplc flat plates in which deflections due to shear are taken into

account. In this theory, which covers all types of flat sandwich

construction, a plate is characterized by seven p_ysical constants (five

stiffnesses and two Poisson ratios) of which six are independent. Both

the energy expression and the differential equations are developed.

Boundary conditions corresponding to simply supported, clamped, and

elastically restrained edges are considered.

INTRODUCTION

The advent of high--speed flight and the concurrent necessity of

maintaining aerodynamically smooth surfaces under high stress have led

to the increased study of sandwich plate construction as a possible

substitute for sheet--stringer construction in airplane design. A sand-

wich plate consists essentially of a relatively thick, low-density, low--

stiffness core bonded between two thin sheets of high--stiffness material.

Materials that have been considered for the core include balsa wood,

hard fo_ r_bber, cellulose acetate, resin--impregnated cloth fashioned

into a honey comb, corrugated metal sheet, and even closely spaced stiffeners

of the conventional type. The face sheets may be of metal, plywood,

wood--pulp plastic, or some other type of high--stlffness material.

Because of the low--stiffness core, the sandwich plate will, in

general, experience appreciable defle_tion due to shear. Furthermore,

be_ause the face sheets or core (or both) may have orthotropic stretching

properties, the sandwich plate will in general be orthotropic in its

flex_al properties. As a result 3 ordinary plate theory, which is based

on the assumptions that the plate is isotropic and that deflections due to

shear may be neglected, cannot be used to determine the stresses, deflec-

tions, or buokling loads of sandwich plates.

A general slr_ll-_leflection theory for flat orthotropic plates is

_h_reFor_ developed in which deflections due to shear are taken into

ac_ount. The theory is applicable to any type of orthotroplc or isotropic
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sandwich that behaves essentially as a plate, provided certain physical
constants are known. These physical constants (two flexural stiffnesses,
two shear stiffnesses, a twisting stiffness, and two Polsson ratios
defined in terms of curvatures) serve to describe the plate deformations
associated with simple loading conditions and may be regarded as fundamental
properties of the plate. For simpler types of sandwich construction the
p_ysical constants can be evaluated theoretically from the geometry and
physical properties of the materials used. For more complicated types
of construction, these constants can be evaluated by meansof simple tests
on samples of the assembled sandwich, as described in appendix A. A
reciprocal relationship between the flexural stiffnesses and Polsson
ratios is derived in appendix B.

As is the case with ordinary plate theory, the orthotropic plate
theory consists of two parts, each complete in itself. These parts are
a set of six differential equations, three of which express the equilibrium
of an infinitesimal plate element and three of which relate the curvatures
and twist of the element to the forces and momentsacting upon it, and
an expression for the total potential energy of the system comprising the
plate and the forces acting upon it. The six differential equations
involve six variables. However, it is shownhow these simultaneous
equations can be reduced to a single equation of sixth order involving
any one of the variables alone. In appendix C the ccnsistency between the
differential equations and the potential energy expression is shownby
a variational method.

The consideration of deflections due to shear makesnecessary the
specification of one more boundary condition than in ordinary plate
theory. This fact was first appreciated by Reissner in reference 1.
Because of somearbitrariness in the choice of the additional boundary
condition, two types of simple support and two types of clamped edges
are possible. Furthermore, three boundary conditions can be specified
for a free edge, in contrast to ordinary plate theory. Boundary
conditions more general than freedom, simple support, or clamping are
considered in appendix C..

A numberof investigations related to the problem of orthotroplc--
or Isotroplc--sandwlch--plate analysis have been madepreviously. Theories
for the bending of orthotropic plates due to lateral loads and buckling
due to edge loads, neglecting deflections due to shear, are given in
references 2, 3, and 4 and pages 380-384 of reference 5. The effect of
shear on the bending of homogeneousisotropic plates and isotroplc
sandwich plates due to lateral load is considered in reference 6. The
effect of shear on the bending due to uniform lateral load and buckling
due to edge compression of simply-supported isotropic sandwich plates
with homogeneouscores is considered in investigations by Hopkins and
Pearson and by Leggett and Hopkins. A rough method of taking deflections
due to shear into account in the buckling of simply-_upported ortho--
tropic sandwich plates is used in reference 7.
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_le present theory may be regarded as a natu__l extension to plates
of the approximate theory used in pages 170-174 of reference $ to take
into acco_mt deflections due to shear in a be_m. The theory of this paper
is more general than the aforementioned theories in il_t it appl_es to
orthotropic or isotropic sandwich plates with h_nogeneousor non-
homogeneouscores and with arbitrary boundary conditions, it presents
both the differential ec.uations and.the ener_/ expression for the plate,
and it is applicable to problems that involve lateral as well as edge
loads. The d_fferential equations of the present theory are reduced to
special forn_ in order that they may be comparedwith the equations
obtained in references 5 and 6.

The detailed development of the theory comprises most of the following
sections and the appendixes. The m2dnparts of the theory are st'_marized
brief_ in a section entitled "EECAPI_XILATIONOFPE!NCIPALI_BULTS."

SYMBOLS

X_ y, Z

W

q

Qx

orthogonal coordinates; z measured normal to plane of

Dlate and. x and y parallel to principal axes of

flcxur_l s_._met_-, inches

deflection of middle surface of plate, measured in

z-directlon, inches

intensity of lateral loading, pot-_O_ per square inch

intensity of internal shear acting in z-<l&rection In a

cross section originally parallel to yz--plane,

potu_ds per inch

intensity of internal shear actln_ in z-<IArcction in a

cross section originally parallel to xz-plane,

pounds per inch

intensity of internal bending moment acting upon a cross

section origlnal]y parallel to yz-plane, inch--pounds

per inch

inter_ity of internal bending momenl, acting upon a cross

section originally parallel to xz-pls_e, inch--pounds

per inch

intensity of internal twisting moment acting in a cross

section origins_lly parallel to yz-plane or xz--plane,

Inch--pounds per inch
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Dxy

D

DQx,DQF

_x, _y

7x, 7y

h

a, b

V

VI

V2

intensity of middle-plane tensile force parallel to
xz-plane, poimds per inch

intensity of middle-plane tensile force parallel to

yz--plane, pounds per inch

intensity of middle-plane shearing force parallel to

yz-plane and xz--plane, pounds per inch

flexural stlffnesses of plate _rith anticlastic bending
1

unrestrained, inc h--pounds t Ben_in_
\ Curvature )

mcme_t/Ir_c_

twisting stiffness of plate, inch-pound,q

( _Istin_ mqmen_]iru7 h
Twist J

flexural stiffness of ordinary plate, inch-pounds

shear stlffnesses of plate, pounds per inch

Poisson ratios for plate, defined in terms of curvatures

Poisson ratio for ordinary %01ate

shear-strain angles due to shears Qx and Qy,

respectively, radlans

thickness of plate, inches

length and width, respectively, of rectangular plate,

inches

total potential energy of system, Inch-pounde

strain energy of bending of plate, Inch-pour.ds

potential energy of external loa0_, inch-p_mds

displacements in x-directlon and W-d_rection, respectively:

of a point in middle surface of plate, inches

differential operators

SIGN COl_gl_l ON

Tr.e sign convention &rid notat_ion used in the present paper is,

wherever convenient, the same as tlmat used by Timoche_Iko in reference 5.
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The x--, y-, and z-axes of an orthogonal coordinate system are oriented
so that the xy-plane coincides with the undistorted middle plane of the

plate. Deflections w are measured normal to the x_--plane ar_i are

positive In the positive direction of the z-axis. The lateral load q

is also positive In the direction of the z--axis.

The internal shears Qx and Qy, mc_ents Mx, My, and MXy ,

and middle-plane forces Nx, Ny, and Nx_ are shown in figure i acting

In thelr posltlve dlrectlons upon an lnflnlteslmal element of length dx

and width dy cut frcm the unloaded plate by planes parallel to the xz-

and yz-planes. Only the forces and maments acting on two adjacent faces

of the element are shown. The forces and mc_ents on the opposite faces

differ fram those on the faces shown only by infinitesimal amounts. The

directions In which they act, however, are opposite (e.g., m(_aent Mx dy

on the face shown is counterclockwise; moment Mx dj on the opposite

face would be shown acting clockwise). The twisting mc_ent and middle-

plane shearing force acting on ar_ cross section are known, from

equilibrium considerations, to be equal to the twisting moment and m_ddle-

plane shearing force acting on a cross section at right angles. The

symbols Mxy and Nxy therefore appear in both of the faces shown in

figure 1.

For convenience, In thls report the z-direction is sometimes referred

to as the vertical direction and planes parallel to the x_-plane are some-

times referred to as horizontal planes.

PHYSICAL CONSTANTS

The physical properties of the plate are described by mear_ of

seven constants: the flexural stlffnesses Dx and Dy, the twisting

stiffness Dxy , the transverse shear stiffnesses DQx ar_l DQy, and

the Polsson ratios Wx and _y. Deflnitio_ of these constants are

obtained by considering the distortions of the differential element of

figure 1 under simple loading conditions.

Let all forces and moments acting on the element be zero, except

for the moments Mx acting on twoo opposite faces. The effect of Mx is

to produce a primary curvature O_w__ In the middle surface of the element
2

which is a Poisson effect. Then Dx is
and also a secondary c1_rvature 3Y_

defined as the negative of the ratio of moment to prLm_ry cu_Jature cr

Mx (la)
Ox = 82w

_X c-
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when only Mx is acting, and _ is defined as the negative of the ratio

of Poisson curvature to primary curvature or

when only Mx is acting.

and _v_ when M x acts.

make Dx and

_2

No other distortions are assumed but

_2
The minus signs are introduced in order to

_x essentiall_ positive quantities.

Similarl_, Dy and _y are defined as

Dy

_2

(_)

_y

8y2

(_)

when only My is acting.

If now all of the forces and mc_ents are equal to zero except

Mx_ _ting on all four faces, the only distortion produced is a twist

and D_y is defined as the ratio of twisting mc_ent to twist or
_x by'

= (le)

when only Mx_ is acting.
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The transverse shear stiffness DQx is defined by letting onl_
the shears Qx act on opposite faces of the element (except for an
infinitesimal momentof magnitude Qx dy dx required for equilibrium).
The distortion is assumedfor the mQmentto be essentiall_ a sliding of
one face of the element with respect to the opposite face, both faces
remaining plane. As a result of this sliding, the two faces parallel
to the xz-plane are distorted frc_ their rectangular shape into
parallelograms by an amount Tx, wlLich is the shear angle measured in
the xz-plane. The shear stiffness DQx is defined as the ratio of
shear to shear angle or

= % (if)
7x

when onl_ Qx is acting. If the sides of the element are kept parallel

to the z-axis, the slope of the middle surface is

when ouly Qx is acting.

In a similar manner, the shear stiffness DQy is defined as the

ratio of the shear on the faces parallel to the xz--plane to the shear

angle measured in the yz-plane when only Qy is acting or

7y

wken on]_y Qy is acting.

to the z-axis, the slope produced is

If all sides of the element are kept parallel

when onl_ Qy is acting.

The constants Just discussed serve to define the orthotropic

sandwich plate; they can be evaluated theoretlcall_- if the properties

of the cGmponent parts of the sandwich are known and if the

plnte is of simple enough construction. In az_ event, the constants

cain be determined experimentally by means of bending tests and twisting

tests on beazLs and panels of the same sandwich const__iction as the plate.

A description of the tests required is given in appendix A.

Although seven p.hyslcal constants have been discussed, they need

not all be independently dete_uined for if _ three of the four
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constants I_, Dy, _x, and _y are knownthe fourth can be evaluated
from the relationship

= x (2)

This relationship, based on a generalization of Maxwell's reciprocal law,

is derived in appendix B.

The shear stiffnesses DQx and DQy merit some additional discussion.

The distortion due to shear was assum_ to be a sliding of the cross

sections over each other, the cross sections remaining plane and the shear

strains remaining constant for the entire thickness of the plate and equal

to the shear angle 7x or _y. Actual_, if the plate is continuous enough

for cross sections to exist a_ all, under shear the cross sections generall_

tend to warp out of their plane conditions (p. 170 of reference 8); this

warping makes the shear angle, as defined for equations (lf) and (ig),

meaningless. The shear strain varies with depth and an average shear strain

will have to be used as the effective shear angle 7x or 7y for purposes

of defining effective shear stlf1_ness DQx or DQy. If the experimental

method is used (see appendix A), this difficulty is not encountered because,

instead of a shear angle, curvatures are measured, and the stiffnesses

obtained are autematically the effective stiffnesses.

Despite the general tendency of cross sections under shear to warp,

the assumption that they remain plane (though not normal to the middle

surface) can be shown to be practlcall_ correct for those sandwiches in

wkich the stiffness of the core is very small compared with the stiffness

of the faces (e.g., metalite, honeycGmb). For such sandwiches the shear

stiffnesses DQx and _ can be readily calculated, because the faces

may be assumed to take all the direct bending stress and the vertical shear

ma_ therefore be assumed uniformly distributed in the core. The shear

angles 7x and 7y will then be constant throughout hhe core.

For those sandwiches in which cross sections under shear may not

be assumed to remain plane, the tendency of these cross sections to warp

introduces a further cc_pllcation which can, however, be resolved by means

of a Justifiable simplifyin_ assumption. This complication is due to the

fact that if the cross--sectional warping is partiall_ or completelj

prevented the effect will be to increase the shear stiffness DQx or

DQy. The shear stiffnesses, thus, depend not onl_ on the properties of

the plate materials but also on the degree of restraint against cross-

sectional warping. For the purpose of the present theory the shear

stlffnesses DQx and DQy are assumed to be constant throughout the plate

and have the values they would have if cross sections were allowed to warp

freely. The error caused by this assumption will be main_ local Ln

character, being most pronounced in the region of a concentrated lateral

load, where a sudden change in the shear tends to produce a sudden change

in the degree of warping which is prevented by continuity of the plate.

The error will probably be negligible in the case of distributed loads,
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for which there are onl_ gradual changes in the shear. A discussion of

this error in connection with beams is contained in pages 173-17h of

reference 8 and in reference 9.

DI_'_:I_I_A'_L EQUATIORB FOR PIATE

Distortion Equations

Equations can be derived relating the curvatures 2w and

and the twist _2w at ar_ point in the plate to the internal shears
By

and m_nents acting at that point.

_2w An expression can be obtained
Equation for the curvature _-_.--

for the total curvature 32w
_2 in the x-direction by adding together the

contributions made by each of the shears and moments acting separately:

From equation (la) the curvature contributed by M x is found to be

Mx
DX

Equations (ic) and (Id) can be solved for the contribution to _2w

by My which is

Fir,ally, the equation following equation (if) indicates that the

of _._ produces a curvature in the middle plane equal toexis'_x_e

"
The moment (and the shear Qy make no contribution to _.

Addition of the three component curvatures gives

_ =_Mx + ,_Dy + i _QxDx DQx _x

32w
Equation for the curvature --_.-- Similar considerations give

(3a)

the curvature in the y-direction as



lO NACATN No. i_26

(3b)

Equation for the twist _-_-_.-An expression for the twist

is obtained by first writing an expression for the twisting moment Mx_

in terms of the distortions of the element dx _y.

Let the middle surface of the element be distorted so that it

acquires a twist _. Further assume that each line element normal

to this middle surface before its distortion (a) first rotates so as

to remain normal to it after its distortion, (b) then rotates through

an angle 7x in a plane parallel to the xz--plane, and (c) then rotates

through an angle 7y in a plane parallel to the yz--plane. (Rotations
(b) and (c) produce parallelogram-type distortions of cross sections

and are therefore denoted as shear angles 7x and 7y-)

Distortion of the element as a result of rotations of type (a) is

shown in figure 2(a). Distortion of the element due to rotations of

type (b) is shown in figure 2(b) on the assumption that 7x is zero

at the center of the element and is changing unlform_ in the y-direction.

Distortion of the element due to rotation of type (c) is shown in

figure 2(c) on the assumption that 7y is zero at the center of the

element and changing uniformly in the x-direction. The magnitudes of

the displacements shown on figure 2 are obtained By c_asid_rations of

geometry, the details of which are not given.

The twisting mcment Mx_ acting on all four cress s_tions of

the differential element is proportional to the shear Strain of the

upper and lower surfaces, because this type of strain, J_oughout the

thickness of the element, produces the horizontal sh & couples

that make up Mx_. By superposition of the three d_ s shown

in figure 2, the shear strain in the upper (or lower_ ce can be

written as

or

h _-_y 2 by 2 _x/
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and therefore,

Substitution for
and (ig)) gives

2w ibTzh 2 bzJ

7x and 7y in terms of Qx and Qy (equations (if)

where h' is a proportionality constant absorbing h. When Qx

and Qy are both set equal to zero, the above equation must reduce

to equation (le), because only MXy is acting on the differential

element. The constant h' is therefore identified as D_y an_ the

equation for twisting moment becomes

2 DQx 2 DQy

Solution for _2w yields the following equation analogous to the

_xby
equations alread_ obtained for _2w and _2w:

bx 2 by 2

bx by _ 2 DQx by
(3c)

Equilibrium Equations

The element dx dy must be in equilibri1_ lu_der all the forces

and maments acting upon it. This condition implies t_t certain

relationships must exist among these forces and maments. These

relationships can be derived by considering the changes that occur in

the forces and moments fram one face to the opposite and writing the

equations of equilibrium for the element. The equations are the same

as in ordinary plate theory. For equilibri1_ of forces in the

x- and y-directions, these equations are obtained from equations (196)

of reference 5:
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8x By

_-_ + _ = 0 (ab)
By Sx

The equation for equilibrium of vertical forces is given at the top

of page 305 of reference 5 as

And the equation for equilibrium of mc_ents about the y-- and x-axes

is obtained frc_ equations (188) and (189) of reference 5 as

(sb)

(Equations (5) are also derived in appendix C by minimization of the

potential ener_.) NOte that the left-hand side of equation (_a) can,

by virtue of equations (5b) and (5c), be simplified to

If, as is custcmm_y in small-deflection theory, the middle-plane

stresses Nx, Ny, and Nx_ are assumed to be unchanged in the course of

the plate's deflection and equal to their initial values before

application of lateral load, then equations (_) are automatically

satisfied and equations (3) and (5) constitute the six fundamental

differential equations that determine the forces, maments, and

distortions throughout the orthotropic plate. They can be used in

their present form or in the alternate form obtained in the following
section.



NACATN No. 1526 13

Alternate Form of the Differential Equations

The fundsmental differential equations (3) and (5) can be
transformed so as to separate variables. Equations (3) are first
solved for Mx, My, and MXy to obtain

M_

Dx

i -
(6a)

(6b)

(6c)

With the left-hand side of equation (Sa) simplified to B-_ + and

the above expressions for Mx, My, and M:_ substituted into

equations (Sb) and (9c), equations (5) become, after same regrouping

of terms,

_vj l - _x_y

+ [ !Dxy ___2 + , _2 I],
2 DQx _j2 (i -- Ux_)DQx _)X2

w

=0
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i -_-xW x &x2
W

DQx _ _y (i- _Lx_j)DQx 8x By Qx

+ Dy 1| Qy--o
S

]

These three equations can be solved to obtain a differential equation

for w alone in terms of q, an equation for Qx alone in terms of q,

and an equation for Qy alone in terms of q. This separation is

accomplished most easily, for the case in which Nx, Ny, and Nxy are

constant throughout the plate, by treating the three differential equations

as though they were algebraic equations and solving for w, Qx, and

Qy by means of determinants. The terms in the determinants are the

dlfferentlal--operator coefficients of w, Qx, and Qy, appearing in

the three equations. In expanding these determinants, the rule for

multiplication of linear operators must be used. For example,

8x 8y = 8x 8y3

As a resuit of such a s.olution, the following differential equations are

obtained for w, Qx, and Qy:

[D]w = - [M]q (7a)

[D)% =- []_]q (?b)

[D]O_ = -- [p]q (7c)

where [D], [M], [N], and [P] are differential operators defined
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_ 3_ 3_ i/ _2w 32w

__ +--= _q + N__-_+ % _y2_x_ + 23x 2 _y2 3y4

which is the same as equation (197) of reference 5-

Isotropic sandwich plates; deflections due to shear considered.- The
differential equations for isotropic sandwich plates are obtained in reference 6

by use of Castigliano's theorem of least work for the case in which the

middle-surface forces Nx, Ny, and Nx_ are zero. The equilibrium
differential equations of reference 6 are equivalent to equations (5) of

the present paper. Equations (lOa), (iGi), (10e), and (10f) of reference 6
can be solved simultaneously to obtain the following equations fo_ the
curvatures and twist in terms of the vertical shears and moments (the

notation is that of reference 6):

v_ I _vx
_-2= D(I- v2) D(I- v2) cs _x

_y2 D(I- v2) D(I- v2)

+zm_z(m +
cs 3y c n \3x 3y J

32w H i/3Vx 3vy_

The symbols H, Vx, and Vy in the above equations correspond to

-_xy, Qx, and Qy, respectivel_, in the notation of the present paper.

The quantities D, Cs, Cn, and V are physical constants for the plate.

The above equations are seen to be identical in form to equations (3) of

the present paper (if DQx is set equal to DQy for isotropy in the x

_n_Vx _V_)inand y- directions) except for the additional term _-- + _Y

each curvature equation. This term arises from the cor_ideration of
stresses and strains in the vertical direction, which were neglected in

the present paper on the ground that they have a negligible effect on the
over-all flexural behavior of the plate and are only important in the

neighborhood of concentrated loads. Setting Cn equal to infinity makes

the equations derived from reference g completel_ identical in form to

equations (3) of the present paper. It should be mentioned that the
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quantity w as used in reference 6 is not the deflection of the mlddle

surface but "a weighted average across the thickness of the deflections

of all points of the plate which lie on a normal to the m_ddle surface."

B OUI_'DARY CONDITIONS

The boundary conditions are first discussed for those types of

edge support most co_nonly assumed In practice, namel_ complete freedom,

simple support, and clamping. (More general kinds of support are

considered in appendix C.) These supports are characterized by the

condition that no work is done by the moments and vertical forces at

the boundary. A boundary parallel to the y-axls is considered; the

conditions for a boundary parallel to the x-axis can be obtained by

replacing x by y and vice versa, except in the subscripts of

and

Free edge.- The boundary conditions for a free unloaded edge

parallel to the y-axis express the conditions of zero bending mGments,

zero twisting moment, and zero vertical force, or

= o (9a)

Mx_ = 0 (9b)

% = o (9c)

If the free edge carries load, the middle-plane forces Nx and Nxy

will not in general be zero and the boundary condition of zero net

vertical force becomes

_w = 0
(9c')

instead of equation (9c).

Simpl_ supported e__d_.-- The principal boundary conditions for a

simply supported edge parallel to the y-axis are w = 0 and Mx = 0.

If to these two conditions is added the restriction that there is no

y-displacement of points in the boundary, then the shear angle 7y is

zero and therefore Q_Z_ = 0. If, on the other hand, the support at the

boundary is applied only to the m_ddle surface at the boundary and no

horizontal forces are applied to prevent the y-displacement of other
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points in the boundary, then M_y, which is madeup of such horizontal
forces, must be zero. Twodifferent types of simple support thus emerge.
For simple support in which all points in the boundary are prevented
from moving parallel to the edge, the conditions are

w = o (z_)

= o (lOb)

Qy
=o

For simple support in which all points in the boundary, except those

in the middle surface, are free to move parallel to the edge, the

conditions are

w = o (lZa)

= o (lib)

= o (llc)

Of the two types of simple support, the first (equations (i0)) is more

likely to occur in practice.

C_d ed_.- The principal conditions characterizing a clamped

edge parallel to the y-axis are zero deflection of the middle surface

ar_i zero rotation of the cross sections ms_king up the boundary

(i.e., the boundary plane remains parallel to the z-axis). The require-

ment of zero deflection is satisfied by letting v = 0 at the boundary.

The requirement that boundary cross sections remain parallel to the

z-axis is satisfied by letting _ = , as the equation following

equation (lf) indicates. (Note that _f deflections due to shear are

neglected by letting DQx = _, th@n the last boundary condition

8w
reduces to _ = 0, which is familiar in ordinary plate theory.) Just

as in the case of simple support, the third boundary condition is

either QY = 0 or Mxy = 0 depending on whether or not points £n the

boundary (other than those points in the middle surface) are prevented

from moving parallel to the edge. Thus, two types of clamping are

possible. For a clamped e&ge in which the points in the boundary of

the plate are prevented from moving parallel to the edge, the

condi ti ons are
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w=0

__Qx = o
DQx

-_Q =0

D%

(12a)

(12b)

( 12c)

For a clamped edge in which the points in the boundary (except those in

the middle surface) are free to move parallel to the edge, the

conditions are

w = 0 (13a)

_" _ = o (13b)
_x DQx

_-o (13c)

The latter type of clamping is very unlikely to occur in practice,

because am_ practical type of restraint that keeps the boundary from

rotating has to be applied over an appreciable part of the thickness

of the edge and therefore prevents most points in the boundary from

moving freely parallel to the edge.

The boundary conditions Just discussed, as well as boundary

conditions corresponding to more general types of support, are

derived in appendix C by a variational method.

H)TENTIAL-ENERGY ELPRESSION

Strain Energy

An expression can be obtained for the strain energy V I produced

by the moments Mx, My, and Mx_ and the shears Qx and Q2 by

considering the work done by these moments and shears in distorting the

differential element of figure 1.

The work of the moments Mx dy is equal to 1 Mx dy times the

counterclockwise rotation of the right-hand face with respect to the
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left-hand face of the element. This rotation is m_deup of two parts:
the rotation caused by the moment Mx itself and the Poisson rotation
caused by the mQment My. The sumof these two parts is

-_-_ + _y_)dx. (Note that although the term _QX_x makes a contri-

bution to the curvature of the middle surface, this term represents a

rate of change of sliding rather than a rate of change of rotation and

therefore makes no contribution to the rotation of one face with respect

to the opposite.) The work of the moments Mx is therefore

or

(a)

Similarly, the work of the moments My is

-_x dx d_ (b)

The work of those moments M_y actlng in the faces parallel to

to th9 xz-plane is equal to o_ dx times the clockwise rotation of

the nearer face (as seen in fig. l) with respect to the farther face.

This rotation is made up of the two parts shown in figures 2(a) and 2(b)

and is equal to

or, replacing

_w _x
__ --- _y
_x _y _y

7x by its equivalent in terms of

_ 1 _)_y DQ__y _Y

Qx (equation (lf)),

The work of the moments Mx_ parallel to the xz-plane is therefore
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Similarly, the work of those mc_ents _y parallel to the yz-plane is

_ _ D%

The total work of the moments Mxy

expressions,

is, by adding the last two

_ i i _Qx i i _0__ _y 2DQxBy 2 DQy_ _ $

The factor in parentheses is simply

equation (3c), and the work of the moments

from the equation preceding

Mxy therefore becomes

(c)

the shears Qx is o_Qx dy times the downwardThe work of

dlstar_e through which the right-hand face slides with respect to the

left--_mLud face. This distance is Tx dx and work is therefore

Replacement of Tx by its equivalent in terms of Qx

i o2 _ _ (d)
o_DQ x

for the work of the shears Qx" Similarly, the work of the shears Qy

is

(e)

In,,egr_ ....on of the enero _ expressions (a) to (e) over the entire

plate g_",,eo,_as the total strain ener_' due to bending and shear,
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a____-_ _k + _ +! ___

ay _ _D_by 2_ax

relating distortions to distorting moments and forces, and

qx = - by _x

%
for equilibrium°

3. The first three equations can be solved for Mx, My, and

MXy to obtain

ME

Substitution of these expressions into the last t_hree equations and
solution of the resulting equations by means of operational determinants



28 NACATN No. 1526

gives the following differential equations with variables separated, for
the case in which Nx, Ny, and N_y are constant t?_oughout the plate:

[D]w = --[M]q

[D]Qx = - [N]q

where [D], [M], [N],

by equations (8).

[D]Qy = - [Plq

and [P] are differential operators defined

4. Three types of support commonly assumed at the boundaries of

a plate are no support (free edge), simple support, and clamping.

These types of support can be described in terms of deflection, shears,

and moments for an edge parallel to the y--axls as follows:

For a free edge,

Mx=O

Mxy = 0

_w _w 0
Qx + Nx _x + NxY _ =

For a simply supported edge at which the support is applied over the

entire thickness,

w=O

_=0

_-=0

For a simply supported edge at which the support is applied only to

the middle surface,

w=0

M x = 0

Mxy =0
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For a clamped edge at which the support is applied over the entire
thickness,

w=O

3w Qx = 0
3x DQx

For a clamped edge at which the support is applied onl_ to the

middle surface (a type of support very unlikely to be met in practice),

w=O

8w Qx
=0

8x DQx

Mxy =0

The conditions for an edge parallel to the x--axis can be written by

replacing x by y and vice versa, except in the subscripts of

Mxy and Nxy-

Boundary conditions can also be written for more general types

of support. (See appendix C. )

5. The potential energy of a plate in which the middle-surface

forces are assumed to remain unchanged in the course of the plate's

deflection anA for which the moments and vertical forces at the

bounlaries do no work is
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APPENDIX B

DERIVATION OF RELATIONSHIP UxDy = _yD x

Betti's reciprocal theorem (reference i0) can be expressed as

follows: Let two groups of forces be applied to a strt_cture, each

group of forces producing distortions that are directly propor_.ional

to the magnitude of the forces; then the work of the first group of

forces acting through the displacements produced by the second group

is equal to the work of the second, group acting through the displace-

ments produced by the first.

The structure to which this principle is applied is the element

dx dy of figure 1. Let the first group of forces consist of the

mcments Mx d$. The distortions produced are the curvatures

_---_ and _2w where, from equations (la) and. (ib),

8x 2 Dx

and

Dx

The second group of forces are the moments _ dx, and the distortions

produced by the group are the curvatures 8--_ and _-?_ where, frcml

2
equations (ic) and. (id),

¢)

and

The work done by the first group of forces

the curvature

M x a_} in association with

_yP_ produced by the second group
is
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or

Slmilar_y, the work done by the second__group of forces My dx In

association with the curvature _'_ produced by the first group is

or

-_ _
_D x

Equating the expressions for the two works and eliminating the cc_non

factor -MxMy dx dy gives

fr_n which is obtained equation (2).
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by 8x

(c2)

of.u t on 
\..,. w/

-- 8x / in the line integrals can be replaced by Qx and Qy,

respectively. Equating the llne integrals to zero then gives the

following boundary conditions required to insure that 5V = O:

8w 8w
or _ = 0

(_ _):o_ = MX or 5 _W

D%

k_ D%,/

(c3)

at x = O,a

or 5w = 0

or -- D

or = 0

(Ch)

at y = O,b



44 NACA TN No. 1526

Equations (C2) are the differential equations that must be

satisfied if the potential energy is to be amid. They will be
recognized as the equations of equilibrium, equations (5).

Equations (C3) and (Ch) are the boundary conditions that must

be satisfied if the potential energy Is to Be a minim_. The left-
hand groups of equations (C3) an_ (C4) Impl_ that the limiting values

of the internal forces and moments, as the edge of the plate is

approached, must be in equilibrium with certain prescribed forces and
muments externall_ applied at the edge (the prescribed forces and

mcments being designated by means of the horizontal bare). The right-

hand groups of equations (C3) and (Ch) imply that the displacements at

the edge mnst have certain prescribed values.

The boundary conditions given by equations (9) to (13) for free,

simply supported, and clamped edges parallel to the y-axls are special

cases of equations (C3). For example, the boundary conditions for a

simply supported edge (equations (lO))canbe obtained from equation (C3)

,)-- to be zero
by prescribing the values of w, Mx, and 3w DQo___

at the boundaries x = O,a.

If a plate is elastically supported at the boundaries, the elastlc

support may sometimes be conveniently thought of as made up of three
rows of closely spaced discrete springs at each edge: a row of

deflectlonal springs, a row of rotational springs, and a row of torsional

springs, having the known stiffnesses per inch kl, k2, and k3,

which may vary along the edge. For this type of support the vertical

shear reaction at ar_ point along the edge is proportional to the

vertical deflection at that point and the t_istlng and bending moment

reactions are porportional to the corresponding rotations of an

original_y vertical line element In the edge. The boundary conditions
for this type of support can be obtained fr_n eq_ations (C3) and (C4)

by setting

Qx = klw at x = 0

_[x = - klW at x = a "

_w Qx _ at
x=O
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at x =a

_y = k3(_--_--y _ at x = 0

--_-_ at x = a

_y : klW at y = 0

Qy =-klW at y :b

(_ QY_ at y =b% =k_ -D%

_:-- 3 _-- at y =b

The signs in the above boundary conditions follow as a result of the

directions assumed for positive shears and moments.
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APPENDIXD

DERIVATIONOFEQUATIOB(15) FORTHEPOTENTIALENERGY

OFTHEEX_ FORCF_

A rectangular plate the edges of which are x = O,a and
y = O,b is considered (fig. 6). The boundary conditions assumed
are the usual conditions corresponding to zero work by the reactions;
that is, each edge is either free, simpl_ supported, or clamped.

The horizontal loads Nx, Ny, and Nxy are assumedfirst to
be applied at the boundaries with no lateral load. As a result the

middle plane (and all horizontal planes) of the plate stretches; thus,

the constant stretching ener_ discussed previously in connection

with the strain energy of the plate is produced, and slight shifts

in the points of application of the edge forces Nx, Ny, and Nxy

are caused. These new positions of the points of application are

used as the arbitrary fixed reference points in any future measure-

ments of the potential energg of the horizontal edge forces.

If the lateral load q is now applied, the _iddle surface acquires

the displacements w(x,y) in the z-direction, u(x,y) in the

x-direction, and v(x,y) in the y-direction. As a result of these

displacements, the lateral load acquires the potential energy

- qw dx dy (a)

and the edge forces a_qulre the potential energy

(b)

The moments and vertical forces at the bound2_rles do no work and

therefore acquire no potential energy during deflection.

By use of the formula for integration by parts, expression (b)

for the potential energy of the edge forces can be rewritten in terms

of the interior forces and displacements as
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In the development of the differential equations _ in this section

the mlddle--surface stresses Nx, Ny, and Nxy are assumed to remain

unchanged in the course of the plate's deflection. Equations (4) for

equilibrium of horizontal force, consequently, remain satisfied at
all times, and, therefore, the last two integrals of expression (c)

v_nish. Furthermore, the assumption that the middle-surface stresses

remain unchanged implies that no stretching of the middle surface

during deflection occurs. In order to prevent such stretching the
horizontal displacements u and v can be shown (p. 313, reference 5)

to be related to the vertical displacements w as follows:

bu i/bw h 2
)

2

The first and only remaining integral of expression (c) therefore

becomes

+
(d)
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Addition of expressions(a) and (d) gives, as the total potential

energy of the external forces,

ff [ (_I 2 (_w12 _w _wl dx dy (DI)v2_-_i -2_w+ N_ + _ _ + _ _

Although the derivation was carried out for the special case of

a rectangular plate, equation (DI) also applies to a plate of any

shape in which the middle--surface stresses remain unchanged during

deflection. Equation (DI) is identical with equation (15).
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h

Y

q dxdy

dy

/

dx /

Mx dy

Nx dy

Ny dx Qydx

Qx dy

Figure I.- Forces and moments acting on differential element dx dy.
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X

Upper surfoce _--Upper surfoce -_

Middle surface _---Middle surfoce_t /

Lower surfoce __--Lower su_

/ I

'
I 4 bxby dx ' h---_dx

dx _"
,I

h b2w dy
4 bx by

/

h bTx dy
4 by

.... dx

_ NACA/_

(a) Distortion due

b2w
all

to bx by'

line elements

remaining normal
to middle surface.

(b) Distortion due (c) Distortion due

_7 y
to _T= to b"-_''

by "

Figure 2.- Distortions of element dx dy in twisting.
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P P

1

P P

_X

Figure 3.- Test to determine D x and _x"

p (Iblin.)

__ _,,_, _ _ _,

pL pL

2 2

Figure 4.- Test to determine DQx.
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Figure 5.- Test to determine Dxy.

Ny

Nx x

Ny

Y

-'>'-X

Figure 6.- Rectangular plate with horizontal forces applied
to boundaries.
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