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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1584 .

AN EVATUATION OF SOME APPROXIMATE METHODS OF
COMPUTING LANDING STRESSES IN ATRCRAFT

By Elbrldge Z. Stowell, John C. Houbolt, and S. B. Batdorf
SUMMARY

An investlgation 1s made to obtain some information concerning the
nature and magnitude of the errors involved in computing the landing
stresses for large and relatively flexible alrcraft when several simpli-
fying assumptions are mede. An exact solutlion is made for the landing
stresses of a simplified structure and 1s compared with several approxi-
mate solutions made when the simplifying assumptlons are used. ;

The simplified structure investigated conslsted of & uniform beam
for the wing, a concentrated mass for the fuselage, and an undamped
linear spring for the landling gear. This structure was consldered to be
in uniform translation until the landing gsar touched the ground. The
subsequent motion was computed by using operational calculus in conjunc-
tion wlth standard beam theory. In general, 1t was found that, for
moderately flexlble landing gears, the neglect of the effect of structural
elastlicity in computations of strut forces or of the acceleration of the point
of attachment of the landing gear and then the computations of stresses by
congldering the structure to be elastic led to small comservative errors;
whereas the neglect of structural elasticlty in computing wing stresses
from the strut force or acceleration of the point of attachment of the
landing strut led to unconservative errors of appreciable magnitude.
This result suggests that a satlefactory treatment of the landing problem
may possibly be obtained from an analysis which assumes that in landing
the aircraft 1s an elastlc structure sublect to the forces or accelera-
tions found in a drop test in which a rigld mess ls used.

INTRODUCTION

When an sircraft lands, the vertical component of 1ts velocity is
rather suddenly reduced to zero. Thilsg sudden change in motion of the
alrcraft gives rise to stresses within the structure which may become
large and even destructive as the eslze and welght of alrplanes increase
end the design load factor decreases. The design of large airplanes
should therefore consider the effect of a severe landing on the wings,
fusgelage, tall surface, landing-gear struts, and other elastic parts of
the alrplane structure.
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When the stiffness of an alrplane structure is relatively large
compared with the stiffness of the landing gear, all parts of the
alrplane are subject to essentially the same acceleration during landing
end the stresses 1n all parts of the alrplane are therefore readily
computed by methods of statice. When the stiffnesses of the landing
goar and the alrplane structure are comparable in magnitude, the various
parts of the alrplane have different accelerations and the problem
becomes much more iInvolved. The calculation of the gtresses is a
complex problem even when the equations involved are purely linear; that
1s, when the 1lntermal forces are proportional to the deformations. It
1s much more complicated in the actual alrcraft because of the nonlinear
characteristics of the landing gear. A number of approximate metheds of
computing landing stresses have consequently been used.

Because of the practical importance of the landing problem, it is of-
gsome Interest to determine the nature and magnitude of the error involved
in various approximate methods that—have been used. For this purpose,
an exact solution 1s made to determine the landing stresses for a highly
simplified structure in which a unlform beam 1s uged to represent-the
wing, a rigld mass the fuselage, and a simple spring the landing gear.

The stresses 1n the wings exclited by the landing impact are computed
by operational calculue in conJunction with the standard englneering
vibration theory of beams. The results are compared with the results
found by & number of approximate methods. The analytical treatment of
the exact and approximate solutions are glven 1n appendixes.

SYMBOIS
E modulus -of .elasticity
Y density of wing material 1n unite of welght
c . velocity of sound in wing materlal (\’E?g )
acceleration of gravity
L gemlgpan of wing
X monent of inertia of cross sectlon of wing about

neutral axis .

A cross-gectional srea of wing

T
o radius of gyration of cross sectlon of wing \jz
p coordinate along wing measured from root

¥y distance from neutral axls of wing to any flber
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operator < ) )

mass of wing (semispan)
concentrated mass (one-half of fuselage mass)
gpring stiffness
time, zero at beginning of impect
3t
integers 1, 2, 3, and so forth deslgnating a
particular mode of vibration

nth positive root of transcendental equation
asgoclated with a given type of vidbration

undamped natural angular frequency of nth mode, radians
pPer second

vertical velocity of alrcraft prior to lmpact
natural frequency of fundamental mode of & cantilever »

-radlans per second (pc 3—'?)
L

natural frequency of fuselage-spring system, radlans

S
per second < M)

natural frequency of airplene with wing rigid, radians

S

per second
M+m

deflection, relative to root position et + = O,
of wing at station x and time ¢

acceleration of wing at station x and time +

bending stress in wing at station =x, distance from
neutral axis y, and time t

average shear stress over cross section of beam at
station x and time +

bending-stress coefficient

maximum bending-stress coefficient obtained from
first three modes with proper regard to phase
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B, shear-stress coefficilent

B maximum shear-stress coefficlent obtalned from first--
three modes with proper regard to phase

RESULTS AND DISCUSSION

Exact golution.- In order to cbtain pertinent information on the
problem of landing impacts, an exact solution is made of the landing
stresses of a highly simplified structure. In this simplified structure
(fig. 1) s & unlform beam of mess m was used to represent the wings of
the airplane, & rigid mass of msgnitude M +to represent the fusslage,
and & simple spring of stlffness S wae substltuted for the landing
gear. The exact analytlcael treatment glving the equations for frequencies,
deflections, accelerations, strut force, bending stresses, and shear
gstresses 1s presented in appendix A. The maximum root bending stress
that resulte from impact (gravity not included) is shown in this appendix
to be glven by the equation

g =4

Qi1d

gE

vhere A 1s a dimensionless coefficient dependent-on the physical
parameters of the structure. As can be seen, the maximum stress is
directly proportlonal to the velocity of descents

In figure 2 the coefficlent A 1is glven for several wvalues of the
ratio of fuselage msss to wing mess as a function of ths ratio ws/wc.

In this ratio, s 1s the fundemental frequency of the wing as & canti-
lever and wg 18 the frequency of the eirplane when the wing is
considered rigid. Tow values of the frequency ratio correspond to a
flexible landing gear and the corregponding induced stresses are rela-
tlvely small but become larger as the landing gear becomes stiffer. The

w
limiting case of a rigld landing gear <Z)T§ = o] was investligated in

reference 1, damping belng taken into account. The results showed that

damping eliminates the higher frequencles much faster than the lower ones

so that only the lower modes might be expected to contribute to the

maximum root bending stress. In the computation of the curves shown in

figure 2, only the first three modes were considered, with proper regard .
being given to phase. (See appendix A Por the stress that 1s associated

with each mode.) On this basis A 1s approximately equal to 2.8 in the

cage of a rigld landing gear. _ -



NACA TN No. 158L 5

Approximate solutions.- The exact solution Just discussed was obtained
by solving the equations of motion directly. In the approximate solutions,
the problem is broken arbitrarily into two parts or stages as follows:

Stage 1t Determination of the strut reaction or of the acceleration
of the points of attachment of the landing gear.

Stage 2: Computation of the stresses in the airplane structure by
use of one of the quantitles obtalned in stage 1.

In both stages of this approach the structural elasticity must be
" properly taken into -account if the correct solution is to be obtained.
In the approximate solutions the effects of the structural elasticity
are neglected in one or both. stages. Five approximate solutions are
glven iIn appendix B. For convenlence in discussion, the approximate
methods are identifled herein as follows:

Method A - Structural elasticity neglected in both stage 1 and stage 2.

Method B ~ Structural elasticity consldered in determining reaction
(stage 1) but neglected 1n stage 2.

Method C - Structural elastlclty consldered in determining accelerations
(stage 1) but neglected in stage 2.

Method D - Structural elasticlty neglected 1n determining reaction
(stage 1) but considered in stage 2. .

Method E - Structural elastliclity neglected in detexrmining accelerations
(stage 1) but considered in stage 2.

Method F - Statistical approach of Biot and Bisplinghoff (reference 2);
structural elastlcity considered in stage 2.

The simplest calculation, of course, results from use of Method A,
which neglects the structural elasticity altogether. The acceleration
of all parts of the structure is then assumed to be equal to the acceler-
ation measured In & drop test in which a rigld mass equal to the mass of
the alrplane wilthout the landing gear is used. The stresses are obtained
by statics, from a wing loading obtained by multiplying the mass distri-
bution by the acceleration found in the drop test. The coefficlents for
meximum root bending stress obtalned by methed A are shown in figure 3.
This curve 1s independent of ths mass ratilo M/m. For comparison the

exact solution for %= 2 1s &lso shown. This mass ratio is used for

all of the succeeding comparisons.

The physical assumptions of the two spproximate methods in which
the structural elastlcity 1s taken into account in stage 1 but lgnored

In stege 2 are shown schematlcally in figure 4., The results found by
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mothod B, where the true strut reactlion (strut force given by exact
solution) 1s applied to a rigid ailrframe, and by method C, where the
rigid alrframe is subject to the true acceleration (acceleration given
by exact solution) at the points of support are shown in figure 3.

It appears from figure 3 that the three approximate methods, which
neglect the effecte of elastlcity in the second stage, are unconservative

W W
for -m—:-<l markedly so near f = O.5> but approaech the correct results
c

as the ratio approaches zero. For alrcraft wlth extremely stiff landing

W
8
gears <$; >> l), the approximate methods are highly conservatlve; they

predict infinite stresses when a rigld landing gear 1s used. The fact
that curves cobtalned by methods B and C, which represent approximate
methods in which structural elagticity ls taken into account in the first
stage but neglected in the second, agree much better with the curve
obtained by method A, which neglects structural elastloity altogether,
than with the exact solution suggeste that the neglect of structural
elasticity in stage 2 i1s much more serious than in stage 1.

Two methods are then resorted to in which the effects of structural
elasticlity are neglected in stage 1 of the analysis but are properly
taken into account ir stage 2 (methods D and E)}. The physical assumptions
made are indicated schematicelly in figure 5. In these methode the strut
resction and the acceleration are determined in a drop test in which a
rigld mass 1s used. The resulting stresses are then computed with due
regard for the elastlc response of the structure. The results found .are
compared with the exact solution in figure 6. The curve shown for
method D is for the strut-reactlion method and the curve for method E
1g for the acceleration method. The curves are cut off when wb/bc is

about 0.7, since for higher ratios the force or accelerations obtalned
from a drop test with the simple undsmped spring will give rise to
resonance effects having very little relation to the actual landling
problem. It appears from figure 6 that the two methods which neglect
structural elasticity only in stage 1 (that 1s when determining strut
Porces or the accelerations of the points of support) are conservative and
are subJect to only small errors.

A pomewhat different method of handling the landing problem is the
gtatistical approach developed by Bilot and Bisplinghoff in reference 2.
In this method (method F), the time history of-the landing impact is
assumed to be independent of the elastic properties of the structure, so
that 1t may perhaps be classed with the methods which neglect structural
elasticity in stage 1. A number of other approximations are also involved
for the sske of simplifying the analysis and includling a wide varlety of
landing conditions. Among these approximations are:
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(a) The impact force is characterized by only two parameters, the
maximum value and the duratlion of the force; thus, the detalled history
of the collision 1s not considered.

(b) The maximum stress in the first mode is obtained dy assuming,
in effect, that of a whole class of typical force-time histories having
prescribed values for these two parameters; the force-time history that
epplles 1s the one which leads to the highest stress.

(c) Similar assumptions are made in obtaining stresses in higher
modes. This procedure results, effectively, in the assumption that, of
the force-time histories used to determine the envelope response curve,
a different one may apply to each mode.

(4) The maximum stress ié found by addling together the maximum
stresses found for the Tirst three modes without regard to phase.

All of the approximations dlscussed In connection with the Biot and
Bisplinghoff method are conservative except the use of only three modes.
The restriction to three modes, which characterizes also the curves for
the exact solution of the present paper, would be unconsservative in the
undamped case; the alrplane, however, Is sublJect to a large amount of
damping and no real unconservatism is likely to result. The expectation
of a conservative result for the Biot and Bisplinghoff method (method F)
is verified in figure 6. This method, which makes use of & number of
conservative simplifylng assumptlions, appears In some cases to overestimate
the stresses by a factor of almost 2. :

CONCLUDING REMARKS

The problem of computing the landing stresses for & large and rela-
tively flexlble alrcraft is so complex that most Investligatlions are based
on simplifying assumptions. The present paper constitutes an attempt to
obtaln some Iinformation concerning the nature and magnitude of the errors
in these assumptlions by solving the landing problem exactly for a simpli-
fied structure and comparing the results wlth solutions to the same
problem obtalned by use of the simplifying assumptions.

The simplified structure investigated consisted of a uniform beam for
the wing, a concentrated mass for the fuselage, and an undamped linear
spring for the landing gear. Thls structure was considered to be in
uniform translation untlil the landing gear touched the ground. The

subsequent motion was computed by using operational calculus in conjunction
with standard beam theory.

In most of the approximate treatments that have been proposed the
problem 1s arbltrarily broken into two parts in the flrst of which the )
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gstrut reaction or the acceleration of the point—of attachment to the
landing gear 1s determined (stage 1), and in the second of which the
stresses resulting from the applied force or acceleration are calculated
(stage 2). The various approximate methods investigated either neglect
altogether or treat only approximately the effects of structural
elasticity 1n one or both astages.

In general, for moderately flexible landing gears, the neglect of
the effects of structural elasticity in stage 2 was found to be more
gerlous than the corresponding neglect in stage 1. Such neglect in
stage 2 led to unconservative errors of appreciable magritude; in stage 1
it led to errors which were smaller and on the conservative side. A
statistical approach proposed by Biot—and Bisplinghoff -was found to be
always conservative and to have 1n some cases & safety factor nearly equal
to 2.

The conclusions Just stated were based primarily on the analysis of °
the behavior of the simplified structure studied for a ratio of fuselage
mags to wing mass equal to 2. The results, however, are essentially the
same when the ratio is 1/2 or 5. It therefore appears reasonable to-
expect that the conclusions of-this paper have general validitv as
applied to conventlional aircraft. In addition, the results suggest that
a satlsfactory treatment of the landing problem may possibly be obtained
from an enalysis which assumes that, in landing, the aircraft is an
elastic structure subject to the Fforces or accelerations found in a drop
test In which a rigid mass 1s used.

Langley Memorial Aeronautical Laborstory
National Advisory Committee for Aeronautics
. Langley Fleld, Va., January 30, 1948
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APPERDIX A

EXACT SOLUTION

Gensral analysis.- In order to meke the problem of computing the
landing stresses of an alrplane. susceptible to accurate solution without
an inordinate amount of labor it i1s necessary to idealize the structure.
The simplified structurs used in the present analysis to represent the
alrplane 1s shown in figure 1. The airplane is:considered to be falling
with a constant velocity v until the bottom of the spring is suddenly
stopped by contact with the ground. This disturbance gives rise to
ogelllations in the beam governed by the differential equation (reference 1)

L 2
EDQQ_"T.,.ZB_“’:o (A1)

Bxh g dt

Previous analyses (references 1, 3, and L) have treated special cases of
ogelllations of a cantilever beam due to impact, with an intermal damping
term included. Experience indlicates, however, that damping has only a
slight effect upon the terms that are significant and therefore damping
1s neglected in the present analysis.

With the use of the notation c¢2= %ﬁ and the operational

notation p = equation (Al) may be written as the ordinary Ffourth-

S
at’
order differential equation

dv, 2 _wv=0 (a2)

The general solution of this equation is

w = P cosh 9 % + @ sinh 6 %-+ R sin 6 %-+ S cos 6 % (A3)
where
6 = L,iP
oc

The coefficlents P, Q, R, and S are to be evaluated from the
boundary conditions, which in thls case are
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(B__v_r ?.3_‘.’ =0

Bx

x=0 Bx Bx3 x=T,

2 3

o w +EIa— v-vj)dt-w

3t2 Bx3 (x=0)
x=0 x=0

The last boundary conditlon expresses the equilibrium of the forces that
act on the mass M. The expression 1n brackets on the right hand 1s the
change in length of the spring and, when multiplied by S, gives the force

exerted by the spring on the mess. The term f(v - v_[) dt d1ndicates

that the motion of uniform translation at the bottom of the spring 1s
suddenly stopped at t = 0, and the term w(x =0) is the displacement of

the root and is equal to the dlsplacement of the bottom of the spring
for t< 0. The oscillations set up when the bottom of the spring is
suddenly arrested from uniform translation would be the same as 1f the
bottom of the epring were suddenly set in uniform motion with the system
Initially at rest. The uniform-velocity term may therefore be omitted .

and the last boundary condition becomes, if f(- v_[) dt 1s replaced by

the operational form - Ez

2 3 :
Mé—‘—' +EI§-‘—‘T =-S[zz+w(_o)]
2 dx3 P x=
x=0

x=0

With the application of the boundary conditions to equation (A3) there
1s obtalned a set. of four nonhomogenous equations 1n terms of the four
coefficlents P, Q, R, and S. These equations are solved for the
four coefficlents and the equatlion for velocity may then be written.
The operational form for the veloclty (that induced in the beam when
the bottom of the spring is suddenly set in motion) is found to be

= 2 F<ezr) (ak)
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L)

where
x\ = X x
F(GL) (1 + cos 6 cosh 8){cosh GL + cos GL)
1 1 h g% - X
+ 8in 6 sinh O@(cos eL cos GL)
- (cosh @ sin 8 + sinh 8 coe 0)(sinh 9% - sin 6%
2 %2
Z=-I-)—2- l+-—2-(l+cosecosh9)+%(cosh9sin6+sinhecose)
,
0 P

and

_ |8
CDO = ﬁ

Interpretation of equation (Al) by the Heaviside expansion theorem and

addition of the constant velocity v gives for the total velocity

dvlx, t) _ / = oy® H(ant) vos wst £
—sr—=v-v+v -0;5 ~— ©08 &y

n=1l

where 6, 1s the nth positive root of the equation

2
@y cosh 8, sin 9, + sinh 6., cos 8
1-— +2 I bl n n =9
mn2 M Gn(l + cos 6, cosh 8,)
and

-.c 9n2
= 23
W P 1P

F(o %)= 7 (oF) (with @ replaced by 6p)

(a5)

(A6)
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2
A= l-&e— -e%l(sinhencosan - cosh @, sin @,)

+ 2<l + cos en cosh -en) + 5 [cos en cosh en

3
+ é—e-r—1 (cosh en sin en + ginh 9n cos en)]

2
= L 1+ 3—9—2- (l + cos @, cosh en)
2(1 + cos Gn cosh en) ay,
2
m
* (cos 6, + cosh en)
- o e 3
0 SL”"m 1
The term — may be transformed into the form = -~ and thus
a)nQ ETl M o E
n

equation (A6), which defines the root 6,, may be written

_ n cosh en gin en + s8inh en cos en
l o — -+ -ﬁ =0
8,(1 + cos 0, cosh @)

Solution of thils equation for s1.3 J/EI glives

3 6 _3(cosh 6. sin 6. + sinh 6_ cos 6_)
L =onrls 2 2 B o o (AT)

l + cos en cosh en

This equation (or any of its previous forms) is the characteristic
frequency equation of the beam-masg-spring system. A graphlical represen-

3
tation of thle equation is shown in figure 7, in which %’— 1s plotted

agalnst @ for values of % =0, 2, 5, 10, and 50. The values of @
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corresponding to glven values of SLO/EI and M/m are the roots 6,
which characterize the modes of vibration.

Integration of equation (A5) wilth respect to time with the
condition (w) t=0 = O &lves for the deflection

-]

2 2 F(g,F
w(x, t) = % Lp- :’;0:2 e(e“-qéf-f-) sin ant J (A8)
n
n=1

From equation (A5) for velocity and equation (A8) for deflection the
complete behavior of the 1dealized structure after landing may be found.
The quantities of chief interest are the maximum bending stress s the
maximum shear stress, the accelerations, and the force in the spring.

Maximum bending stresseg.- The maximum bending stresses o(x, y, t),
- at any flber distance y from the neutral axis, occur at the root and
are glven by the equation

2
olx, y, t) = Ey(a—;c%r)x:()
o
=E g%’nZIAn sin a_t 7 (49)
where
A=k aé 251?1 85 sin.h' 6n Q. + cos 6, cosh GID
ooy, 3 CD.;Q 1 + cos 6, cosh Gn)2 + ﬁ (cos 6, + cosh en)2
®n

Equation (A9) may be written in the Fform

vy | |
0 =E 23 (A; etn gt + Ay sinapt + Ay slnagb + . . ) (410)
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In the expression in parentheses each term may be thought—of as the
contribution of a particular mode to the bending stress. The expression
in parentheses may be denoted by A and equation (Al0) becomes simply

= A

o4
D Id
e

The vﬁluei of Ay, Ay, and A are plotted against g /o

for ===, 2, and 5 1in figure 8, and the maximum value of A found to
m 2
occur in the initial cycles of .vlbration by use of the first-three terms

M

of the merlies 1s plotted agalnet o for — = 5 2, and 5, in figure

B,
The quentity g 1s the frequency of the system if the wing were rigld:

wS:\/Mim="%m
1+M

The quantity ., 1is the frequency of the wing 1f the spring were
infinltely stiff:

3.52
12

Wwe = PC

This equation represents the fundamental cantllever frequency. (see
reference 1.) The ratio Wy /a)c is related to the parameters used in

frequency equation (equation (AT)) by the relation

2
W 1 sr.3

)EI

2
wc 12. h-il + i}

Maximum shear stress.- The maximum average shear stress -r(x, t)
occurs at the root and is given by the equation
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’53.
T(x, t) = Ep° a-%’)
ox x=0
=F L
- ZBn sinat / (A11)
n=1
where

2
o enﬁcosh en gin en + sinh en cos en) (l + coBs en cosh en)

2 e 2 2
[N
L (1+3 0-30—2 (l + cos 6 cosh en) +ﬁ1 (cos 8, + cosh 6n>

O

In figure 9 the values of B B and B are plotted against w_/w
1 27 3 8/7¢c

for % = %, 2, and 5. Equation (All) may be written simply

= = v p
T(x, t)y=0 =B T E

and in figure 10 the valuse of B found by use of the flrst three modes

wlth proper regard to phase 1s plotted agalnst cbs/cbc for % = %, 2, and 5.

Acceleratlons.~ The acceleration anywhere on the beam is found to bs

2
alx, t) = ¥ = - T L Z sin at 7 (a12)
a'b ¢ P n= n A
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Force in gpring.- The force in the spring after landing 1s the spring
stlffness times the dlsplacement at the position x=0. By use of
equation (48), the force is found to be

2 2(1 + cos 9 cosh @ )
v L
F Sw(x=0) s = > E_ sin yt 7 (A13)

=1 Gn A
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APPENDIX B
APPROXTMATE SOLUTIONS

Stresses Computed for Rigld Wing

Method A - based on acceleration obtained with rigid wing (no
gstructural elasticity).- If the wings of the structure shown in figure 1
were riglid ths landing operation would be simply that of a rigid mass
equal to. M + m alighting on a spring. The motion after arrest would be
that of a simple oscillator having a magss M + m and a meximum velocity .
The solutlion based on these assumptions is designated method A. The
maximum accelsration for such an oscillator 1s

S
a=v = 7 wg (B1)
M+m

The bending stress 1s computed on the basls that the wing i1s loaded with

a uniform load having an intensity equal to the mass per unit length times
the maximum acceleration. From the static theory of the bending of a
cantllever beam, the bending moment at the root resulting from this loading
would be

M=a 1.2 '=8-El2

2

Hig

The bendling stress due to this bending moment i1s

W, mLvy
g = b_@z = amLy = 8 ( BQ)
I 21 21

With the use of the notation c2 =

<lg

and the equation for the cantilever

frequency of & beam, w, = pc 3—52 (see reference 1), equation (B2) may
L
be written

E

Q
n
'—l
3
[0)
Fef
old
Dld

(B3)

[}

|
ol
oly

=
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This equation 1s of the:same form as egquation (AG9). It is noted
that the_stress varies linearly with ag/w., and has no explicit-
dependence on the ratio M/m. The value of A obtalned by method.A
is plotted against wgy/w, in figure 3.

Method B - based .on reaction cbtained with elagtic wing.- In method B,
a force equal to the maximum force glven by equation (Al3) is applied at
the root. The rigid wing and fuselage mass then have an acceleration

With thls acceleration applied to the root; the static stresses induced
at the root would be

g = .
I
_ amly
21
3 = ‘D22(1+cose h o
co
IR i) 3 2222 %) atn ot f
max
ki 2. 2
vy wp wg" Op (1 + cos 6 cosh 6 )
=E-—Z - sin ot
C
e n=1 ®n A
max
=g LIX ' L (BW)
cp

The value of A obtained by method B is plotted agalnst wg/we for

for an= 2 1in flgure 3.

Method C - based on acceleration obtained with elastlc wing.- In
method C, the root of the rigid wing le glven an acceleration egual to
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the meximum acceleratlion given by equation (A12) . The bending stresses
at the root is then

=W
°= 3
= ey
21
3 ]
-TIE Y 0P T atn g o
°P n=1 6n" &
max
2 @ :
©
_gTZ 0 en(l+cosen008hen)sinmt_z
cp %2 A n
n=1 :
c P

The value of A obtained by method C 1s plotted against w /W,

for %= 2 1n figure 3.

Stresses Computed for Elastic Wing
Method D - based on reaction obtained with rigid wing.- The reaction
that results from lending when the wing is rigid will vary sinusoldally

with an amplitude sa-;'“i, thus
8

R =5 — sin agt
®g



If, in accordance with method D, this reaction were suddenly applied to the root of the elastic
wing, bending vibrations would be set up in the wing., The response can be found in a manmer
gimlilar to that used 1n the exmct solutlon of eppendix A. The only difference 1s that the last
boundary condition la changed. The last boundary condltion for this case is

(AN (B L

=0 =0 )

2}
{<

With this and the remalning boundary conditlons the deflectlone and bending stresses are then found
ag 1n the case of the exact solution. The maximum bending sirese for this case 1s found to be

[20]
445y ]
o Ec_p_Ensinmnt_Z (B6)
L0 A
where
%2
k ~5 M gin 6, sinh.8,
m
= O
"o mSE M
1l - ;é' {E [(1 + cos Gn cogh en) + On (sin.‘n en COB Bn - cosh en sin en)] + 2 coe Bn cosh Bn}

In this expression, 6p 1is the nth positive roct of the equation

1+ cos ey, cogh 8, + m%n (coﬂh @, 8in 8, + plnh 6, cos en) =0

96T "ON NI YOVN
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If A 1is used to replace the bracketed term in equation (B6)

Q
]
=1

old

iy
)]

The value of A obtalned by method D is plotted against wg /coc
for % =2 1in figure 6.
Method E - based on acceleratlion obtained .with rigild wing.- The

accelerations that result from landing when the wing is rigid will vary
sinusoidally with an amplitude given by equation (Bl), thus

a= v g sin wst

If, in accordance with method E, the root of the elastic wing were
suddenly glven an accelsration characterized by the equation, the wing
would be set into bending oscillations. Again, the oscillations or
response can be found in a manner similar to that used in computing the
landing response by the exact solution glven in appendix A. The last
boundary conditlon for this case is, however,

oFw
= = v oy sin ogt /
0t/ y=o

With this and the remalning boundary conditions, the deflectlons and
bending stresses are then found as in the case of the exact solution.
The maximum root bendlng stress is found to be

0=E§-% Fo sina)st_Z+ ——n—Fnsina)ntj (B7)

max
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where
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sin 60 g8inh 90 )
F =
O R
1l + cos 60 cosh 60
ein 6, sinh 6, -
T =
n
8 (s1n 6, cosh 6, - cos 6, sinh 6;)
90 =
Gn =
W, = 5 ) )
8 M+mn
8.2
(u.n = pc —B—
12

If A is used to replace the bracketed term in equation (B7)

for

Q

I

>
ot
ol

=

-

The value of A obtained by method E is plotted against ws/a)c

=2 in Ffigure 6.

Bix
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Method F - Blot and Bisplinghoff method.- In the statistical
approach suggested by Biot and Bisplinghoff (reference 2), the maximum
force and duration of impact have to be known. This method (designated
method F herein) was applied to the case considered by taking the
maximum force equal to the maximum value given by the exact solution
(equation (Al13)) and by taking the vertical impulse period Tr equal to

one-half the natural period of the airplane structure with rigid wings and

with the bottom of the spring fixed in positlon; thus Ty = %'TS,

where TS = %f.
Og
. Ty
The ratioc of the impulse period to the period of the nth mode o
n

is found by the following consideration. The natural frequency of the
free-free modes of the structure, which are the modes used in the Biot
and Bisplinghoff method, are found from the equation for fregquency glven
in the exact solution (appendix A):

652
®n = DC‘L-;

where 6, 1s taken to correspond to a structure without landing springs

3
and may be taken from flgure T at SL” 0. With the use of the equation
for frequency of a cantilever, We = pC 3;%2’ ®n mWay be written
2
On

®n = o553

Division through by wg and use of the relation between periocd and
frequency result In the relations
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T
Since Tg 1s taken as 2Ty, the equation for TE .may be written

directly

Tr_1_1_ fo°
Tp 2 0g/0g 3.52

For the ratio

Bz

=2, the valus of 612 1s 4.00 and 8,° 1s 23.00.

The value of 939 i not glven because 1t was Found that the third mode
could be neglected.

In computing stresses, the response factor waeg taken directly from
the envelope curve glven in figure 13 of reference 4. The values of
stress coefficient obtained by method F are shown in figure 6.

L}
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Figure 1.- Simplified structure-used in landing analysis.
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Figure 2.- Exact solution for maximum root bending-
stress coefficient. o = A %g- E,
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Figure 3.- Bending-stress coefficients when structural elasticity is
neglected in computing stresses (that is, in stage 2). M 2.
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Tigure 4.-

Physical assumptions when structural elasticity is

considered in determining reaction or acceleration but
neglected in computing stresses.
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Figure 5.- Physical assumptions when structural elasticity is
neglected in determining reaction or acceleration but is
considered in computing stresses.
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Figure 6.- Bending-stress coefficients when structural elasticity is
neglected in computing reaction or acceleration (that is, in

stage 1). 'rl\r£1 =2. o= K%%E
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Figure 8.- Bending-stress coefficient at root for first three modes.
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Figure 9.- Shear-stress coefficient at root for first three modes.
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Figure 10.- Shear-stress coefficient at root for maximum average
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