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CHARACTERISTICS OF THIN TRTANGULAR WINGS WITH CONSTANT-CHORD
FULL-SPAN CONTROL SURFACES AT SUPERSONIC SEEEDS

By Warren A. Tucker
SUMMARY

A theoretical analysis was made of the characteristics of constant-
chord full-span control surfaces on thin triangular wings at supersonic
spesds by use of msthods based on the linsarized equation for supersonic
flow. Expressions were found for the 1ift effectiveness, pitching-moment
coefficlent, hinge-moment coefficient due to control deflection, and
hinge-moment coefficient due to angle of attack. These expressions were.
given as functlons of the ratio of flap chord to wing chord and the ratio
of the tangent of the wing-semiapex angle to the tangent of the Mach angle.

High velues were found for the 1i1ft effectiveness, dsfined as the
ratio of the 1ift coefficient produced by & unit flap deflection to the
1ift coefflcient produced by a unit angle of attack of the wing. For
cortaln combinations of flap size, wing-apex angle, and Mach number, the
1lift produced by a unit flap deflsction was actually greater than the
1ift resulting from & unit angle of attack of the entire wing. Thess
high values of 1ift .effectliveness were the result of the low lift-curve
slope of the wing rather than of any remarkable 1lift-producing capebility
on the part of the flap.

When the ratio of 1ift effectiveness to hings-momsnt coefficient due
to control deflsction was compared with the corresponding ratio for a
two-dimensional wing-flap combination having the same ratio of flap area
to wing area, the present arrangement was slightly inferior to the two-
dimensional case when the Mach lines were beshind the leading edge. As
the Mach lines moved ahead of the leading edges, the efficlency of the
present arrangement reached and exceeded that of the two-dlmensional
combination.

INTRODUCTION

-A variety of control-surface arrangemsnts has besen suggssted for use
on triangular wings at supersonlc speeds. Soms of the more obvicus are
the triangular-tip flap (reference 1) , the constant-percent-chord flap,
and the constant-chord flap. OI these various control-surface types,
perhaps the‘simplest is the familiar constant-chord full-gpan trailing-

edge flap.



2 NACA TN Ro. 1601

The characteristics of this type of control surface are, analyzed in
the present paper by use of methods based on the linearizsd equation for
supersonic flow. Simple expressions are obtained for the 1lift effective-
ness, pitching-moment coefficient, hinge-moment coefficient due to con-
trol deflection, and hinge-moment coefficient due to angle of attack.

The results, having been found by methods based on the linearized
equation, are valid only for small control-surface deflections and angles
of attack.

SYMBOIS
b maximm wing span
c wing root chord
cy wing local chord

Ot

b/2
wing mean aerodynamic chord —:— f cze dy = -2—0

o 3
Cp flap chord
c.3
- 2 2*F
Cr flap root-mean-gquare chord ce” - E _—
c
Cy, 11ft coeffilclent (—L}-fi>
as
Cn pitching-moment coefficient about wing aerodynamic center
<Pitohing moment
qsc '
Cyp hinge-moment coefficient < :E_[ 2)
qbcf
c 1 E
D ifting pressure coefflcient q
E< 1 - 2> complete elliptic integral of second kind with modulus
1 - m2
H flap hinge moment

M free-stream Mach number
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tan ¢
m =

ten p
P 1ifting pressure on flap

pv2
Q free-stream dynamic pressure -?5—
S wing area <g§>
Se flep area
v free-stream velocity
X,¥ Cartesian coordinates parallel and normal, respectively, to free-
stream direction
Xep distance behind wing apex of center of pressure of 1lift resultlng
from flap deflection :

o angle of attack

' CI6
ag 1ift effectivensss | —

CIy

B = JM? -1
s} angle of flap deflectlon
€ . wing-gemiapex angle
K Mach angle <£an'l %>
vebT o J/x

X tan W
P free-stream density
) disturbance-velocity potential

¢x disturbance velocity in x-dlrection
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Subscripts: f":;_ .
a partisl derlvative of coefficlent wité;??spect to a -
example: Cp, = aCﬁ) o | :
o) partial derivative of coefficient WithE;;éiééf;%o'“é-?(except
when used in ap)
o1, partial derivative of coefficient with respect to Cj
o two-dimensional case -

All éngles are in radians, unless otherwlse specifled.

Lift Bffectliveness

The control-surfagce configuration under investigation is shown in
figure 1. In calculating the 1ift caused by a flap deflection B, the
angle of attack o -may be assumed to be zero. The deflected flep may
then conveniently be regerded as & trapezoidal wing at an angle of attack
equal to ©. Two regions of flow are distinguished in determining the
1ift. (See fig. 2.) In region Sy, the pressure is constant and equal
to the pressure on a wing of infinite span. In each of the regions SIT

the effect of the flnlte tip mmst be considered. AT

The pressure in regions Sy may be calculated by a powerful method
developed by Evvard (reference 2). Figure 3 shows the notation used in
reference 2. The equations of the leading edge and the tip are defined
in reference 2 in terms of an obligue u,v-coordinate system whose txes
are the Mach lines originating at the tip.. For. the present.case, the
values of kj and ko (flg. 3) become o

ky =1 )
(1
1+ B tan €

kn =
2 1l- B tan ¢

The veloclty potential at a point (x,y) on one surface is given by
equation (20) of reference 2 for a wing having a wedge-shaped section.
As pointed out in reference 2, only the second term (which 1s independent
of the airfoll section) contributes to the 1ift due to angle of attack.
The potential at a point (x,y) on one side of the surface for the
bresent case 1ls thus given by
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‘ 5
v | [ (kL + ko) (x + BY) [(kp - D)x - (kp + 1)87]
o y:

. (1 + kp)x + (1 - k1 )By tan-1 kl[(k‘Z - Dx - (% + l)By:I (2)

\J_}g_ (k3 + ko)(x + BY)

where k; and k, have the values noted in eguation (1).

In order to obtaln an expression for the pressure, the disturbance-
veloclty component ¢x on which the pressure 1is dependent is obtained by

differentiating equation (2) with respect to' x. The differentiation
yields

B2 [otme .M

¢x=2va 8 tan € 1+ + tan-1 B € -3
1

s e\ E T L

For convenlence write

m=pf tan €

where 0Sm< 1 and

(3)

<
1
Wi

where -1< v Sm. When m =1, the Mach line lies along the wing tip;

when m = O, +the tip is rectangular (for Mach numbers greater than unity).
The value VvV =m defines the wing tip; the value V = -1 deflnes the
tlp Mach line lying on the flap. The equation for ¢x then becomes

_ V5 m ’l+V -1 m -V
¢x—’fB <l+m m_v+'ba.n ‘l+V> ()
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By defining a pressure coefficlent as

L P
Cp=71
where P 1is the lifting pressure on the flap, -
L
Cp=v¢x

or

8 n v, o v -
CPnnB<l+m m__v+ta.n 'l+V>" - (5)

Values of CpB/& are shown in figure 4 for several values of m.

When m = O, equation (5) correctly glves the pressure distribution over _
the tip of a rectangular wing as found by other. investigators. v

With the pressure known at all points, determination of the 1lift -
coefficient per unit flap deflection is now possible. The derivation is
carried out for the case shown in figure 2, where the Mach lines do not
intersect each other. As is pointed out subsequently, the result obtained
is also valid when the Mach lines intersect, so long as the Mach line from
one tip does not cross the opposite tip. The 1lift on one tip is

2 m
Cp .
L1 = ¢ Cp 48 = 54 Cp av
' STt . -1
or
m m
Yeop2 ' S ' -
L1t - ij m 1+ V av + .tan'l m -V ay
ad n82 l+m m- v L+v

-1 -1
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The integrals may be evaluated with the ald of equation (111), (161),
and (169) of reference 3 and the result is

2
C.
-fgrs.g_em 1)

The pressure coefficient in the region 81 has the two- dimensional
value U4d/B, and the area Sy ocan be shown to be

2
81 = beg -c—g—(l + 2m)

so that
It 4 or? }
S - —(]
o BI:Cf - ( + 2m)

If the 1ift coefficient 1s based on the total wing area bo/2, then the
1ift coefficlent per unit flap deflection 1g

016 = ho

Substituting the expressions for Ly /g and Lyy/ad® results in

ooy = [ (b (x ﬂ (62)

c .
The case c—f = 1 represents a complste trlangular wing, and

wvhen m = 1 equation (6a) correctly glves the lift-curve slope as found
by other investigators (references 4 and 5). However, when m i1s dif-
ferent from 1, equation (6a) does not give the velues found in referemnces 4
and 5. An exa.mination of the range of applicability is thus in order.

Equation (2) is noted to be valid only for O <m <1 (Mach lines
ahead of the leading edge), so that equation (6a) should not be expected
to hold for m > 1. A further restriction is necessary for m < 1.
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Equation (6a) was derived for the came where the Mach line from one tip
does not meet the Mach line from the other tip. The case wherse the Mach
lines intersect has been exeamined, and equation (6a) has been found to
apply also to this case so long as the Mach line from one tip does not
cross the opposlite tip. This situation is similar to that arising in
the case of the 1ift of a rectangular wing. (Sse reference 6, for
example.) For the present configuration, the limiting conditlon corre-

C
sponds to -ci < 123 —. The renge of applicability for m <1 1is shown

in figure 5. The same range is also applicebls to the results for
pitching moment and hinge moment due to control deflection to be found
subsequently. The restriction will be found unnecessary in the case of
hinge moment due to angle of attack.

For the cases when m >1 (Mach lines behind the leading edge),
uge may be made of en snaelysis in reference 5 which shows that the 1lift
coefficlent and center of pressure are the sems as if the flap were
subJject to the uniform 1ift distribution of an infinite span airfoil.
(Note the similarity of this cese to that of a triangular wing with the
Mach lines behind the leading edge.) For thils case equation (6a) applies
if m is -set equal to unity. -The quantity in brackets then becomes the
flep area ratio S¢/S.

Now that the range in which the results are applicable is known,
the complete equations may be written .

wafrboE] e

o _
k|, Cr Cr _ 48
i@l

c c.

where m 2 1.. _ L o L .

The nondimensional quantity oy is customarily used to express the

1lift effectiveness of a conitrol surface, whlch may be regarded as the
ratio of the 1lift coefficient produced by a unit flap deflection to the
1ift coefficient produced by a unit angle of attack of the whole wing.
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In reference 4 an expression has been obtained for the lift-curve slope
of a triangular wing for m < 1. Rewriting the expression of reference L
in the notation of the present paper glves

2nm

1
CI, ==
BE \Jl-ma)

(72)

where E (Jl - me) is the complete elliptic integral of the second kind

with modulus \Jl - m°. For the case m 21, the value of C1, has been
found 1n reference T and 1ls simply

Cry = g— (Tp)
The 1lift effectiveness is
|
GG - CIU
or
ag = EE(\Jl-m [ (l+m< )J (82)
where °z/° <m<1l and
o .22 7
c

2
=2 - () -5 ®)

c
where m 2 1. Values of ay are given in figure 6. At 'éi =1, ag =1

for eny valus of m because the control surface now comprises the entire
wing. The very high values of o are dne more to the low lift-curve

slope of the wing rather than to any particular efficacy on the part of
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the flap. For certain cambinations.of cf /c and m, oag 1is greater
than unity; this fact.indicates that a unit flap deflection will produce
more lift than a unit engle of attack of the whole wing.

A standard of comparison for control-surface errangsments is the
two-dimensional wing-fla.p combina.tion For this case, the lift effec-

tiveness 1s merely
(= 5 ( ) (9)

When the Mach lines are behind the leading edge .(m 2 1), -

@ - Sp/8
%, (8g/8),

go that for equal flep area ratios .df’_ = 1. A more complets comparison
© .

with the two-dimensionsl case is made in the section entitled "Discussion
end Concluding Remarks. '

Pitching Moment

An importan:t parameter in stabllity and control calculations is the
pltching moment ebout the wing aerodynamic center resulting from a given
1ift on the flap. If the pitching-moment coefficient is based on the

total wing area and the wing mean asrodynemic chord <§c> so that

o = Pitching moment _3 Pitching moment
o qSe 2 aSc

and if the wing aerodynamic center is noted to be at %c behind the

wing apex, then the pitching moment resulting from 1ift on the flap can
be expressed in coefficient form as
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2
6 o2 5 88 (xep - %) =_3_-<fc_1>_2>
T ey |2 . asc 2\c 3

where Xop /c is the distance (expressed as a fraction of the root chord)

behind the wing apex of the center of pressure of the 1lift resulting from
flap deflection. This distance is found to be

X

2
1on - (3¢ o)k + (1 + 3m)()

zp . (10a)
iom - (3 + 3m)-é£
ce/C
where f/ <m <1 and
Gf - -
o _ —=
c
2
(o)
x 6 - 62 + 2<__f.>
cp _ c c (10b)
[+ 6 cf .
- 3=
c
whers m Z 1l 8o that
. Cp Cp 2.
bm - (1 + Tm)=— + (l+3m)6—
C‘mc-L == 2 cp (11=2)
Em - (2 + 2[11)—6—
cp/C
wherse f/ § m § 1 and
Cr
o _ =
c
2
c c
12Xy (X)
Cmgy, = - = > = (11p)
2-35

where m 2 1. Values of 'CmCL "are given in figure 7.
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Hinge Momsnt Due to Control Deflectlon

The hinge-momsnt coef‘fici'e'n‘b_ caused by a wmit £lap deflection

Chs

can be found in the same manner as CmcL if moments are taken about the

hinge line rather than the aerodynamlc center. If the hinge-moment
coefficlent is based on the ma.ximum flap span b a.nd the square of the
root-mean-square flap chord ¢y 8O that '

(12)

where

then

1%
_nec (13a)
o]
o £
[

(131b)

Q
&
|
]
™l

where m 2 1. Values of -Chgﬁ/E are given in figure 8. The values
Cp
of -chaa/a for -c-- 1 (shown by circles) are the values of -ChGB/E

c
taken from the next section, since at -é-f-‘- =1 Cpy mst necessarily
equal Cp_ . The value of Cng for the two-dimensional case is simply

(14)

win

Ch5m= -
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so that the values of -Chaﬁ/e in figure 8 are also the values of

Chb/ch{im'

Hinge Moment Due to Angle of Attack

An expression for the flep hinge moment resulting from & change in
angle of attack of the wing Cp, may be obtained even more gimply than

the expressions derived previously, since in thils case the only knowledge
required 1s that of the lift-curve slope of a triengular wing, which has
been found by other investigators (references %, 5, and 7).

The scheme employed is shown in figure 9. If the area of the whole
wing is denoted by S and .the wing area minus the flap area by S - S¢,
then the flap hinge moment H can be written as

H = HS, - ES'Sf

or

o - g {S@ o) - 8 Cf>2<c 3 Cfﬂ

If as before the flap hinge-moment coefficient 1s based on b&f2 so that

‘ _ H/qo
then
c
5 - &
Chg = ~Cly
6 - 402

Substituting the expressions for Cr, glven by equations (7a) and (7b)
gives
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cp
3 -1
O = - & —7e | —2 (152)
Pl <J_'- m? 3 - ch
where m.§ 1 and
°r ]
Ch. = 23 " (15b)
Pa =B\ T _or
3-20—

where m 2 1. Note that the expression for Op, for m 2 1 is _
identicel to that obtained for Chy for m 2 1 (equation (13b)). This

identity should bs true because when the Mach linss are behind the leading
edge elther the 1lift on a triangular wing or the 1lift on the trapezoid
wing considered to represent the flap are the same as if the pressure on
the wing were constant and had the two-dimensionel value. |,

Vaelues of -ChyB/2 are presented in figure 10. The value of Che,
for the two-dimensional wing-flap combination is

2
ch%=-E _ _ (16)

go that figure 10 is also a plot of chm/ch%.

DISCUSSION AND CONCLUDING REMARKS

Several quantities may be used to evaluate the efficiency of a
control-surface system. One commonly used guantity is the ratio aﬁ/Chs;

which 18 an indication of the 1ift resulting from the application of a
given control force. By use of this ratlo, the present control-surface
arrangement can be compared with & two-dimensional wing-flap combination
on the basis of equal ratios of flap area to total wing area. The
comparison gives y



r , __ .7
/% ] m(m) T G T ok s -2 f) (17a)
2m Sp/S S - : )
e o -1 F)
S \B /e ; ) . ) ‘
where - e i
and.
(1)

where m 2 1. Values from equetiome (17) are '-s'hown in figure 11. For the usuel range of the’
ratio of flap erea to wing area (less than 0.5, for exauple), the yalue of ag [Chy for the

rresent arrangsment is never leas then 0.9 of the va.lue for the two- dimensiona.l combination. As
the Mach lines move aheaed of the lea.d.ing edge, the efficlency of the present a.rra.ngemsnt increasss

TCST "ON MI VOVM

T
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and soon exceeds that of the two-dimensional comblnation for a wide
_range of flap area ratlos. A large part of this increase resulis from
the dropping off of the lift-curve slope of the triangular wing.

In reference 1 the efficlency of a triangular-tip flap on a trian-
gular wing with the Mach lines behind the leading edge was shown to be
equal to that of a two-dimensional wing-flap combination having the same
flap area ratio. 8o long as the Mach lines are behind the leading edge,
then, the triangular-tip control surface asppears to be superior to the
constant-chord flap on the basis of a5/0h5 (although for flap area

ratios less than about 0.5 the difference in efficiencles is not con-
siderable). The results of an analysis of the triengular-tip flap with
the Mach lines ahead of the leading edge are not yet availsble, so that

& comparison of the constent-chord flap with this perhaps more interesting
cage cannot yet be made.

For certain combinations of cp/c and m, the lift effectiveness og

is greater than unity. (See fig. 6.) These very high values are more the
result of the low lift-curve slope of the wing for low values of m
rather than of any remarkable lift-producing capability on the part of

the flap. : L

Although the parameter m arises naturally in the analysis of tri-
angular wings, expression of control-surface characteristics as direct
functions of the Mach number M 1is often convenient, especially for
design purposes. Figure 12 shows the variation of control-surface char-
acteristics with Mach number for one particular configuration with ¢ = 450
and ;£ = 0.2. Other such plots cen be made from the equations presented

in this peper or from the figures.

Langley Memorial Aeronauticel Laboratory
National Advisory Commlttee for Aercnautics
langley Field, Va., March 29, 1948
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Figure 1.- Control-surface configuration.
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Figure 3.~ Notation for the case considered in reference 2.
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Figure 9.- Notation used in derivation of hinge moment due to angle
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