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SUMMARY 

Hinge-moment J lift, and drag measurements were made on an approximately 
0.178-chord-thick NACA 6-eeries- type airfoil section equipped with sealed 
internally balanced 0.2O-chord ailerons and with a O.05-chord tab. The 
purpose of this investigation was to obtain the effects of aileron contour 
and intornal-balance chord on the aileron section hing~oment characteris
tics and to determine the tab effectiveness in reducing the aileron section 
hinge moments. 

The results of these tests indicated that increasing the aileron 
profile thickness from that of a true-contour to that of a straight-sided 
aileron would cause no significant effect on the aileron effectiveness, 
would increase positively the rate of change of aileron section hinge
moment coefficient with both section angle of attack and aileron deflec
tion, and would cause little change in the hinge-moment parameter for a 
given rate of roll at low aileron deflection but would cause a decrease 
in the hinge-moment parameter for a given rate of roll at the high aileron 
deflections. Increasing the true-contour ail eron internal-balance chord 
from 0 up to approximately 51 percent of the aileron chord would not 
cause the rate of change of aileron section hinge moment with aileron 
deflection to become positive . The effectiveness of the tab in r educing 
the aileron section hinge moments is large at low angles of attack and 
low aileron deflection but decreases appreciably at high aileron deflec
tions. At the higher angles of attack, however , the tab effectiveness 
varies inconsistently with aileron deflection. 

INTRODUCTI ON 

Tests were conducted in t he Langley two-dimensional low-turbulence 
tunnels for an approximate NACA 6-series- type wing section to obtain data 
applicable to the design of the aileron and t o determine the hinge-moment 
effe ctiveness of the tab. The wing section had a maximum thickness of 
0.178 chord located at station 0.35 chord and was equipped with sealed 
internally balanced O.2O-chord ailerons which differed in aileron contour ' 
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shape and in am::lUnt of internal-balance chord. A true-contour O. 05-chord 
plain tab was tested in conjunction with one of the true-contour 
Lnternally balanced ailerons. 

Aileron section hinge-moment, aileron effectiveness, and tab hinge
moment effectiveness data were obtained at a Reynolds number of 2 . 5 X 106 

Some tests were conducted at a Reynolds number of 6 .0 X 106 to obtain 
the relative lift and drag chara~teristics of the airfoil section e~uipPdd 
with a true-contour neutral aileron and with a straight-sided n9utral 
aileron. 

I 

d 

c 

COEFFICIENTS AND SYMBOLS 

Th03 coefficients and symbols ust'ld i n th:i. s paper are as follows: 

airfoil section 11ft coefficient (1) 
\~oc 

airfoil section drag coefficient (~) 
~oc 

aileron section hinge-moment coefficient based on aileron 

chord (~::~ 
aileron section hinge-moment coeffici ent based on airfoil 

chord f-ha \ 

\~oc2) 
seal pressure-difference coefficient , pos itive when 

pressure belO' ...... seal is great~r tilan pressure above seal 

airfoil section lift per unit span 

airfoil section drag por unit span 

aileron section hinge moment per unit s'p'lil, positive 
when aileron tends to deflect downward 

airfoil section chord with aileron and tab n:3utral 

~hord of aileron behind ail,'1ron hinge axi s 

~hord of tab behind tab hinge axis 
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internal-balance chord, distance from aileron hinge 
point to midway point of flexible seal 

free-stream dynamic pressure (~o V 0 2) 

free-stream density 

free-etream velocity 

airfoil section angle of attack, degrees 

aileron deflection with r espect t o airfoil, positive when 
trailing edge is deflected do~ward, degrees 

tab deflection with respect to aileron, positive when 
trailing edge 1s deflected downward, degrees 

Reynolds number 
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aileron section effectiveness parameter ( 2lCLo) 2l5a 
cI 

t.ab hinge-moment effectiveness parameter (~::) 
a.o,ch 

increment of airfoil section angle of attack, degrees 

effective change in angle of attack caused by rolling 
velocity, degrees 

increment of aileron deflection, degrees 

a ileron section effectiveness parameter (ratio of 
increment of airfoll se~tion angle of attack to 
in:::rement of aileron defl'3ction required to maintain 
constant lift coefficient) 

.Lncrement of ailer on section hinge-moment coefficient 
due to aileron deflection ~t constant section angle 
of attack 

in;rement of aileron section hinge-moment coefficient 
due to change in section angle of attack at constant 
aileron deflection 

increment of t otal ailer on section hinge-moment 
coeffi cient in steady roll 

aileron section hinge-moment parameter 

The subscripts t o partial derivatives denote the variables 
held constant when the partial derivatives were taken. The derivatives 
were measured at zero angle of at t ack and at zero deflection of the 
control surfaces except f or the tab hinge-moment effectiveness parameter 
which was measured at zero angle of attack and zero ailer on deflection 
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and the parameter 

investigated. 

5 

ch which was measured at all the tab deflt3ctior.s 
°t 

MODEL 

The model tested was an approximate NACA 6-series-type airfoil 
section developed by a straight-line fairing between the NACA 63(420 )-321 
and NACA 65(318)-415 airfoil sections and had a 24-inch chord' with its 
maximum thickness (0.178 chord) located at station 0.35 chord from the 
wing leading edge. Ordinates for the wing section are presented in 
table I. The model was constructed of laminated mahogany with the 
exception of the 0.2O-chord aileron and the O.05-chord tab~ which wer e 
made of cast bronze. 

The true-contour aileron~ which was constructed withinterchang~able 
internal balance~ was modified by filling in the cusps on the upper and 
lower surfaces with modeling clay to form a straight-sided aileron. 
Sketches of the aileron and the aileron-tab configurations investigated 
are shown in figures 1 and 2~ respectively. It may be noted in f igur e 1 
that the aileron vent gaps were increased at the 0.43ca internal-bal ance 
configuration; however~ reference 1 shows that this slight increa se i s 
negligible. A rubber seal~ attached to the aileron balance and mai n 
wing s ection along the complete span of the model~ was used to prevent 
a flow of air through the aileron vent gaps. Modeling clay was used t o 
seal the tab nose gap throughout the span of the model. The model was 
prepared for tests by sanding with No. 400 carborunium paper to produce 
aerodynamically amooth surfaces. 

APPARATUS AND TESTS 

When mounted in the Langley two-dimensional l ow-turbulence tunnel s ~ 

th~ model completely spanned the 36-inch test s ections. Ailer on hinge 
moment s were measured by means of a calibrated torque r od; whereas ~ 

the airfoil lift and drag me~surements and the f ollowing corr~ctioL 
fact ors, ""hich wer e used to 'correct the tunnel (lata t o free-tl.ir conii
ti ons~ wer e obtained by the methods described in referenc~ 2 : 

c I 0. 973c I 
t 

Cd = 0. 988cd
t 

ch 0. 988ch ' 
a a 

0,0 = 1. 01 5 0,0 ' 
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where the primed quantities represent the values measured in the tunnel. 
The hing~oment coefficients were not corrected for tunnel-wall effects 
on the pressure distribution oyer the airfoil; approximate calculations, 
however, indicate that the correction probably does not exceed O.002cI'. 

The airfoil-lift and aileron hing~oment data were obtained at 
aileron and tab deflections ranging from -180 to 120 and -200 to 200

, 

respectively, at a Reynolds number of 2.5 X 106 corresponding to a 
Mach n~ber of 0.17. For the aileron-neutral condition, relative lift 
and drag characteristics of the airfoil section e~uipped with the true
contour aileron and with the straight-sided aileron were obtained in 
the Langley two-dimensional low-turbulence pressure tunnel at a Reynolds 
number of 6.0 x 106 corresponding to a Mach number of 0.12. 

RESULTS AND DISCUSSION 

Aileron Characteristics 

Airfoil-lift, a1rfoil-drag, and aileron hing~oment data applicable 
to the design of the aileron are presented in figures 3 to 11, and a 
summary of the parameters used in this investigation is presented in 
table II. The discussion of the data refers to the data obtained at a 

Reynolds number of 2 .5 x 106 unless otherwise stated. 

Section characteristics.- The aileron-contour modification 
resulted in a reduction of approximately 3 percent in cI for the 

~ 

two Reynolds number investigated (figs. 3 to 5 and table II) and caused 
no significant change in maximum section lift coefficient or minimum 
section drag coefficient at a Reynolds number of 6.0 X 106 . A negligible 
decrease in lift-curve slope occurred with a change in Reynolds number 
regardless of the aileron contour investigated. 

Increasing the aileron profile from a true-contour aileron to a 
straight-eided aileron had no 8~b8tantial effect on the paraneters CIa 

and ao (figs. 4 and 5 and table II). The values of the effectiveness 
parameter no (table II) of the two ailerons investigated with 0 .43ca 
internal balance were approximately 0.88 percent of the value (-0.55) 
predicted from thin airfoil theory in reference 3 and were approximately 
e~ual to the value obtained for the NACA 653-418 airfoil e~uipped with 

a plain true-contour 0.2O-chord aileron (reference 4). At a section 
lift coefficient of 0.40, the values of the effectiveness 

parameter ~~!) (table II) indicated that no change in aileron 

aa~12° 
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effectiveness occurs oyer the range of ailer~n defl!3ction of ± 120 for the 
aileroIls of different ~ontour eCluipped .,ith 0.43ca internal balance. 

A change in the aileron contour fr~m a true-contour aileron to:) a 
straight--i3iied aileron with 0.4 3ca internal balance increased positi yely 
the values of cha and cha from -0.0031 to -0.0021 and from -0.0034 

to -0.0011, respectively (fig . 9). A decrease in the sealed internal
balance chord fr~m o.60ca to 0.43ca increased negatively the value of 

the parameter ch from 0.0028 to -0.0031 and had a relative smaller 
5 

effect (-0.0014 to -0.0034) on Chao Values of the parameters Ch
5 

and ch of the true-contour aileron with less than 0.43ca internal 
a 

balance were computed from the following eCluations: 

(1 ) 

where the subscripts 1 and 2 denote any given am8unt of internal 
balance. Data f 8r the three internally balanced true-contour ailerons 
werd substituted in eCluations (1) ani (2), and average values of ch5 

and ch 
a 

of ailerons with less than 0.43ca internal balance are plotted 

in figure 9. Increasing the true-contour aileron internal--oalance chord 
from 0 up to approximately 51 percent of the ai l er on chord would not 
cause the rate of change of ailer~n section hinge moments with aileron 
deflection to bec moo pusitive and would have a relatively smaller effect 
on the rate of change of aileron section hinge moments with section 
angle of attack. 

Effect of ccmtour on characteristics in stea~roll.- For comparison 
of the a ilerons--of different contours ~- - therafe of chang-e of the total 
aileron sect ion hinge-moment coefficient with aileron deflection in 
steady roll was calculated by the eCluation given in reference 5 
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n = 2 ~o) p . Values of 2 (&Lo) p where of 0 . ~9 and 0 . ~8 were obtained 
!::jj a !::jj a f::a 

from the data of reference 6 f or corresponding values of ~ of the 
!::jja 

true~ontour and straight--t3 i ded ail<3rOIlS ~ respect i vel y . These valu~s 
were calculated for a t ypical large airplane which has the foll~ving 
characteristics : 

Aileron chord (constant percent of wing chord) • 
Aileron location~ fraGtion of semispan : 

Inboard end . . . • • . 
CJJ.tboard ;:}nd 

-Wing aspect ratio 
Wing taper ratio . 

An e~ual up and down aileron def lection is a ssumed in this method of 
analysis . 

20 . 0 

0 .541 
()·Y90 

9 . 0 
0 · 379 

The hinge-moment parameter 
~1L;r 

~/!:jja 
plotted against (fig . 11) 

ts uS 'Jd :for comparison :)f a ilerons of diff erent contour. The smaller the 

value of the hinge-mcment parameter for a given value of 

the more advantageous the combination should be for providing a lower 
control force for a given helix angle of the wing tip. Increasing the 
true~ontour--aileron profile thickness to form a straight--t3iddd ailel~on 

would cause little change in the hinge-momeJlt parameter 
6cHT 

for a 
&Lo/!::jja 

given rate of roll at low aileron deflections but would cause a decrease 
in the hinge-moment parameter for a given rate of roll at the high ail <3r or: 
deflection. Within a range of aileron deflection of 00 to -60~ the 
control forces of the true~ontour aileron with 0 . 43ca intarnal balan:::;e 
wo~ld De approximately the same as those of the stra ight--t3ided ailer on 
with 0.43ca lnternal balance. 

Tab Characteristics 

The discus.3ion of the tab characteristics refers to the (lata 
pr~e~nt~d ig figures 12 to 14 which were obtained at a R~ynolis ~umbcr 
of 2.5 X 10 . 



NACA TN No. 1590 

At low angles of attack (-30 t .o 30
), the rate of change of the 

aileron section hinge-moment coefficient with aileron deflection for 
IJw aileron deflections becomes gradually more negative as the tab is 
deflected upwards and gradually less negative as the tab is deflected 
dOWllward. (See fig. 12.) 1be rate of change of aileron section hinge
moment coeffieient with aileron deflection for low aileron deflections 
remains reasoJllibly constant at the high angle of attack of 10.20 • The 
rate of change of aileron hinge moment with tab deflection is presented 
in figure 13 for the aileron neutral, 1vhich is the condition of most 
importance for trimming. The tab appears to be most effective in 
reduGing the aileron section hinge moments at the low angles of attack 
between a range of tab deflection of -150 to 100. At the higher angles 
of attack, a reduction Oc.curs in the tab trimming effectiveness. 

The r1:ite of change of aileron deflection with tab deflection 5aBt 
is a measure of the effectiveness of the tab in balancing the increment 
of aileron hinge moment caused by the aileron deflection at a constant 
angle of attack. The tab effectiveness parameter BaBt indicates that 

the smaller the tab deflection required to balance the increment of 
aileron hinge moment due to a given aileron deflection, the greater is 
the tab hinge-moment effectiveness. The value of Bact measured at 

zero angle of attack and at zero aileron deflection (fig. 14) is maximum 
and equal to approximately 2.7 for a very limited range of aileron 
deflection between approximately -40 to 4°; however, the tab retains 

9 

most of this effectiveness in the range of aileron deflection from -SO 
to 60

• The effectiveness of the tab in reducIng the aileron section 
hinge moments is large at low angles of attack and low aileron deflections 
but decreases appreciably at high aileron deflections. At the higher 
angles of attack, however, the tab effectiveness varies inconsistently 
with aileron deflection. 

CONCLUSIONS 

An investigation made on an approximately 0.178-chord-thick 
NACA 6-eeries-airfoil section equipped with 0.2O-chord ailerons and 
with a O.05-chord tab indicates the following conclusions: 

1. Increasing the true-contour aileron profile thickness to form 
a straight-eided aileron would cause 

(a) No significant effect on the aileron section effectiveness 
parameter ao 

(b) A positive increase in the rate of change of aileron 
section hinge-moment coefficient with both section angle of attack 
and aileron deflection 
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(c) Little change in the aileron section hinge-m~nent parameter 
for a giYen rate of roll at low aileron deflection~ but a decrease 
in this hinge-moment parameter for a given rate of roll at the high 
aileron deflections 

Cd) I. slight decrease in the rat.e of change of section lift 
coefficient c~ with section angle of attack ao 

(e) Little affect on the maximum section lift coefficient and the 
section drag coefficients throughout the low drag range for a neutral 
aileron 

2. Increasing the true-contour aileron sealed internal-balance chord 
from 0 up to approximately 51 percent of the aileron chord would 

(a) Not cause the rate of change of aileron section hinge 
moments with aileron deflection cha to become positive 

(b) Haye a relatively smaller effect on the rate of change 
of aileron section hinge moments with section angle of attack 

3. The effectiveness of the tab in r~ducing the aileron section 
hinge moments is large at 10l{ angl!3S of attack and low aileron deflections 
·but decreases appreciably at high aileron deflections. At the higher 
angles of attack, howeyer~ the tab effectiveness varies inconsistently 
with aileron deflection. 

Langley Memorial Aeronautical Laboratory 
National AdYisory Committee for Aeronautics 

Langley Field~ Va. ~ December 9, 19Jn 

------ --_. -
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TABLE I 

ORDINATES FOR AN APPROXIMATE O.17B-CHORD

THICK NACA 6-SERIES-TYPE AIRFOIL SECTION 

[Stations and ordinates given 
in percent of airfoil chord] 

Station Uprn r Lower 
ord nate ordinate 

0 0 0 
.155 1.24 -.527 
.50 1.B3 -l.oB 

1 2.~6 -1.57 
2.5 ~. 9 -2.42 
5 -~. 8 
7·5 5:E~ - .20 

10 6. 7 -4.81 
12·5 ~.63 -5. 24 15 .29 -5~7 
20 9. 27 -6.~9 
25 9.~3 -6. 1 
30 10. 2 -7·07 

~6 10. 7 -7.1h 
10.64 -~ .05 

45 10.42 - .71 
50 10.00 -6.26 
g6 E:t§ -~.66 

- ~ .97 
65 r 81 -4.23 
70 . . 81 -3.40 

~6 4. 71 -2.54 
.54 -1.71 

85 3.33 - 9~ 90 2.12 -.2 
95 ·98 .15 

100 0 0 

L.E. radius: 2.20 
Slope of radius through 

L.E. : 0.162 
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Internal 
bal ance 

0 .60ca 
0 .50ca 
0 .43ca 

0 . 43ca 

TABLE II. - SECTION PARAMEI'ERS MEA.SURED AT 0.0 = 0° 

AND 0a = 00 EXCEPT FOR (~Q \ 
\.60~Oa=±120 

Ml!:A.SURED AT C 7, = o. 40 

R c7, 
a. c7, 

0 
0.0 (::)oa=±120 

clla. 

True-contour ailer on 

2 ·5 X 106 --- -- ----- ------ -------------- -0.0014 

2 ·5 - ---- ----- ------ ------------- - -.0025 

{2. 5 0.11~ 0.055 -0.400 -0.400 -.0034 
6 .0 .11 --- -- ------ -------------- -------

Straight-sided ailer on 

{2 .5 0.113 0 .055 -0.485 -0.400 -0.0011 
6 .0 .112 - - --- ------ ----- - -------- -------

cho 

0 .0028 

-.0005 
-. 0031 

-------

-0 .0021 
-------
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cb 0.60c
a
------t.{">-------- Ca = 0.20c -------../ 

Chord line 

..... -_cb = O.50oa __ r--------- ca == 0.20c--------i 

0.0037c 

True contour 

Chord line --l====:-:~ 

ca = 0 .20c -----___ -1 

Chord line -+----
Rubber seal 

aided 

Figure 1.- Sketch of the internally balanced aileron configuration tea ted on an approximate 
0.178-chord-thick NACA 6-aeriea-type airfoil section. 



cb = O.43ca 

Chord line ---1-----

Rubber seal \ 

c
a 

= O.20c __________________ _ 
~ 

O.Oo4.5c 

points ___ 

~ L- D.DrY/Be 

O.005l c 

Sealed 

~ 

Ct = O.05t 

Figure 2.- Sketch of the internally balanced true-contour aileron equipped with a tab 
testedforan approximate O.l78-chord-thick NACA 6-series-type airfoil section. 
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Figure 12.- Aileron effectiveness and hinge- moment characteristi"s of 
the O.20-chord true-contour aileron with sealed o .43-aileron-chord 
internal balance and with a O.05-chord tab on an approximate 
O.178-chord-tb1ck NACA 6-series-type airfoil section. 
R, 2.5 x 106• 
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(e) <10 =3°. 
Figure 12.- Continued. 
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(d) «0 = 6.1°. 

Figure 12.- Con t inued. 
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(eT ao = 10.2°. 

F1gure 12.- Oonoluded. 
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